FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / crypto / amcc / crypto4xx_core.c
blob18912521a7a585571a6a23a1d7d4782d453b6642
1 /**
2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
18 * Linux CryptoAPI.
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/of_platform.h>
31 #include <linux/slab.h>
32 #include <asm/dcr.h>
33 #include <asm/dcr-regs.h>
34 #include <asm/cacheflush.h>
35 #include <crypto/aes.h>
36 #include <crypto/sha.h>
37 #include "crypto4xx_reg_def.h"
38 #include "crypto4xx_core.h"
39 #include "crypto4xx_sa.h"
41 #define PPC4XX_SEC_VERSION_STR "0.5"
43 /**
44 * PPC4xx Crypto Engine Initialization Routine
46 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
48 union ce_ring_size ring_size;
49 union ce_ring_contol ring_ctrl;
50 union ce_part_ring_size part_ring_size;
51 union ce_io_threshold io_threshold;
52 u32 rand_num;
53 union ce_pe_dma_cfg pe_dma_cfg;
55 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
56 /* setup pe dma, include reset sg, pdr and pe, then release reset */
57 pe_dma_cfg.w = 0;
58 pe_dma_cfg.bf.bo_sgpd_en = 1;
59 pe_dma_cfg.bf.bo_data_en = 0;
60 pe_dma_cfg.bf.bo_sa_en = 1;
61 pe_dma_cfg.bf.bo_pd_en = 1;
62 pe_dma_cfg.bf.dynamic_sa_en = 1;
63 pe_dma_cfg.bf.reset_sg = 1;
64 pe_dma_cfg.bf.reset_pdr = 1;
65 pe_dma_cfg.bf.reset_pe = 1;
66 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
67 /* un reset pe,sg and pdr */
68 pe_dma_cfg.bf.pe_mode = 0;
69 pe_dma_cfg.bf.reset_sg = 0;
70 pe_dma_cfg.bf.reset_pdr = 0;
71 pe_dma_cfg.bf.reset_pe = 0;
72 pe_dma_cfg.bf.bo_td_en = 0;
73 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
74 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
75 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
76 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
77 get_random_bytes(&rand_num, sizeof(rand_num));
78 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
79 get_random_bytes(&rand_num, sizeof(rand_num));
80 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
81 ring_size.w = 0;
82 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
83 ring_size.bf.ring_size = PPC4XX_NUM_PD;
84 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
85 ring_ctrl.w = 0;
86 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
87 writel(PPC4XX_DC_3DES_EN, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
88 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
89 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
90 part_ring_size.w = 0;
91 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
92 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
93 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
94 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
95 io_threshold.w = 0;
96 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
97 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
98 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
99 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
100 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
101 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
102 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
103 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
104 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
105 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
106 /* un reset pe,sg and pdr */
107 pe_dma_cfg.bf.pe_mode = 1;
108 pe_dma_cfg.bf.reset_sg = 0;
109 pe_dma_cfg.bf.reset_pdr = 0;
110 pe_dma_cfg.bf.reset_pe = 0;
111 pe_dma_cfg.bf.bo_td_en = 0;
112 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
113 /*clear all pending interrupt*/
114 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
115 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
116 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
117 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
118 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
121 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
123 ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
124 &ctx->sa_in_dma_addr, GFP_ATOMIC);
125 if (ctx->sa_in == NULL)
126 return -ENOMEM;
128 ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
129 &ctx->sa_out_dma_addr, GFP_ATOMIC);
130 if (ctx->sa_out == NULL) {
131 dma_free_coherent(ctx->dev->core_dev->device,
132 ctx->sa_len * 4,
133 ctx->sa_in, ctx->sa_in_dma_addr);
134 return -ENOMEM;
137 memset(ctx->sa_in, 0, size * 4);
138 memset(ctx->sa_out, 0, size * 4);
139 ctx->sa_len = size;
141 return 0;
144 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
146 if (ctx->sa_in != NULL)
147 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
148 ctx->sa_in, ctx->sa_in_dma_addr);
149 if (ctx->sa_out != NULL)
