2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/mips-cm.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mips-cm.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
73 extern void check_wait(void);
74 extern asmlinkage
void rollback_handle_int(void);
75 extern asmlinkage
void handle_int(void);
76 extern u32 handle_tlbl
[];
77 extern u32 handle_tlbs
[];
78 extern u32 handle_tlbm
[];
79 extern asmlinkage
void handle_adel(void);
80 extern asmlinkage
void handle_ades(void);
81 extern asmlinkage
void handle_ibe(void);
82 extern asmlinkage
void handle_dbe(void);
83 extern asmlinkage
void handle_sys(void);
84 extern asmlinkage
void handle_bp(void);
85 extern asmlinkage
void handle_ri(void);
86 extern asmlinkage
void handle_ri_rdhwr_tlbp(void);
87 extern asmlinkage
void handle_ri_rdhwr(void);
88 extern asmlinkage
void handle_cpu(void);
89 extern asmlinkage
void handle_ov(void);
90 extern asmlinkage
void handle_tr(void);
91 extern asmlinkage
void handle_msa_fpe(void);
92 extern asmlinkage
void handle_fpe(void);
93 extern asmlinkage
void handle_ftlb(void);
94 extern asmlinkage
void handle_msa(void);
95 extern asmlinkage
void handle_mdmx(void);
96 extern asmlinkage
void handle_watch(void);
97 extern asmlinkage
void handle_mt(void);
98 extern asmlinkage
void handle_dsp(void);
99 extern asmlinkage
void handle_mcheck(void);
100 extern asmlinkage
void handle_reserved(void);
101 extern void tlb_do_page_fault_0(void);
103 void (*board_be_init
)(void);
104 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
105 void (*board_nmi_handler_setup
)(void);
106 void (*board_ejtag_handler_setup
)(void);
107 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
108 void (*board_ebase_setup
)(void);
109 void(*board_cache_error_setup
)(void);
111 static void show_raw_backtrace(unsigned long reg29
)
113 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
116 printk("Call Trace:");
117 #ifdef CONFIG_KALLSYMS
120 while (!kstack_end(sp
)) {
121 unsigned long __user
*p
=
122 (unsigned long __user
*)(unsigned long)sp
++;
123 if (__get_user(addr
, p
)) {
124 printk(" (Bad stack address)");
127 if (__kernel_text_address(addr
))
133 #ifdef CONFIG_KALLSYMS
135 static int __init
set_raw_show_trace(char *str
)
140 __setup("raw_show_trace", set_raw_show_trace
);
143 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
145 unsigned long sp
= regs
->regs
[29];
146 unsigned long ra
= regs
->regs
[31];
147 unsigned long pc
= regs
->cp0_epc
;
152 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
153 show_raw_backtrace(sp
);
156 printk("Call Trace:\n");
159 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
165 * This routine abuses get_user()/put_user() to reference pointers
166 * with at least a bit of error checking ...
168 static void show_stacktrace(struct task_struct
*task
,
169 const struct pt_regs
*regs
)
171 const int field
= 2 * sizeof(unsigned long);
174 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
178 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
179 if (i
&& ((i
% (64 / field
)) == 0)) {
188 if (__get_user(stackdata
, sp
++)) {
189 pr_cont(" (Bad stack address)");
193 pr_cont(" %0*lx", field
, stackdata
);
197 show_backtrace(task
, regs
);
200 void show_stack(struct task_struct
*task
, unsigned long *sp
)
203 mm_segment_t old_fs
= get_fs();
205 regs
.cp0_status
= KSU_KERNEL
;
207 regs
.regs
[29] = (unsigned long)sp
;
211 if (task
&& task
!= current
) {
212 regs
.regs
[29] = task
->thread
.reg29
;
214 regs
.cp0_epc
= task
->thread
.reg31
;
215 #ifdef CONFIG_KGDB_KDB
216 } else if (atomic_read(&kgdb_active
) != -1 &&
218 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
219 #endif /* CONFIG_KGDB_KDB */
221 prepare_frametrace(®s
);
225 * show_stack() deals exclusively with kernel mode, so be sure to access
226 * the stack in the kernel (not user) address space.
229 show_stacktrace(task
, ®s
);
233 static void show_code(unsigned int __user
*pc
)
236 unsigned short __user
*pc16
= NULL
;
240 if ((unsigned long)pc
& 1)
241 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
242 for(i
= -3 ; i
< 6 ; i
++) {
244 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
245 pr_cont(" (Bad address in epc)\n");
248 pr_cont("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
253 static void __show_regs(const struct pt_regs
*regs
)
255 const int field
= 2 * sizeof(unsigned long);
256 unsigned int cause
= regs
->cp0_cause
;
257 unsigned int exccode
;
260 show_regs_print_info(KERN_DEFAULT
);
263 * Saved main processor registers
265 for (i
= 0; i
< 32; ) {
269 pr_cont(" %0*lx", field
, 0UL);
270 else if (i
== 26 || i
== 27)
271 pr_cont(" %*s", field
, "");
273 pr_cont(" %0*lx", field
, regs
->regs
[i
]);
280 #ifdef CONFIG_CPU_HAS_SMARTMIPS
281 printk("Acx : %0*lx\n", field
, regs
->acx
);
283 printk("Hi : %0*lx\n", field
, regs
->hi
);
284 printk("Lo : %0*lx\n", field
, regs
->lo
);
287 * Saved cp0 registers
289 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
290 (void *) regs
->cp0_epc
);
291 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
292 (void *) regs
->regs
[31]);
294 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
297 if (regs
->cp0_status
& ST0_KUO
)
299 if (regs
->cp0_status
& ST0_IEO
)
301 if (regs
->cp0_status
& ST0_KUP
)
303 if (regs
->cp0_status
& ST0_IEP
)
305 if (regs
->cp0_status
& ST0_KUC
)
307 if (regs
->cp0_status
& ST0_IEC
)
309 } else if (cpu_has_4kex
) {
310 if (regs
->cp0_status
& ST0_KX
)
312 if (regs
->cp0_status
& ST0_SX
)
314 if (regs
->cp0_status
& ST0_UX
)
316 switch (regs
->cp0_status
& ST0_KSU
) {
321 pr_cont("SUPERVISOR ");
327 pr_cont("BAD_MODE ");
330 if (regs
->cp0_status
& ST0_ERL
)
332 if (regs
->cp0_status
& ST0_EXL
)
334 if (regs
->cp0_status
& ST0_IE
)
339 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
340 printk("Cause : %08x (ExcCode %02x)\n", cause
, exccode
);
342 if (1 <= exccode
&& exccode
<= 5)
343 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
345 printk("PrId : %08x (%s)\n", read_c0_prid(),
350 * FIXME: really the generic show_regs should take a const pointer argument.
