2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 # define CHECK_DEVLOCK()
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio
*bio
)
107 return bio
->bi_phys_segments
& 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio
*bio
)
112 return (bio
->bi_phys_segments
>> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
117 --bio
->bi_phys_segments
;
118 return raid5_bi_phys_segments(bio
);
121 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
123 unsigned short val
= raid5_bi_hw_segments(bio
);
126 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
130 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
132 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head
*sh
)
139 /* ddf always start from first device */
141 /* md starts just after Q block */
142 if (sh
->qd_idx
== sh
->disks
- 1)
145 return sh
->qd_idx
+ 1;
147 static inline int raid6_next_disk(int disk
, int raid_disks
)
150 return (disk
< raid_disks
) ? disk
: 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
159 int *count
, int syndrome_disks
)
165 if (idx
== sh
->pd_idx
)
166 return syndrome_disks
;
167 if (idx
== sh
->qd_idx
)
168 return syndrome_disks
+ 1;
174 static void return_io(struct bio
*return_bi
)
176 struct bio
*bi
= return_bi
;
179 return_bi
= bi
->bi_next
;
187 static void print_raid5_conf (raid5_conf_t
*conf
);
189 static int stripe_operations_active(struct stripe_head
*sh
)
191 return sh
->check_state
|| sh
->reconstruct_state
||
192 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
193 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
196 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
198 if (atomic_dec_and_test(&sh
->count
)) {
199 BUG_ON(!list_empty(&sh
->lru
));
200 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
201 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
202 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
203 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
204 plugger_set_plug(&conf
->plug
);
205 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
206 sh
->bm_seq
- conf
->seq_write
> 0) {
207 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
208 plugger_set_plug(&conf
->plug
);
210 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
211 list_add_tail(&sh
->lru
, &conf
->handle_list
);
213 md_wakeup_thread(conf
->mddev
->thread
);
215 BUG_ON(stripe_operations_active(sh
));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
217 atomic_dec(&conf
->preread_active_stripes
);
218 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
219 md_wakeup_thread(conf
->mddev
->thread
);
221 atomic_dec(&conf
->active_stripes
);
222 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
223 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
224 wake_up(&conf
->wait_for_stripe
);
225 if (conf
->retry_read_aligned
)
226 md_wakeup_thread(conf
->mddev
->thread
);
232 static void release_stripe(struct stripe_head
*sh
)
234 raid5_conf_t
*conf
= sh
->raid_conf
;
237 spin_lock_irqsave(&conf
->device_lock
, flags
);
238 __release_stripe(conf
, sh
);
239 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
242 static inline void remove_hash(struct stripe_head
*sh
)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh
->sector
);
247 hlist_del_init(&sh
->hash
);
250 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
252 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh
->sector
);
258 hlist_add_head(&sh
->hash
, hp
);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
265 struct stripe_head
*sh
= NULL
;
266 struct list_head
*first
;
269 if (list_empty(&conf
->inactive_list
))
271 first
= conf
->inactive_list
.next
;
272 sh
= list_entry(first
, struct stripe_head
, lru
);
273 list_del_init(first
);
275 atomic_inc(&conf
->active_stripes
);
280 static void shrink_buffers(struct stripe_head
*sh
)
284 int num
= sh
->raid_conf
->pool_size
;
286 for (i
= 0; i
< num
; i
++) {
290 sh
->dev
[i
].page
= NULL
;
295 static int grow_buffers(struct stripe_head
*sh
)
298 int num
= sh
->raid_conf
->pool_size
;
300 for (i
= 0; i
< num
; i
++) {
303 if (!(page
= alloc_page(GFP_KERNEL
))) {
306 sh
->dev
[i
].page
= page
;
311 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
312 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
313 struct stripe_head
*sh
);
315 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
317 raid5_conf_t
*conf
= sh
->raid_conf
;
320 BUG_ON(atomic_read(&sh
->count
) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
322 BUG_ON(stripe_operations_active(sh
));
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh
->sector
);
330 sh
->generation
= conf
->generation
- previous
;
331 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
333 stripe_set_idx(sector
, conf
, previous
, sh
);
337 for (i
= sh
->disks
; i
--; ) {
338 struct r5dev
*dev
= &sh
->dev
[i
];
340 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
341 test_bit(R5_LOCKED
, &dev
->flags
)) {
342 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh
->sector
, i
, dev
->toread
,
344 dev
->read
, dev
->towrite
, dev
->written
,
345 test_bit(R5_LOCKED
, &dev
->flags
));
349 raid5_build_block(sh
, i
, previous
);
351 insert_hash(conf
, sh
);
354 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
357 struct stripe_head
*sh
;
358 struct hlist_node
*hn
;
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
362 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
363 if (sh
->sector
== sector
&& sh
->generation
== generation
)
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
370 * Need to check if array has failed when deciding whether to:
372 * - remove non-faulty devices
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
382 static int has_failed(raid5_conf_t
*conf
)
386 if (conf
->mddev
->reshape_position
== MaxSector
)
387 return conf
->mddev
->degraded
> conf
->max_degraded
;
391 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
392 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
393 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
395 else if (test_bit(In_sync
, &rdev
->flags
))
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
407 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
411 if (degraded
> conf
->max_degraded
)
415 for (i
= 0; i
< conf
->raid_disks
; i
++) {
416 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
417 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
419 else if (test_bit(In_sync
, &rdev
->flags
))
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
427 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
431 if (degraded
> conf
->max_degraded
)
436 static struct stripe_head
*
437 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
438 int previous
, int noblock
, int noquiesce
)
440 struct stripe_head
*sh
;
442 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
444 spin_lock_irq(&conf
->device_lock
);
447 wait_event_lock_irq(conf
->wait_for_stripe
,
448 conf
->quiesce
== 0 || noquiesce
,
449 conf
->device_lock
, /* nothing */);
450 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
452 if (!conf
->inactive_blocked
)
453 sh
= get_free_stripe(conf
);
454 if (noblock
&& sh
== NULL
)
457 conf
->inactive_blocked
= 1;
458 wait_event_lock_irq(conf
->wait_for_stripe
,
459 !list_empty(&conf
->inactive_list
) &&
460 (atomic_read(&conf
->active_stripes
)
461 < (conf
->max_nr_stripes
*3/4)
462 || !conf
->inactive_blocked
),
464 md_raid5_kick_device(conf
));
465 conf
->inactive_blocked
= 0;
467 init_stripe(sh
, sector
, previous
);
469 if (atomic_read(&sh
->count
)) {
470 BUG_ON(!list_empty(&sh
->lru
)
471 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
473 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
474 atomic_inc(&conf
->active_stripes
);
475 if (list_empty(&sh
->lru
) &&
476 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
478 list_del_init(&sh
->lru
);
481 } while (sh
== NULL
);
484 atomic_inc(&sh
->count
);
486 spin_unlock_irq(&conf
->device_lock
);
491 raid5_end_read_request(struct bio
*bi
, int error
);
493 raid5_end_write_request(struct bio
*bi
, int error
);
495 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
497 raid5_conf_t
*conf
= sh
->raid_conf
;
498 int i
, disks
= sh
->disks
;
502 for (i
= disks
; i
--; ) {
506 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
507 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
511 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
516 bi
= &sh
->dev
[i
].req
;
520 bi
->bi_end_io
= raid5_end_write_request
;
522 bi
->bi_end_io
= raid5_end_read_request
;
525 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
526 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
529 atomic_inc(&rdev
->nr_pending
);
533 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
534 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
536 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
538 bi
->bi_bdev
= rdev
->bdev
;
539 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540 __func__
, (unsigned long long)sh
->sector
,
542 atomic_inc(&sh
->count
);
543 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
544 bi
->bi_flags
= 1 << BIO_UPTODATE
;
548 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
549 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
550 bi
->bi_io_vec
[0].bv_offset
= 0;
551 bi
->bi_size
= STRIPE_SIZE
;
554 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
555 atomic_add(STRIPE_SECTORS
,
556 &rdev
->corrected_errors
);
557 generic_make_request(bi
);
560 set_bit(STRIPE_DEGRADED
, &sh
->state
);
561 pr_debug("skip op %ld on disc %d for sector %llu\n",
562 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
563 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
564 set_bit(STRIPE_HANDLE
, &sh
->state
);
569 static struct dma_async_tx_descriptor
*
570 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
571 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
574 struct page
*bio_page
;
577 struct async_submit_ctl submit
;
578 enum async_tx_flags flags
= 0;
580 if (bio
->bi_sector
>= sector
)
581 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
583 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
586 flags
|= ASYNC_TX_FENCE
;
587 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
589 bio_for_each_segment(bvl
, bio
, i
) {
590 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
594 if (page_offset
< 0) {
595 b_offset
= -page_offset
;
596 page_offset
+= b_offset
;
600 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
601 clen
= STRIPE_SIZE
- page_offset
;
606 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
607 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
609 tx
= async_memcpy(page
, bio_page
, page_offset
,
610 b_offset
, clen
, &submit
);
612 tx
= async_memcpy(bio_page
, page
, b_offset
,
613 page_offset
, clen
, &submit
);
615 /* chain the operations */
616 submit
.depend_tx
= tx
;
618 if (clen
< len
) /* hit end of page */
626 static void ops_complete_biofill(void *stripe_head_ref
)
628 struct stripe_head
*sh
= stripe_head_ref
;
629 struct bio
*return_bi
= NULL
;
630 raid5_conf_t
*conf
= sh
->raid_conf
;
633 pr_debug("%s: stripe %llu\n", __func__
,
634 (unsigned long long)sh
->sector
);
636 /* clear completed biofills */
637 spin_lock_irq(&conf
->device_lock
);
638 for (i
= sh
->disks
; i
--; ) {
639 struct r5dev
*dev
= &sh
->dev
[i
];
641 /* acknowledge completion of a biofill operation */
642 /* and check if we need to reply to a read request,
643 * new R5_Wantfill requests are held off until
644 * !STRIPE_BIOFILL_RUN
646 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
647 struct bio
*rbi
, *rbi2
;
652 while (rbi
&& rbi
->bi_sector
<
653 dev
->sector
+ STRIPE_SECTORS
) {
654 rbi2
= r5_next_bio(rbi
, dev
->sector
);
655 if (!raid5_dec_bi_phys_segments(rbi
)) {
656 rbi
->bi_next
= return_bi
;
663 spin_unlock_irq(&conf
->device_lock
);
664 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
666 return_io(return_bi
);
668 set_bit(STRIPE_HANDLE
, &sh
->state
);
672 static void ops_run_biofill(struct stripe_head
*sh
)
674 struct dma_async_tx_descriptor
*tx
= NULL
;
675 raid5_conf_t
*conf
= sh
->raid_conf
;
676 struct async_submit_ctl submit
;
679 pr_debug("%s: stripe %llu\n", __func__
,
680 (unsigned long long)sh
->sector
);
682 for (i
= sh
->disks
; i
--; ) {
683 struct r5dev
*dev
= &sh
->dev
[i
];
684 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
686 spin_lock_irq(&conf
->device_lock
);
687 dev
->read
= rbi
= dev
->toread
;
689 spin_unlock_irq(&conf
->device_lock
);
690 while (rbi
&& rbi
->bi_sector
<
691 dev
->sector
+ STRIPE_SECTORS
) {
692 tx
= async_copy_data(0, rbi
, dev
->page
,
694 rbi
= r5_next_bio(rbi
, dev
->sector
);
699 atomic_inc(&sh
->count
);
700 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
701 async_trigger_callback(&submit
);
704 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
711 tgt
= &sh
->dev
[target
];
712 set_bit(R5_UPTODATE
, &tgt
->flags
);
713 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
714 clear_bit(R5_Wantcompute
, &tgt
->flags
);
717 static void ops_complete_compute(void *stripe_head_ref
)
719 struct stripe_head
*sh
= stripe_head_ref
;
721 pr_debug("%s: stripe %llu\n", __func__
,
722 (unsigned long long)sh
->sector
);
724 /* mark the computed target(s) as uptodate */
725 mark_target_uptodate(sh
, sh
->ops
.target
);
726 mark_target_uptodate(sh
, sh
->ops
.target2
);
728 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
729 if (sh
->check_state
== check_state_compute_run
)
730 sh
->check_state
= check_state_compute_result
;
731 set_bit(STRIPE_HANDLE
, &sh
->state
);
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
737 struct raid5_percpu
*percpu
)
739 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
742 static struct dma_async_tx_descriptor
*
743 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
745 int disks
= sh
->disks
;
746 struct page
**xor_srcs
= percpu
->scribble
;
747 int target
= sh
->ops
.target
;
748 struct r5dev
*tgt
= &sh
->dev
[target
];
749 struct page
*xor_dest
= tgt
->page
;
751 struct dma_async_tx_descriptor
*tx
;
752 struct async_submit_ctl submit
;
755 pr_debug("%s: stripe %llu block: %d\n",
756 __func__
, (unsigned long long)sh
->sector
, target
);
757 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
759 for (i
= disks
; i
--; )
761 xor_srcs
[count
++] = sh
->dev
[i
].page
;
763 atomic_inc(&sh
->count
);
765 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
766 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
767 if (unlikely(count
== 1))
768 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
770 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776 * @srcs - (struct page *) array of size sh->disks
777 * @sh - stripe_head to parse
779 * Populates srcs in proper layout order for the stripe and returns the
780 * 'count' of sources to be used in a call to async_gen_syndrome. The P
781 * destination buffer is recorded in srcs[count] and the Q destination
782 * is recorded in srcs[count+1]].
