2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/of_platform.h>
31 #include <linux/slab.h>
33 #include <asm/dcr-regs.h>
34 #include <asm/cacheflush.h>
35 #include <crypto/aes.h>
36 #include <crypto/sha.h>
37 #include "crypto4xx_reg_def.h"
38 #include "crypto4xx_core.h"
39 #include "crypto4xx_sa.h"
41 #define PPC4XX_SEC_VERSION_STR "0.5"
44 * PPC4xx Crypto Engine Initialization Routine
46 static void crypto4xx_hw_init(struct crypto4xx_device
*dev
)
48 union ce_ring_size ring_size
;
49 union ce_ring_contol ring_ctrl
;
50 union ce_part_ring_size part_ring_size
;
51 union ce_io_threshold io_threshold
;
53 union ce_pe_dma_cfg pe_dma_cfg
;
55 writel(PPC4XX_BYTE_ORDER
, dev
->ce_base
+ CRYPTO4XX_BYTE_ORDER_CFG
);
56 /* setup pe dma, include reset sg, pdr and pe, then release reset */
58 pe_dma_cfg
.bf
.bo_sgpd_en
= 1;
59 pe_dma_cfg
.bf
.bo_data_en
= 0;
60 pe_dma_cfg
.bf
.bo_sa_en
= 1;
61 pe_dma_cfg
.bf
.bo_pd_en
= 1;
62 pe_dma_cfg
.bf
.dynamic_sa_en
= 1;
63 pe_dma_cfg
.bf
.reset_sg
= 1;
64 pe_dma_cfg
.bf
.reset_pdr
= 1;
65 pe_dma_cfg
.bf
.reset_pe
= 1;
66 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
67 /* un reset pe,sg and pdr */
68 pe_dma_cfg
.bf
.pe_mode
= 0;
69 pe_dma_cfg
.bf
.reset_sg
= 0;
70 pe_dma_cfg
.bf
.reset_pdr
= 0;
71 pe_dma_cfg
.bf
.reset_pe
= 0;
72 pe_dma_cfg
.bf
.bo_td_en
= 0;
73 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
74 writel(dev
->pdr_pa
, dev
->ce_base
+ CRYPTO4XX_PDR_BASE
);
75 writel(dev
->pdr_pa
, dev
->ce_base
+ CRYPTO4XX_RDR_BASE
);
76 writel(PPC4XX_PRNG_CTRL_AUTO_EN
, dev
->ce_base
+ CRYPTO4XX_PRNG_CTRL
);
77 get_random_bytes(&rand_num
, sizeof(rand_num
));
78 writel(rand_num
, dev
->ce_base
+ CRYPTO4XX_PRNG_SEED_L
);
79 get_random_bytes(&rand_num
, sizeof(rand_num
));
80 writel(rand_num
, dev
->ce_base
+ CRYPTO4XX_PRNG_SEED_H
);
82 ring_size
.bf
.ring_offset
= PPC4XX_PD_SIZE
;
83 ring_size
.bf
.ring_size
= PPC4XX_NUM_PD
;
84 writel(ring_size
.w
, dev
->ce_base
+ CRYPTO4XX_RING_SIZE
);
86 writel(ring_ctrl
.w
, dev
->ce_base
+ CRYPTO4XX_RING_CTRL
);
87 writel(PPC4XX_DC_3DES_EN
, dev
->ce_base
+ CRYPTO4XX_DEVICE_CTRL
);
88 writel(dev
->gdr_pa
, dev
->ce_base
+ CRYPTO4XX_GATH_RING_BASE
);
89 writel(dev
->sdr_pa
, dev
->ce_base
+ CRYPTO4XX_SCAT_RING_BASE
);
91 part_ring_size
.bf
.sdr_size
= PPC4XX_SDR_SIZE
;
92 part_ring_size
.bf
.gdr_size
= PPC4XX_GDR_SIZE
;
93 writel(part_ring_size
.w
, dev
->ce_base
+ CRYPTO4XX_PART_RING_SIZE
);
94 writel(PPC4XX_SD_BUFFER_SIZE
, dev
->ce_base
+ CRYPTO4XX_PART_RING_CFG
);
96 io_threshold
.bf
.output_threshold
= PPC4XX_OUTPUT_THRESHOLD
;
97 io_threshold
.bf
.input_threshold
= PPC4XX_INPUT_THRESHOLD
;
98 writel(io_threshold
.w
, dev
->ce_base
+ CRYPTO4XX_IO_THRESHOLD
);
99 writel(0, dev
->ce_base
+ CRYPTO4XX_PDR_BASE_UADDR
);
100 writel(0, dev
->ce_base
+ CRYPTO4XX_RDR_BASE_UADDR
);
101 writel(0, dev
->ce_base
+ CRYPTO4XX_PKT_SRC_UADDR
);
102 writel(0, dev
->ce_base
+ CRYPTO4XX_PKT_DEST_UADDR
);
103 writel(0, dev
->ce_base
+ CRYPTO4XX_SA_UADDR
);
104 writel(0, dev
->ce_base
+ CRYPTO4XX_GATH_RING_BASE_UADDR
);
105 writel(0, dev
->ce_base
+ CRYPTO4XX_SCAT_RING_BASE_UADDR
);
106 /* un reset pe,sg and pdr */
107 pe_dma_cfg
.bf
.pe_mode
= 1;
108 pe_dma_cfg
.bf
.reset_sg
= 0;
109 pe_dma_cfg
.bf
.reset_pdr
= 0;
110 pe_dma_cfg
.bf
.reset_pe
= 0;
111 pe_dma_cfg
.bf
.bo_td_en
= 0;
112 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
113 /*clear all pending interrupt*/
114 writel(PPC4XX_INTERRUPT_CLR
, dev
->ce_base
+ CRYPTO4XX_INT_CLR
);
115 writel(PPC4XX_INT_DESCR_CNT
, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_CNT
);
116 writel(PPC4XX_INT_DESCR_CNT
, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_CNT
);
117 writel(PPC4XX_INT_CFG
, dev
->ce_base
+ CRYPTO4XX_INT_CFG
);
118 writel(PPC4XX_PD_DONE_INT
, dev
->ce_base
+ CRYPTO4XX_INT_EN
);
121 int crypto4xx_alloc_sa(struct crypto4xx_ctx
*ctx