352 void show_regs(struct pt_regs
*regs
)
354 __show_regs((struct pt_regs
*)regs
);
357 void show_registers(struct pt_regs
*regs
)
359 const int field
= 2 * sizeof(unsigned long);
360 mm_segment_t old_fs
= get_fs();
364 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
365 current
->comm
, current
->pid
, current_thread_info(), current
,
366 field
, current_thread_info()->tp_value
);
367 if (cpu_has_userlocal
) {
370 tls
= read_c0_userlocal();
371 if (tls
!= current_thread_info()->tp_value
)
372 printk("*HwTLS: %0*lx\n", field
, tls
);
375 if (!user_mode(regs
))
376 /* Necessary for getting the correct stack content */
378 show_stacktrace(current
, regs
);
379 show_code((unsigned int __user
*) regs
->cp0_epc
);
384 static DEFINE_RAW_SPINLOCK(die_lock
);
386 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
388 static int die_counter
;
393 if (notify_die(DIE_OOPS
, str
, regs
, 0, current
->thread
.trap_nr
,
394 SIGSEGV
) == NOTIFY_STOP
)
398 raw_spin_lock_irq(&die_lock
);
401 printk("%s[#%d]:\n", str
, ++die_counter
);
402 show_registers(regs
);
403 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
404 raw_spin_unlock_irq(&die_lock
);
409 panic("Fatal exception in interrupt");
412 panic("Fatal exception");
414 if (regs
&& kexec_should_crash(current
))
420 extern struct exception_table_entry __start___dbe_table
[];
421 extern struct exception_table_entry __stop___dbe_table
[];
424 " .section __dbe_table, \"a\"\n"
427 /* Given an address, look for it in the exception tables. */
428 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
430 const struct exception_table_entry
*e
;
432 e
= search_extable(__start___dbe_table
,
433 __stop___dbe_table
- __start___dbe_table
, addr
);
435 e
= search_module_dbetables(addr
);
439 asmlinkage
void do_be(struct pt_regs
*regs
)
441 const int field
= 2 * sizeof(unsigned long);
442 const struct exception_table_entry
*fixup
= NULL
;
443 int data
= regs
->cp0_cause
& 4;
444 int action
= MIPS_BE_FATAL
;
445 enum ctx_state prev_state
;
447 prev_state
= exception_enter();
448 /* XXX For now. Fixme, this searches the wrong table ... */
449 if (data
&& !user_mode(regs
))
450 fixup
= search_dbe_tables(exception_epc(regs
));
453 action
= MIPS_BE_FIXUP
;
455 if (board_be_handler
)
456 action
= board_be_handler(regs
, fixup
!= NULL
);
458 mips_cm_error_report();
461 case MIPS_BE_DISCARD
:
465 regs
->cp0_epc
= fixup
->nextinsn
;
474 * Assume it would be too dangerous to continue ...
476 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
477 data
? "Data" : "Instruction",
478 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
479 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, current
->thread
.trap_nr
,
480 SIGBUS
) == NOTIFY_STOP
)
483 die_if_kernel("Oops", regs
);
484 force_sig(SIGBUS
, current
);
487 exception_exit(prev_state
);
491 * ll/sc, rdhwr, sync emulation
494 #define OPCODE 0xfc000000
495 #define BASE 0x03e00000
496 #define RT 0x001f0000
497 #define OFFSET 0x0000ffff
498 #define LL 0xc0000000
499 #define SC 0xe0000000
500 #define SPEC0 0x00000000
501 #define SPEC3 0x7c000000
502 #define RD 0x0000f800
503 #define FUNC 0x0000003f
504 #define SYNC 0x0000000f
505 #define RDHWR 0x0000003b
507 /* microMIPS definitions */
508 #define MM_POOL32A_FUNC 0xfc00ffff
509 #define MM_RDHWR 0x00006b3c
510 #define MM_RS 0x001f0000
511 #define MM_RT 0x03e00000
514 * The ll_bit is cleared by r*_switch.S
518 struct task_struct
*ll_task
;
520 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
522 unsigned long value
, __user
*vaddr
;
526 * analyse the ll instruction that just caused a ri exception
527 * and put the referenced address to addr.
530 /* sign extend offset */
531 offset
= opcode
& OFFSET
;
535 vaddr
= (unsigned long __user
*)
536 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
538 if ((unsigned long)vaddr
& 3)
540 if (get_user(value
, vaddr
))
545 if (ll_task
== NULL
|| ll_task
== current
) {
554 regs
->regs
[(opcode
& RT
) >> 16] = value
;
559 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
561 unsigned long __user
*vaddr
;
566 * analyse the sc instruction that just caused a ri exception
567 * and put the referenced address to addr.
570 /* sign extend offset */
571 offset
= opcode
& OFFSET
;
575 vaddr
= (unsigned long __user
*)
576 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
577 reg
= (opcode
& RT
) >> 16;
579 if ((unsigned long)vaddr
& 3)
584 if (ll_bit
== 0 || ll_task
!= current
) {
592 if (put_user(regs
->regs
[reg
], vaddr
))
601 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
602 * opcodes are supposed to result in coprocessor unusable exceptions if
603 * executed on ll/sc-less processors. That's the theory. In practice a
604 * few processors such as NEC's VR4100 throw reserved instruction exceptions
605 * instead, so we're doing the emulation thing in both exception handlers.
607 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
609 if ((opcode
& OPCODE
) == LL
) {
610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
612 return simulate_ll(regs
, opcode
);
614 if ((opcode
& OPCODE
) == SC
) {
615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
617 return simulate_sc(regs
, opcode
);
620 return -1; /* Must be something else ... */
624 * Simulate trapping 'rdhwr' instructions to provide user accessible
625 * registers not implemented in hardware.