784 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
786 int disks
= sh
->disks
;
787 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
788 int d0_idx
= raid6_d0(sh
);
792 for (i
= 0; i
< disks
; i
++)
798 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
800 srcs
[slot
] = sh
->dev
[i
].page
;
801 i
= raid6_next_disk(i
, disks
);
802 } while (i
!= d0_idx
);
804 return syndrome_disks
;
807 static struct dma_async_tx_descriptor
*
808 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
810 int disks
= sh
->disks
;
811 struct page
**blocks
= percpu
->scribble
;
813 int qd_idx
= sh
->qd_idx
;
814 struct dma_async_tx_descriptor
*tx
;
815 struct async_submit_ctl submit
;
821 if (sh
->ops
.target
< 0)
822 target
= sh
->ops
.target2
;
823 else if (sh
->ops
.target2
< 0)
824 target
= sh
->ops
.target
;
826 /* we should only have one valid target */
829 pr_debug("%s: stripe %llu block: %d\n",
830 __func__
, (unsigned long long)sh
->sector
, target
);
832 tgt
= &sh
->dev
[target
];
833 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
836 atomic_inc(&sh
->count
);
838 if (target
== qd_idx
) {
839 count
= set_syndrome_sources(blocks
, sh
);
840 blocks
[count
] = NULL
; /* regenerating p is not necessary */
841 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
842 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
843 ops_complete_compute
, sh
,
844 to_addr_conv(sh
, percpu
));
845 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
847 /* Compute any data- or p-drive using XOR */
849 for (i
= disks
; i
-- ; ) {
850 if (i
== target
|| i
== qd_idx
)
852 blocks
[count
++] = sh
->dev
[i
].page
;
855 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
856 NULL
, ops_complete_compute
, sh
,
857 to_addr_conv(sh
, percpu
));
858 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
864 static struct dma_async_tx_descriptor
*
865 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
867 int i
, count
, disks
= sh
->disks
;
868 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
869 int d0_idx
= raid6_d0(sh
);
870 int faila
= -1, failb
= -1;
871 int target
= sh
->ops
.target
;
872 int target2
= sh
->ops
.target2
;
873 struct r5dev
*tgt
= &sh
->dev
[target
];
874 struct r5dev
*tgt2
= &sh
->dev
[target2
];
875 struct dma_async_tx_descriptor
*tx
;
876 struct page
**blocks
= percpu
->scribble
;
877 struct async_submit_ctl submit
;
879 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
881 BUG_ON(target
< 0 || target2
< 0);
882 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
883 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
885 /* we need to open-code set_syndrome_sources to handle the
886 * slot number conversion for 'faila' and 'failb'
888 for (i
= 0; i
< disks
; i
++)
893 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
895 blocks
[slot
] = sh
->dev
[i
].page
;
901 i
= raid6_next_disk(i
, disks
);
902 } while (i
!= d0_idx
);
904 BUG_ON(faila
== failb
);
907 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
910 atomic_inc(&sh
->count
);
912 if (failb
== syndrome_disks
+1) {
913 /* Q disk is one of the missing disks */
914 if (faila
== syndrome_disks
) {
915 /* Missing P+Q, just recompute */
916 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
917 ops_complete_compute
, sh
,
918 to_addr_conv(sh
, percpu
));
919 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
920 STRIPE_SIZE
, &submit
);
924 int qd_idx
= sh
->qd_idx
;
926 /* Missing D+Q: recompute D from P, then recompute Q */
927 if (target
== qd_idx
)
928 data_target
= target2
;
930 data_target
= target
;
933 for (i
= disks
; i
-- ; ) {
934 if (i
== data_target
|| i
== qd_idx
)
936 blocks
[count
++] = sh
->dev
[i
].page
;
938 dest
= sh
->dev
[data_target
].page
;
939 init_async_submit(&submit
,
940 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
942 to_addr_conv(sh
, percpu
));
943 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
946 count
= set_syndrome_sources(blocks
, sh
);
947 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
948 ops_complete_compute
, sh
,
949 to_addr_conv(sh
, percpu
));
950 return async_gen_syndrome(blocks
, 0, count
+2,
951 STRIPE_SIZE
, &submit
);
954 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
955 ops_complete_compute
, sh
,
956 to_addr_conv(sh
, percpu
));
957 if (failb
== syndrome_disks
) {
958 /* We're missing D+P. */
959 return async_raid6_datap_recov(syndrome_disks
+2,
963 /* We're missing D+D. */
964 return async_raid6_2data_recov(syndrome_disks
+2,
965 STRIPE_SIZE
, faila
, failb
,
972 static void ops_complete_prexor(void *stripe_head_ref
)
974 struct stripe_head
*sh
= stripe_head_ref
;
976 pr_debug("%s: stripe %llu\n", __func__
,
977 (unsigned long long)sh
->sector
);
980 static struct dma_async_tx_descriptor
*
981 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
982 struct dma_async_tx_descriptor
*tx
)
984 int disks
= sh
->disks
;
985 struct page
**xor_srcs
= percpu
->scribble
;
986 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
987 struct async_submit_ctl submit
;
989 /* existing parity data subtracted */
990 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
992 pr_debug("%s: stripe %llu\n", __func__
,
993 (unsigned long long)sh
->sector
);
995 for (i
= disks
; i
--; ) {
996 struct r5dev
*dev
= &sh
->dev
[i
];
997 /* Only process blocks that are known to be uptodate */
998 if (test_bit(R5_Wantdrain
, &dev
->flags
))
999 xor_srcs
[count
++] = dev
->page
;
1002 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1003 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1004 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1009 static struct dma_async_tx_descriptor
*
1010 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1012 int disks
= sh
->disks
;
1015 pr_debug("%s: stripe %llu\n", __func__
,
1016 (unsigned long long)sh
->sector
);
1018 for (i
= disks
; i
--; ) {
1019 struct r5dev
*dev
= &sh
->dev
[i
];
1022 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1025 spin_lock(&sh
->lock
);
1026 chosen
= dev
->towrite
;
1027 dev
->towrite
= NULL
;
1028 BUG_ON(dev
->written
);
1029 wbi
= dev
->written
= chosen
;
1030 spin_unlock(&sh
->lock
);
1032 while (wbi
&& wbi
->bi_sector
<
1033 dev
->sector
+ STRIPE_SECTORS
) {
1034 if (wbi
->bi_rw
& REQ_FUA
)
1035 set_bit(R5_WantFUA
, &dev
->flags
);
1036 tx
= async_copy_data(1, wbi
, dev
->page
,
1038 wbi
= r5_next_bio(wbi
, dev
->sector
);
1046 static void ops_complete_reconstruct(void *stripe_head_ref
)
1048 struct stripe_head
*sh
= stripe_head_ref
;
1049 int disks
= sh
->disks
;
1050 int pd_idx
= sh
->pd_idx
;
1051 int qd_idx
= sh
->qd_idx
;
1055 pr_debug("%s: stripe %llu\n", __func__
,
1056 (unsigned long long)sh
->sector
);
1058 for (i
= disks
; i
--; )
1059 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1061 for (i
= disks
; i
--; ) {
1062 struct r5dev
*dev
= &sh
->dev
[i
];
1064 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1065 set_bit(R5_UPTODATE
, &dev
->flags
);
1067 set_bit(R5_WantFUA
, &dev
->flags
);
1071 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1072 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1073 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1074 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1076 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1077 sh
->reconstruct_state
= reconstruct_state_result
;
1080 set_bit(STRIPE_HANDLE
, &sh
->state
);
1085 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1086 struct dma_async_tx_descriptor
*tx
)
1088 int disks
= sh
->disks
;
1089 struct page
**xor_srcs
= percpu
->scribble
;
1090 struct async_submit_ctl submit
;
1091 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1092 struct page
*xor_dest
;
1094 unsigned long flags
;
1096 pr_debug("%s: stripe %llu\n", __func__
,
1097 (unsigned long long)sh
->sector
);
1099 /* check if prexor is active which means only process blocks
1100 * that are part of a read-modify-write (written)
1102 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1104 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1105 for (i
= disks
; i
--; ) {
1106 struct r5dev
*dev
= &sh
->dev
[i
];
1108 xor_srcs
[count
++] = dev
->page
;
1111 xor_dest
= sh
->dev
[pd_idx
].page
;
1112 for (i
= disks
; i
--; ) {
1113 struct r5dev
*dev
= &sh
->dev
[i
];
1115 xor_srcs
[count
++] = dev
->page
;
1119 /* 1/ if we prexor'd then the dest is reused as a source
1120 * 2/ if we did not prexor then we are redoing the parity
1121 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1122 * for the synchronous xor case
1124 flags
= ASYNC_TX_ACK
|
1125 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1127 atomic_inc(&sh
->count
);
1129 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1130 to_addr_conv(sh
, percpu
));
1131 if (unlikely(count
== 1))
1132 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1134 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1138 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1139 struct dma_async_tx_descriptor
*tx
)
1141 struct async_submit_ctl submit
;
1142 struct page
**blocks
= percpu
->scribble
;
1145 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1147 count
= set_syndrome_sources(blocks
, sh
);
1149 atomic_inc(&sh
->count
);
1151 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1152 sh
, to_addr_conv(sh
, percpu
));
1153 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1156 static void ops_complete_check(void *stripe_head_ref
)
1158 struct stripe_head
*sh
= stripe_head_ref
;
1160 pr_debug("%s: stripe %llu\n", __func__
,
1161 (unsigned long long)sh
->sector
);
1163 sh
->check_state
= check_state_check_result
;
1164 set_bit(STRIPE_HANDLE
, &sh
->state
);
1168 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1170 int disks
= sh
->disks
;
1171 int pd_idx
= sh
->pd_idx
;
1172 int qd_idx
= sh
->qd_idx
;
1173 struct page
*xor_dest
;
1174 struct page
**xor_srcs
= percpu
->scribble
;
1175 struct dma_async_tx_descriptor
*tx
;
1176 struct async_submit_ctl submit
;
1180 pr_debug("%s: stripe %llu\n", __func__
,
1181 (unsigned long long)sh
->sector
);
1184 xor_dest
= sh
->dev
[pd_idx
].page
;
1185 xor_srcs
[count
++] = xor_dest
;
1186 for (i
= disks
; i
--; ) {
1187 if (i
== pd_idx
|| i
== qd_idx
)
1189 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1192 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1193 to_addr_conv(sh
, percpu
));
1194 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1195 &sh
->ops
.zero_sum_result
, &submit
);
1197 atomic_inc(&sh
->count
);
1198 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1199 tx
= async_trigger_callback(&submit
);
1202 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1204 struct page
**srcs
= percpu
->scribble
;
1205 struct async_submit_ctl submit
;
1208 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1209 (unsigned long long)sh
->sector
, checkp
);
1211 count
= set_syndrome_sources(srcs
, sh
);
1215 atomic_inc(&sh
->count
);
1216 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1217 sh
, to_addr_conv(sh
, percpu
));
1218 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1219 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1222 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1224 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1225 struct dma_async_tx_descriptor
*tx
= NULL
;
1226 raid5_conf_t
*conf
= sh
->raid_conf
;
1227 int level
= conf
->level
;
1228 struct raid5_percpu
*percpu
;
1232 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1233 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1234 ops_run_biofill(sh
);
1238 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1240 tx
= ops_run_compute5(sh
, percpu
);
1242 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1243 tx
= ops_run_compute6_1(sh
, percpu
);
1245 tx
= ops_run_compute6_2(sh
, percpu
);
1247 /* terminate the chain if reconstruct is not set to be run */
1248 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1252 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1253 tx
= ops_run_prexor(sh
, percpu
, tx
);
1255 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1256 tx
= ops_run_biodrain(sh
, tx
);
1260 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1262 ops_run_reconstruct5(sh
, percpu
, tx
);
1264 ops_run_reconstruct6(sh
, percpu
, tx
);
1267 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1268 if (sh
->check_state
== check_state_run
)
1269 ops_run_check_p(sh
, percpu
);
1270 else if (sh
->check_state
== check_state_run_q
)
1271 ops_run_check_pq(sh
, percpu
, 0);
1272 else if (sh
->check_state
== check_state_run_pq
)
1273 ops_run_check_pq(sh
, percpu
, 1);
1279 for (i
= disks
; i
--; ) {
1280 struct r5dev
*dev
= &sh
->dev
[i
];
1281 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1282 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1287 #ifdef CONFIG_MULTICORE_RAID456
1288 static void async_run_ops(void *param
, async_cookie_t cookie
)
1290 struct stripe_head
*sh
= param
;
1291 unsigned long ops_request
= sh
->ops
.request
;
1293 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1294 wake_up(&sh
->ops
.wait_for_ops
);
1296 __raid_run_ops(sh
, ops_request
);
1300 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1302 /* since handle_stripe can be called outside of raid5d context
1303 * we need to ensure sh->ops.request is de-staged before another
1306 wait_event(sh
->ops
.wait_for_ops
,
1307 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1308 sh
->ops
.request
= ops_request
;
1310 atomic_inc(&sh
->count
);
1311 async_schedule(async_run_ops
, sh
);
1314 #define raid_run_ops __raid_run_ops
1317 static int grow_one_stripe(raid5_conf_t
*conf
)
1319 struct stripe_head
*sh
;
1320 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
1323 memset(sh
, 0, sizeof(*sh
) + (conf
->pool_size
-1)*sizeof(struct r5dev
));
1324 sh
->raid_conf
= conf
;
1325 spin_lock_init(&sh
->lock
);
1326 #ifdef CONFIG_MULTICORE_RAID456
1327 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1330 if (grow_buffers(sh
)) {
1332 kmem_cache_free(conf
->slab_cache
, sh
);
1335 /* we just created an active stripe so... */
1336 atomic_set(&sh
->count
, 1);
1337 atomic_inc(&conf
->active_stripes
);
1338 INIT_LIST_HEAD(&sh
->lru
);
1343 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1345 struct kmem_cache
*sc
;
1346 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1348 if (conf
->mddev
->gendisk
)
1349 sprintf(conf
->cache_name
[0],
1350 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1352 sprintf(conf
->cache_name
[0],
1353 "raid%d-%p", conf
->level
, conf
->mddev
);
1354 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1356 conf
->active_name
= 0;
1357 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1358 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1362 conf
->slab_cache
= sc
;
1363 conf
->pool_size
= devs
;
1365 if (!grow_one_stripe(conf
))
1371 * scribble_len - return the required size of the scribble region
1372 * @num - total number of disks in the array
1374 * The size must be enough to contain:
1375 * 1/ a struct page pointer for each device in the array +2
1376 * 2/ room to convert each entry in (1) to its corresponding dma
1377 * (dma_map_page()) or page (page_address()) address.
1379 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1380 * calculate over all devices (not just the data blocks), using zeros in place
1381 * of the P and Q blocks.
1383 static size_t scribble_len(int num
)
1387 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1392 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1394 /* Make all the stripes able to hold 'newsize' devices.
1395 * New slots in each stripe get 'page' set to a new page.
1397 * This happens in stages:
1398 * 1/ create a new kmem_cache and allocate the required number of
1400 * 2/ gather all the old stripe_heads and tranfer the pages across
1401 * to the new stripe_heads. This will have the side effect of
1402 * freezing the array as once all stripe_heads have been collected,
1403 * no IO will be possible. Old stripe heads are freed once their
1404 * pages have been transferred over, and the old kmem_cache is
1405 * freed when all stripes are done.
1406 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1407 * we simple return a failre status - no need to clean anything up.
1408 * 4/ allocate new pages for the new slots in the new stripe_heads.
1409 * If this fails, we don't bother trying the shrink the
1410 * stripe_heads down again, we just leave them as they are.
1411 * As each stripe_head is processed the new one is released into
1414 * Once step2 is started, we cannot afford to wait for a write,
1415 * so we use GFP_NOIO allocations.