, u32 size
)
123 ctx
->sa_in
= dma_alloc_coherent(ctx
->dev
->core_dev
->device
, size
* 4,
124 &ctx
->sa_in_dma_addr
, GFP_ATOMIC
);
125 if (ctx
->sa_in
== NULL
)
128 ctx
->sa_out
= dma_alloc_coherent(ctx
->dev
->core_dev
->device
, size
* 4,
129 &ctx
->sa_out_dma_addr
, GFP_ATOMIC
);
130 if (ctx
->sa_out
== NULL
) {
131 dma_free_coherent(ctx
->dev
->core_dev
->device
,
133 ctx
->sa_in
, ctx
->sa_in_dma_addr
);
137 memset(ctx
->sa_in
, 0, size
* 4);
138 memset(ctx
->sa_out
, 0, size
* 4);
144 void crypto4xx_free_sa(struct crypto4xx_ctx
*ctx
)
146 if (ctx
->sa_in
!= NULL
)
147 dma_free_coherent(ctx
->dev
->core_dev
->device
, ctx
->sa_len
* 4,
148 ctx
->sa_in
, ctx
->sa_in_dma_addr
);
149 if (ctx
->sa_out
!= NULL
)
150 dma_free_coherent(ctx
->dev
->core_dev
->device
, ctx
->sa_len
* 4,
151 ctx
->sa_out
, ctx
->sa_out_dma_addr
);
153 ctx
->sa_in_dma_addr
= 0;
154 ctx
->sa_out_dma_addr
= 0;
158 u32
crypto4xx_alloc_state_record(struct crypto4xx_ctx
*ctx
)
160 ctx
->state_record
= dma_alloc_coherent(ctx
->dev
->core_dev
->device
,
161 sizeof(struct sa_state_record
),
162 &ctx
->state_record_dma_addr
, GFP_ATOMIC
);
163 if (!ctx
->state_record_dma_addr
)
165 memset(ctx
->state_record
, 0, sizeof(struct sa_state_record
));
170 void crypto4xx_free_state_record(struct crypto4xx_ctx
*ctx
)
172 if (ctx
->state_record
!= NULL
)
173 dma_free_coherent(ctx
->dev
->core_dev
->device
,
174 sizeof(struct sa_state_record
),
176 ctx
->state_record_dma_addr
);
177 ctx
->state_record_dma_addr
= 0;
181 * alloc memory for the gather ring
182 * no need to alloc buf for the ring
183 * gdr_tail, gdr_head and gdr_count are initialized by this function
185 static u32
crypto4xx_build_pdr(struct crypto4xx_device
*dev
)
188 struct pd_uinfo
*pd_uinfo
;
189 dev
->pdr
= dma_alloc_coherent(dev
->core_dev
->device
,
190 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
191 &dev
->pdr_pa
, GFP_ATOMIC
);
195 dev
->pdr_uinfo
= kzalloc(sizeof(struct pd_uinfo
) * PPC4XX_NUM_PD
,
197 if (!dev
->pdr_uinfo
) {
198 dma_free_coherent(dev
->core_dev
->device
,
199 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
204 memset(dev
->pdr
, 0, sizeof(struct ce_pd
) * PPC4XX_NUM_PD
);
205 dev
->shadow_sa_pool
= dma_alloc_coherent(dev
->core_dev
->device
,
207 &dev
->shadow_sa_pool_pa
,
209 if (!dev
->shadow_sa_pool
)
212 dev
->shadow_sr_pool
= dma_alloc_coherent(dev
->core_dev
->device
,
213 sizeof(struct sa_state_record
) * PPC4XX_NUM_PD
,
214 &dev
->shadow_sr_pool_pa
, GFP_ATOMIC
);
215 if (!dev
->shadow_sr_pool
)
217 for (i
= 0; i
< PPC4XX_NUM_PD
; i
++) {
218 pd_uinfo
= (struct pd_uinfo
*) (dev
->pdr_uinfo
+
219 sizeof(struct pd_uinfo
) * i
);
221 /* alloc 256 bytes which is enough for any kind of dynamic sa */
222 pd_uinfo
->sa_va
= dev
->shadow_sa_pool
+ 256 * i
;
223 pd_uinfo
->sa_pa
= dev
->shadow_sa_pool_pa
+ 256 * i
;
225 /* alloc state record */
226 pd_uinfo
->sr_va
= dev
->shadow_sr_pool
+
227 sizeof(struct sa_state_record
) * i
;
228 pd_uinfo
->sr_pa
= dev
->shadow_sr_pool_pa
+
229 sizeof(struct sa_state_record
) * i
;
235 static void crypto4xx_destroy_pdr(struct crypto4xx_device
*dev
)
237 if (dev
->pdr
!= NULL
)
238 dma_free_coherent(dev
->core_dev
->device
,
239 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
240 dev
->pdr
, dev
->pdr_pa
);
241 if (dev
->shadow_sa_pool
)
242 dma_free_coherent(dev
->core_dev
->device
, 256 * PPC4XX_NUM_PD
,
243 dev
->shadow_sa_pool
, dev
->shadow_sa_pool_pa
);
244 if (dev
->shadow_sr_pool
)
245 dma_free_coherent(dev
->core_dev
->device
,
246 sizeof(struct sa_state_record
) * PPC4XX_NUM_PD
,
247 dev
->shadow_sr_pool
, dev
->shadow_sr_pool_pa
);
249 kfree(dev
->pdr_uinfo
);
252 static u32
crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device
*dev
)
257 retval
= dev
->pdr_head
;
258 tmp
= (dev
->pdr_head
+ 1) % PPC4XX_NUM_PD
;
260 if (tmp
== dev
->pdr_tail
)