150 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
151 ctx->sa_out, ctx->sa_out_dma_addr);
153 ctx->sa_in_dma_addr = 0;
154 ctx->sa_out_dma_addr = 0;
155 ctx->sa_len = 0;
158 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
160 ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
161 sizeof(struct sa_state_record),
162 &ctx->state_record_dma_addr, GFP_ATOMIC);
163 if (!ctx->state_record_dma_addr)
164 return -ENOMEM;
165 memset(ctx->state_record, 0, sizeof(struct sa_state_record));
167 return 0;
170 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
172 if (ctx->state_record != NULL)
173 dma_free_coherent(ctx->dev->core_dev->device,
174 sizeof(struct sa_state_record),
175 ctx->state_record,
176 ctx->state_record_dma_addr);
177 ctx->state_record_dma_addr = 0;
181 * alloc memory for the gather ring
182 * no need to alloc buf for the ring
183 * gdr_tail, gdr_head and gdr_count are initialized by this function
185 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
187 int i;
188 struct pd_uinfo *pd_uinfo;
189 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
190 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
191 &dev->pdr_pa, GFP_ATOMIC);
192 if (!dev->pdr)
193 return -ENOMEM;
195 dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
196 GFP_KERNEL);
197 if (!dev->pdr_uinfo) {
198 dma_free_coherent(dev->core_dev->device,
199 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
200 dev->pdr,
201 dev->pdr_pa);
202 return -ENOMEM;
204 memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
205 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
206 256 * PPC4XX_NUM_PD,
207 &dev->shadow_sa_pool_pa,
208 GFP_ATOMIC);
209 if (!dev->shadow_sa_pool)
210 return -ENOMEM;
212 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
213 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
214 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
215 if (!dev->shadow_sr_pool)
216 return -ENOMEM;
217 for (i = 0; i < PPC4XX_NUM_PD; i++) {
218 pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
219 sizeof(struct pd_uinfo) * i);
221 /* alloc 256 bytes which is enough for any kind of dynamic sa */
222 pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
223 pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
225 /* alloc state record */
226 pd_uinfo->sr_va = dev->shadow_sr_pool +
227 sizeof(struct sa_state_record) * i;
228 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
229 sizeof(struct sa_state_record) * i;
232 return 0;
235 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
237 if (dev->pdr != NULL)
238 dma_free_coherent(dev->core_dev->device,
239 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
240 dev->pdr, dev->pdr_pa);
241 if (dev->shadow_sa_pool)
242 dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
243 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
244 if (dev->shadow_sr_pool)
245 dma_free_coherent(dev->core_dev->device,
246 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
247 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
249 kfree(dev->pdr_uinfo);
252 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
254 u32 retval;
255 u32 tmp;
257 retval = dev->pdr_head;
258 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
260 if (tmp == dev->pdr_tail)
261 return ERING_WAS_FULL;
263 dev->pdr_head = tmp;
265 return retval;
268 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
270 struct pd_uinfo *pd_uinfo;
271 unsigned long flags;
273 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
274 sizeof(struct pd_uinfo) * idx);
275 spin_lock_irqsave(&dev->core_dev->lock, flags);
276 if (dev->pdr_tail != PPC4XX_LAST_PD)
277 dev->pdr_tail++;
278 else
279 dev->pdr_tail = 0;
280 pd_uinfo->state = PD_ENTRY_FREE;
281 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
283 return 0;
286 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
287 dma_addr_t *pd_dma, u32 idx)
289 *pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
291 return dev->pdr + sizeof(struct ce_pd) * idx;
295 * alloc memory for the gather ring
296 * no need to alloc buf for the ring
297 * gdr_tail, gdr_head and gdr_count are initialized by this function
299 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
301 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
302 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
303 &dev->gdr_pa, GFP_ATOMIC);
304 if (!dev->gdr)
305 return -ENOMEM;
307 memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
309 return 0;
312 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
314 dma_free_coherent(dev->core_dev->device,
315 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
316 dev->gdr, dev->gdr_pa);
320 * when this function is called.