1417 struct stripe_head
*osh
, *nsh
;
1418 LIST_HEAD(newstripes
);
1419 struct disk_info
*ndisks
;
1422 struct kmem_cache
*sc
;
1425 if (newsize
<= conf
->pool_size
)
1426 return 0; /* never bother to shrink */
1428 err
= md_allow_write(conf
->mddev
);
1433 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1434 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1439 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1440 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1444 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1446 nsh
->raid_conf
= conf
;
1447 spin_lock_init(&nsh
->lock
);
1448 #ifdef CONFIG_MULTICORE_RAID456
1449 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1452 list_add(&nsh
->lru
, &newstripes
);
1455 /* didn't get enough, give up */
1456 while (!list_empty(&newstripes
)) {
1457 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1458 list_del(&nsh
->lru
);
1459 kmem_cache_free(sc
, nsh
);
1461 kmem_cache_destroy(sc
);
1464 /* Step 2 - Must use GFP_NOIO now.
1465 * OK, we have enough stripes, start collecting inactive
1466 * stripes and copying them over
1468 list_for_each_entry(nsh
, &newstripes
, lru
) {
1469 spin_lock_irq(&conf
->device_lock
);
1470 wait_event_lock_irq(conf
->wait_for_stripe
,
1471 !list_empty(&conf
->inactive_list
),
1473 blk_flush_plug(current
));
1474 osh
= get_free_stripe(conf
);
1475 spin_unlock_irq(&conf
->device_lock
);
1476 atomic_set(&nsh
->count
, 1);
1477 for(i
=0; i
<conf
->pool_size
; i
++)
1478 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1479 for( ; i
<newsize
; i
++)
1480 nsh
->dev
[i
].page
= NULL
;
1481 kmem_cache_free(conf
->slab_cache
, osh
);
1483 kmem_cache_destroy(conf
->slab_cache
);
1486 * At this point, we are holding all the stripes so the array
1487 * is completely stalled, so now is a good time to resize
1488 * conf->disks and the scribble region
1490 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1492 for (i
=0; i
<conf
->raid_disks
; i
++)
1493 ndisks
[i
] = conf
->disks
[i
];
1495 conf
->disks
= ndisks
;
1500 conf
->scribble_len
= scribble_len(newsize
);
1501 for_each_present_cpu(cpu
) {
1502 struct raid5_percpu
*percpu
;
1505 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1506 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1509 kfree(percpu
->scribble
);
1510 percpu
->scribble
= scribble
;
1518 /* Step 4, return new stripes to service */
1519 while(!list_empty(&newstripes
)) {
1520 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1521 list_del_init(&nsh
->lru
);
1523 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1524 if (nsh
->dev
[i
].page
== NULL
) {
1525 struct page
*p
= alloc_page(GFP_NOIO
);
1526 nsh
->dev
[i
].page
= p
;
1530 release_stripe(nsh
);
1532 /* critical section pass, GFP_NOIO no longer needed */
1534 conf
->slab_cache
= sc
;
1535 conf
->active_name
= 1-conf
->active_name
;
1536 conf
->pool_size
= newsize
;
1540 static int drop_one_stripe(raid5_conf_t
*conf
)
1542 struct stripe_head
*sh
;
1544 spin_lock_irq(&conf
->device_lock
);
1545 sh
= get_free_stripe(conf
);
1546 spin_unlock_irq(&conf
->device_lock
);
1549 BUG_ON(atomic_read(&sh
->count
));
1551 kmem_cache_free(conf
->slab_cache
, sh
);
1552 atomic_dec(&conf
->active_stripes
);
1556 static void shrink_stripes(raid5_conf_t
*conf
)
1558 while (drop_one_stripe(conf
))
1561 if (conf
->slab_cache
)
1562 kmem_cache_destroy(conf
->slab_cache
);
1563 conf
->slab_cache
= NULL
;
1566 static void raid5_end_read_request(struct bio
* bi
, int error
)
1568 struct stripe_head
*sh
= bi
->bi_private
;
1569 raid5_conf_t
*conf
= sh
->raid_conf
;
1570 int disks
= sh
->disks
, i
;
1571 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1572 char b
[BDEVNAME_SIZE
];
1576 for (i
=0 ; i
<disks
; i
++)
1577 if (bi
== &sh
->dev
[i
].req
)
1580 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1581 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1589 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1590 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1591 rdev
= conf
->disks
[i
].rdev
;
1592 printk_rl(KERN_INFO
"md/raid:%s: read error corrected"
1593 " (%lu sectors at %llu on %s)\n",
1594 mdname(conf
->mddev
), STRIPE_SECTORS
,
1595 (unsigned long long)(sh
->sector
1596 + rdev
->data_offset
),
1597 bdevname(rdev
->bdev
, b
));
1598 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1599 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1601 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1602 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1604 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1606 rdev
= conf
->disks
[i
].rdev
;
1608 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1609 atomic_inc(&rdev
->read_errors
);
1610 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1611 printk_rl(KERN_WARNING
1612 "md/raid:%s: read error not correctable "
1613 "(sector %llu on %s).\n",
1614 mdname(conf
->mddev
),
1615 (unsigned long long)(sh
->sector
1616 + rdev
->data_offset
),
1618 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1620 printk_rl(KERN_WARNING
1621 "md/raid:%s: read error NOT corrected!! "
1622 "(sector %llu on %s).\n",
1623 mdname(conf
->mddev
),
1624 (unsigned long long)(sh
->sector
1625 + rdev
->data_offset
),
1627 else if (atomic_read(&rdev
->read_errors
)
1628 > conf
->max_nr_stripes
)
1630 "md/raid:%s: Too many read errors, failing device %s.\n",
1631 mdname(conf
->mddev
), bdn
);
1635 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1637 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1638 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1639 md_error(conf
->mddev
, rdev
);
1642 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1643 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1644 set_bit(STRIPE_HANDLE
, &sh
->state
);
1648 static void raid5_end_write_request(struct bio
*bi
, int error
)
1650 struct stripe_head
*sh
= bi
->bi_private
;
1651 raid5_conf_t
*conf
= sh
->raid_conf
;
1652 int disks
= sh
->disks
, i
;
1653 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1655 for (i
=0 ; i
<disks
; i
++)
1656 if (bi
== &sh
->dev
[i
].req
)
1659 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1660 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1668 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1670 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1672 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1673 set_bit(STRIPE_HANDLE
, &sh
->state
);
1678 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1680 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1682 struct r5dev
*dev
= &sh
->dev
[i
];
1684 bio_init(&dev
->req
);
1685 dev
->req
.bi_io_vec
= &dev
->vec
;
1687 dev
->req
.bi_max_vecs
++;
1688 dev
->vec
.bv_page
= dev
->page
;
1689 dev
->vec
.bv_len
= STRIPE_SIZE
;
1690 dev
->vec
.bv_offset
= 0;
1692 dev
->req
.bi_sector
= sh
->sector
;
1693 dev
->req
.bi_private
= sh
;
1696 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1699 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1701 char b
[BDEVNAME_SIZE
];
1702 raid5_conf_t
*conf
= mddev
->private;
1703 pr_debug("raid456: error called\n");
1705 if (!test_bit(Faulty
, &rdev
->flags
)) {
1706 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1707 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1708 unsigned long flags
;
1709 spin_lock_irqsave(&conf
->device_lock
, flags
);
1711 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1713 * if recovery was running, make sure it aborts.
1715 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1717 set_bit(Faulty
, &rdev
->flags
);
1719 "md/raid:%s: Disk failure on %s, disabling device.\n"
1720 "md/raid:%s: Operation continuing on %d devices.\n",
1722 bdevname(rdev
->bdev
, b
),
1724 conf
->raid_disks
- mddev
->degraded
);
1729 * Input: a 'big' sector number,
1730 * Output: index of the data and parity disk, and the sector # in them.
1732 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1733 int previous
, int *dd_idx
,
1734 struct stripe_head
*sh
)
1736 sector_t stripe
, stripe2
;
1737 sector_t chunk_number
;
1738 unsigned int chunk_offset
;
1741 sector_t new_sector
;
1742 int algorithm
= previous
? conf
->prev_algo
1744 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1745 : conf
->chunk_sectors
;
1746 int raid_disks
= previous
? conf
->previous_raid_disks
1748 int data_disks
= raid_disks
- conf
->max_degraded
;
1750 /* First compute the information on this sector */
1753 * Compute the chunk number and the sector offset inside the chunk
1755 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1756 chunk_number
= r_sector
;
1759 * Compute the stripe number
1761 stripe
= chunk_number
;
1762 *dd_idx
= sector_div(stripe
, data_disks
);
1765 * Select the parity disk based on the user selected algorithm.
1767 pd_idx
= qd_idx
= ~0;
1768 switch(conf
->level
) {
1770 pd_idx
= data_disks
;
1773 switch (algorithm
) {
1774 case ALGORITHM_LEFT_ASYMMETRIC
:
1775 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1776 if (*dd_idx
>= pd_idx
)
1779 case ALGORITHM_RIGHT_ASYMMETRIC
:
1780 pd_idx
= sector_div(stripe2
, raid_disks
);
1781 if (*dd_idx
>= pd_idx
)
1784 case ALGORITHM_LEFT_SYMMETRIC
:
1785 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1786 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1788 case ALGORITHM_RIGHT_SYMMETRIC
:
1789 pd_idx
= sector_div(stripe2
, raid_disks
);
1790 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1792 case ALGORITHM_PARITY_0
:
1796 case ALGORITHM_PARITY_N
:
1797 pd_idx
= data_disks
;
1805 switch (algorithm
) {
1806 case ALGORITHM_LEFT_ASYMMETRIC
:
1807 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1808 qd_idx
= pd_idx
+ 1;
1809 if (pd_idx
== raid_disks
-1) {
1810 (*dd_idx
)++; /* Q D D D P */
1812 } else if (*dd_idx
>= pd_idx
)
1813 (*dd_idx
) += 2; /* D D P Q D */
1815 case ALGORITHM_RIGHT_ASYMMETRIC
:
1816 pd_idx
= sector_div(stripe2
, raid_disks
);
1817 qd_idx
= pd_idx
+ 1;
1818 if (pd_idx
== raid_disks
-1) {
1819 (*dd_idx
)++; /* Q D D D P */
1821 } else if (*dd_idx
>= pd_idx
)
1822 (*dd_idx
) += 2; /* D D P Q D */
1824 case ALGORITHM_LEFT_SYMMETRIC
:
1825 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1826 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1827 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1829 case ALGORITHM_RIGHT_SYMMETRIC
:
1830 pd_idx
= sector_div(stripe2
, raid_disks
);
1831 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1832 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1835 case ALGORITHM_PARITY_0
:
1840 case ALGORITHM_PARITY_N
:
1841 pd_idx
= data_disks
;
1842 qd_idx
= data_disks
+ 1;
1845 case ALGORITHM_ROTATING_ZERO_RESTART
:
1846 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1847 * of blocks for computing Q is different.
1849 pd_idx
= sector_div(stripe2
, raid_disks
);
1850 qd_idx
= pd_idx
+ 1;
1851 if (pd_idx
== raid_disks
-1) {
1852 (*dd_idx
)++; /* Q D D D P */
1854 } else if (*dd_idx
>= pd_idx
)
1855 (*dd_idx
) += 2; /* D D P Q D */
1859 case ALGORITHM_ROTATING_N_RESTART
:
1860 /* Same a left_asymmetric, by first stripe is
1861 * D D D P Q rather than
1865 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1866 qd_idx
= pd_idx
+ 1;
1867 if (pd_idx
== raid_disks
-1) {
1868 (*dd_idx
)++; /* Q D D D P */
1870 } else if (*dd_idx
>= pd_idx
)
1871 (*dd_idx
) += 2; /* D D P Q D */
1875 case ALGORITHM_ROTATING_N_CONTINUE
:
1876 /* Same as left_symmetric but Q is before P */
1877 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1878 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1879 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1883 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1884 /* RAID5 left_asymmetric, with Q on last device */
1885 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1886 if (*dd_idx
>= pd_idx
)
1888 qd_idx
= raid_disks
- 1;
1891 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1892 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1893 if (*dd_idx
>= pd_idx
)
1895 qd_idx
= raid_disks
- 1;
1898 case ALGORITHM_LEFT_SYMMETRIC_6
:
1899 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1900 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1901 qd_idx
= raid_disks
- 1;
1904 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1905 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1906 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1907 qd_idx
= raid_disks
- 1;
1910 case ALGORITHM_PARITY_0_6
:
1913 qd_idx
= raid_disks
- 1;
1923 sh
->pd_idx
= pd_idx
;
1924 sh
->qd_idx
= qd_idx
;
1925 sh
->ddf_layout
= ddf_layout
;
1928 * Finally, compute the new sector number
1930 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1935 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1937 raid5_conf_t
*conf
= sh
->raid_conf
;
1938 int raid_disks
= sh
->disks
;
1939 int data_disks
= raid_disks
- conf
->max_degraded
;
1940 sector_t new_sector
= sh
->sector
, check
;
1941 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1942 : conf
->chunk_sectors
;
1943 int algorithm
= previous
? conf
->prev_algo
1947 sector_t chunk_number
;
1948 int dummy1
, dd_idx
= i
;
1950 struct stripe_head sh2
;
1953 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1954 stripe
= new_sector
;
1956 if (i
== sh
->pd_idx
)
1958 switch(conf
->level
) {
1961 switch (algorithm
) {
1962 case ALGORITHM_LEFT_ASYMMETRIC
:
1963 case ALGORITHM_RIGHT_ASYMMETRIC
:
1967 case ALGORITHM_LEFT_SYMMETRIC
:
1968 case ALGORITHM_RIGHT_SYMMETRIC
:
1971 i
-= (sh
->pd_idx
+ 1);
1973 case ALGORITHM_PARITY_0
:
1976 case ALGORITHM_PARITY_N
:
1983 if (i
== sh
->qd_idx
)
1984 return 0; /* It is the Q disk */
1985 switch (algorithm
) {
1986 case ALGORITHM_LEFT_ASYMMETRIC
:
1987 case ALGORITHM_RIGHT_ASYMMETRIC
:
1988 case ALGORITHM_ROTATING_ZERO_RESTART
:
1989 case ALGORITHM_ROTATING_N_RESTART
:
1990 if (sh
->pd_idx
== raid_disks
-1)
1991 i
--; /* Q D D D P */
1992 else if (i
> sh
->pd_idx
)
1993 i
-= 2; /* D D P Q D */
1995 case ALGORITHM_LEFT_SYMMETRIC
:
1996 case ALGORITHM_RIGHT_SYMMETRIC
:
1997 if (sh
->pd_idx
== raid_disks
-1)
1998 i
--; /* Q D D D P */
2003 i
-= (sh
->pd_idx
+ 2);
2006 case ALGORITHM_PARITY_0
:
2009 case ALGORITHM_PARITY_N
:
2011 case ALGORITHM_ROTATING_N_CONTINUE
:
2012 /* Like left_symmetric, but P is before Q */
2013 if (sh
->pd_idx
== 0)
2014 i
--; /* P D D D Q */
2019 i
-= (sh
->pd_idx
+ 1);
2022 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2023 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2027 case ALGORITHM_LEFT_SYMMETRIC_6
:
2028 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2030 i
+= data_disks
+ 1;
2031 i
-= (sh
->pd_idx
+ 1);
2033 case ALGORITHM_PARITY_0_6
:
2042 chunk_number
= stripe
* data_disks
+ i
;
2043 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2045 check
= raid5_compute_sector(conf
, r_sector
,
2046 previous
, &dummy1
, &sh2
);
2047 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2048 || sh2
.qd_idx
!= sh
->qd_idx
) {
2049 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2050 mdname(conf
->mddev
));
2058 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2059 int rcw
, int expand
)
2061 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2062 raid5_conf_t
*conf
= sh
->raid_conf
;
2063 int level
= conf
->level
;
2066 /* if we are not expanding this is a proper write request, and
2067 * there will be bios with new data to be drained into the
2071 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2072 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2074 sh
->reconstruct_state
= reconstruct_state_run
;
2076 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2078 for (i
= disks
; i
--; ) {
2079 struct r5dev
*dev
= &sh
->dev
[i
];
2082 set_bit(R5_LOCKED
, &dev
->flags
);
2083 set_bit(R5_Wantdrain
, &dev
->flags
);
2085 clear_bit(R5_UPTODATE
, &dev
->flags
);
2089 if (s
->locked
+ conf
->max_degraded
== disks
)
2090 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2091 atomic_inc(&conf
->pending_full_writes
);
2094 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2095 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2097 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2098 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2099 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2100 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2102 for (i
= disks
; i
--; ) {
2103 struct r5dev
*dev
= &sh
->dev
[i
];
2108 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2109 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2110 set_bit(R5_Wantdrain
, &dev
->flags
);
2111 set_bit(R5_LOCKED
, &dev
->flags
);
2112 clear_bit(R5_UPTODATE
, &dev
->flags
);
2118 /* keep the parity disk(s) locked while asynchronous operations
2121 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2122 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2126 int qd_idx
= sh
->qd_idx
;
2127 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2129 set_bit(R5_LOCKED
, &dev
->flags
);
2130 clear_bit(R5_UPTODATE
, &dev
->flags
);
2134 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2135 __func__
, (unsigned long long)sh
->sector
,
2136 s
->locked
, s
->ops_request
);
2140 * Each stripe/dev can have one or more bion attached.