627 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
629 struct thread_info
*ti
= task_thread_info(current
);
631 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
634 case MIPS_HWR_CPUNUM
: /* CPU number */
635 regs
->regs
[rt
] = smp_processor_id();
637 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
638 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
639 current_cpu_data
.icache
.linesz
);
641 case MIPS_HWR_CC
: /* Read count register */
642 regs
->regs
[rt
] = read_c0_count();
644 case MIPS_HWR_CCRES
: /* Count register resolution */
645 switch (current_cpu_type()) {
654 case MIPS_HWR_ULR
: /* Read UserLocal register */
655 regs
->regs
[rt
] = ti
->tp_value
;
662 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
664 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
665 int rd
= (opcode
& RD
) >> 11;
666 int rt
= (opcode
& RT
) >> 16;
668 simulate_rdhwr(regs
, rd
, rt
);
676 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned int opcode
)
678 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
679 int rd
= (opcode
& MM_RS
) >> 16;
680 int rt
= (opcode
& MM_RT
) >> 21;
681 simulate_rdhwr(regs
, rd
, rt
);
689 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
691 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
692 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
697 return -1; /* Must be something else ... */
700 asmlinkage
void do_ov(struct pt_regs
*regs
)
702 enum ctx_state prev_state
;
705 .si_code
= FPE_INTOVF
,
706 .si_addr
= (void __user
*)regs
->cp0_epc
,
709 prev_state
= exception_enter();
710 die_if_kernel("Integer overflow", regs
);
712 force_sig_info(SIGFPE
, &info
, current
);
713 exception_exit(prev_state
);
717 * Send SIGFPE according to FCSR Cause bits, which must have already
718 * been masked against Enable bits. This is impotant as Inexact can
719 * happen together with Overflow or Underflow, and `ptrace' can set
722 void force_fcr31_sig(unsigned long fcr31
, void __user
*fault_addr
,
723 struct task_struct
*tsk
)
725 struct siginfo si
= { .si_addr
= fault_addr
, .si_signo
= SIGFPE
};
727 if (fcr31
& FPU_CSR_INV_X
)
728 si
.si_code
= FPE_FLTINV
;
729 else if (fcr31
& FPU_CSR_DIV_X
)
730 si
.si_code
= FPE_FLTDIV
;
731 else if (fcr31
& FPU_CSR_OVF_X
)
732 si
.si_code
= FPE_FLTOVF
;
733 else if (fcr31
& FPU_CSR_UDF_X
)
734 si
.si_code
= FPE_FLTUND
;
735 else if (fcr31
& FPU_CSR_INE_X
)
736 si
.si_code
= FPE_FLTRES
;
738 return; /* Broken hardware? */
739 force_sig_info(SIGFPE
, &si
, tsk
);
742 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
744 struct siginfo si
= { 0 };
745 struct vm_area_struct
*vma
;
752 force_fcr31_sig(fcr31
, fault_addr
, current
);
756 si
.si_addr
= fault_addr
;
758 si
.si_code
= BUS_ADRERR
;
759 force_sig_info(sig
, &si
, current
);
763 si
.si_addr
= fault_addr
;
765 down_read(¤t
->mm
->mmap_sem
);
766 vma
= find_vma(current
->mm
, (unsigned long)fault_addr
);
767 if (vma
&& (vma
->vm_start
<= (unsigned long)fault_addr
))
768 si
.si_code
= SEGV_ACCERR
;
770 si
.si_code
= SEGV_MAPERR
;
771 up_read(¤t
->mm
->mmap_sem
);
772 force_sig_info(sig
, &si
, current
);
776 force_sig(sig
, current
);
781 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
782 unsigned long old_epc
, unsigned long old_ra
)
784 union mips_instruction inst
= { .word
= opcode
};
785 void __user
*fault_addr
;
789 /* If it's obviously not an FP instruction, skip it */
790 switch (inst
.i_format
.opcode
) {
804 * do_ri skipped over the instruction via compute_return_epc, undo
805 * that for the FPU emulator.
807 regs
->cp0_epc
= old_epc
;
808 regs
->regs
[31] = old_ra
;
810 /* Save the FP context to struct thread_struct */
813 /* Run the emulator */
814 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
818 * We can't allow the emulated instruction to leave any
819 * enabled Cause bits set in $fcr31.
821 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
822 current
->thread
.fpu
.fcr31
&= ~fcr31
;
824 /* Restore the hardware register state */
827 /* Send a signal if required. */
828 process_fpemu_return(sig
, fault_addr
, fcr31
);
834 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
836 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
838 enum ctx_state prev_state
;
839 void __user
*fault_addr
;
842 prev_state
= exception_enter();
843 if (notify_die(DIE_FP
, "FP exception", regs
, 0, current
->thread
.trap_nr
,
844 SIGFPE
) == NOTIFY_STOP
)
847 /* Clear FCSR.Cause before enabling interrupts */
848 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~mask_fcr31_x(fcr31
));
851 die_if_kernel("FP exception in kernel code", regs
);
853 if (fcr31
& FPU_CSR_UNI_X
) {
855 * Unimplemented operation exception. If we've got the full
856 * software emulator on-board, let's use it...
858 * Force FPU to dump state into task/thread context. We're
859 * moving a lot of data here for what is probably a single
860 * instruction, but the alternative is to pre-decode the FP
861 * register operands before invoking the emulator, which seems
862 * a bit extreme for what should be an infrequent event.
864 /* Ensure 'resume' not overwrite saved fp context again. */
867 /* Run the emulator */
868 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
872 * We can't allow the emulated instruction to leave any
873 * enabled Cause bits set in $fcr31.
875 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
876 current
->thread
.fpu
.fcr31
&= ~fcr31
;
878 /* Restore the hardware register state */
879 own_fpu(1); /* Using the FPU again. */
882 fault_addr
= (void __user
*) regs
->cp0_epc
;
885 /* Send a signal if required. */
886 process_fpemu_return(sig
, fault_addr
, fcr31
);
889 exception_exit(prev_state
);
892 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
, int si_code
,
895 siginfo_t info
= { 0 };
898 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
899 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
900 SIGTRAP
) == NOTIFY_STOP
)
902 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
904 if (notify_die(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
905 SIGTRAP
) == NOTIFY_STOP
)
909 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
910 * insns, even for trap and break codes that indicate arithmetic
911 * failures. Weird ...
912 * But should we continue the brokenness??? --macro
917 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
918 die_if_kernel(b
, regs
);
919 if (code
== BRK_DIVZERO
)
920 info
.si_code
= FPE_INTDIV
;
922 info
.si_code
= FPE_INTOVF
;
923 info
.si_signo
= SIGFPE
;
924 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
925 force_sig_info(SIGFPE
, &info
, current
);
928 die_if_kernel("Kernel bug detected", regs
);
929 force_sig(SIGTRAP
, current
);
933 * This breakpoint code is used by the FPU emulator to retake
934 * control of the CPU after executing the instruction from the
935 * delay slot of an emulated branch.
937 * Terminate if exception was recognized as a delay slot return
938 * otherwise handle as normal.
940 if (do_dsemulret(regs
))
943 die_if_kernel("Math emu break/trap", regs
);
944 force_sig(SIGTRAP
, current
);
947 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
948 die_if_kernel(b
, regs
);
950 info
.si_signo
= SIGTRAP
;
951 info
.si_code
= si_code
;
952 force_sig_info(SIGTRAP
, &info
, current
);
954 force_sig(SIGTRAP
, current
);
959 asmlinkage
void do_bp(struct pt_regs
*regs
)
961 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
962 unsigned int opcode
, bcode
;
963 enum ctx_state prev_state
;
967 if (!user_mode(regs
))
970 prev_state
= exception_enter();
971 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
972 if (get_isa16_mode(regs
->cp0_epc
)) {
975 if (__get_user(instr
[0], (u16 __user
*)epc
))
978 if (!cpu_has_mmips
) {
980 bcode
= (instr
[0] >> 5) & 0x3f;
981 } else if (mm_insn_16bit(instr
[0])) {
982 /* 16-bit microMIPS BREAK */
983 bcode
= instr
[0] & 0xf;
985 /* 32-bit microMIPS BREAK */
986 if (__get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
988 opcode
= (instr
[0] << 16) | instr
[1];
989 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
992 if (__get_user(opcode
, (unsigned int __user
*)epc
))
994 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
998 * There is the ancient bug in the MIPS assemblers that the break
999 * code starts left to bit 16 instead to bit 6 in the opcode.
1000 * Gas is bug-compatible, but not always, grrr...