321 * preemption or interrupt must be disabled
323 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
325 u32 retval;
326 u32 tmp;
327 if (n >= PPC4XX_NUM_GD)
328 return ERING_WAS_FULL;
330 retval = dev->gdr_head;
331 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
332 if (dev->gdr_head > dev->gdr_tail) {
333 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
334 return ERING_WAS_FULL;
335 } else if (dev->gdr_head < dev->gdr_tail) {
336 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
337 return ERING_WAS_FULL;
339 dev->gdr_head = tmp;
341 return retval;
344 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
346 unsigned long flags;
348 spin_lock_irqsave(&dev->core_dev->lock, flags);
349 if (dev->gdr_tail == dev->gdr_head) {
350 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
351 return 0;
354 if (dev->gdr_tail != PPC4XX_LAST_GD)
355 dev->gdr_tail++;
356 else
357 dev->gdr_tail = 0;
359 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
361 return 0;
364 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
365 dma_addr_t *gd_dma, u32 idx)
367 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
369 return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
373 * alloc memory for the scatter ring
374 * need to alloc buf for the ring
375 * sdr_tail, sdr_head and sdr_count are initialized by this function
377 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
379 int i;
380 struct ce_sd *sd_array;
382 /* alloc memory for scatter descriptor ring */
383 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
384 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 &dev->sdr_pa, GFP_ATOMIC);
386 if (!dev->sdr)
387 return -ENOMEM;
389 dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
390 dev->scatter_buffer_va =
391 dma_alloc_coherent(dev->core_dev->device,
392 dev->scatter_buffer_size * PPC4XX_NUM_SD,
393 &dev->scatter_buffer_pa, GFP_ATOMIC);
394 if (!dev->scatter_buffer_va) {
395 dma_free_coherent(dev->core_dev->device,
396 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
397 dev->sdr, dev->sdr_pa);
398 return -ENOMEM;
401 sd_array = dev->sdr;
403 for (i = 0; i < PPC4XX_NUM_SD; i++) {
404 sd_array[i].ptr = dev->scatter_buffer_pa +
405 dev->scatter_buffer_size * i;
408 return 0;
411 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
413 if (dev->sdr != NULL)
414 dma_free_coherent(dev->core_dev->device,
415 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
416 dev->sdr, dev->sdr_pa);
418 if (dev->scatter_buffer_va != NULL)
419 dma_free_coherent(dev->core_dev->device,
420 dev->scatter_buffer_size * PPC4XX_NUM_SD,
421 dev->scatter_buffer_va,
422 dev->scatter_buffer_pa);
426 * when this function is called.
427 * preemption or interrupt must be disabled
429 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
431 u32 retval;
432 u32 tmp;
434 if (n >= PPC4XX_NUM_SD)
435 return ERING_WAS_FULL;
437 retval = dev->sdr_head;
438 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
439 if (dev->sdr_head > dev->gdr_tail) {
440 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
441 return ERING_WAS_FULL;
442 } else if (dev->sdr_head < dev->sdr_tail) {
443 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
444 return ERING_WAS_FULL;
445 } /* the head = tail, or empty case is already take cared */
446 dev->sdr_head = tmp;
448 return retval;
451 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
453 unsigned long flags;
455 spin_lock_irqsave(&dev->core_dev->lock, flags);
456 if (dev->sdr_tail == dev->sdr_head) {
457 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
458 return 0;
460 if (dev->sdr_tail != PPC4XX_LAST_SD)
461 dev->sdr_tail++;
462 else
463 dev->sdr_tail = 0;
464 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
466 return 0;
469 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
470 dma_addr_t *sd_dma, u32 idx)
472 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
474 return (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
477 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
478 dma_addr_t *addr, u32 *length,
479 u32 *idx, u32 *offset, u32 *nbytes)
481 u32 len;
483 if (*length > dev->scatter_buffer_size) {
484 memcpy(phys_to_virt(*addr),
485 dev->scatter_buffer_va +
486 *idx * dev->scatter_buffer_size + *offset,
487 dev->scatter_buffer_size);
488 *offset = 0;
489 *length -= dev->scatter_buffer_size;
490 *nbytes -= dev->scatter_buffer_size;
491 if (*idx == PPC4XX_LAST_SD)
492 *idx = 0;
493 else
494 (*idx)++;
495 *addr = *addr + dev->scatter_buffer_size;
496 return 1;
497 } else if (*length < dev->scatter_buffer_size) {
498 memcpy(phys_to_virt(*addr),
499 dev->scatter_buffer_va +
500 *idx * dev->scatter_buffer_size + *offset, *length);
501 if ((*offset + *length) == dev->scatter_buffer_size) {
502 if (*idx == PPC4XX_LAST_SD)
503 *idx = 0;
504 else
505 (*idx)++;
506 *nbytes -= *length;
507 *offset = 0;
508 } else {
509 *nbytes -= *length;
510 *offset += *length;
513 return 0;
514 } else {
515 len = (*nbytes <= dev->scatter_buffer_size) ?