2141 * toread/towrite point to the first in a chain.
2142 * The bi_next chain must be in order.
2144 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2147 raid5_conf_t
*conf
= sh
->raid_conf
;
2150 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2151 (unsigned long long)bi
->bi_sector
,
2152 (unsigned long long)sh
->sector
);
2155 spin_lock(&sh
->lock
);
2156 spin_lock_irq(&conf
->device_lock
);
2158 bip
= &sh
->dev
[dd_idx
].towrite
;
2159 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2162 bip
= &sh
->dev
[dd_idx
].toread
;
2163 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2164 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2166 bip
= & (*bip
)->bi_next
;
2168 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2171 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2175 bi
->bi_phys_segments
++;
2176 spin_unlock_irq(&conf
->device_lock
);
2177 spin_unlock(&sh
->lock
);
2179 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2180 (unsigned long long)bi
->bi_sector
,
2181 (unsigned long long)sh
->sector
, dd_idx
);
2183 if (conf
->mddev
->bitmap
&& firstwrite
) {
2184 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2186 sh
->bm_seq
= conf
->seq_flush
+1;
2187 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2191 /* check if page is covered */
2192 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2193 for (bi
=sh
->dev
[dd_idx
].towrite
;
2194 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2195 bi
&& bi
->bi_sector
<= sector
;
2196 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2197 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2198 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2200 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2201 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2206 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2207 spin_unlock_irq(&conf
->device_lock
);
2208 spin_unlock(&sh
->lock
);
2212 static void end_reshape(raid5_conf_t
*conf
);
2214 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2215 struct stripe_head
*sh
)
2217 int sectors_per_chunk
=
2218 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2220 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2221 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2223 raid5_compute_sector(conf
,
2224 stripe
* (disks
- conf
->max_degraded
)
2225 *sectors_per_chunk
+ chunk_offset
,
2231 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2232 struct stripe_head_state
*s
, int disks
,
2233 struct bio
**return_bi
)
2236 for (i
= disks
; i
--; ) {
2240 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2243 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2244 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2245 /* multiple read failures in one stripe */
2246 md_error(conf
->mddev
, rdev
);
2249 spin_lock_irq(&conf
->device_lock
);
2250 /* fail all writes first */
2251 bi
= sh
->dev
[i
].towrite
;
2252 sh
->dev
[i
].towrite
= NULL
;
2258 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2259 wake_up(&conf
->wait_for_overlap
);
2261 while (bi
&& bi
->bi_sector
<
2262 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2263 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2264 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2265 if (!raid5_dec_bi_phys_segments(bi
)) {
2266 md_write_end(conf
->mddev
);
2267 bi
->bi_next
= *return_bi
;
2272 /* and fail all 'written' */
2273 bi
= sh
->dev
[i
].written
;
2274 sh
->dev
[i
].written
= NULL
;
2275 if (bi
) bitmap_end
= 1;
2276 while (bi
&& bi
->bi_sector
<
2277 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2278 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2279 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2280 if (!raid5_dec_bi_phys_segments(bi
)) {
2281 md_write_end(conf
->mddev
);
2282 bi
->bi_next
= *return_bi
;
2288 /* fail any reads if this device is non-operational and
2289 * the data has not reached the cache yet.
2291 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2292 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2293 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2294 bi
= sh
->dev
[i
].toread
;
2295 sh
->dev
[i
].toread
= NULL
;
2296 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2297 wake_up(&conf
->wait_for_overlap
);
2298 if (bi
) s
->to_read
--;
2299 while (bi
&& bi
->bi_sector
<
2300 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2301 struct bio
*nextbi
=
2302 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2303 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2304 if (!raid5_dec_bi_phys_segments(bi
)) {
2305 bi
->bi_next
= *return_bi
;
2311 spin_unlock_irq(&conf
->device_lock
);
2313 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2314 STRIPE_SECTORS
, 0, 0);
2317 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2318 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2319 md_wakeup_thread(conf
->mddev
->thread
);
2322 /* fetch_block5 - checks the given member device to see if its data needs
2323 * to be read or computed to satisfy a request.
2325 * Returns 1 when no more member devices need to be checked, otherwise returns
2326 * 0 to tell the loop in handle_stripe_fill5 to continue
2328 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2329 int disk_idx
, int disks
)
2331 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2332 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2334 /* is the data in this block needed, and can we get it? */
2335 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2336 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2338 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2339 s
->syncing
|| s
->expanding
||
2341 (failed_dev
->toread
||
2342 (failed_dev
->towrite
&&
2343 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2344 /* We would like to get this block, possibly by computing it,
2345 * otherwise read it if the backing disk is insync
2347 if ((s
->uptodate
== disks
- 1) &&
2348 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2349 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2350 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2351 set_bit(R5_Wantcompute
, &dev
->flags
);
2352 sh
->ops
.target
= disk_idx
;
2353 sh
->ops
.target2
= -1;
2355 /* Careful: from this point on 'uptodate' is in the eye
2356 * of raid_run_ops which services 'compute' operations
2357 * before writes. R5_Wantcompute flags a block that will
2358 * be R5_UPTODATE by the time it is needed for a
2359 * subsequent operation.
2362 return 1; /* uptodate + compute == disks */
2363 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2364 set_bit(R5_LOCKED
, &dev
->flags
);
2365 set_bit(R5_Wantread
, &dev
->flags
);
2367 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2376 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2378 static void handle_stripe_fill5(struct stripe_head
*sh
,
2379 struct stripe_head_state
*s
, int disks
)
2383 /* look for blocks to read/compute, skip this if a compute
2384 * is already in flight, or if the stripe contents are in the
2385 * midst of changing due to a write
2387 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2388 !sh
->reconstruct_state
)
2389 for (i
= disks
; i
--; )
2390 if (fetch_block5(sh
, s
, i
, disks
))
2392 set_bit(STRIPE_HANDLE
, &sh
->state
);
2395 /* fetch_block6 - checks the given member device to see if its data needs
2396 * to be read or computed to satisfy a request.
2398 * Returns 1 when no more member devices need to be checked, otherwise returns
2399 * 0 to tell the loop in handle_stripe_fill6 to continue
2401 static int fetch_block6(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2402 struct r6_state
*r6s
, int disk_idx
, int disks
)
2404 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2405 struct r5dev
*fdev
[2] = { &sh
->dev
[r6s
->failed_num
[0]],
2406 &sh
->dev
[r6s
->failed_num
[1]] };
2408 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2409 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2411 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2412 s
->syncing
|| s
->expanding
||
2414 (fdev
[0]->toread
|| s
->to_write
)) ||
2416 (fdev
[1]->toread
|| s
->to_write
)))) {
2417 /* we would like to get this block, possibly by computing it,
2418 * otherwise read it if the backing disk is insync
2420 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2421 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2422 if ((s
->uptodate
== disks
- 1) &&
2423 (s
->failed
&& (disk_idx
== r6s
->failed_num
[0] ||
2424 disk_idx
== r6s
->failed_num
[1]))) {
2425 /* have disk failed, and we're requested to fetch it;
2428 pr_debug("Computing stripe %llu block %d\n",
2429 (unsigned long long)sh
->sector
, disk_idx
);
2430 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2431 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2432 set_bit(R5_Wantcompute
, &dev
->flags
);
2433 sh
->ops
.target
= disk_idx
;
2434 sh
->ops
.target2
= -1; /* no 2nd target */
2438 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2439 /* Computing 2-failure is *very* expensive; only
2440 * do it if failed >= 2
2443 for (other
= disks
; other
--; ) {
2444 if (other
== disk_idx
)
2446 if (!test_bit(R5_UPTODATE
,
2447 &sh
->dev
[other
].flags
))
2451 pr_debug("Computing stripe %llu blocks %d,%d\n",
2452 (unsigned long long)sh
->sector
,
2454 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2455 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2456 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2457 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2458 sh
->ops
.target
= disk_idx
;
2459 sh
->ops
.target2
= other
;
2463 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2464 set_bit(R5_LOCKED
, &dev
->flags
);
2465 set_bit(R5_Wantread
, &dev
->flags
);
2467 pr_debug("Reading block %d (sync=%d)\n",
2468 disk_idx
, s
->syncing
);
2476 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2478 static void handle_stripe_fill6(struct stripe_head
*sh
,
2479 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2484 /* look for blocks to read/compute, skip this if a compute
2485 * is already in flight, or if the stripe contents are in the
2486 * midst of changing due to a write
2488 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2489 !sh
->reconstruct_state
)
2490 for (i
= disks
; i
--; )
2491 if (fetch_block6(sh
, s
, r6s
, i
, disks
))
2493 set_bit(STRIPE_HANDLE
, &sh
->state
);
2497 /* handle_stripe_clean_event
2498 * any written block on an uptodate or failed drive can be returned.
2499 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2500 * never LOCKED, so we don't need to test 'failed' directly.
2502 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2503 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2508 for (i
= disks
; i
--; )
2509 if (sh
->dev
[i
].written
) {
2511 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2512 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2513 /* We can return any write requests */
2514 struct bio
*wbi
, *wbi2
;
2516 pr_debug("Return write for disc %d\n", i
);
2517 spin_lock_irq(&conf
->device_lock
);
2519 dev
->written
= NULL
;
2520 while (wbi
&& wbi
->bi_sector
<
2521 dev
->sector
+ STRIPE_SECTORS
) {
2522 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2523 if (!raid5_dec_bi_phys_segments(wbi
)) {
2524 md_write_end(conf
->mddev
);
2525 wbi
->bi_next
= *return_bi
;
2530 if (dev
->towrite
== NULL
)
2532 spin_unlock_irq(&conf
->device_lock
);
2534 bitmap_endwrite(conf
->mddev
->bitmap
,
2537 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2542 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2543 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2544 md_wakeup_thread(conf
->mddev
->thread
);
2547 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2548 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2550 int rmw
= 0, rcw
= 0, i
;
2551 for (i
= disks
; i
--; ) {
2552 /* would I have to read this buffer for read_modify_write */
2553 struct r5dev
*dev
= &sh
->dev
[i
];
2554 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2555 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2556 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2557 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2558 if (test_bit(R5_Insync
, &dev
->flags
))
2561 rmw
+= 2*disks
; /* cannot read it */
2563 /* Would I have to read this buffer for reconstruct_write */
2564 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2565 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2566 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2567 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2568 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2573 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2574 (unsigned long long)sh
->sector
, rmw
, rcw
);
2575 set_bit(STRIPE_HANDLE
, &sh
->state
);
2576 if (rmw
< rcw
&& rmw
> 0)
2577 /* prefer read-modify-write, but need to get some data */
2578 for (i
= disks
; i
--; ) {
2579 struct r5dev
*dev
= &sh
->dev
[i
];
2580 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2581 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2582 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2583 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2584 test_bit(R5_Insync
, &dev
->flags
)) {
2586 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2587 pr_debug("Read_old block "
2588 "%d for r-m-w\n", i
);
2589 set_bit(R5_LOCKED
, &dev
->flags
);
2590 set_bit(R5_Wantread
, &dev
->flags
);
2593 set_bit(STRIPE_DELAYED
, &sh
->state
);
2594 set_bit(STRIPE_HANDLE
, &sh
->state
);
2598 if (rcw
<= rmw
&& rcw
> 0)
2599 /* want reconstruct write, but need to get some data */
2600 for (i
= disks
; i
--; ) {
2601 struct r5dev
*dev
= &sh
->dev
[i
];
2602 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2604 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2605 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2606 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2607 test_bit(R5_Insync
, &dev
->flags
)) {
2609 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2610 pr_debug("Read_old block "
2611 "%d for Reconstruct\n", i
);
2612 set_bit(R5_LOCKED
, &dev
->flags
);
2613 set_bit(R5_Wantread
, &dev
->flags
);
2616 set_bit(STRIPE_DELAYED
, &sh
->state
);
2617 set_bit(STRIPE_HANDLE
, &sh
->state
);
2621 /* now if nothing is locked, and if we have enough data,
2622 * we can start a write request
2624 /* since handle_stripe can be called at any time we need to handle the
2625 * case where a compute block operation has been submitted and then a
2626 * subsequent call wants to start a write request. raid_run_ops only
2627 * handles the case where compute block and reconstruct are requested
2628 * simultaneously. If this is not the case then new writes need to be
2629 * held off until the compute completes.