1001 * We handle both cases with a simple heuristics. --macro
1003 if (bcode
>= (1 << 10))
1004 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
1007 * notify the kprobe handlers, if instruction is likely to
1012 if (notify_die(DIE_UPROBE
, "uprobe", regs
, bcode
,
1013 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1017 case BRK_UPROBE_XOL
:
1018 if (notify_die(DIE_UPROBE_XOL
, "uprobe_xol", regs
, bcode
,
1019 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1024 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
1025 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1029 case BRK_KPROBE_SSTEPBP
:
1030 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
1031 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1039 do_trap_or_bp(regs
, bcode
, TRAP_BRKPT
, "Break");
1043 exception_exit(prev_state
);
1047 force_sig(SIGSEGV
, current
);
1051 asmlinkage
void do_tr(struct pt_regs
*regs
)
1053 u32 opcode
, tcode
= 0;
1054 enum ctx_state prev_state
;
1057 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1060 if (!user_mode(regs
))
1063 prev_state
= exception_enter();
1064 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1065 if (get_isa16_mode(regs
->cp0_epc
)) {
1066 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
1067 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1069 opcode
= (instr
[0] << 16) | instr
[1];
1070 /* Immediate versions don't provide a code. */
1071 if (!(opcode
& OPCODE
))
1072 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1074 if (__get_user(opcode
, (u32 __user
*)epc
))
1076 /* Immediate versions don't provide a code. */
1077 if (!(opcode
& OPCODE
))
1078 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1081 do_trap_or_bp(regs
, tcode
, 0, "Trap");
1085 exception_exit(prev_state
);
1089 force_sig(SIGSEGV
, current
);
1093 asmlinkage
void do_ri(struct pt_regs
*regs
)
1095 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1096 unsigned long old_epc
= regs
->cp0_epc
;
1097 unsigned long old31
= regs
->regs
[31];
1098 enum ctx_state prev_state
;
1099 unsigned int opcode
= 0;
1103 * Avoid any kernel code. Just emulate the R2 instruction
1104 * as quickly as possible.
1106 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1107 likely(user_mode(regs
)) &&
1108 likely(get_user(opcode
, epc
) >= 0)) {
1109 unsigned long fcr31
= 0;
1111 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1119 process_fpemu_return(status
,
1120 ¤t
->thread
.cp0_baduaddr
,
1128 prev_state
= exception_enter();
1129 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1131 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, current
->thread
.trap_nr
,
1132 SIGILL
) == NOTIFY_STOP
)
1135 die_if_kernel("Reserved instruction in kernel code", regs
);
1137 if (unlikely(compute_return_epc(regs
) < 0))
1140 if (!get_isa16_mode(regs
->cp0_epc
)) {
1141 if (unlikely(get_user(opcode
, epc
) < 0))
1144 if (!cpu_has_llsc
&& status
< 0)
1145 status
= simulate_llsc(regs
, opcode
);
1148 status
= simulate_rdhwr_normal(regs
, opcode
);
1151 status
= simulate_sync(regs
, opcode
);
1154 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1155 } else if (cpu_has_mmips
) {
1156 unsigned short mmop
[2] = { 0 };
1158 if (unlikely(get_user(mmop
[0], (u16 __user
*)epc
+ 0) < 0))
1160 if (unlikely(get_user(mmop
[1], (u16 __user
*)epc
+ 1) < 0))
1163 opcode
= (opcode
<< 16) | mmop
[1];
1166 status
= simulate_rdhwr_mm(regs
, opcode
);
1172 if (unlikely(status
> 0)) {
1173 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1174 regs
->regs
[31] = old31
;
1175 force_sig(status
, current
);
1179 exception_exit(prev_state
);
1183 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1184 * emulated more than some threshold number of instructions, force migration to
1185 * a "CPU" that has FP support.
1187 static void mt_ase_fp_affinity(void)
1189 #ifdef CONFIG_MIPS_MT_FPAFF
1190 if (mt_fpemul_threshold
> 0 &&
1191 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1193 * If there's no FPU present, or if the application has already
1194 * restricted the allowed set to exclude any CPUs with FPUs,
1195 * we'll skip the procedure.
1197 if (cpumask_intersects(¤t
->cpus_allowed
, &mt_fpu_cpumask
)) {
1200 current
->thread
.user_cpus_allowed
1201 = current
->cpus_allowed
;
1202 cpumask_and(&tmask
, ¤t
->cpus_allowed
,
1204 set_cpus_allowed_ptr(current
, &tmask
);
1205 set_thread_flag(TIF_FPUBOUND
);
1208 #endif /* CONFIG_MIPS_MT_FPAFF */
1212 * No lock; only written during early bootup by CPU 0.
1214 static RAW_NOTIFIER_HEAD(cu2_chain
);
1216 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1218 return raw_notifier_chain_register(&cu2_chain
, nb
);
1221 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1223 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1226 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1229 struct pt_regs
*regs
= data
;
1231 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1232 "instruction", regs
);
1233 force_sig(SIGILL
, current
);
1238 static int wait_on_fp_mode_switch(atomic_t
*p
)
1241 * The FP mode for this task is currently being switched. That may
1242 * involve modifications to the format of this tasks FP context which
1243 * make it unsafe to proceed with execution for the moment. Instead,
1244 * schedule some other task.
1250 static int enable_restore_fp_context(int msa
)
1252 int err
, was_fpu_owner
, prior_msa
;
1255 * If an FP mode switch is currently underway, wait for it to
1256 * complete before proceeding.
1258 wait_on_atomic_t(¤t
->mm
->context
.fp_mode_switching
,
1259 wait_on_fp_mode_switch
, TASK_KILLABLE
);
1262 /* First time FP context user. */
1268 set_thread_flag(TIF_USEDMSA
);
1269 set_thread_flag(TIF_MSA_CTX_LIVE
);
1278 * This task has formerly used the FP context.
1280 * If this thread has no live MSA vector context then we can simply
1281 * restore the scalar FP context. If it has live MSA vector context
1282 * (that is, it has or may have used MSA since last performing a
1283 * function call) then we'll need to restore the vector context. This
1284 * applies even if we're currently only executing a scalar FP
1285 * instruction. This is because if we were to later execute an MSA
1286 * instruction then we'd either have to:
1288 * - Restore the vector context & clobber any registers modified by
1289 * scalar FP instructions between now & then.
1293 * - Not restore the vector context & lose the most significant bits
1294 * of all vector registers.
1296 * Neither of those options is acceptable. We cannot restore the least
1297 * significant bits of the registers now & only restore the most
1298 * significant bits later because the most significant bits of any
1299 * vector registers whose aliased FP register is modified now will have
1300 * been zeroed. We'd have no way to know that when restoring the vector
1301 * context & thus may load an outdated value for the most significant
1302 * bits of a vector register.
1304 if (!msa
&& !thread_msa_context_live())
1308 * This task is using or has previously used MSA. Thus we require
1309 * that Status.FR == 1.
1312 was_fpu_owner
= is_fpu_owner();
1313 err
= own_fpu_inatomic(0);
1318 write_msa_csr(current
->thread
.fpu
.msacsr
);
1319 set_thread_flag(TIF_USEDMSA
);
1322 * If this is the first time that the task is using MSA and it has
1323 * previously used scalar FP in this time slice then we already nave
1324 * FP context which we shouldn't clobber. We do however need to clear
1325 * the upper 64b of each vector register so that this task has no
1326 * opportunity to see data left behind by another.
1328 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1329 if (!prior_msa
&& was_fpu_owner
) {
1337 * Restore the least significant 64b of each vector register
1338 * from the existing scalar FP context.
1340 _restore_fp(current
);
1343 * The task has not formerly used MSA, so clear the upper 64b
1344 * of each vector register such that it cannot see data left
1345 * behind by another task.