516 (*nbytes) : dev->scatter_buffer_size;
517 memcpy(phys_to_virt(*addr),
518 dev->scatter_buffer_va +
519 *idx * dev->scatter_buffer_size + *offset,
520 len);
521 *offset = 0;
522 *nbytes -= len;
524 if (*idx == PPC4XX_LAST_SD)
525 *idx = 0;
526 else
527 (*idx)++;
529 return 0;
533 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
534 struct ce_pd *pd,
535 struct pd_uinfo *pd_uinfo,
536 u32 nbytes,
537 struct scatterlist *dst)
539 dma_addr_t addr;
540 u32 this_sd;
541 u32 offset;
542 u32 len;
543 u32 i;
544 u32 sg_len;
545 struct scatterlist *sg;
547 this_sd = pd_uinfo->first_sd;
548 offset = 0;
549 i = 0;
551 while (nbytes) {
552 sg = &dst[i];
553 sg_len = sg->length;
554 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
555 sg->offset, sg->length, DMA_TO_DEVICE);
557 if (offset == 0) {
558 len = (nbytes <= sg->length) ? nbytes : sg->length;
559 while (crypto4xx_fill_one_page(dev, &addr, &len,
560 &this_sd, &offset, &nbytes))
562 if (!nbytes)
563 return;
564 i++;
565 } else {
566 len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
567 nbytes : (dev->scatter_buffer_size - offset);
568 len = (sg->length < len) ? sg->length : len;
569 while (crypto4xx_fill_one_page(dev, &addr, &len,
570 &this_sd, &offset, &nbytes))
572 if (!nbytes)
573 return;
574 sg_len -= len;
575 if (sg_len) {
576 addr += len;
577 while (crypto4xx_fill_one_page(dev, &addr,
578 &sg_len, &this_sd, &offset, &nbytes))
581 i++;
586 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
587 struct crypto4xx_ctx *ctx)
589 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
590 struct sa_state_record *state_record =
591 (struct sa_state_record *) pd_uinfo->sr_va;
593 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
594 memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
595 SA_HASH_ALG_SHA1_DIGEST_SIZE);
598 return 0;
601 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
602 struct pd_uinfo *pd_uinfo)
604 int i;
605 if (pd_uinfo->num_gd) {
606 for (i = 0; i < pd_uinfo->num_gd; i++)
607 crypto4xx_put_gd_to_gdr(dev);
608 pd_uinfo->first_gd = 0xffffffff;
609 pd_uinfo->num_gd = 0;
611 if (pd_uinfo->num_sd) {
612 for (i = 0; i < pd_uinfo->num_sd; i++)
613 crypto4xx_put_sd_to_sdr(dev);
615 pd_uinfo->first_sd = 0xffffffff;
616 pd_uinfo->num_sd = 0;
620 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
621 struct pd_uinfo *pd_uinfo,
622 struct ce_pd *pd)
624 struct crypto4xx_ctx *ctx;
625 struct ablkcipher_request *ablk_req;
626 struct scatterlist *dst;
627 dma_addr_t addr;
629 ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
630 ctx = crypto_tfm_ctx(ablk_req->base.tfm);
632 if (pd_uinfo->using_sd) {
633 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
634 ablk_req->dst);
635 } else {
636 dst = pd_uinfo->dest_va;
637 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
638 dst->offset, dst->length, DMA_FROM_DEVICE);
640 crypto4xx_ret_sg_desc(dev, pd_uinfo);
641 if (ablk_req->base.complete != NULL)
642 ablk_req->base.complete(&ablk_req->base, 0);
644 return 0;
647 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
648 struct pd_uinfo *pd_uinfo)
650 struct crypto4xx_ctx *ctx;
651 struct ahash_request *ahash_req;
653 ahash_req = ahash_request_cast(pd_uinfo->async_req);
654 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
656 crypto4xx_copy_digest_to_dst(pd_uinfo,
657 crypto_tfm_ctx(ahash_req->base.tfm));
658 crypto4xx_ret_sg_desc(dev, pd_uinfo);
659 /* call user provided callback function x */
660 if (ahash_req->base.complete != NULL)
661 ahash_req->base.complete(&ahash_req->base, 0);
663 return 0;
666 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
668 struct ce_pd *pd;
669 struct pd_uinfo *pd_uinfo;
671 pd = dev->pdr + sizeof(struct ce_pd)*idx;
672 pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
673 if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
674 CRYPTO_ALG_TYPE_ABLKCIPHER)
675 return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
676 else
677 return crypto4xx_ahash_done(dev, pd_uinfo);
681 * Note: Only use this function to copy items that is word aligned.