2631 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2632 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2633 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2634 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2637 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2638 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2639 struct r6_state
*r6s
, int disks
)
2641 int rcw
= 0, pd_idx
= sh
->pd_idx
, i
;
2642 int qd_idx
= sh
->qd_idx
;
2644 set_bit(STRIPE_HANDLE
, &sh
->state
);
2645 for (i
= disks
; i
--; ) {
2646 struct r5dev
*dev
= &sh
->dev
[i
];
2647 /* check if we haven't enough data */
2648 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2649 i
!= pd_idx
&& i
!= qd_idx
&&
2650 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2651 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2652 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2654 if (!test_bit(R5_Insync
, &dev
->flags
))
2655 continue; /* it's a failed drive */
2658 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2659 pr_debug("Read_old stripe %llu "
2660 "block %d for Reconstruct\n",
2661 (unsigned long long)sh
->sector
, i
);
2662 set_bit(R5_LOCKED
, &dev
->flags
);
2663 set_bit(R5_Wantread
, &dev
->flags
);
2666 pr_debug("Request delayed stripe %llu "
2667 "block %d for Reconstruct\n",
2668 (unsigned long long)sh
->sector
, i
);
2669 set_bit(STRIPE_DELAYED
, &sh
->state
);
2670 set_bit(STRIPE_HANDLE
, &sh
->state
);
2674 /* now if nothing is locked, and if we have enough data, we can start a
2677 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2678 s
->locked
== 0 && rcw
== 0 &&
2679 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2680 schedule_reconstruction(sh
, s
, 1, 0);
2684 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2685 struct stripe_head_state
*s
, int disks
)
2687 struct r5dev
*dev
= NULL
;
2689 set_bit(STRIPE_HANDLE
, &sh
->state
);
2691 switch (sh
->check_state
) {
2692 case check_state_idle
:
2693 /* start a new check operation if there are no failures */
2694 if (s
->failed
== 0) {
2695 BUG_ON(s
->uptodate
!= disks
);
2696 sh
->check_state
= check_state_run
;
2697 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2698 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2702 dev
= &sh
->dev
[s
->failed_num
];
2704 case check_state_compute_result
:
2705 sh
->check_state
= check_state_idle
;
2707 dev
= &sh
->dev
[sh
->pd_idx
];
2709 /* check that a write has not made the stripe insync */
2710 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2713 /* either failed parity check, or recovery is happening */
2714 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2715 BUG_ON(s
->uptodate
!= disks
);
2717 set_bit(R5_LOCKED
, &dev
->flags
);
2719 set_bit(R5_Wantwrite
, &dev
->flags
);
2721 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2722 set_bit(STRIPE_INSYNC
, &sh
->state
);
2724 case check_state_run
:
2725 break; /* we will be called again upon completion */
2726 case check_state_check_result
:
2727 sh
->check_state
= check_state_idle
;
2729 /* if a failure occurred during the check operation, leave
2730 * STRIPE_INSYNC not set and let the stripe be handled again
2735 /* handle a successful check operation, if parity is correct
2736 * we are done. Otherwise update the mismatch count and repair
2737 * parity if !MD_RECOVERY_CHECK
2739 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2740 /* parity is correct (on disc,
2741 * not in buffer any more)
2743 set_bit(STRIPE_INSYNC
, &sh
->state
);
2745 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2746 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2747 /* don't try to repair!! */
2748 set_bit(STRIPE_INSYNC
, &sh
->state
);
2750 sh
->check_state
= check_state_compute_run
;
2751 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2752 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2753 set_bit(R5_Wantcompute
,
2754 &sh
->dev
[sh
->pd_idx
].flags
);
2755 sh
->ops
.target
= sh
->pd_idx
;
2756 sh
->ops
.target2
= -1;
2761 case check_state_compute_run
:
2764 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2765 __func__
, sh
->check_state
,
2766 (unsigned long long) sh
->sector
);
2772 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2773 struct stripe_head_state
*s
,
2774 struct r6_state
*r6s
, int disks
)
2776 int pd_idx
= sh
->pd_idx
;
2777 int qd_idx
= sh
->qd_idx
;
2780 set_bit(STRIPE_HANDLE
, &sh
->state
);
2782 BUG_ON(s
->failed
> 2);
2784 /* Want to check and possibly repair P and Q.
2785 * However there could be one 'failed' device, in which
2786 * case we can only check one of them, possibly using the
2787 * other to generate missing data
2790 switch (sh
->check_state
) {
2791 case check_state_idle
:
2792 /* start a new check operation if there are < 2 failures */
2793 if (s
->failed
== r6s
->q_failed
) {
2794 /* The only possible failed device holds Q, so it
2795 * makes sense to check P (If anything else were failed,
2796 * we would have used P to recreate it).
2798 sh
->check_state
= check_state_run
;
2800 if (!r6s
->q_failed
&& s
->failed
< 2) {
2801 /* Q is not failed, and we didn't use it to generate
2802 * anything, so it makes sense to check it
2804 if (sh
->check_state
== check_state_run
)
2805 sh
->check_state
= check_state_run_pq
;
2807 sh
->check_state
= check_state_run_q
;
2810 /* discard potentially stale zero_sum_result */
2811 sh
->ops
.zero_sum_result
= 0;
2813 if (sh
->check_state
== check_state_run
) {
2814 /* async_xor_zero_sum destroys the contents of P */
2815 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2818 if (sh
->check_state
>= check_state_run
&&
2819 sh
->check_state
<= check_state_run_pq
) {
2820 /* async_syndrome_zero_sum preserves P and Q, so
2821 * no need to mark them !uptodate here
2823 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2827 /* we have 2-disk failure */
2828 BUG_ON(s
->failed
!= 2);
2830 case check_state_compute_result
:
2831 sh
->check_state
= check_state_idle
;
2833 /* check that a write has not made the stripe insync */
2834 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2837 /* now write out any block on a failed drive,
2838 * or P or Q if they were recomputed
2840 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2841 if (s
->failed
== 2) {
2842 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2844 set_bit(R5_LOCKED
, &dev
->flags
);
2845 set_bit(R5_Wantwrite
, &dev
->flags
);
2847 if (s
->failed
>= 1) {
2848 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2850 set_bit(R5_LOCKED
, &dev
->flags
);
2851 set_bit(R5_Wantwrite
, &dev
->flags
);
2853 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2854 dev
= &sh
->dev
[pd_idx
];
2856 set_bit(R5_LOCKED
, &dev
->flags
);
2857 set_bit(R5_Wantwrite
, &dev
->flags
);
2859 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2860 dev
= &sh
->dev
[qd_idx
];
2862 set_bit(R5_LOCKED
, &dev
->flags
);
2863 set_bit(R5_Wantwrite
, &dev
->flags
);
2865 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2867 set_bit(STRIPE_INSYNC
, &sh
->state
);
2869 case check_state_run
:
2870 case check_state_run_q
:
2871 case check_state_run_pq
:
2872 break; /* we will be called again upon completion */
2873 case check_state_check_result
:
2874 sh
->check_state
= check_state_idle
;
2876 /* handle a successful check operation, if parity is correct
2877 * we are done. Otherwise update the mismatch count and repair
2878 * parity if !MD_RECOVERY_CHECK
2880 if (sh
->ops
.zero_sum_result
== 0) {
2881 /* both parities are correct */
2883 set_bit(STRIPE_INSYNC
, &sh
->state
);
2885 /* in contrast to the raid5 case we can validate
2886 * parity, but still have a failure to write
2889 sh
->check_state
= check_state_compute_result
;
2890 /* Returning at this point means that we may go
2891 * off and bring p and/or q uptodate again so
2892 * we make sure to check zero_sum_result again
2893 * to verify if p or q need writeback
2897 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2898 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2899 /* don't try to repair!! */
2900 set_bit(STRIPE_INSYNC
, &sh
->state
);
2902 int *target
= &sh
->ops
.target
;
2904 sh
->ops
.target
= -1;
2905 sh
->ops
.target2
= -1;
2906 sh
->check_state
= check_state_compute_run
;
2907 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2908 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2909 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2910 set_bit(R5_Wantcompute
,
2911 &sh
->dev
[pd_idx
].flags
);
2913 target
= &sh
->ops
.target2
;
2916 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2917 set_bit(R5_Wantcompute
,
2918 &sh
->dev
[qd_idx
].flags
);
2925 case check_state_compute_run
:
2928 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2929 __func__
, sh
->check_state
,
2930 (unsigned long long) sh
->sector
);
2935 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2936 struct r6_state
*r6s
)
2940 /* We have read all the blocks in this stripe and now we need to
2941 * copy some of them into a target stripe for expand.
2943 struct dma_async_tx_descriptor
*tx
= NULL
;
2944 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2945 for (i
= 0; i
< sh
->disks
; i
++)
2946 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2948 struct stripe_head
*sh2
;
2949 struct async_submit_ctl submit
;
2951 sector_t bn
= compute_blocknr(sh
, i
, 1);
2952 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2954 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2956 /* so far only the early blocks of this stripe
2957 * have been requested. When later blocks
2958 * get requested, we will try again
2961 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2962 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2963 /* must have already done this block */
2964 release_stripe(sh2
);
2968 /* place all the copies on one channel */
2969 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2970 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2971 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2974 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2975 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2976 for (j
= 0; j
< conf
->raid_disks
; j
++)
2977 if (j
!= sh2
->pd_idx
&&
2978 (!r6s
|| j
!= sh2
->qd_idx
) &&
2979 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2981 if (j
== conf
->raid_disks
) {
2982 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2983 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2985 release_stripe(sh2
);
2988 /* done submitting copies, wait for them to complete */
2991 dma_wait_for_async_tx(tx
);
2997 * handle_stripe - do things to a stripe.
2999 * We lock the stripe and then examine the state of various bits
3000 * to see what needs to be done.
3002 * return some read request which now have data
3003 * return some write requests which are safely on disc
3004 * schedule a read on some buffers
3005 * schedule a write of some buffers
3006 * return confirmation of parity correctness
3008 * buffers are taken off read_list or write_list, and bh_cache buffers
3009 * get BH_Lock set before the stripe lock is released.
3013 static void handle_stripe5(struct stripe_head
*sh
)
3015 raid5_conf_t
*conf
= sh
->raid_conf
;
3016 int disks
= sh
->disks
, i
;
3017 struct bio
*return_bi
= NULL
;
3018 struct stripe_head_state s
;
3020 mdk_rdev_t
*blocked_rdev
= NULL
;
3022 int dec_preread_active
= 0;
3024 memset(&s
, 0, sizeof(s
));
3025 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3026 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
3027 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
3028 sh
->reconstruct_state
);
3030 spin_lock(&sh
->lock
);
3031 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3032 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3034 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3035 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3036 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3038 /* Now to look around and see what can be done */
3040 for (i
=disks
; i
--; ) {
3045 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3046 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
3047 dev
->towrite
, dev
->written
);
3049 /* maybe we can request a biofill operation
3051 * new wantfill requests are only permitted while
3052 * ops_complete_biofill is guaranteed to be inactive
3054 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3055 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3056 set_bit(R5_Wantfill
, &dev
->flags
);
3058 /* now count some things */
3059 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3060 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3061 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
3063 if (test_bit(R5_Wantfill
, &dev
->flags
))
3065 else if (dev
->toread
)
3069 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3074 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3075 if (blocked_rdev
== NULL
&&
3076 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3077 blocked_rdev
= rdev
;
3078 atomic_inc(&rdev
->nr_pending
);
3080 clear_bit(R5_Insync
, &dev
->flags
);
3083 else if (test_bit(In_sync
, &rdev
->flags
))
3084 set_bit(R5_Insync
, &dev
->flags
);
3086 /* could be in-sync depending on recovery/reshape status */
3087 if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3088 set_bit(R5_Insync
, &dev
->flags
);
3090 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3091 /* The ReadError flag will just be confusing now */
3092 clear_bit(R5_ReadError
, &dev
->flags
);
3093 clear_bit(R5_ReWrite
, &dev
->flags
);
3095 if (test_bit(R5_ReadError
, &dev
->flags
))
3096 clear_bit(R5_Insync
, &dev
->flags
);
3097 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3104 if (unlikely(blocked_rdev
)) {
3105 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3106 s
.to_write
|| s
.written
) {
3107 set_bit(STRIPE_HANDLE
, &sh
->state
);
3110 /* There is nothing for the blocked_rdev to block */
3111 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3112 blocked_rdev
= NULL
;
3115 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3116 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3117 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3120 pr_debug("locked=%d uptodate=%d to_read=%d"
3121 " to_write=%d failed=%d failed_num=%d\n",
3122 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
3123 s
.failed
, s
.failed_num
);
3124 /* check if the array has lost two devices and, if so, some requests might
3127 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
3128 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3129 if (s
.failed
> 1 && s
.syncing
) {
3130 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3131 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3135 /* might be able to return some write requests if the parity block
3136 * is safe, or on a failed drive
3138 dev
= &sh
->dev
[sh
->pd_idx
];
3140 ((test_bit(R5_Insync
, &dev
->flags
) &&
3141 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3142 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
3143 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
3144 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3146 /* Now we might consider reading some blocks, either to check/generate
3147 * parity, or to satisfy requests
3148 * or to load a block that is being partially written.
3150 if (s
.to_read
|| s
.non_overwrite
||
3151 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3152 handle_stripe_fill5(sh
, &s
, disks
);
3154 /* Now we check to see if any write operations have recently
3158 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3160 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3161 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3162 sh
->reconstruct_state
= reconstruct_state_idle
;
3164 /* All the 'written' buffers and the parity block are ready to
3165 * be written back to disk
3167 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3168 for (i
= disks
; i
--; ) {
3170 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3171 (i
== sh
->pd_idx
|| dev
->written
)) {
3172 pr_debug("Writing block %d\n", i
);
3173 set_bit(R5_Wantwrite
, &dev
->flags
);
3176 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3177 (i
== sh
->pd_idx
&& s
.failed
== 0))
3178 set_bit(STRIPE_INSYNC
, &sh
->state
);
3181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3182 dec_preread_active
= 1;
3185 /* Now to consider new write requests and what else, if anything
3186 * should be read. We do not handle new writes when:
3187 * 1/ A 'write' operation (copy+xor) is already in flight.