261 return ERING_WAS_FULL
;
268 static u32
crypto4xx_put_pd_to_pdr(struct crypto4xx_device
*dev
, u32 idx
)
270 struct pd_uinfo
*pd_uinfo
;
273 pd_uinfo
= (struct pd_uinfo
*)(dev
->pdr_uinfo
+
274 sizeof(struct pd_uinfo
) * idx
);
275 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
276 if (dev
->pdr_tail
!= PPC4XX_LAST_PD
)
280 pd_uinfo
->state
= PD_ENTRY_FREE
;
281 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
286 static struct ce_pd
*crypto4xx_get_pdp(struct crypto4xx_device
*dev
,
287 dma_addr_t
*pd_dma
, u32 idx
)
289 *pd_dma
= dev
->pdr_pa
+ sizeof(struct ce_pd
) * idx
;
291 return dev
->pdr
+ sizeof(struct ce_pd
) * idx
;
295 * alloc memory for the gather ring
296 * no need to alloc buf for the ring
297 * gdr_tail, gdr_head and gdr_count are initialized by this function
299 static u32
crypto4xx_build_gdr(struct crypto4xx_device
*dev
)
301 dev
->gdr
= dma_alloc_coherent(dev
->core_dev
->device
,
302 sizeof(struct ce_gd
) * PPC4XX_NUM_GD
,
303 &dev
->gdr_pa
, GFP_ATOMIC
);
307 memset(dev
->gdr
, 0, sizeof(struct ce_gd
) * PPC4XX_NUM_GD
);
312 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device
*dev
)
314 dma_free_coherent(dev
->core_dev
->device
,
315 sizeof(struct ce_gd
) * PPC4XX_NUM_GD
,
316 dev
->gdr
, dev
->gdr_pa
);
320 * when this function is called.
321 * preemption or interrupt must be disabled
323 u32
crypto4xx_get_n_gd(struct crypto4xx_device
*dev
, int n
)
327 if (n
>= PPC4XX_NUM_GD
)
328 return ERING_WAS_FULL
;
330 retval
= dev
->gdr_head
;
331 tmp
= (dev
->gdr_head
+ n
) % PPC4XX_NUM_GD
;
332 if (dev
->gdr_head
> dev
->gdr_tail
) {
333 if (tmp
< dev
->gdr_head
&& tmp
>= dev
->gdr_tail
)
334 return ERING_WAS_FULL
;
335 } else if (dev
->gdr_head
< dev
->gdr_tail
) {
336 if (tmp
< dev
->gdr_head
|| tmp
>= dev
->gdr_tail
)
337 return ERING_WAS_FULL
;
344 static u32
crypto4xx_put_gd_to_gdr(struct crypto4xx_device
*dev
)
348 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
349 if (dev
->gdr_tail
== dev
->gdr_head
) {
350 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
354 if (dev
->gdr_tail
!= PPC4XX_LAST_GD
)
359 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
364 static inline struct ce_gd
*crypto4xx_get_gdp(struct crypto4xx_device
*dev
,
365 dma_addr_t
*gd_dma
, u32 idx
)
367 *gd_dma
= dev
->gdr_pa
+ sizeof(struct ce_gd
) * idx
;
369 return (struct ce_gd
*) (dev
->gdr
+ sizeof(struct ce_gd
) * idx
);
373 * alloc memory for the scatter ring
374 * need to alloc buf for the ring
375 * sdr_tail, sdr_head and sdr_count are initialized by this function
377 static u32
crypto4xx_build_sdr(struct crypto4xx_device
*dev
)
380 struct ce_sd
*sd_array
;
382 /* alloc memory for scatter descriptor ring */
383 dev
->sdr
= dma_alloc_coherent(dev
->core_dev
->device
,
384 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
385 &dev
->sdr_pa
, GFP_ATOMIC
);
389 dev
->scatter_buffer_size
= PPC4XX_SD_BUFFER_SIZE
;
390 dev
->scatter_buffer_va
=
391 dma_alloc_coherent(dev
->core_dev
->device
,
392 dev
->scatter_buffer_size
* PPC4XX_NUM_SD
,
393 &dev
->scatter_buffer_pa
, GFP_ATOMIC
);
394 if (!dev
->scatter_buffer_va
) {
395 dma_free_coherent(dev
->core_dev
->device
,
396 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
397 dev
->sdr
, dev
->sdr_pa
);
403 for (i
= 0; i
< PPC4XX_NUM_SD
; i
++) {
404 sd_array
[i
].ptr
= dev
->scatter_buffer_pa
+
405 dev
->scatter_buffer_size
* i
;
411 static void crypto4xx_destroy_sdr(struct crypto4xx_device
*dev
)
413 if (dev
->sdr
!= NULL
)
414 dma_free_coherent(dev
->core_dev
->device
,
415 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
416 dev
->sdr
, dev
->sdr_pa
);
418 if (dev
->scatter_buffer_va
!= NULL
)
419 dma_free_coherent(dev
->core_dev
->device
,
420 dev
->scatter_buffer_size
* PPC4XX_NUM_SD
,
421 dev
->scatter_buffer_va
,
422 dev
->scatter_buffer_pa
);
426 * when this function is called.