683 void crypto4xx_memcpy_le(unsigned int *dst,
684 const unsigned char *buf,
685 int len)
687 u8 *tmp;
688 for (; len >= 4; buf += 4, len -= 4)
689 *dst++ = cpu_to_le32(*(unsigned int *) buf);
691 tmp = (u8 *)dst;
692 switch (len) {
693 case 3:
694 *tmp++ = 0;
695 *tmp++ = *(buf+2);
696 *tmp++ = *(buf+1);
697 *tmp++ = *buf;
698 break;
699 case 2:
700 *tmp++ = 0;
701 *tmp++ = 0;
702 *tmp++ = *(buf+1);
703 *tmp++ = *buf;
704 break;
705 case 1:
706 *tmp++ = 0;
707 *tmp++ = 0;
708 *tmp++ = 0;
709 *tmp++ = *buf;
710 break;
711 default:
712 break;
716 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
718 crypto4xx_destroy_pdr(core_dev->dev);
719 crypto4xx_destroy_gdr(core_dev->dev);
720 crypto4xx_destroy_sdr(core_dev->dev);
721 dev_set_drvdata(core_dev->device, NULL);
722 iounmap(core_dev->dev->ce_base);
723 kfree(core_dev->dev);
724 kfree(core_dev);
727 void crypto4xx_return_pd(struct crypto4xx_device *dev,
728 u32 pd_entry, struct ce_pd *pd,
729 struct pd_uinfo *pd_uinfo)
731 /* irq should be already disabled */
732 dev->pdr_head = pd_entry;
733 pd->pd_ctl.w = 0;
734 pd->pd_ctl_len.w = 0;
735 pd_uinfo->state = PD_ENTRY_FREE;
739 * derive number of elements in scatterlist
740 * Shamlessly copy from talitos.c
742 static int get_sg_count(struct scatterlist *sg_list, int nbytes)
744 struct scatterlist *sg = sg_list;
745 int sg_nents = 0;
747 while (nbytes) {
748 sg_nents++;
749 if (sg->length > nbytes)
750 break;
751 nbytes -= sg->length;
752 sg = sg_next(sg);
755 return sg_nents;
758 static u32 get_next_gd(u32 current)
760 if (current != PPC4XX_LAST_GD)
761 return current + 1;
762 else
763 return 0;
766 static u32 get_next_sd(u32 current)
768 if (current != PPC4XX_LAST_SD)
769 return current + 1;
770 else
771 return 0;
774 u32 crypto4xx_build_pd(struct crypto_async_request *req,
775 struct crypto4xx_ctx *ctx,
776 struct scatterlist *src,
777 struct scatterlist *dst,
778 unsigned int datalen,
779 void *iv, u32 iv_len)
781 struct crypto4xx_device *dev = ctx->dev;
782 dma_addr_t addr, pd_dma, sd_dma, gd_dma;
783 struct dynamic_sa_ctl *sa;
784 struct scatterlist *sg;
785 struct ce_gd *gd;
786 struct ce_pd *pd;
787 u32 num_gd, num_sd;
788 u32 fst_gd = 0xffffffff;
789 u32 fst_sd = 0xffffffff;
790 u32 pd_entry;
791 unsigned long flags;
792 struct pd_uinfo *pd_uinfo = NULL;
793 unsigned int nbytes = datalen, idx;
794 unsigned int ivlen = 0;
795 u32 gd_idx = 0;
797 /* figure how many gd is needed */
798 num_gd = get_sg_count(src, datalen);
799 if (num_gd == 1)
800 num_gd = 0;
802 /* figure how many sd is needed */
803 if (sg_is_last(dst) || ctx->is_hash) {
804 num_sd = 0;
805 } else {
806 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
807 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
808 if (datalen % PPC4XX_SD_BUFFER_SIZE)
809 num_sd++;
810 } else {
811 num_sd = 1;
816 * The follow section of code needs to be protected
817 * The gather ring and scatter ring needs to be consecutive
818 * In case of run out of any kind of descriptor, the descriptor
819 * already got must be return the original place.