3188 * 2/ A 'check' operation is in flight, as it may clobber the parity
3191 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3192 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
3194 /* maybe we need to check and possibly fix the parity for this stripe
3195 * Any reads will already have been scheduled, so we just see if enough
3196 * data is available. The parity check is held off while parity
3197 * dependent operations are in flight.
3199 if (sh
->check_state
||
3200 (s
.syncing
&& s
.locked
== 0 &&
3201 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3202 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3203 handle_parity_checks5(conf
, sh
, &s
, disks
);
3205 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3206 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3207 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3210 /* If the failed drive is just a ReadError, then we might need to progress
3211 * the repair/check process
3213 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
3214 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
3215 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
3216 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
3218 dev
= &sh
->dev
[s
.failed_num
];
3219 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3220 set_bit(R5_Wantwrite
, &dev
->flags
);
3221 set_bit(R5_ReWrite
, &dev
->flags
);
3222 set_bit(R5_LOCKED
, &dev
->flags
);
3225 /* let's read it back */
3226 set_bit(R5_Wantread
, &dev
->flags
);
3227 set_bit(R5_LOCKED
, &dev
->flags
);
3232 /* Finish reconstruct operations initiated by the expansion process */
3233 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3234 struct stripe_head
*sh2
3235 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3236 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3237 /* sh cannot be written until sh2 has been read.
3238 * so arrange for sh to be delayed a little
3240 set_bit(STRIPE_DELAYED
, &sh
->state
);
3241 set_bit(STRIPE_HANDLE
, &sh
->state
);
3242 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3244 atomic_inc(&conf
->preread_active_stripes
);
3245 release_stripe(sh2
);
3249 release_stripe(sh2
);
3251 sh
->reconstruct_state
= reconstruct_state_idle
;
3252 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3253 for (i
= conf
->raid_disks
; i
--; ) {
3254 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3255 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3260 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3261 !sh
->reconstruct_state
) {
3262 /* Need to write out all blocks after computing parity */
3263 sh
->disks
= conf
->raid_disks
;
3264 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3265 schedule_reconstruction(sh
, &s
, 1, 1);
3266 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3267 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3268 atomic_dec(&conf
->reshape_stripes
);
3269 wake_up(&conf
->wait_for_overlap
);
3270 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3273 if (s
.expanding
&& s
.locked
== 0 &&
3274 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3275 handle_stripe_expansion(conf
, sh
, NULL
);
3278 spin_unlock(&sh
->lock
);
3280 /* wait for this device to become unblocked */
3281 if (unlikely(blocked_rdev
))
3282 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3285 raid_run_ops(sh
, s
.ops_request
);
3289 if (dec_preread_active
) {
3290 /* We delay this until after ops_run_io so that if make_request
3291 * is waiting on a flush, it won't continue until the writes
3292 * have actually been submitted.
3294 atomic_dec(&conf
->preread_active_stripes
);
3295 if (atomic_read(&conf
->preread_active_stripes
) <
3297 md_wakeup_thread(conf
->mddev
->thread
);
3299 return_io(return_bi
);
3302 static void handle_stripe6(struct stripe_head
*sh
)
3304 raid5_conf_t
*conf
= sh
->raid_conf
;
3305 int disks
= sh
->disks
;
3306 struct bio
*return_bi
= NULL
;
3307 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3308 struct stripe_head_state s
;
3309 struct r6_state r6s
;
3310 struct r5dev
*dev
, *pdev
, *qdev
;
3311 mdk_rdev_t
*blocked_rdev
= NULL
;
3312 int dec_preread_active
= 0;
3314 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3315 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3316 (unsigned long long)sh
->sector
, sh
->state
,
3317 atomic_read(&sh
->count
), pd_idx
, qd_idx
,
3318 sh
->check_state
, sh
->reconstruct_state
);
3319 memset(&s
, 0, sizeof(s
));
3321 spin_lock(&sh
->lock
);
3322 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3323 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3325 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3326 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3327 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3328 /* Now to look around and see what can be done */
3331 for (i
=disks
; i
--; ) {
3335 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3336 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3337 /* maybe we can reply to a read
3339 * new wantfill requests are only permitted while
3340 * ops_complete_biofill is guaranteed to be inactive
3342 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3343 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3344 set_bit(R5_Wantfill
, &dev
->flags
);
3346 /* now count some things */
3347 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3348 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3349 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3351 BUG_ON(s
.compute
> 2);
3354 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
3356 } else if (dev
->toread
)
3360 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3365 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3366 if (blocked_rdev
== NULL
&&
3367 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3368 blocked_rdev
= rdev
;
3369 atomic_inc(&rdev
->nr_pending
);
3371 clear_bit(R5_Insync
, &dev
->flags
);
3374 else if (test_bit(In_sync
, &rdev
->flags
))
3375 set_bit(R5_Insync
, &dev
->flags
);
3377 /* in sync if before recovery_offset */
3378 if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3379 set_bit(R5_Insync
, &dev
->flags
);
3381 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3382 /* The ReadError flag will just be confusing now */
3383 clear_bit(R5_ReadError
, &dev
->flags
);
3384 clear_bit(R5_ReWrite
, &dev
->flags
);
3386 if (test_bit(R5_ReadError
, &dev
->flags
))
3387 clear_bit(R5_Insync
, &dev
->flags
);
3388 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3390 r6s
.failed_num
[s
.failed
] = i
;
3396 if (unlikely(blocked_rdev
)) {
3397 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3398 s
.to_write
|| s
.written
) {
3399 set_bit(STRIPE_HANDLE
, &sh
->state
);
3402 /* There is nothing for the blocked_rdev to block */
3403 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3404 blocked_rdev
= NULL
;
3407 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3408 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3409 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3412 pr_debug("locked=%d uptodate=%d to_read=%d"
3413 " to_write=%d failed=%d failed_num=%d,%d\n",
3414 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3415 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3416 /* check if the array has lost >2 devices and, if so, some requests
3417 * might need to be failed
3419 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3420 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3421 if (s
.failed
> 2 && s
.syncing
) {
3422 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3423 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3428 * might be able to return some write requests if the parity blocks
3429 * are safe, or on a failed drive
3431 pdev
= &sh
->dev
[pd_idx
];
3432 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3433 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3434 qdev
= &sh
->dev
[qd_idx
];
3435 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3436 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3439 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3440 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3441 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3442 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3443 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3444 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3445 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3447 /* Now we might consider reading some blocks, either to check/generate
3448 * parity, or to satisfy requests
3449 * or to load a block that is being partially written.
3451 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3452 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3453 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3455 /* Now we check to see if any write operations have recently
3458 if (sh
->reconstruct_state
== reconstruct_state_drain_result
) {
3460 sh
->reconstruct_state
= reconstruct_state_idle
;
3461 /* All the 'written' buffers and the parity blocks are ready to
3462 * be written back to disk
3464 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3465 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
));
3466 for (i
= disks
; i
--; ) {
3468 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3469 (i
== sh
->pd_idx
|| i
== qd_idx
||
3471 pr_debug("Writing block %d\n", i
);
3472 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3473 set_bit(R5_Wantwrite
, &dev
->flags
);
3474 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3475 ((i
== sh
->pd_idx
|| i
== qd_idx
) &&
3477 set_bit(STRIPE_INSYNC
, &sh
->state
);
3480 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3481 dec_preread_active
= 1;
3484 /* Now to consider new write requests and what else, if anything
3485 * should be read. We do not handle new writes when:
3486 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3487 * 2/ A 'check' operation is in flight, as it may clobber the parity
3490 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3491 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3493 /* maybe we need to check and possibly fix the parity for this stripe
3494 * Any reads will already have been scheduled, so we just see if enough
3495 * data is available. The parity check is held off while parity
3496 * dependent operations are in flight.
3498 if (sh
->check_state
||
3499 (s
.syncing
&& s
.locked
== 0 &&
3500 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3501 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3502 handle_parity_checks6(conf
, sh
, &s
, &r6s
, disks
);
3504 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3505 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3506 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3509 /* If the failed drives are just a ReadError, then we might need
3510 * to progress the repair/check process
3512 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3513 for (i
= 0; i
< s
.failed
; i
++) {
3514 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3515 if (test_bit(R5_ReadError
, &dev
->flags
)
3516 && !test_bit(R5_LOCKED
, &dev
->flags
)
3517 && test_bit(R5_UPTODATE
, &dev
->flags
)
3519 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3520 set_bit(R5_Wantwrite
, &dev
->flags
);
3521 set_bit(R5_ReWrite
, &dev
->flags
);
3522 set_bit(R5_LOCKED
, &dev
->flags
);
3525 /* let's read it back */
3526 set_bit(R5_Wantread
, &dev
->flags
);
3527 set_bit(R5_LOCKED
, &dev
->flags
);
3533 /* Finish reconstruct operations initiated by the expansion process */
3534 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3535 sh
->reconstruct_state
= reconstruct_state_idle
;
3536 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3537 for (i
= conf
->raid_disks
; i
--; ) {
3538 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3539 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3544 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3545 !sh
->reconstruct_state
) {
3546 struct stripe_head
*sh2
3547 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3548 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3549 /* sh cannot be written until sh2 has been read.
3550 * so arrange for sh to be delayed a little
3552 set_bit(STRIPE_DELAYED
, &sh
->state
);
3553 set_bit(STRIPE_HANDLE
, &sh
->state
);
3554 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3556 atomic_inc(&conf
->preread_active_stripes
);
3557 release_stripe(sh2
);
3561 release_stripe(sh2
);
3563 /* Need to write out all blocks after computing P&Q */
3564 sh
->disks
= conf
->raid_disks
;
3565 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3566 schedule_reconstruction(sh
, &s
, 1, 1);
3567 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3568 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3569 atomic_dec(&conf
->reshape_stripes
);
3570 wake_up(&conf
->wait_for_overlap
);
3571 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3574 if (s
.expanding
&& s
.locked
== 0 &&
3575 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3576 handle_stripe_expansion(conf
, sh
, &r6s
);
3579 spin_unlock(&sh
->lock
);
3581 /* wait for this device to become unblocked */
3582 if (unlikely(blocked_rdev
))
3583 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3586 raid_run_ops(sh
, s
.ops_request
);
3591 if (dec_preread_active
) {
3592 /* We delay this until after ops_run_io so that if make_request
3593 * is waiting on a flush, it won't continue until the writes
3594 * have actually been submitted.
3596 atomic_dec(&conf
->preread_active_stripes
);
3597 if (atomic_read(&conf
->preread_active_stripes
) <
3599 md_wakeup_thread(conf
->mddev
->thread
);
3602 return_io(return_bi
);
3605 static void handle_stripe(struct stripe_head
*sh
)
3607 if (sh
->raid_conf
->level
== 6)
3613 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3615 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3616 while (!list_empty(&conf
->delayed_list
)) {
3617 struct list_head
*l
= conf
->delayed_list
.next
;
3618 struct stripe_head
*sh
;
3619 sh
= list_entry(l
, struct stripe_head
, lru
);
3621 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3622 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3623 atomic_inc(&conf
->preread_active_stripes
);
3624 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3627 plugger_set_plug(&conf
->plug
);
3630 static void activate_bit_delay(raid5_conf_t
*conf
)
3632 /* device_lock is held */
3633 struct list_head head
;
3634 list_add(&head
, &conf
->bitmap_list
);
3635 list_del_init(&conf
->bitmap_list
);
3636 while (!list_empty(&head
)) {
3637 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3638 list_del_init(&sh
->lru
);
3639 atomic_inc(&sh
->count
);
3640 __release_stripe(conf
, sh
);
3644 void md_raid5_kick_device(raid5_conf_t
*conf
)
3646 blk_flush_plug(current
);
3647 raid5_activate_delayed(conf
);
3648 md_wakeup_thread(conf
->mddev
->thread
);
3650 EXPORT_SYMBOL_GPL(md_raid5_kick_device
);
3652 static void raid5_unplug(struct plug_handle
*plug
)
3654 raid5_conf_t
*conf
= container_of(plug
, raid5_conf_t
, plug
);
3656 md_raid5_kick_device(conf
);
3659 int md_raid5_congested(mddev_t
*mddev
, int bits
)
3661 raid5_conf_t
*conf
= mddev
->private;
3663 /* No difference between reads and writes. Just check
3664 * how busy the stripe_cache is
3667 if (conf
->inactive_blocked
)
3671 if (list_empty_careful(&conf
->inactive_list
))
3676 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3678 static int raid5_congested(void *data
, int bits
)
3680 mddev_t
*mddev
= data
;
3682 return mddev_congested(mddev
, bits
) ||
3683 md_raid5_congested(mddev
, bits
);
3686 /* We want read requests to align with chunks where possible,
3687 * but write requests don't need to.
3689 static int raid5_mergeable_bvec(struct request_queue
*q
,
3690 struct bvec_merge_data
*bvm
,
3691 struct bio_vec
*biovec
)
3693 mddev_t
*mddev
= q
->queuedata
;
3694 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3696 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3697 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3699 if ((bvm
->bi_rw
& 1) == WRITE
)
3700 return biovec
->bv_len
; /* always allow writes to be mergeable */
3702 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3703 chunk_sectors
= mddev
->new_chunk_sectors
;
3704 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3705 if (max
< 0) max
= 0;
3706 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3707 return biovec
->bv_len
;
3713 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3715 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3716 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3717 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3719 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3720 chunk_sectors
= mddev
->new_chunk_sectors
;
3721 return chunk_sectors
>=
3722 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3726 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3727 * later sampled by raid5d.
3729 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3731 unsigned long flags
;
3733 spin_lock_irqsave(&conf
->device_lock
, flags
);
3735 bi
->bi_next
= conf
->retry_read_aligned_list
;
3736 conf
->retry_read_aligned_list
= bi
;
3738 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3739 md_wakeup_thread(conf
->mddev
->thread
);
3743 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3747 bi
= conf
->retry_read_aligned
;
3749 conf
->retry_read_aligned
= NULL
;
3752 bi
= conf
->retry_read_aligned_list
;
3754 conf
->retry_read_aligned_list
= bi
->bi_next
;
3757 * this sets the active strip count to 1 and the processed
3758 * strip count to zero (upper 8 bits)
3760 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3768 * The "raid5_align_endio" should check if the read succeeded and if it
3769 * did, call bio_endio on the original bio (having bio_put the new bio
3771 * If the read failed..