427 * preemption or interrupt must be disabled
429 static u32
crypto4xx_get_n_sd(struct crypto4xx_device
*dev
, int n
)
434 if (n
>= PPC4XX_NUM_SD
)
435 return ERING_WAS_FULL
;
437 retval
= dev
->sdr_head
;
438 tmp
= (dev
->sdr_head
+ n
) % PPC4XX_NUM_SD
;
439 if (dev
->sdr_head
> dev
->gdr_tail
) {
440 if (tmp
< dev
->sdr_head
&& tmp
>= dev
->sdr_tail
)
441 return ERING_WAS_FULL
;
442 } else if (dev
->sdr_head
< dev
->sdr_tail
) {
443 if (tmp
< dev
->sdr_head
|| tmp
>= dev
->sdr_tail
)
444 return ERING_WAS_FULL
;
445 } /* the head = tail, or empty case is already take cared */
451 static u32
crypto4xx_put_sd_to_sdr(struct crypto4xx_device
*dev
)
455 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
456 if (dev
->sdr_tail
== dev
->sdr_head
) {
457 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
460 if (dev
->sdr_tail
!= PPC4XX_LAST_SD
)
464 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
469 static inline struct ce_sd
*crypto4xx_get_sdp(struct crypto4xx_device
*dev
,
470 dma_addr_t
*sd_dma
, u32 idx
)
472 *sd_dma
= dev
->sdr_pa
+ sizeof(struct ce_sd
) * idx
;
474 return (struct ce_sd
*)(dev
->sdr
+ sizeof(struct ce_sd
) * idx
);
477 static u32
crypto4xx_fill_one_page(struct crypto4xx_device
*dev
,
478 dma_addr_t
*addr
, u32
*length
,
479 u32
*idx
, u32
*offset
, u32
*nbytes
)
483 if (*length
> dev
->scatter_buffer_size
) {
484 memcpy(phys_to_virt(*addr
),
485 dev
->scatter_buffer_va
+
486 *idx
* dev
->scatter_buffer_size
+ *offset
,
487 dev
->scatter_buffer_size
);
489 *length
-= dev
->scatter_buffer_size
;
490 *nbytes
-= dev
->scatter_buffer_size
;
491 if (*idx
== PPC4XX_LAST_SD
)
495 *addr
= *addr
+ dev
->scatter_buffer_size
;
497 } else if (*length
< dev
->scatter_buffer_size
) {
498 memcpy(phys_to_virt(*addr
),
499 dev
->scatter_buffer_va
+
500 *idx
* dev
->scatter_buffer_size
+ *offset
, *length
);
501 if ((*offset
+ *length
) == dev
->scatter_buffer_size
) {
502 if (*idx
== PPC4XX_LAST_SD
)
515 len
= (*nbytes
<= dev
->scatter_buffer_size
) ?
516 (*nbytes
) : dev
->scatter_buffer_size
;
517 memcpy(phys_to_virt(*addr
),
518 dev
->scatter_buffer_va
+
519 *idx
* dev
->scatter_buffer_size
+ *offset
,
524 if (*idx
== PPC4XX_LAST_SD
)
533 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device
*dev
,
535 struct pd_uinfo
*pd_uinfo
,
537 struct scatterlist
*dst
)
545 struct scatterlist
*sg
;
547 this_sd
= pd_uinfo
->first_sd
;
554 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(sg
),
555 sg
->offset
, sg
->length
, DMA_TO_DEVICE
);
558 len
= (nbytes
<= sg
->length
) ? nbytes
: sg
->length
;
559 while (crypto4xx_fill_one_page(dev
, &addr
, &len
,
560 &this_sd
, &offset
, &nbytes
))
566 len
= (nbytes
<= (dev
->scatter_buffer_size
- offset
)) ?
567 nbytes
: (dev
->scatter_buffer_size
- offset
);
568 len
= (sg
->length
< len
) ? sg
->length
: len
;
569 while (crypto4xx_fill_one_page(dev
, &addr
, &len
,
570 &this_sd
, &offset
, &nbytes
))
577 while (crypto4xx_fill_one_page(dev
, &addr
,
578 &sg_len
, &this_sd
, &offset
, &nbytes
))
586 static u32
crypto4xx_copy_digest_to_dst(struct pd_uinfo
*pd_uinfo
,
587 struct crypto4xx_ctx
*ctx
)
589 struct dynamic_sa_ctl
*sa
= (struct dynamic_sa_ctl
*) ctx
->sa_in
;
590 struct sa_state_record
*state_record
=
591 (struct sa_state_record
*) pd_uinfo
->sr_va
;
593 if (sa
->sa_command_0
.bf
.hash_alg
== SA_HASH_ALG_SHA1
) {
594 memcpy((void *) pd_uinfo
->dest_va
, state_record
->save_digest
,
595 SA_HASH_ALG_SHA1_DIGEST_SIZE
);
601 static void crypto4xx_ret_sg_desc(struct crypto4xx_device
*dev
,
602 struct pd_uinfo
*pd_uinfo
)
605 if (pd_uinfo
->num_gd
) {
606 for (i
= 0; i
< pd_uinfo
->num_gd
; i
++)
607 crypto4xx_put_gd_to_gdr(dev
);
608 pd_uinfo
->first_gd
= 0xffffffff;
609 pd_uinfo
->num_gd
= 0;
611 if (pd_uinfo
->num_sd
) {
612 for (i
= 0; i
< pd_uinfo
->num_sd
; i
++)
613 crypto4xx_put_sd_to_sdr(dev
);
615 pd_uinfo
->first_sd
= 0xffffffff;
616 pd_uinfo
->num_sd
= 0;
620 static u32
crypto4xx_ablkcipher_done(struct crypto4xx_device
*dev