821 spin_lock_irqsave(&dev->core_dev->lock, flags);
822 if (num_gd) {
823 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
824 if (fst_gd == ERING_WAS_FULL) {
825 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
826 return -EAGAIN;
829 if (num_sd) {
830 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
831 if (fst_sd == ERING_WAS_FULL) {
832 if (num_gd)
833 dev->gdr_head = fst_gd;
834 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
835 return -EAGAIN;
838 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
839 if (pd_entry == ERING_WAS_FULL) {
840 if (num_gd)
841 dev->gdr_head = fst_gd;
842 if (num_sd)
843 dev->sdr_head = fst_sd;
844 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
845 return -EAGAIN;
847 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
849 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
850 sizeof(struct pd_uinfo) * pd_entry);
851 pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
852 pd_uinfo->async_req = req;
853 pd_uinfo->num_gd = num_gd;
854 pd_uinfo->num_sd = num_sd;
856 if (iv_len || ctx->is_hash) {
857 ivlen = iv_len;
858 pd->sa = pd_uinfo->sa_pa;
859 sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
860 if (ctx->direction == DIR_INBOUND)
861 memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
862 else
863 memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
865 memcpy((void *) sa + ctx->offset_to_sr_ptr,
866 &pd_uinfo->sr_pa, 4);
868 if (iv_len)
869 crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
870 } else {
871 if (ctx->direction == DIR_INBOUND) {
872 pd->sa = ctx->sa_in_dma_addr;
873 sa = (struct dynamic_sa_ctl *) ctx->sa_in;
874 } else {
875 pd->sa = ctx->sa_out_dma_addr;
876 sa = (struct dynamic_sa_ctl *) ctx->sa_out;
879 pd->sa_len = ctx->sa_len;
880 if (num_gd) {
881 /* get first gd we are going to use */
882 gd_idx = fst_gd;
883 pd_uinfo->first_gd = fst_gd;
884 pd_uinfo->num_gd = num_gd;
885 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
886 pd->src = gd_dma;
887 /* enable gather */
888 sa->sa_command_0.bf.gather = 1;
889 idx = 0;
890 src = &src[0];
891 /* walk the sg, and setup gather array */
892 while (nbytes) {
893 sg = &src[idx];
894 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
895 sg->offset, sg->length, DMA_TO_DEVICE);
896 gd->ptr = addr;
897 gd->ctl_len.len = sg->length;
898 gd->ctl_len.done = 0;
899 gd->ctl_len.ready = 1;
900 if (sg->length >= nbytes)
901 break;
902 nbytes -= sg->length;
903 gd_idx = get_next_gd(gd_idx);
904 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
905 idx++;
907 } else {
908 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
909 src->offset, src->length, DMA_TO_DEVICE);
911 * Disable gather in sa command
913 sa->sa_command_0.bf.gather = 0;
915 * Indicate gather array is not used
917 pd_uinfo->first_gd = 0xffffffff;
918 pd_uinfo->num_gd = 0;
920 if (ctx->is_hash || sg_is_last(dst)) {
922 * we know application give us dst a whole piece of memory
923 * no need to use scatter ring.
924 * In case of is_hash, the icv is always at end of src data.
926 pd_uinfo->using_sd = 0;
927 pd_uinfo->first_sd = 0xffffffff;
928 pd_uinfo->num_sd = 0;
929 pd_uinfo->dest_va = dst;
930 sa->sa_command_0.bf.scatter = 0;
931 if (ctx->is_hash)
932 pd->dest = virt_to_phys((void *)dst);
933 else
934 pd->dest = (u32)dma_map_page(dev->core_dev->device,
935 sg_page(dst), dst->offset,
936 dst->length, DMA_TO_DEVICE);
937 } else {
938 struct ce_sd *sd = NULL;
939 u32 sd_idx = fst_sd;
940 nbytes = datalen;
941 sa->sa_command_0.bf.scatter = 1;
942 pd_uinfo->using_sd = 1;
943 pd_uinfo->dest_va = dst;
944 pd_uinfo->first_sd = fst_sd;
945 pd_uinfo->num_sd = num_sd;
946 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
947 pd->dest = sd_dma;
948 /* setup scatter descriptor */
949 sd->ctl.done = 0;
950 sd->ctl.rdy = 1;
951 /* sd->ptr should be setup by sd_init routine*/
952 idx = 0;
953 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
954 nbytes -= PPC4XX_SD_BUFFER_SIZE;
955 else
956 nbytes = 0;
957 while (nbytes) {
958 sd_idx = get_next_sd(sd_idx);
959 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
960 /* setup scatter descriptor */
961 sd->ctl.done = 0;
962 sd->ctl.rdy = 1;
963 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
964 nbytes -= PPC4XX_SD_BUFFER_SIZE;
965 else
967 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
968 * which is more than nbytes, so done.