3773 static void raid5_align_endio(struct bio
*bi
, int error
)
3775 struct bio
* raid_bi
= bi
->bi_private
;
3778 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3783 rdev
= (void*)raid_bi
->bi_next
;
3784 raid_bi
->bi_next
= NULL
;
3785 mddev
= rdev
->mddev
;
3786 conf
= mddev
->private;
3788 rdev_dec_pending(rdev
, conf
->mddev
);
3790 if (!error
&& uptodate
) {
3791 bio_endio(raid_bi
, 0);
3792 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3793 wake_up(&conf
->wait_for_stripe
);
3798 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3800 add_bio_to_retry(raid_bi
, conf
);
3803 static int bio_fits_rdev(struct bio
*bi
)
3805 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3807 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3809 blk_recount_segments(q
, bi
);
3810 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3813 if (q
->merge_bvec_fn
)
3814 /* it's too hard to apply the merge_bvec_fn at this stage,
3823 static int chunk_aligned_read(mddev_t
*mddev
, struct bio
* raid_bio
)
3825 raid5_conf_t
*conf
= mddev
->private;
3827 struct bio
* align_bi
;
3830 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3831 pr_debug("chunk_aligned_read : non aligned\n");
3835 * use bio_clone_mddev to make a copy of the bio
3837 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
3841 * set bi_end_io to a new function, and set bi_private to the
3844 align_bi
->bi_end_io
= raid5_align_endio
;
3845 align_bi
->bi_private
= raid_bio
;
3849 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3854 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3855 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3856 atomic_inc(&rdev
->nr_pending
);
3858 raid_bio
->bi_next
= (void*)rdev
;
3859 align_bi
->bi_bdev
= rdev
->bdev
;
3860 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3861 align_bi
->bi_sector
+= rdev
->data_offset
;
3863 if (!bio_fits_rdev(align_bi
)) {
3864 /* too big in some way */
3866 rdev_dec_pending(rdev
, mddev
);
3870 spin_lock_irq(&conf
->device_lock
);
3871 wait_event_lock_irq(conf
->wait_for_stripe
,
3873 conf
->device_lock
, /* nothing */);
3874 atomic_inc(&conf
->active_aligned_reads
);
3875 spin_unlock_irq(&conf
->device_lock
);
3877 generic_make_request(align_bi
);
3886 /* __get_priority_stripe - get the next stripe to process
3888 * Full stripe writes are allowed to pass preread active stripes up until
3889 * the bypass_threshold is exceeded. In general the bypass_count
3890 * increments when the handle_list is handled before the hold_list; however, it
3891 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3892 * stripe with in flight i/o. The bypass_count will be reset when the
3893 * head of the hold_list has changed, i.e. the head was promoted to the
3896 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3898 struct stripe_head
*sh
;
3900 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3902 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3903 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3904 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3906 if (!list_empty(&conf
->handle_list
)) {
3907 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3909 if (list_empty(&conf
->hold_list
))
3910 conf
->bypass_count
= 0;
3911 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3912 if (conf
->hold_list
.next
== conf
->last_hold
)
3913 conf
->bypass_count
++;
3915 conf
->last_hold
= conf
->hold_list
.next
;
3916 conf
->bypass_count
-= conf
->bypass_threshold
;
3917 if (conf
->bypass_count
< 0)
3918 conf
->bypass_count
= 0;
3921 } else if (!list_empty(&conf
->hold_list
) &&
3922 ((conf
->bypass_threshold
&&
3923 conf
->bypass_count
> conf
->bypass_threshold
) ||
3924 atomic_read(&conf
->pending_full_writes
) == 0)) {
3925 sh
= list_entry(conf
->hold_list
.next
,
3927 conf
->bypass_count
-= conf
->bypass_threshold
;
3928 if (conf
->bypass_count
< 0)
3929 conf
->bypass_count
= 0;
3933 list_del_init(&sh
->lru
);
3934 atomic_inc(&sh
->count
);
3935 BUG_ON(atomic_read(&sh
->count
) != 1);
3939 static int make_request(mddev_t
*mddev
, struct bio
* bi
)
3941 raid5_conf_t
*conf
= mddev
->private;
3943 sector_t new_sector
;
3944 sector_t logical_sector
, last_sector
;
3945 struct stripe_head
*sh
;
3946 const int rw
= bio_data_dir(bi
);
3949 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
3950 md_flush_request(mddev
, bi
);
3954 md_write_start(mddev
, bi
);
3957 mddev
->reshape_position
== MaxSector
&&
3958 chunk_aligned_read(mddev
,bi
))
3961 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3962 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3964 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3966 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3968 int disks
, data_disks
;
3973 disks
= conf
->raid_disks
;
3974 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3975 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3976 /* spinlock is needed as reshape_progress may be
3977 * 64bit on a 32bit platform, and so it might be
3978 * possible to see a half-updated value
3979 * Ofcourse reshape_progress could change after
3980 * the lock is dropped, so once we get a reference
3981 * to the stripe that we think it is, we will have
3984 spin_lock_irq(&conf
->device_lock
);
3985 if (mddev
->delta_disks
< 0
3986 ? logical_sector
< conf
->reshape_progress
3987 : logical_sector
>= conf
->reshape_progress
) {
3988 disks
= conf
->previous_raid_disks
;
3991 if (mddev
->delta_disks
< 0
3992 ? logical_sector
< conf
->reshape_safe
3993 : logical_sector
>= conf
->reshape_safe
) {
3994 spin_unlock_irq(&conf
->device_lock
);
3999 spin_unlock_irq(&conf
->device_lock
);
4001 data_disks
= disks
- conf
->max_degraded
;
4003 new_sector
= raid5_compute_sector(conf
, logical_sector
,
4006 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4007 (unsigned long long)new_sector
,
4008 (unsigned long long)logical_sector
);
4010 sh
= get_active_stripe(conf
, new_sector
, previous
,
4011 (bi
->bi_rw
&RWA_MASK
), 0);
4013 if (unlikely(previous
)) {
4014 /* expansion might have moved on while waiting for a
4015 * stripe, so we must do the range check again.
4016 * Expansion could still move past after this
4017 * test, but as we are holding a reference to
4018 * 'sh', we know that if that happens,
4019 * STRIPE_EXPANDING will get set and the expansion
4020 * won't proceed until we finish with the stripe.
4023 spin_lock_irq(&conf
->device_lock
);
4024 if (mddev
->delta_disks
< 0
4025 ? logical_sector
>= conf
->reshape_progress
4026 : logical_sector
< conf
->reshape_progress
)
4027 /* mismatch, need to try again */
4029 spin_unlock_irq(&conf
->device_lock
);
4037 if (bio_data_dir(bi
) == WRITE
&&
4038 logical_sector
>= mddev
->suspend_lo
&&
4039 logical_sector
< mddev
->suspend_hi
) {
4041 /* As the suspend_* range is controlled by
4042 * userspace, we want an interruptible
4045 flush_signals(current
);
4046 prepare_to_wait(&conf
->wait_for_overlap
,
4047 &w
, TASK_INTERRUPTIBLE
);
4048 if (logical_sector
>= mddev
->suspend_lo
&&
4049 logical_sector
< mddev
->suspend_hi
)
4054 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
4055 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
4056 /* Stripe is busy expanding or
4057 * add failed due to overlap. Flush everything
4060 md_raid5_kick_device(conf
);
4065 finish_wait(&conf
->wait_for_overlap
, &w
);
4066 set_bit(STRIPE_HANDLE
, &sh
->state
);
4067 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4068 if ((bi
->bi_rw
& REQ_SYNC
) &&
4069 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4070 atomic_inc(&conf
->preread_active_stripes
);
4073 /* cannot get stripe for read-ahead, just give-up */
4074 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4075 finish_wait(&conf
->wait_for_overlap
, &w
);
4080 spin_lock_irq(&conf
->device_lock
);
4081 remaining
= raid5_dec_bi_phys_segments(bi
);
4082 spin_unlock_irq(&conf
->device_lock
);
4083 if (remaining
== 0) {
4086 md_write_end(mddev
);
4094 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
4096 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
4098 /* reshaping is quite different to recovery/resync so it is
4099 * handled quite separately ... here.
4101 * On each call to sync_request, we gather one chunk worth of
4102 * destination stripes and flag them as expanding.
4103 * Then we find all the source stripes and request reads.
4104 * As the reads complete, handle_stripe will copy the data
4105 * into the destination stripe and release that stripe.
4107 raid5_conf_t
*conf
= mddev
->private;
4108 struct stripe_head
*sh
;
4109 sector_t first_sector
, last_sector
;
4110 int raid_disks
= conf
->previous_raid_disks
;
4111 int data_disks
= raid_disks
- conf
->max_degraded
;
4112 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4115 sector_t writepos
, readpos
, safepos
;
4116 sector_t stripe_addr
;
4117 int reshape_sectors
;
4118 struct list_head stripes
;
4120 if (sector_nr
== 0) {
4121 /* If restarting in the middle, skip the initial sectors */
4122 if (mddev
->delta_disks
< 0 &&
4123 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4124 sector_nr
= raid5_size(mddev
, 0, 0)
4125 - conf
->reshape_progress
;
4126 } else if (mddev
->delta_disks
>= 0 &&
4127 conf
->reshape_progress
> 0)
4128 sector_nr
= conf
->reshape_progress
;
4129 sector_div(sector_nr
, new_data_disks
);
4131 mddev
->curr_resync_completed
= sector_nr
;
4132 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4138 /* We need to process a full chunk at a time.
4139 * If old and new chunk sizes differ, we need to process the
4142 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4143 reshape_sectors
= mddev
->new_chunk_sectors
;
4145 reshape_sectors
= mddev
->chunk_sectors
;
4147 /* we update the metadata when there is more than 3Meg
4148 * in the block range (that is rather arbitrary, should
4149 * probably be time based) or when the data about to be
4150 * copied would over-write the source of the data at
4151 * the front of the range.
4152 * i.e. one new_stripe along from reshape_progress new_maps
4153 * to after where reshape_safe old_maps to
4155 writepos
= conf
->reshape_progress
;
4156 sector_div(writepos
, new_data_disks
);
4157 readpos
= conf
->reshape_progress
;
4158 sector_div(readpos
, data_disks
);
4159 safepos
= conf
->reshape_safe
;
4160 sector_div(safepos
, data_disks
);
4161 if (mddev
->delta_disks
< 0) {
4162 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4163 readpos
+= reshape_sectors
;
4164 safepos
+= reshape_sectors
;
4166 writepos
+= reshape_sectors
;
4167 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4168 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4171 /* 'writepos' is the most advanced device address we might write.
4172 * 'readpos' is the least advanced device address we might read.
4173 * 'safepos' is the least address recorded in the metadata as having
4175 * If 'readpos' is behind 'writepos', then there is no way that we can
4176 * ensure safety in the face of a crash - that must be done by userspace
4177 * making a backup of the data. So in that case there is no particular
4178 * rush to update metadata.
4179 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4180 * update the metadata to advance 'safepos' to match 'readpos' so that
4181 * we can be safe in the event of a crash.
4182 * So we insist on updating metadata if safepos is behind writepos and
4183 * readpos is beyond writepos.
4184 * In any case, update the metadata every 10 seconds.
4185 * Maybe that number should be configurable, but I'm not sure it is
4186 * worth it.... maybe it could be a multiple of safemode_delay???
4188 if ((mddev
->delta_disks
< 0
4189 ? (safepos
> writepos
&& readpos
< writepos
)
4190 : (safepos
< writepos
&& readpos
> writepos
)) ||
4191 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4192 /* Cannot proceed until we've updated the superblock... */
4193 wait_event(conf
->wait_for_overlap
,
4194 atomic_read(&conf
->reshape_stripes
)==0);
4195 mddev
->reshape_position
= conf
->reshape_progress
;
4196 mddev
->curr_resync_completed
= sector_nr
;
4197 conf
->reshape_checkpoint
= jiffies
;
4198 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4199 md_wakeup_thread(mddev
->thread
);
4200 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4201 kthread_should_stop());
4202 spin_lock_irq(&conf
->device_lock
);
4203 conf
->reshape_safe
= mddev
->reshape_position
;
4204 spin_unlock_irq(&conf
->device_lock
);
4205 wake_up(&conf
->wait_for_overlap
);
4206 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4209 if (mddev
->delta_disks
< 0) {
4210 BUG_ON(conf
->reshape_progress
== 0);
4211 stripe_addr
= writepos
;
4212 BUG_ON((mddev
->dev_sectors
&
4213 ~((sector_t
)reshape_sectors
- 1))
4214 - reshape_sectors
- stripe_addr
4217 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4218 stripe_addr
= sector_nr
;
4220 INIT_LIST_HEAD(&stripes
);
4221 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4223 int skipped_disk
= 0;
4224 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4225 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4226 atomic_inc(&conf
->reshape_stripes
);
4227 /* If any of this stripe is beyond the end of the old
4228 * array, then we need to zero those blocks
4230 for (j
=sh
->disks
; j
--;) {
4232 if (j
== sh
->pd_idx
)
4234 if (conf
->level
== 6 &&
4237 s
= compute_blocknr(sh
, j
, 0);
4238 if (s
< raid5_size(mddev
, 0, 0)) {
4242 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4243 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4244 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4246 if (!skipped_disk
) {
4247 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4248 set_bit(STRIPE_HANDLE
, &sh
->state
);
4250 list_add(&sh
->lru
, &stripes
);
4252 spin_lock_irq(&conf
->device_lock
);
4253 if (mddev
->delta_disks
< 0)
4254 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4256 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4257 spin_unlock_irq(&conf
->device_lock
);
4258 /* Ok, those stripe are ready. We can start scheduling
4259 * reads on the source stripes.
4260 * The source stripes are determined by mapping the first and last
4261 * block on the destination stripes.
4264 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4267 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4268 * new_data_disks
- 1),
4270 if (last_sector
>= mddev
->dev_sectors
)
4271 last_sector
= mddev
->dev_sectors
- 1;
4272 while (first_sector
<= last_sector
) {
4273 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4274 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4275 set_bit(STRIPE_HANDLE
, &sh
->state
);
4277 first_sector
+= STRIPE_SECTORS
;
4279 /* Now that the sources are clearly marked, we can release
4280 * the destination stripes
4282 while (!list_empty(&stripes
)) {
4283 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4284 list_del_init(&sh
->lru
);
4287 /* If this takes us to the resync_max point where we have to pause,
4288 * then we need to write out the superblock.