,
621 struct pd_uinfo
*pd_uinfo
,
624 struct crypto4xx_ctx
*ctx
;
625 struct ablkcipher_request
*ablk_req
;
626 struct scatterlist
*dst
;
629 ablk_req
= ablkcipher_request_cast(pd_uinfo
->async_req
);
630 ctx
= crypto_tfm_ctx(ablk_req
->base
.tfm
);
632 if (pd_uinfo
->using_sd
) {
633 crypto4xx_copy_pkt_to_dst(dev
, pd
, pd_uinfo
, ablk_req
->nbytes
,
636 dst
= pd_uinfo
->dest_va
;
637 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(dst
),
638 dst
->offset
, dst
->length
, DMA_FROM_DEVICE
);
640 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
641 if (ablk_req
->base
.complete
!= NULL
)
642 ablk_req
->base
.complete(&ablk_req
->base
, 0);
647 static u32
crypto4xx_ahash_done(struct crypto4xx_device
*dev
,
648 struct pd_uinfo
*pd_uinfo
)
650 struct crypto4xx_ctx
*ctx
;
651 struct ahash_request
*ahash_req
;
653 ahash_req
= ahash_request_cast(pd_uinfo
->async_req
);
654 ctx
= crypto_tfm_ctx(ahash_req
->base
.tfm
);
656 crypto4xx_copy_digest_to_dst(pd_uinfo
,
657 crypto_tfm_ctx(ahash_req
->base
.tfm
));
658 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
659 /* call user provided callback function x */
660 if (ahash_req
->base
.complete
!= NULL
)
661 ahash_req
->base
.complete(&ahash_req
->base
, 0);
666 static u32
crypto4xx_pd_done(struct crypto4xx_device
*dev
, u32 idx
)
669 struct pd_uinfo
*pd_uinfo
;
671 pd
= dev
->pdr
+ sizeof(struct ce_pd
)*idx
;
672 pd_uinfo
= dev
->pdr_uinfo
+ sizeof(struct pd_uinfo
)*idx
;
673 if (crypto_tfm_alg_type(pd_uinfo
->async_req
->tfm
) ==
674 CRYPTO_ALG_TYPE_ABLKCIPHER
)
675 return crypto4xx_ablkcipher_done(dev
, pd_uinfo
, pd
);
677 return crypto4xx_ahash_done(dev
, pd_uinfo
);
681 * Note: Only use this function to copy items that is word aligned.
683 void crypto4xx_memcpy_le(unsigned int *dst
,
684 const unsigned char *buf
,
688 for (; len
>= 4; buf
+= 4, len
-= 4)
689 *dst
++ = cpu_to_le32(*(unsigned int *) buf
);
716 static void crypto4xx_stop_all(struct crypto4xx_core_device
*core_dev
)
718 crypto4xx_destroy_pdr(core_dev
->dev
);
719 crypto4xx_destroy_gdr(core_dev
->dev
);
720 crypto4xx_destroy_sdr(core_dev
->dev
);
721 dev_set_drvdata(core_dev
->device
, NULL
);
722 iounmap(core_dev
->dev
->ce_base
);
723 kfree(core_dev
->dev
);
727 void crypto4xx_return_pd(struct crypto4xx_device
*dev
,
728 u32 pd_entry
, struct ce_pd
*pd
,
729 struct pd_uinfo
*pd_uinfo
)
731 /* irq should be already disabled */
732 dev
->pdr_head
= pd_entry
;
734 pd
->pd_ctl_len
.w
= 0;
735 pd_uinfo
->state
= PD_ENTRY_FREE
;
739 * derive number of elements in scatterlist
740 * Shamlessly copy from talitos.c
742 static int get_sg_count(struct scatterlist
*sg_list
, int nbytes
)
744 struct scatterlist
*sg
= sg_list
;
749 if (sg
->length
> nbytes
)
751 nbytes
-= sg
->length
;
758 static u32
get_next_gd(u32 current
)
760 if (current
!= PPC4XX_LAST_GD
)
766 static u32
get_next_sd(u32 current
)
768 if (current
!= PPC4XX_LAST_SD
)
774 u32
crypto4xx_build_pd(struct crypto_async_request
*req
,
775 struct crypto4xx_ctx
*ctx
,
776 struct scatterlist
*src
,
777 struct scatterlist
*dst
,
778 unsigned int datalen
,
779 void *iv
, u32 iv_len
)
781 struct crypto4xx_device
*dev
= ctx
->dev
;
782 dma_addr_t addr
, pd_dma
, sd_dma
, gd_dma
;
783 struct dynamic_sa_ctl
*sa
;
784 struct scatterlist
*sg
;
788 u32 fst_gd
= 0xffffffff;
789 u32 fst_sd
= 0xffffffff;
792 struct pd_uinfo
*pd_uinfo
= NULL
;
793 unsigned int nbytes
= datalen
, idx
;
794 unsigned int ivlen
= 0;
797 /* figure how many gd is needed */
798 num_gd
= get_sg_count(src
, datalen
);
802 /* figure how many sd is needed */
803 if (sg_is_last(dst
) || ctx
->is_hash
) {
806 if (datalen
> PPC4XX_SD_BUFFER_SIZE
) {
807 num_sd
= datalen
/ PPC4XX_SD_BUFFER_SIZE
;
808 if (datalen
% PPC4XX_SD_BUFFER_SIZE
)
816 * The follow section of code needs to be protected
817 * The gather ring and scatter ring needs to be consecutive
818 * In case of run out of any kind of descriptor, the descriptor
819 * already got must be return the original place.