970 nbytes = 0;
974 sa->sa_command_1.bf.hash_crypto_offset = 0;
975 pd->pd_ctl.w = ctx->pd_ctl;
976 pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
977 pd_uinfo->state = PD_ENTRY_INUSE;
978 wmb();
979 /* write any value to push engine to read a pd */
980 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
981 return -EINPROGRESS;
985 * Algorithm Registration Functions
987 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
989 struct crypto_alg *alg = tfm->__crt_alg;
990 struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
991 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
993 ctx->dev = amcc_alg->dev;
994 ctx->sa_in = NULL;
995 ctx->sa_out = NULL;
996 ctx->sa_in_dma_addr = 0;
997 ctx->sa_out_dma_addr = 0;
998 ctx->sa_len = 0;
1000 switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1001 default:
1002 tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1003 break;
1004 case CRYPTO_ALG_TYPE_AHASH:
1005 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1006 sizeof(struct crypto4xx_ctx));
1007 break;
1010 return 0;
1013 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1015 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1017 crypto4xx_free_sa(ctx);
1018 crypto4xx_free_state_record(ctx);
1021 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1022 struct crypto4xx_alg_common *crypto_alg,
1023 int array_size)
1025 struct crypto4xx_alg *alg;
1026 int i;
1027 int rc = 0;
1029 for (i = 0; i < array_size; i++) {
1030 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1031 if (!alg)
1032 return -ENOMEM;
1034 alg->alg = crypto_alg[i];
1035 alg->dev = sec_dev;
1037 switch (alg->alg.type) {
1038 case CRYPTO_ALG_TYPE_AHASH:
1039 rc = crypto_register_ahash(&alg->alg.u.hash);
1040 break;
1042 default:
1043 rc = crypto_register_alg(&alg->alg.u.cipher);
1044 break;
1047 if (rc) {
1048 list_del(&alg->entry);
1049 kfree(alg);
1050 } else {
1051 list_add_tail(&alg->entry, &sec_dev->alg_list);
1055 return 0;
1058 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1060 struct crypto4xx_alg *alg, *tmp;
1062 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1063 list_del(&alg->entry);
1064 switch (alg->alg.type) {
1065 case CRYPTO_ALG_TYPE_AHASH:
1066 crypto_unregister_ahash(&alg->alg.u.hash);
1067 break;
1069 default:
1070 crypto_unregister_alg(&alg->alg.u.cipher);
1072 kfree(alg);
1076 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1078 struct device *dev = (struct device *)data;
1079 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1080 struct pd_uinfo *pd_uinfo;
1081 struct ce_pd *pd;
1082 u32 tail;
1084 while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1085 tail = core_dev->dev->pdr_tail;
1086 pd_uinfo = core_dev->dev->pdr_uinfo +
1087 sizeof(struct pd_uinfo)*tail;
1088 pd = core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1089 if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1090 pd->pd_ctl.bf.pe_done &&
1091 !pd->pd_ctl.bf.host_ready) {
1092 pd->pd_ctl.bf.pe_done = 0;
1093 crypto4xx_pd_done(core_dev->dev, tail);
1094 crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1095 pd_uinfo->state = PD_ENTRY_FREE;
1096 } else {
1097 /* if tail not done, break */
1098 break;
1104 * Top Half of isr.
1106 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1108 struct device *dev = (struct device *)data;
1109 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1111 if (core_dev->dev->ce_base == 0)
1112 return 0;
1114 writel(PPC4XX_INTERRUPT_CLR,
1115 core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1116 tasklet_schedule(&core_dev->tasklet);
1118 return IRQ_HANDLED;
1122 * Supported Crypto Algorithms
1124 struct crypto4xx_alg_common crypto4xx_alg[] = {
1125 /* Crypto AES modes */
1126 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1127 .cra_name = "cbc(aes)",
1128 .cra_driver_name = "cbc-aes-ppc4xx",
1129 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1130 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1131 .cra_blocksize = AES_BLOCK_SIZE,
1132 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1133 .cra_type = &crypto_ablkcipher_type,
1134 .cra_init = crypto4xx_alg_init,
1135 .cra_exit = crypto4xx_alg_exit,
1136 .cra_module = THIS_MODULE,
1137 .cra_u = {
1138 .ablkcipher = {
1139 .min_keysize = AES_MIN_KEY_SIZE,
1140 .max_keysize = AES_MAX_KEY_SIZE,
1141 .ivsize = AES_IV_SIZE,
1142 .setkey = crypto4xx_setkey_aes_cbc,
1143 .encrypt = crypto4xx_encrypt,
1144 .decrypt = crypto4xx_decrypt,
1151 * Module Initialization Routine