1349 /* We need to restore the vector context. */
1350 restore_msa(current
);
1352 /* Restore the scalar FP control & status register */
1354 write_32bit_cp1_register(CP1_STATUS
,
1355 current
->thread
.fpu
.fcr31
);
1364 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1366 enum ctx_state prev_state
;
1367 unsigned int __user
*epc
;
1368 unsigned long old_epc
, old31
;
1369 void __user
*fault_addr
;
1370 unsigned int opcode
;
1371 unsigned long fcr31
;
1376 prev_state
= exception_enter();
1377 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1380 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1384 epc
= (unsigned int __user
*)exception_epc(regs
);
1385 old_epc
= regs
->cp0_epc
;
1386 old31
= regs
->regs
[31];
1390 if (unlikely(compute_return_epc(regs
) < 0))
1393 if (!get_isa16_mode(regs
->cp0_epc
)) {
1394 if (unlikely(get_user(opcode
, epc
) < 0))
1397 if (!cpu_has_llsc
&& status
< 0)
1398 status
= simulate_llsc(regs
, opcode
);
1404 if (unlikely(status
> 0)) {
1405 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1406 regs
->regs
[31] = old31
;
1407 force_sig(status
, current
);
1414 * The COP3 opcode space and consequently the CP0.Status.CU3
1415 * bit and the CP0.Cause.CE=3 encoding have been removed as
1416 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1417 * up the space has been reused for COP1X instructions, that
1418 * are enabled by the CP0.Status.CU1 bit and consequently
1419 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1420 * exceptions. Some FPU-less processors that implement one
1421 * of these ISAs however use this code erroneously for COP1X
1422 * instructions. Therefore we redirect this trap to the FP
1425 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1426 force_sig(SIGILL
, current
);
1432 err
= enable_restore_fp_context(0);
1434 if (raw_cpu_has_fpu
&& !err
)
1437 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1441 * We can't allow the emulated instruction to leave
1442 * any enabled Cause bits set in $fcr31.
1444 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
1445 current
->thread
.fpu
.fcr31
&= ~fcr31
;
1447 /* Send a signal if required. */
1448 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1449 mt_ase_fp_affinity();
1454 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1458 exception_exit(prev_state
);
1461 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1463 enum ctx_state prev_state
;
1465 prev_state
= exception_enter();
1466 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1467 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1468 current
->thread
.trap_nr
, SIGFPE
) == NOTIFY_STOP
)
1471 /* Clear MSACSR.Cause before enabling interrupts */
1472 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1475 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1476 force_sig(SIGFPE
, current
);
1478 exception_exit(prev_state
);
1481 asmlinkage
void do_msa(struct pt_regs
*regs
)
1483 enum ctx_state prev_state
;
1486 prev_state
= exception_enter();
1488 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1489 force_sig(SIGILL
, current
);
1493 die_if_kernel("do_msa invoked from kernel context!", regs
);
1495 err
= enable_restore_fp_context(1);
1497 force_sig(SIGILL
, current
);
1499 exception_exit(prev_state
);
1502 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1504 enum ctx_state prev_state
;
1506 prev_state
= exception_enter();
1507 force_sig(SIGILL
, current
);
1508 exception_exit(prev_state
);
1512 * Called with interrupts disabled.
1514 asmlinkage
void do_watch(struct pt_regs
*regs
)
1516 siginfo_t info
= { .si_signo
= SIGTRAP
, .si_code
= TRAP_HWBKPT
};
1517 enum ctx_state prev_state
;
1519 prev_state
= exception_enter();
1521 * Clear WP (bit 22) bit of cause register so we don't loop
1524 clear_c0_cause(CAUSEF_WP
);
1527 * If the current thread has the watch registers loaded, save
1528 * their values and send SIGTRAP. Otherwise another thread
1529 * left the registers set, clear them and continue.
1531 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1532 mips_read_watch_registers();
1534 force_sig_info(SIGTRAP
, &info
, current
);
1536 mips_clear_watch_registers();
1539 exception_exit(prev_state
);
1542 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1544 int multi_match
= regs
->cp0_status
& ST0_TS
;
1545 enum ctx_state prev_state
;
1546 mm_segment_t old_fs
= get_fs();
1548 prev_state
= exception_enter();
1557 if (!user_mode(regs
))
1560 show_code((unsigned int __user
*) regs
->cp0_epc
);
1565 * Some chips may have other causes of machine check (e.g. SB1
1568 panic("Caught Machine Check exception - %scaused by multiple "
1569 "matching entries in the TLB.",
1570 (multi_match
) ? "" : "not ");
1573 asmlinkage
void do_mt(struct pt_regs
*regs
)
1577 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1578 >> VPECONTROL_EXCPT_SHIFT
;
1581 printk(KERN_DEBUG
"Thread Underflow\n");
1584 printk(KERN_DEBUG
"Thread Overflow\n");
1587 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1590 printk(KERN_DEBUG
"Gating Storage Exception\n");
1593 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1596 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1599 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1603 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1605 force_sig(SIGILL
, current
);
1609 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1612 panic("Unexpected DSP exception");
1614 force_sig(SIGILL
, current
);
1617 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1620 * Game over - no way to handle this if it ever occurs. Most probably
1621 * caused by a new unknown cpu type or after another deadly
1622 * hard/software error.
1625 panic("Caught reserved exception %ld - should not happen.",
1626 (regs
->cp0_cause
& 0x7f) >> 2);
1629 static int __initdata l1parity
= 1;
1630 static int __init
nol1parity(char *s
)
1635 __setup("nol1par", nol1parity
);
1636 static int __initdata l2parity
= 1;
1637 static int __init
nol2parity(char *s
)
1642 __setup("nol2par", nol2parity
);
1645 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1646 * it different ways.
1648 static inline void parity_protection_init(void)
1650 #define ERRCTL_PE 0x80000000
1651 #define ERRCTL_L2P 0x00800000
1653 if (mips_cm_revision() >= CM_REV_CM3
) {
1654 ulong gcr_ectl
, cp0_ectl
;
1657 * With CM3 systems we need to ensure that the L1 & L2
1658 * parity enables are set to the same value, since this
1659 * is presumed by the hardware engineers.
1661 * If the user disabled either of L1 or L2 ECC checking,
1664 l1parity
&= l2parity
;
1665 l2parity
&= l1parity
;
1667 /* Probe L1 ECC support */
1668 cp0_ectl
= read_c0_ecc();
1669 write_c0_ecc(cp0_ectl
| ERRCTL_PE
);
1670 back_to_back_c0_hazard();
1671 cp0_ectl
= read_c0_ecc();
1673 /* Probe L2 ECC support */
1674 gcr_ectl
= read_gcr_err_control();
1676 if (!(gcr_ectl
& CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK
) ||
1677 !(cp0_ectl
& ERRCTL_PE
)) {
1679 * One of L1 or L2 ECC checking isn't supported,
1680 * so we cannot enable either.