821 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
823 fst_gd
= crypto4xx_get_n_gd(dev
, num_gd
);
824 if (fst_gd
== ERING_WAS_FULL
) {
825 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
830 fst_sd
= crypto4xx_get_n_sd(dev
, num_sd
);
831 if (fst_sd
== ERING_WAS_FULL
) {
833 dev
->gdr_head
= fst_gd
;
834 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
838 pd_entry
= crypto4xx_get_pd_from_pdr_nolock(dev
);
839 if (pd_entry
== ERING_WAS_FULL
) {
841 dev
->gdr_head
= fst_gd
;
843 dev
->sdr_head
= fst_sd
;
844 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
847 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
849 pd_uinfo
= (struct pd_uinfo
*)(dev
->pdr_uinfo
+
850 sizeof(struct pd_uinfo
) * pd_entry
);
851 pd
= crypto4xx_get_pdp(dev
, &pd_dma
, pd_entry
);
852 pd_uinfo
->async_req
= req
;
853 pd_uinfo
->num_gd
= num_gd
;
854 pd_uinfo
->num_sd
= num_sd
;
856 if (iv_len
|| ctx
->is_hash
) {
858 pd
->sa
= pd_uinfo
->sa_pa
;
859 sa
= (struct dynamic_sa_ctl
*) pd_uinfo
->sa_va
;
860 if (ctx
->direction
== DIR_INBOUND
)
861 memcpy(sa
, ctx
->sa_in
, ctx
->sa_len
* 4);
863 memcpy(sa
, ctx
->sa_out
, ctx
->sa_len
* 4);
865 memcpy((void *) sa
+ ctx
->offset_to_sr_ptr
,
866 &pd_uinfo
->sr_pa
, 4);
869 crypto4xx_memcpy_le(pd_uinfo
->sr_va
, iv
, iv_len
);
871 if (ctx
->direction
== DIR_INBOUND
) {
872 pd
->sa
= ctx
->sa_in_dma_addr
;
873 sa
= (struct dynamic_sa_ctl
*) ctx
->sa_in
;
875 pd
->sa
= ctx
->sa_out_dma_addr
;
876 sa
= (struct dynamic_sa_ctl
*) ctx
->sa_out
;
879 pd
->sa_len
= ctx
->sa_len
;
881 /* get first gd we are going to use */
883 pd_uinfo
->first_gd
= fst_gd
;
884 pd_uinfo
->num_gd
= num_gd
;
885 gd
= crypto4xx_get_gdp(dev
, &gd_dma
, gd_idx
);
888 sa
->sa_command_0
.bf
.gather
= 1;
891 /* walk the sg, and setup gather array */
894 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(sg
),
895 sg
->offset
, sg
->length
, DMA_TO_DEVICE
);
897 gd
->ctl_len
.len
= sg
->length
;
898 gd
->ctl_len
.done
= 0;
899 gd
->ctl_len
.ready
= 1;
900 if (sg
->length
>= nbytes
)
902 nbytes
-= sg
->length
;
903 gd_idx
= get_next_gd(gd_idx
);
904 gd
= crypto4xx_get_gdp(dev
, &gd_dma
, gd_idx
);
908 pd
->src
= (u32
)dma_map_page(dev
->core_dev
->device
, sg_page(src
),
909 src
->offset
, src
->length
, DMA_TO_DEVICE
);
911 * Disable gather in sa command
913 sa
->sa_command_0
.bf
.gather
= 0;
915 * Indicate gather array is not used
917 pd_uinfo
->first_gd
= 0xffffffff;
918 pd_uinfo
->num_gd
= 0;
920 if (ctx
->is_hash
|| sg_is_last(dst
)) {
922 * we know application give us dst a whole piece of memory
923 * no need to use scatter ring.
924 * In case of is_hash, the icv is always at end of src data.
926 pd_uinfo
->using_sd
= 0;
927 pd_uinfo
->first_sd
= 0xffffffff;
928 pd_uinfo
->num_sd
= 0;
929 pd_uinfo
->dest_va
= dst
;
930 sa
->sa_command_0
.bf
.scatter
= 0;
932 pd
->dest
= virt_to_phys((void *)dst
);
934 pd
->dest
= (u32
)dma_map_page(dev
->core_dev
->device
,
935 sg_page(dst
), dst
->offset
,
936 dst
->length
, DMA_TO_DEVICE
);
938 struct ce_sd
*sd
= NULL
;
941 sa
->sa_command_0
.bf
.scatter
= 1;
942 pd_uinfo
->using_sd
= 1;
943 pd_uinfo
->dest_va
= dst
;
944 pd_uinfo
->first_sd
= fst_sd
;
945 pd_uinfo
->num_sd
= num_sd
;
946 sd
= crypto4xx_get_sdp(dev
, &sd_dma
, sd_idx
);
948 /* setup scatter descriptor */
951 /* sd->ptr should be setup by sd_init routine*/
953 if (nbytes
>= PPC4XX_SD_BUFFER_SIZE
)
954 nbytes
-= PPC4XX_SD_BUFFER_SIZE
;
958 sd_idx
= get_next_sd(sd_idx
);
959 sd
= crypto4xx_get_sdp(dev
, &sd_dma
, sd_idx
);
960 /* setup scatter descriptor */
963 if (nbytes
>= PPC4XX_SD_BUFFER_SIZE
)
964 nbytes
-= PPC4XX_SD_BUFFER_SIZE
;
967 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
968 * which is more than nbytes, so done.