1153 static int __init crypto4xx_probe(struct platform_device *ofdev)
1155 int rc;
1156 struct resource res;
1157 struct device *dev = &ofdev->dev;
1158 struct crypto4xx_core_device *core_dev;
1160 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1161 if (rc)
1162 return -ENODEV;
1164 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1165 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1166 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1167 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1168 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1169 } else if (of_find_compatible_node(NULL, NULL,
1170 "amcc,ppc405ex-crypto")) {
1171 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1172 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1173 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1174 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1175 } else if (of_find_compatible_node(NULL, NULL,
1176 "amcc,ppc460sx-crypto")) {
1177 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1178 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1179 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1180 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1181 } else {
1182 printk(KERN_ERR "Crypto Function Not supported!\n");
1183 return -EINVAL;
1186 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1187 if (!core_dev)
1188 return -ENOMEM;
1190 dev_set_drvdata(dev, core_dev);
1191 core_dev->ofdev = ofdev;
1192 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1193 if (!core_dev->dev)
1194 goto err_alloc_dev;
1196 core_dev->dev->core_dev = core_dev;
1197 core_dev->device = dev;
1198 spin_lock_init(&core_dev->lock);
1199 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1200 rc = crypto4xx_build_pdr(core_dev->dev);
1201 if (rc)
1202 goto err_build_pdr;
1204 rc = crypto4xx_build_gdr(core_dev->dev);
1205 if (rc)
1206 goto err_build_gdr;
1208 rc = crypto4xx_build_sdr(core_dev->dev);
1209 if (rc)
1210 goto err_build_sdr;
1212 /* Init tasklet for bottom half processing */
1213 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1214 (unsigned long) dev);
1216 /* Register for Crypto isr, Crypto Engine IRQ */
1217 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1218 rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1219 core_dev->dev->name, dev);
1220 if (rc)
1221 goto err_request_irq;
1223 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1224 if (!core_dev->dev->ce_base) {
1225 dev_err(dev, "failed to of_iomap\n");
1226 goto err_iomap;
1229 /* need to setup pdr, rdr, gdr and sdr before this */
1230 crypto4xx_hw_init(core_dev->dev);
1232 /* Register security algorithms with Linux CryptoAPI */
1233 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1234 ARRAY_SIZE(crypto4xx_alg));
1235 if (rc)
1236 goto err_start_dev;
1238 return 0;
1240 err_start_dev:
1241 iounmap(core_dev->dev->ce_base);
1242 err_iomap:
1243 free_irq(core_dev->irq, dev);
1244 irq_dispose_mapping(core_dev->irq);
1245 tasklet_kill(&core_dev->tasklet);
1246 err_request_irq:
1247 crypto4xx_destroy_sdr(core_dev->dev);
1248 err_build_sdr:
1249 crypto4xx_destroy_gdr(core_dev->dev);
1250 err_build_gdr:
1251 crypto4xx_destroy_pdr(core_dev->dev);
1252 err_build_pdr:
1253 kfree(core_dev->dev);
1254 err_alloc_dev:
1255 kfree(core_dev);
1257 return rc;
1260 static int __exit crypto4xx_remove(struct platform_device *ofdev)
1262 struct device *dev = &ofdev->dev;
1263 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1265 free_irq(core_dev->irq, dev);
1266 irq_dispose_mapping(core_dev->irq);
1268 tasklet_kill(&core_dev->tasklet);
1269 /* Un-register with Linux CryptoAPI */
1270 crypto4xx_unregister_alg(core_dev->dev);
1271 /* Free all allocated memory */
1272 crypto4xx_stop_all(core_dev);
1274 return 0;
1277 static const struct of_device_id crypto4xx_match[] = {
1278 { .compatible = "amcc,ppc4xx-crypto",},
1279 { },
1282 static struct platform_driver crypto4xx_driver = {
1283 .driver = {
1284 .name = "crypto4xx",
1285 .owner = THIS_MODULE,
1286 .of_match_table = crypto4xx_match,
1288 .probe = crypto4xx_probe,
1289 .remove = crypto4xx_remove,
1292 static int __init crypto4xx_init(void)
1294 return platform_driver_register(&crypto4xx_driver);
1297 static void __exit crypto4xx_exit(void)
1299 platform_driver_unregister(&crypto4xx_driver);
1302 module_init(crypto4xx_init);
1303 module_exit(crypto4xx_exit);
1305 MODULE_LICENSE("GPL");
1306 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1307 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");