1682 l1parity
= l2parity
= 0;
1685 /* Configure L1 ECC checking */
1687 cp0_ectl
|= ERRCTL_PE
;
1689 cp0_ectl
&= ~ERRCTL_PE
;
1690 write_c0_ecc(cp0_ectl
);
1691 back_to_back_c0_hazard();
1692 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE
) != l1parity
);
1694 /* Configure L2 ECC checking */
1696 gcr_ectl
|= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK
;
1698 gcr_ectl
&= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK
;
1699 write_gcr_err_control(gcr_ectl
);
1700 gcr_ectl
= read_gcr_err_control();
1701 gcr_ectl
&= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK
;
1702 WARN_ON(!!gcr_ectl
!= l2parity
);
1704 pr_info("Cache parity protection %sabled\n",
1705 l1parity
? "en" : "dis");
1709 switch (current_cpu_type()) {
1715 case CPU_INTERAPTIV
:
1718 case CPU_QEMU_GENERIC
:
1721 unsigned long errctl
;
1722 unsigned int l1parity_present
, l2parity_present
;
1724 errctl
= read_c0_ecc();
1725 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1727 /* probe L1 parity support */
1728 write_c0_ecc(errctl
| ERRCTL_PE
);
1729 back_to_back_c0_hazard();
1730 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1732 /* probe L2 parity support */
1733 write_c0_ecc(errctl
|ERRCTL_L2P
);
1734 back_to_back_c0_hazard();
1735 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1737 if (l1parity_present
&& l2parity_present
) {
1739 errctl
|= ERRCTL_PE
;
1740 if (l1parity
^ l2parity
)
1741 errctl
|= ERRCTL_L2P
;
1742 } else if (l1parity_present
) {
1744 errctl
|= ERRCTL_PE
;
1745 } else if (l2parity_present
) {
1747 errctl
|= ERRCTL_L2P
;
1749 /* No parity available */
1752 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1754 write_c0_ecc(errctl
);
1755 back_to_back_c0_hazard();
1756 errctl
= read_c0_ecc();
1757 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1759 if (l1parity_present
)
1760 printk(KERN_INFO
"Cache parity protection %sabled\n",
1761 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1763 if (l2parity_present
) {
1764 if (l1parity_present
&& l1parity
)
1765 errctl
^= ERRCTL_L2P
;
1766 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1767 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1775 write_c0_ecc(0x80000000);
1776 back_to_back_c0_hazard();
1777 /* Set the PE bit (bit 31) in the c0_errctl register. */
1778 printk(KERN_INFO
"Cache parity protection %sabled\n",
1779 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1783 /* Clear the DE bit (bit 16) in the c0_status register. */
1784 printk(KERN_INFO
"Enable cache parity protection for "
1785 "MIPS 20KC/25KF CPUs.\n");
1786 clear_c0_status(ST0_DE
);
1793 asmlinkage
void cache_parity_error(void)
1795 const int field
= 2 * sizeof(unsigned long);
1796 unsigned int reg_val
;
1798 /* For the moment, report the problem and hang. */
1799 printk("Cache error exception:\n");
1800 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1801 reg_val
= read_c0_cacheerr();
1802 printk("c0_cacheerr == %08x\n", reg_val
);
1804 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1805 reg_val
& (1<<30) ? "secondary" : "primary",
1806 reg_val
& (1<<31) ? "data" : "insn");
1807 if ((cpu_has_mips_r2_r6
) &&
1808 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1809 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1810 reg_val
& (1<<29) ? "ED " : "",
1811 reg_val
& (1<<28) ? "ET " : "",
1812 reg_val
& (1<<27) ? "ES " : "",
1813 reg_val
& (1<<26) ? "EE " : "",
1814 reg_val
& (1<<25) ? "EB " : "",
1815 reg_val
& (1<<24) ? "EI " : "",
1816 reg_val
& (1<<23) ? "E1 " : "",
1817 reg_val
& (1<<22) ? "E0 " : "");
1819 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1820 reg_val
& (1<<29) ? "ED " : "",
1821 reg_val
& (1<<28) ? "ET " : "",
1822 reg_val
& (1<<26) ? "EE " : "",
1823 reg_val
& (1<<25) ? "EB " : "",
1824 reg_val
& (1<<24) ? "EI " : "",
1825 reg_val
& (1<<23) ? "E1 " : "",
1826 reg_val
& (1<<22) ? "E0 " : "");
1828 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1830 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1831 if (reg_val
& (1<<22))
1832 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1834 if (reg_val
& (1<<23))
1835 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1838 panic("Can't handle the cache error!");
1841 asmlinkage
void do_ftlb(void)
1843 const int field
= 2 * sizeof(unsigned long);
1844 unsigned int reg_val
;
1846 /* For the moment, report the problem and hang. */
1847 if ((cpu_has_mips_r2_r6
) &&
1848 (((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
) ||
1849 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_LOONGSON
))) {
1850 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1852 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1853 reg_val
= read_c0_cacheerr();
1854 pr_err("c0_cacheerr == %08x\n", reg_val
);
1856 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1857 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1859 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1860 reg_val
& (1<<30) ? "secondary" : "primary",
1861 reg_val
& (1<<31) ? "data" : "insn");
1864 pr_err("FTLB error exception\n");
1866 /* Just print the cacheerr bits for now */
1867 cache_parity_error();
1871 * SDBBP EJTAG debug exception handler.
1872 * We skip the instruction and return to the next instruction.
1874 void ejtag_exception_handler(struct pt_regs
*regs
)
1876 const int field
= 2 * sizeof(unsigned long);
1877 unsigned long depc
, old_epc
, old_ra
;
1880 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1881 depc
= read_c0_depc();
1882 debug
= read_c0_debug();
1883 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1884 if (debug
& 0x80000000) {
1886 * In branch delay slot.
1887 * We cheat a little bit here and use EPC to calculate the
1888 * debug return address (DEPC). EPC is restored after the
1891 old_epc
= regs
->cp0_epc
;
1892 old_ra
= regs
->regs
[31];
1893 regs
->cp0_epc
= depc
;
1894 compute_return_epc(regs
);
1895 depc
= regs
->cp0_epc
;
1896 regs
->cp0_epc
= old_epc
;
1897 regs
->regs
[31] = old_ra
;
1900 write_c0_depc(depc
);
1903 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1904 write_c0_debug(debug
| 0x100);
1909 * NMI exception handler.
1910 * No lock; only written during early bootup by CPU 0.
1912 static RAW_NOTIFIER_HEAD(nmi_chain
);
1914 int register_nmi_notifier(struct notifier_block
*nb
)
1916 return raw_notifier_chain_register(&nmi_chain
, nb
);
1919 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1924 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1926 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1927 smp_processor_id(), regs
->cp0_epc
);
1928 regs
->cp0_epc
= read_c0_errorepc();
1933 #define VECTORSPACING 0x100 /* for EI/VI mode */
1935 unsigned long ebase
;
1936 EXPORT_SYMBOL_GPL(ebase
);
1937 unsigned long exception_handlers
[32];
1938 unsigned long vi_handlers
[64];
1940 void __init
*set_except_vector(int n
, void *addr
)
1942 unsigned long handler
= (unsigned long) addr
;
1943 unsigned long old_handler
;
1945 #ifdef CONFIG_CPU_MICROMIPS
1947 * Only the TLB handlers are cache aligned with an even
1948 * address. All other handlers are on an odd address and
1949 * require no modification. Otherwise, MIPS32 mode will
1950 * be entered when handling any TLB exceptions. That
1951 * would be bad...since we must stay in microMIPS mode.