974 sa
->sa_command_1
.bf
.hash_crypto_offset
= 0;
975 pd
->pd_ctl
.w
= ctx
->pd_ctl
;
976 pd
->pd_ctl_len
.w
= 0x00400000 | (ctx
->bypass
<< 24) | datalen
;
977 pd_uinfo
->state
= PD_ENTRY_INUSE
;
979 /* write any value to push engine to read a pd */
980 writel(1, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_RD
);
985 * Algorithm Registration Functions
987 static int crypto4xx_alg_init(struct crypto_tfm
*tfm
)
989 struct crypto_alg
*alg
= tfm
->__crt_alg
;
990 struct crypto4xx_alg
*amcc_alg
= crypto_alg_to_crypto4xx_alg(alg
);
991 struct crypto4xx_ctx
*ctx
= crypto_tfm_ctx(tfm
);
993 ctx
->dev
= amcc_alg
->dev
;
996 ctx
->sa_in_dma_addr
= 0;
997 ctx
->sa_out_dma_addr
= 0;
1000 switch (alg
->cra_flags
& CRYPTO_ALG_TYPE_MASK
) {
1002 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct crypto4xx_ctx
);
1004 case CRYPTO_ALG_TYPE_AHASH
:
1005 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1006 sizeof(struct crypto4xx_ctx
));
1013 static void crypto4xx_alg_exit(struct crypto_tfm
*tfm
)
1015 struct crypto4xx_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1017 crypto4xx_free_sa(ctx
);
1018 crypto4xx_free_state_record(ctx
);
1021 int crypto4xx_register_alg(struct crypto4xx_device
*sec_dev
,
1022 struct crypto4xx_alg_common
*crypto_alg
,
1025 struct crypto4xx_alg
*alg
;
1029 for (i
= 0; i
< array_size
; i
++) {
1030 alg
= kzalloc(sizeof(struct crypto4xx_alg
), GFP_KERNEL
);
1034 alg
->alg
= crypto_alg
[i
];
1037 switch (alg
->alg
.type
) {
1038 case CRYPTO_ALG_TYPE_AHASH
:
1039 rc
= crypto_register_ahash(&alg
->alg
.u
.hash
);
1043 rc
= crypto_register_alg(&alg
->alg
.u
.cipher
);
1048 list_del(&alg
->entry
);
1051 list_add_tail(&alg
->entry
, &sec_dev
->alg_list
);
1058 static void crypto4xx_unregister_alg(struct crypto4xx_device
*sec_dev
)
1060 struct crypto4xx_alg
*alg
, *tmp
;
1062 list_for_each_entry_safe(alg
, tmp
, &sec_dev
->alg_list
, entry
) {
1063 list_del(&alg
->entry
);
1064 switch (alg
->alg
.type
) {
1065 case CRYPTO_ALG_TYPE_AHASH
:
1066 crypto_unregister_ahash(&alg
->alg
.u
.hash
);
1070 crypto_unregister_alg(&alg
->alg
.u
.cipher
);
1076 static void crypto4xx_bh_tasklet_cb(unsigned long data
)
1078 struct device
*dev
= (struct device
*)data
;
1079 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1080 struct pd_uinfo
*pd_uinfo
;
1084 while (core_dev
->dev
->pdr_head
!= core_dev
->dev
->pdr_tail
) {
1085 tail
= core_dev
->dev
->pdr_tail
;
1086 pd_uinfo
= core_dev
->dev
->pdr_uinfo
+
1087 sizeof(struct pd_uinfo
)*tail
;
1088 pd
= core_dev
->dev
->pdr
+ sizeof(struct ce_pd
) * tail
;
1089 if ((pd_uinfo
->state
== PD_ENTRY_INUSE
) &&
1090 pd
->pd_ctl
.bf
.pe_done
&&
1091 !pd
->pd_ctl
.bf
.host_ready
) {
1092 pd
->pd_ctl
.bf
.pe_done
= 0;
1093 crypto4xx_pd_done(core_dev
->dev
, tail
);
1094 crypto4xx_put_pd_to_pdr(core_dev
->dev
, tail
);
1095 pd_uinfo
->state
= PD_ENTRY_FREE
;
1097 /* if tail not done, break */
1106 static irqreturn_t
crypto4xx_ce_interrupt_handler(int irq
, void *data
)
1108 struct device
*dev
= (struct device
*)data
;
1109 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1111 if (core_dev
->dev
->ce_base
== 0)
1114 writel(PPC4XX_INTERRUPT_CLR
,
1115 core_dev
->dev
->ce_base
+ CRYPTO4XX_INT_CLR
);
1116 tasklet_schedule(&core_dev
->tasklet
);
1122 * Supported Crypto Algorithms
1124 struct crypto4xx_alg_common crypto4xx_alg
[] = {
1125 /* Crypto AES modes */
1126 { .type
= CRYPTO_ALG_TYPE_ABLKCIPHER
, .u
.cipher
= {
1127 .cra_name
= "cbc(aes)",
1128 .cra_driver_name
= "cbc-aes-ppc4xx",
1129 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1130 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1131 .cra_blocksize
= AES_BLOCK_SIZE
,
1132 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1133 .cra_type
= &crypto_ablkcipher_type
,
1134 .cra_init
= crypto4xx_alg_init
,
1135 .cra_exit
= crypto4xx_alg_exit
,
1136 .cra_module
= THIS_MODULE
,
1139 .min_keysize
= AES_MIN_KEY_SIZE
,
1140 .max_keysize
= AES_MAX_KEY_SIZE
,
1141 .ivsize
= AES_IV_SIZE
,
1142 .setkey
= crypto4xx_setkey_aes_cbc
,
1143 .encrypt
= crypto4xx_encrypt
,
1144 .decrypt
= crypto4xx_decrypt
,