1953 if (!(handler
& 0x1))
1956 old_handler
= xchg(&exception_handlers
[n
], handler
);
1958 if (n
== 0 && cpu_has_divec
) {
1959 #ifdef CONFIG_CPU_MICROMIPS
1960 unsigned long jump_mask
= ~((1 << 27) - 1);
1962 unsigned long jump_mask
= ~((1 << 28) - 1);
1964 u32
*buf
= (u32
*)(ebase
+ 0x200);
1965 unsigned int k0
= 26;
1966 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1967 uasm_i_j(&buf
, handler
& ~jump_mask
);
1970 UASM_i_LA(&buf
, k0
, handler
);
1971 uasm_i_jr(&buf
, k0
);
1974 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1976 return (void *)old_handler
;
1979 static void do_default_vi(void)
1981 show_regs(get_irq_regs());
1982 panic("Caught unexpected vectored interrupt.");
1985 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1987 unsigned long handler
;
1988 unsigned long old_handler
= vi_handlers
[n
];
1989 int srssets
= current_cpu_data
.srsets
;
1993 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1996 handler
= (unsigned long) do_default_vi
;
1999 handler
= (unsigned long) addr
;
2000 vi_handlers
[n
] = handler
;
2002 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
2005 panic("Shadow register set %d not supported", srs
);
2008 if (board_bind_eic_interrupt
)
2009 board_bind_eic_interrupt(n
, srs
);
2010 } else if (cpu_has_vint
) {
2011 /* SRSMap is only defined if shadow sets are implemented */
2013 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
2018 * If no shadow set is selected then use the default handler
2019 * that does normal register saving and standard interrupt exit
2021 extern char except_vec_vi
, except_vec_vi_lui
;
2022 extern char except_vec_vi_ori
, except_vec_vi_end
;
2023 extern char rollback_except_vec_vi
;
2024 char *vec_start
= using_rollback_handler() ?
2025 &rollback_except_vec_vi
: &except_vec_vi
;
2026 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2027 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
2028 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
2030 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
2031 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
2033 const int handler_len
= &except_vec_vi_end
- vec_start
;
2035 if (handler_len
> VECTORSPACING
) {
2037 * Sigh... panicing won't help as the console
2038 * is probably not configured :(
2040 panic("VECTORSPACING too small");
2043 set_handler(((unsigned long)b
- ebase
), vec_start
,
2044 #ifdef CONFIG_CPU_MICROMIPS
2049 h
= (u16
*)(b
+ lui_offset
);
2050 *h
= (handler
>> 16) & 0xffff;
2051 h
= (u16
*)(b
+ ori_offset
);
2052 *h
= (handler
& 0xffff);
2053 local_flush_icache_range((unsigned long)b
,
2054 (unsigned long)(b
+handler_len
));
2058 * In other cases jump directly to the interrupt handler. It
2059 * is the handler's responsibility to save registers if required
2060 * (eg hi/lo) and return from the exception using "eret".
2066 #ifdef CONFIG_CPU_MICROMIPS
2067 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
2069 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
2071 h
[0] = (insn
>> 16) & 0xffff;
2072 h
[1] = insn
& 0xffff;
2075 local_flush_icache_range((unsigned long)b
,
2076 (unsigned long)(b
+8));
2079 return (void *)old_handler
;
2082 void *set_vi_handler(int n
, vi_handler_t addr
)
2084 return set_vi_srs_handler(n
, addr
, 0);
2087 extern void tlb_init(void);
2092 int cp0_compare_irq
;
2093 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2094 int cp0_compare_irq_shift
;
2097 * Performance counter IRQ or -1 if shared with timer
2099 int cp0_perfcount_irq
;
2100 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2103 * Fast debug channel IRQ or -1 if not present
2106 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2110 static int __init
ulri_disable(char *s
)
2112 pr_info("Disabling ulri\n");
2117 __setup("noulri", ulri_disable
);
2119 /* configure STATUS register */
2120 static void configure_status(void)
2123 * Disable coprocessors and select 32-bit or 64-bit addressing
2124 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2125 * flag that some firmware may have left set and the TS bit (for
2126 * IP27). Set XX for ISA IV code to work.
2128 unsigned int status_set
= ST0_CU0
;
2130 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2132 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2133 status_set
|= ST0_XX
;
2135 status_set
|= ST0_MX
;
2137 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2141 unsigned int hwrena
;
2142 EXPORT_SYMBOL_GPL(hwrena
);
2144 /* configure HWRENA register */
2145 static void configure_hwrena(void)
2147 hwrena
= cpu_hwrena_impl_bits
;
2149 if (cpu_has_mips_r2_r6
)
2150 hwrena
|= MIPS_HWRENA_CPUNUM
|
2151 MIPS_HWRENA_SYNCISTEP
|
2155 if (!noulri
&& cpu_has_userlocal
)
2156 hwrena
|= MIPS_HWRENA_ULR
;
2159 write_c0_hwrena(hwrena
);
2162 static void configure_exception_vector(void)
2164 if (cpu_has_veic
|| cpu_has_vint
) {
2165 unsigned long sr
= set_c0_status(ST0_BEV
);
2166 /* If available, use WG to set top bits of EBASE */
2167 if (cpu_has_ebase_wg
) {
2169 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2171 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2174 write_c0_ebase(ebase
);
2175 write_c0_status(sr
);
2176 /* Setting vector spacing enables EI/VI mode */
2177 change_c0_intctl(0x3e0, VECTORSPACING
);
2179 if (cpu_has_divec
) {
2180 if (cpu_has_mipsmt
) {
2181 unsigned int vpflags
= dvpe();
2182 set_c0_cause(CAUSEF_IV
);
2185 set_c0_cause(CAUSEF_IV
);
2189 void per_cpu_trap_init(bool is_boot_cpu
)
2191 unsigned int cpu
= smp_processor_id();
2196 configure_exception_vector();
2199 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2201 * o read IntCtl.IPTI to determine the timer interrupt
2202 * o read IntCtl.IPPCI to determine the performance counter interrupt
2203 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2205 if (cpu_has_mips_r2_r6
) {
2207 * We shouldn't trust a secondary core has a sane EBASE register
2208 * so use the one calculated by the boot CPU.
2211 /* If available, use WG to set top bits of EBASE */
2212 if (cpu_has_ebase_wg
) {
2214 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2216 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2219 write_c0_ebase(ebase
);
2222 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2223 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2224 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2225 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2230 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2231 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2232 cp0_perfcount_irq
= -1;
2236 if (!cpu_data
[cpu
].asid_cache
)
2237 cpu_data
[cpu
].asid_cache
= asid_first_version(cpu
);
2240 current
->active_mm
= &init_mm
;
2241 BUG_ON(current
->mm
);
2242 enter_lazy_tlb(&init_mm
, current
);
2244 /* Boot CPU's cache setup in setup_arch(). */
2248 TLBMISS_HANDLER_SETUP();
2251 /* Install CPU exception handler */
2252 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
2254 #ifdef CONFIG_CPU_MICROMIPS
2255 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2257 memcpy((void *)(ebase
+ offset
), addr
, size
);
2259 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2262 static const char panic_null_cerr
[] =
2263 "Trying to set NULL cache error exception handler\n";
2266 * Install uncached CPU exception handler.