1151 * Module Initialization Routine
1153 static int __init
crypto4xx_probe(struct platform_device
*ofdev
)
1156 struct resource res
;
1157 struct device
*dev
= &ofdev
->dev
;
1158 struct crypto4xx_core_device
*core_dev
;
1160 rc
= of_address_to_resource(ofdev
->dev
.of_node
, 0, &res
);
1164 if (of_find_compatible_node(NULL
, NULL
, "amcc,ppc460ex-crypto")) {
1165 mtdcri(SDR0
, PPC460EX_SDR0_SRST
,
1166 mfdcri(SDR0
, PPC460EX_SDR0_SRST
) | PPC460EX_CE_RESET
);
1167 mtdcri(SDR0
, PPC460EX_SDR0_SRST
,
1168 mfdcri(SDR0
, PPC460EX_SDR0_SRST
) & ~PPC460EX_CE_RESET
);
1169 } else if (of_find_compatible_node(NULL
, NULL
,
1170 "amcc,ppc405ex-crypto")) {
1171 mtdcri(SDR0
, PPC405EX_SDR0_SRST
,
1172 mfdcri(SDR0
, PPC405EX_SDR0_SRST
) | PPC405EX_CE_RESET
);
1173 mtdcri(SDR0
, PPC405EX_SDR0_SRST
,
1174 mfdcri(SDR0
, PPC405EX_SDR0_SRST
) & ~PPC405EX_CE_RESET
);
1175 } else if (of_find_compatible_node(NULL
, NULL
,
1176 "amcc,ppc460sx-crypto")) {
1177 mtdcri(SDR0
, PPC460SX_SDR0_SRST
,
1178 mfdcri(SDR0
, PPC460SX_SDR0_SRST
) | PPC460SX_CE_RESET
);
1179 mtdcri(SDR0
, PPC460SX_SDR0_SRST
,
1180 mfdcri(SDR0
, PPC460SX_SDR0_SRST
) & ~PPC460SX_CE_RESET
);
1182 printk(KERN_ERR
"Crypto Function Not supported!\n");
1186 core_dev
= kzalloc(sizeof(struct crypto4xx_core_device
), GFP_KERNEL
);
1190 dev_set_drvdata(dev
, core_dev
);
1191 core_dev
->ofdev
= ofdev
;
1192 core_dev
->dev
= kzalloc(sizeof(struct crypto4xx_device
), GFP_KERNEL
);
1196 core_dev
->dev
->core_dev
= core_dev
;
1197 core_dev
->device
= dev
;
1198 spin_lock_init(&core_dev
->lock
);
1199 INIT_LIST_HEAD(&core_dev
->dev
->alg_list
);
1200 rc
= crypto4xx_build_pdr(core_dev
->dev
);
1204 rc
= crypto4xx_build_gdr(core_dev
->dev
);
1208 rc
= crypto4xx_build_sdr(core_dev
->dev
);
1212 /* Init tasklet for bottom half processing */
1213 tasklet_init(&core_dev
->tasklet
, crypto4xx_bh_tasklet_cb
,
1214 (unsigned long) dev
);
1216 /* Register for Crypto isr, Crypto Engine IRQ */
1217 core_dev
->irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 0);
1218 rc
= request_irq(core_dev
->irq
, crypto4xx_ce_interrupt_handler
, 0,
1219 core_dev
->dev
->name
, dev
);
1221 goto err_request_irq
;
1223 core_dev
->dev
->ce_base
= of_iomap(ofdev
->dev
.of_node
, 0);
1224 if (!core_dev
->dev
->ce_base
) {
1225 dev_err(dev
, "failed to of_iomap\n");
1229 /* need to setup pdr, rdr, gdr and sdr before this */
1230 crypto4xx_hw_init(core_dev
->dev
);
1232 /* Register security algorithms with Linux CryptoAPI */
1233 rc
= crypto4xx_register_alg(core_dev
->dev
, crypto4xx_alg
,
1234 ARRAY_SIZE(crypto4xx_alg
));
1241 iounmap(core_dev
->dev
->ce_base
);
1243 free_irq(core_dev
->irq
, dev
);
1244 irq_dispose_mapping(core_dev
->irq
);
1245 tasklet_kill(&core_dev
->tasklet
);
1247 crypto4xx_destroy_sdr(core_dev
->dev
);
1249 crypto4xx_destroy_gdr(core_dev
->dev
);
1251 crypto4xx_destroy_pdr(core_dev
->dev
);
1253 kfree(core_dev
->dev
);
1260 static int __exit
crypto4xx_remove(struct platform_device
*ofdev
)
1262 struct device
*dev
= &ofdev
->dev
;
1263 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1265 free_irq(core_dev
->irq
, dev
);
1266 irq_dispose_mapping(core_dev
->irq
);
1268 tasklet_kill(&core_dev
->tasklet
);
1269 /* Un-register with Linux CryptoAPI */
1270 crypto4xx_unregister_alg(core_dev
->dev
);
1271 /* Free all allocated memory */
1272 crypto4xx_stop_all(core_dev
);
1277 static const struct of_device_id crypto4xx_match
[] = {
1278 { .compatible
= "amcc,ppc4xx-crypto",},
1282 static struct platform_driver crypto4xx_driver
= {
1284 .name
= "crypto4xx",
1285 .owner
= THIS_MODULE
,
1286 .of_match_table
= crypto4xx_match
,
1288 .probe
= crypto4xx_probe
,
1289 .remove
= crypto4xx_remove
,
1292 static int __init
crypto4xx_init(void)
1294 return platform_driver_register(&crypto4xx_driver
);
1297 static void __exit
crypto4xx_exit(void)
1299 platform_driver_unregister(&crypto4xx_driver
);
1302 module_init(crypto4xx_init
);
1303 module_exit(crypto4xx_exit
);
1305 MODULE_LICENSE("GPL");
1306 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1307 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");