2267 * This is suitable only for the cache error exception which is the only
2268 * exception handler that is being run uncached.
2270 void set_uncached_handler(unsigned long offset
, void *addr
,
2273 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2276 panic(panic_null_cerr
);
2278 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2281 static int __initdata rdhwr_noopt
;
2282 static int __init
set_rdhwr_noopt(char *str
)
2288 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2290 void __init
trap_init(void)
2292 extern char except_vec3_generic
;
2293 extern char except_vec4
;
2294 extern char except_vec3_r4000
;
2299 if (cpu_has_veic
|| cpu_has_vint
) {
2300 unsigned long size
= 0x200 + VECTORSPACING
*64;
2301 phys_addr_t ebase_pa
;
2303 ebase
= (unsigned long)
2304 __alloc_bootmem(size
, 1 << fls(size
), 0);
2307 * Try to ensure ebase resides in KSeg0 if possible.
2309 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2310 * hitting a poorly defined exception base for Cache Errors.
2311 * The allocation is likely to be in the low 512MB of physical,
2312 * in which case we should be able to convert to KSeg0.
2314 * EVA is special though as it allows segments to be rearranged
2315 * and to become uncached during cache error handling.
2317 ebase_pa
= __pa(ebase
);
2318 if (!IS_ENABLED(CONFIG_EVA
) && !WARN_ON(ebase_pa
>= 0x20000000))
2319 ebase
= CKSEG0ADDR(ebase_pa
);
2323 if (cpu_has_mips_r2_r6
) {
2324 if (cpu_has_ebase_wg
) {
2326 ebase
= (read_c0_ebase_64() & ~0xfff);
2328 ebase
= (read_c0_ebase() & ~0xfff);
2331 ebase
+= (read_c0_ebase() & 0x3ffff000);
2336 if (cpu_has_mmips
) {
2337 unsigned int config3
= read_c0_config3();
2339 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2340 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2342 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2345 if (board_ebase_setup
)
2346 board_ebase_setup();
2347 per_cpu_trap_init(true);
2350 * Copy the generic exception handlers to their final destination.
2351 * This will be overridden later as suitable for a particular
2354 set_handler(0x180, &except_vec3_generic
, 0x80);
2357 * Setup default vectors
2359 for (i
= 0; i
<= 31; i
++)
2360 set_except_vector(i
, handle_reserved
);
2363 * Copy the EJTAG debug exception vector handler code to it's final
2366 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2367 board_ejtag_handler_setup();
2370 * Only some CPUs have the watch exceptions.
2373 set_except_vector(EXCCODE_WATCH
, handle_watch
);
2376 * Initialise interrupt handlers
2378 if (cpu_has_veic
|| cpu_has_vint
) {
2379 int nvec
= cpu_has_veic
? 64 : 8;
2380 for (i
= 0; i
< nvec
; i
++)
2381 set_vi_handler(i
, NULL
);
2383 else if (cpu_has_divec
)
2384 set_handler(0x200, &except_vec4
, 0x8);
2387 * Some CPUs can enable/disable for cache parity detection, but does
2388 * it different ways.
2390 parity_protection_init();
2393 * The Data Bus Errors / Instruction Bus Errors are signaled
2394 * by external hardware. Therefore these two exceptions
2395 * may have board specific handlers.
2400 set_except_vector(EXCCODE_INT
, using_rollback_handler() ?
2401 rollback_handle_int
: handle_int
);
2402 set_except_vector(EXCCODE_MOD
, handle_tlbm
);
2403 set_except_vector(EXCCODE_TLBL
, handle_tlbl
);
2404 set_except_vector(EXCCODE_TLBS
, handle_tlbs
);
2406 set_except_vector(EXCCODE_ADEL
, handle_adel
);
2407 set_except_vector(EXCCODE_ADES
, handle_ades
);
2409 set_except_vector(EXCCODE_IBE
, handle_ibe
);
2410 set_except_vector(EXCCODE_DBE
, handle_dbe
);
2412 set_except_vector(EXCCODE_SYS
, handle_sys
);
2413 set_except_vector(EXCCODE_BP
, handle_bp
);
2416 set_except_vector(EXCCODE_RI
, handle_ri
);
2418 if (cpu_has_vtag_icache
)
2419 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2420 else if (current_cpu_type() == CPU_LOONGSON3
)
2421 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2423 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr
);
2426 set_except_vector(EXCCODE_CPU
, handle_cpu
);
2427 set_except_vector(EXCCODE_OV
, handle_ov
);
2428 set_except_vector(EXCCODE_TR
, handle_tr
);
2429 set_except_vector(EXCCODE_MSAFPE
, handle_msa_fpe
);
2431 if (current_cpu_type() == CPU_R6000
||
2432 current_cpu_type() == CPU_R6000A
) {
2434 * The R6000 is the only R-series CPU that features a machine
2435 * check exception (similar to the R4000 cache error) and
2436 * unaligned ldc1/sdc1 exception. The handlers have not been
2437 * written yet. Well, anyway there is no R6000 machine on the
2438 * current list of targets for Linux/MIPS.
2439 * (Duh, crap, there is someone with a triple R6k machine)
2441 //set_except_vector(14, handle_mc);
2442 //set_except_vector(15, handle_ndc);
2446 if (board_nmi_handler_setup
)
2447 board_nmi_handler_setup();
2449 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2450 set_except_vector(EXCCODE_FPE
, handle_fpe
);
2452 set_except_vector(MIPS_EXCCODE_TLBPAR
, handle_ftlb
);
2454 if (cpu_has_rixiex
) {
2455 set_except_vector(EXCCODE_TLBRI
, tlb_do_page_fault_0
);
2456 set_except_vector(EXCCODE_TLBXI
, tlb_do_page_fault_0
);
2459 set_except_vector(EXCCODE_MSADIS
, handle_msa
);
2460 set_except_vector(EXCCODE_MDMX
, handle_mdmx
);
2463 set_except_vector(EXCCODE_MCHECK
, handle_mcheck
);
2466 set_except_vector(EXCCODE_THREAD
, handle_mt
);
2468 set_except_vector(EXCCODE_DSPDIS
, handle_dsp
);
2470 if (board_cache_error_setup
)
2471 board_cache_error_setup();
2474 /* Special exception: R4[04]00 uses also the divec space. */
2475 set_handler(0x180, &except_vec3_r4000
, 0x100);
2476 else if (cpu_has_4kex
)
2477 set_handler(0x180, &except_vec3_generic
, 0x80);
2479 set_handler(0x080, &except_vec3_generic
, 0x80);
2481 local_flush_icache_range(ebase
, ebase
+ 0x400);
2483 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2485 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2488 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2492 case CPU_PM_ENTER_FAILED
:
2496 configure_exception_vector();
2498 /* Restore register with CPU number for TLB handlers */
2499 TLBMISS_HANDLER_RESTORE();
2507 static struct notifier_block trap_pm_notifier_block
= {
2508 .notifier_call
= trap_pm_notifier
,
2511 static int __init
trap_pm_init(void)
2513 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2515 arch_initcall(trap_pm_init
);