4290 sector_nr
+= reshape_sectors
;
4291 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4292 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4293 /* Cannot proceed until we've updated the superblock... */
4294 wait_event(conf
->wait_for_overlap
,
4295 atomic_read(&conf
->reshape_stripes
) == 0);
4296 mddev
->reshape_position
= conf
->reshape_progress
;
4297 mddev
->curr_resync_completed
= sector_nr
;
4298 conf
->reshape_checkpoint
= jiffies
;
4299 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4300 md_wakeup_thread(mddev
->thread
);
4301 wait_event(mddev
->sb_wait
,
4302 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4303 || kthread_should_stop());
4304 spin_lock_irq(&conf
->device_lock
);
4305 conf
->reshape_safe
= mddev
->reshape_position
;
4306 spin_unlock_irq(&conf
->device_lock
);
4307 wake_up(&conf
->wait_for_overlap
);
4308 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4310 return reshape_sectors
;
4313 /* FIXME go_faster isn't used */
4314 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4316 raid5_conf_t
*conf
= mddev
->private;
4317 struct stripe_head
*sh
;
4318 sector_t max_sector
= mddev
->dev_sectors
;
4319 sector_t sync_blocks
;
4320 int still_degraded
= 0;
4323 if (sector_nr
>= max_sector
) {
4324 /* just being told to finish up .. nothing much to do */
4326 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4331 if (mddev
->curr_resync
< max_sector
) /* aborted */
4332 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4334 else /* completed sync */
4336 bitmap_close_sync(mddev
->bitmap
);
4341 /* Allow raid5_quiesce to complete */
4342 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4344 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4345 return reshape_request(mddev
, sector_nr
, skipped
);
4347 /* No need to check resync_max as we never do more than one
4348 * stripe, and as resync_max will always be on a chunk boundary,
4349 * if the check in md_do_sync didn't fire, there is no chance
4350 * of overstepping resync_max here
4353 /* if there is too many failed drives and we are trying
4354 * to resync, then assert that we are finished, because there is
4355 * nothing we can do.
4357 if (mddev
->degraded
>= conf
->max_degraded
&&
4358 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4359 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4363 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4364 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4365 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4366 /* we can skip this block, and probably more */
4367 sync_blocks
/= STRIPE_SECTORS
;
4369 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4373 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4375 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4377 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4378 /* make sure we don't swamp the stripe cache if someone else
4379 * is trying to get access
4381 schedule_timeout_uninterruptible(1);
4383 /* Need to check if array will still be degraded after recovery/resync
4384 * We don't need to check the 'failed' flag as when that gets set,
4387 for (i
= 0; i
< conf
->raid_disks
; i
++)
4388 if (conf
->disks
[i
].rdev
== NULL
)
4391 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4393 spin_lock(&sh
->lock
);
4394 set_bit(STRIPE_SYNCING
, &sh
->state
);
4395 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4396 spin_unlock(&sh
->lock
);
4401 return STRIPE_SECTORS
;
4404 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4406 /* We may not be able to submit a whole bio at once as there
4407 * may not be enough stripe_heads available.
4408 * We cannot pre-allocate enough stripe_heads as we may need
4409 * more than exist in the cache (if we allow ever large chunks).
4410 * So we do one stripe head at a time and record in
4411 * ->bi_hw_segments how many have been done.
4413 * We *know* that this entire raid_bio is in one chunk, so
4414 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4416 struct stripe_head
*sh
;
4418 sector_t sector
, logical_sector
, last_sector
;
4423 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4424 sector
= raid5_compute_sector(conf
, logical_sector
,
4426 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4428 for (; logical_sector
< last_sector
;
4429 logical_sector
+= STRIPE_SECTORS
,
4430 sector
+= STRIPE_SECTORS
,
4433 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4434 /* already done this stripe */
4437 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4440 /* failed to get a stripe - must wait */
4441 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4442 conf
->retry_read_aligned
= raid_bio
;
4446 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4447 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4449 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4450 conf
->retry_read_aligned
= raid_bio
;
4458 spin_lock_irq(&conf
->device_lock
);
4459 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4460 spin_unlock_irq(&conf
->device_lock
);
4462 bio_endio(raid_bio
, 0);
4463 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4464 wake_up(&conf
->wait_for_stripe
);
4470 * This is our raid5 kernel thread.
4472 * We scan the hash table for stripes which can be handled now.
4473 * During the scan, completed stripes are saved for us by the interrupt
4474 * handler, so that they will not have to wait for our next wakeup.
4476 static void raid5d(mddev_t
*mddev
)
4478 struct stripe_head
*sh
;
4479 raid5_conf_t
*conf
= mddev
->private;
4482 pr_debug("+++ raid5d active\n");
4484 md_check_recovery(mddev
);
4487 spin_lock_irq(&conf
->device_lock
);
4491 if (conf
->seq_flush
!= conf
->seq_write
) {
4492 int seq
= conf
->seq_flush
;
4493 spin_unlock_irq(&conf
->device_lock
);
4494 bitmap_unplug(mddev
->bitmap
);
4495 spin_lock_irq(&conf
->device_lock
);
4496 conf
->seq_write
= seq
;
4497 activate_bit_delay(conf
);
4500 while ((bio
= remove_bio_from_retry(conf
))) {
4502 spin_unlock_irq(&conf
->device_lock
);
4503 ok
= retry_aligned_read(conf
, bio
);
4504 spin_lock_irq(&conf
->device_lock
);
4510 sh
= __get_priority_stripe(conf
);
4514 spin_unlock_irq(&conf
->device_lock
);
4521 spin_lock_irq(&conf
->device_lock
);
4523 pr_debug("%d stripes handled\n", handled
);
4525 spin_unlock_irq(&conf
->device_lock
);
4527 async_tx_issue_pending_all();
4529 pr_debug("--- raid5d inactive\n");
4533 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4535 raid5_conf_t
*conf
= mddev
->private;
4537 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4543 raid5_set_cache_size(mddev_t
*mddev
, int size
)
4545 raid5_conf_t
*conf
= mddev
->private;
4548 if (size
<= 16 || size
> 32768)
4550 while (size
< conf
->max_nr_stripes
) {
4551 if (drop_one_stripe(conf
))
4552 conf
->max_nr_stripes
--;
4556 err
= md_allow_write(mddev
);
4559 while (size
> conf
->max_nr_stripes
) {
4560 if (grow_one_stripe(conf
))
4561 conf
->max_nr_stripes
++;
4566 EXPORT_SYMBOL(raid5_set_cache_size
);
4569 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4571 raid5_conf_t
*conf
= mddev
->private;
4575 if (len
>= PAGE_SIZE
)
4580 if (strict_strtoul(page
, 10, &new))
4582 err
= raid5_set_cache_size(mddev
, new);
4588 static struct md_sysfs_entry
4589 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4590 raid5_show_stripe_cache_size
,
4591 raid5_store_stripe_cache_size
);
4594 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4596 raid5_conf_t
*conf
= mddev
->private;
4598 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4604 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4606 raid5_conf_t
*conf
= mddev
->private;
4608 if (len
>= PAGE_SIZE
)
4613 if (strict_strtoul(page
, 10, &new))
4615 if (new > conf
->max_nr_stripes
)
4617 conf
->bypass_threshold
= new;
4621 static struct md_sysfs_entry
4622 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4624 raid5_show_preread_threshold
,
4625 raid5_store_preread_threshold
);
4628 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4630 raid5_conf_t
*conf
= mddev
->private;
4632 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4637 static struct md_sysfs_entry
4638 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4640 static struct attribute
*raid5_attrs
[] = {
4641 &raid5_stripecache_size
.attr
,
4642 &raid5_stripecache_active
.attr
,
4643 &raid5_preread_bypass_threshold
.attr
,
4646 static struct attribute_group raid5_attrs_group
= {
4648 .attrs
= raid5_attrs
,
4652 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4654 raid5_conf_t
*conf
= mddev
->private;
4657 sectors
= mddev
->dev_sectors
;
4659 /* size is defined by the smallest of previous and new size */
4660 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4662 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4663 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4664 return sectors
* (raid_disks
- conf
->max_degraded
);
4667 static void raid5_free_percpu(raid5_conf_t
*conf
)
4669 struct raid5_percpu
*percpu
;
4676 for_each_possible_cpu(cpu
) {
4677 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4678 safe_put_page(percpu
->spare_page
);
4679 kfree(percpu
->scribble
);
4681 #ifdef CONFIG_HOTPLUG_CPU
4682 unregister_cpu_notifier(&conf
->cpu_notify
);
4686 free_percpu(conf
->percpu
);
4689 static void free_conf(raid5_conf_t
*conf
)
4691 shrink_stripes(conf
);
4692 raid5_free_percpu(conf
);
4694 kfree(conf
->stripe_hashtbl
);
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4702 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4703 long cpu
= (long)hcpu
;
4704 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4707 case CPU_UP_PREPARE
:
4708 case CPU_UP_PREPARE_FROZEN
:
4709 if (conf
->level
== 6 && !percpu
->spare_page
)
4710 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4711 if (!percpu
->scribble
)
4712 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4714 if (!percpu
->scribble
||
4715 (conf
->level
== 6 && !percpu
->spare_page
)) {
4716 safe_put_page(percpu
->spare_page
);
4717 kfree(percpu
->scribble
);
4718 pr_err("%s: failed memory allocation for cpu%ld\n",
4720 return notifier_from_errno(-ENOMEM
);
4724 case CPU_DEAD_FROZEN
:
4725 safe_put_page(percpu
->spare_page
);
4726 kfree(percpu
->scribble
);
4727 percpu
->spare_page
= NULL
;
4728 percpu
->scribble
= NULL
;
4737 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4740 struct page
*spare_page
;
4741 struct raid5_percpu __percpu
*allcpus
;
4745 allcpus
= alloc_percpu(struct raid5_percpu
);
4748 conf
->percpu
= allcpus
;
4752 for_each_present_cpu(cpu
) {
4753 if (conf
->level
== 6) {
4754 spare_page
= alloc_page(GFP_KERNEL
);
4759 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4761 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4766 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4768 #ifdef CONFIG_HOTPLUG_CPU
4769 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4770 conf
->cpu_notify
.priority
= 0;
4772 err
= register_cpu_notifier(&conf
->cpu_notify
);
4779 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4782 int raid_disk
, memory
, max_disks
;
4784 struct disk_info
*disk
;
4786 if (mddev
->new_level
!= 5
4787 && mddev
->new_level
!= 4
4788 && mddev
->new_level
!= 6) {
4789 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4790 mdname(mddev
), mddev
->new_level
);
4791 return ERR_PTR(-EIO
);
4793 if ((mddev
->new_level
== 5
4794 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4795 (mddev
->new_level
== 6
4796 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4797 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4798 mdname(mddev
), mddev
->new_layout
);
4799 return ERR_PTR(-EIO
);
4801 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4802 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4803 mdname(mddev
), mddev
->raid_disks
);
4804 return ERR_PTR(-EINVAL
);
4807 if (!mddev
->new_chunk_sectors
||
4808 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4809 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4810 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4811 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4812 return ERR_PTR(-EINVAL
);
4815 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4818 spin_lock_init(&conf
->device_lock
);
4819 init_waitqueue_head(&conf
->wait_for_stripe
);
4820 init_waitqueue_head(&conf
->wait_for_overlap
);
4821 INIT_LIST_HEAD(&conf
->handle_list
);
4822 INIT_LIST_HEAD(&conf
->hold_list
);
4823 INIT_LIST_HEAD(&conf
->delayed_list
);
4824 INIT_LIST_HEAD(&conf
->bitmap_list
);
4825 INIT_LIST_HEAD(&conf
->inactive_list
);
4826 atomic_set(&conf
->active_stripes
, 0);
4827 atomic_set(&conf
->preread_active_stripes
, 0);
4828 atomic_set(&conf
->active_aligned_reads
, 0);
4829 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4831 conf
->raid_disks
= mddev
->raid_disks
;
4832 if (mddev
->reshape_position
== MaxSector
)
4833 conf
->previous_raid_disks
= mddev
->raid_disks
;
4835 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4836 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4837 conf
->scribble_len
= scribble_len(max_disks
);
4839 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4844 conf
->mddev
= mddev
;
4846 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4849 conf
->level
= mddev
->new_level
;
4850 if (raid5_alloc_percpu(conf
) != 0)
4853 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4855 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4856 raid_disk
= rdev
->raid_disk
;
4857 if (raid_disk
>= max_disks
4860 disk
= conf
->disks
+ raid_disk
;
4864 if (test_bit(In_sync
, &rdev
->flags
)) {
4865 char b
[BDEVNAME_SIZE
];
4866 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4868 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4870 /* Cannot rely on bitmap to complete recovery */
4874 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4875 conf
->level
= mddev
->new_level
;
4876 if (conf
->level
== 6)
4877 conf
->max_degraded
= 2;
4879 conf
->max_degraded
= 1;
4880 conf
->algorithm
= mddev
->new_layout
;
4881 conf
->max_nr_stripes
= NR_STRIPES
;
4882 conf
->reshape_progress
= mddev
->reshape_position
;
4883 if (conf
->reshape_progress
!= MaxSector
) {
4884 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4885 conf
->prev_algo
= mddev
->layout
;
4888 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4889 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4890 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4892 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4893 mdname(mddev
), memory
);
4896 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4897 mdname(mddev
), memory
);
4899 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4900 if (!conf
->thread
) {
4902 "md/raid:%s: couldn't allocate thread.\n",
4912 return ERR_PTR(-EIO
);
4914 return ERR_PTR(-ENOMEM
);
4918 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4921 case ALGORITHM_PARITY_0
:
4922 if (raid_disk
< max_degraded
)
4925 case ALGORITHM_PARITY_N
:
4926 if (raid_disk
>= raid_disks
- max_degraded
)
4929 case ALGORITHM_PARITY_0_6
:
4930 if (raid_disk
== 0 ||
4931 raid_disk
== raid_disks
- 1)
4934 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4935 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4936 case ALGORITHM_LEFT_SYMMETRIC_6
:
4937 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4938 if (raid_disk
== raid_disks
- 1)
4944 static int run(mddev_t
*mddev
)
4947 int working_disks
= 0;
4948 int dirty_parity_disks
= 0;
4950 sector_t reshape_offset
= 0;
4952 if (mddev
->recovery_cp
!= MaxSector
)
4953 printk(KERN_NOTICE
"md/raid:%s: not clean"
4954 " -- starting background reconstruction\n",
4956 if (mddev
->reshape_position
!= MaxSector
) {
4957 /* Check that we can continue the reshape.
4958 * Currently only disks can change, it must
4959 * increase, and we must be past the point where
4960 * a stripe over-writes itself
4962 sector_t here_new
, here_old
;
4964 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4966 if (mddev
->new_level
!= mddev
->level
) {
4967 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
4968 "required - aborting.\n",
4972 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4973 /* reshape_position must be on a new-stripe boundary, and one
4974 * further up in new geometry must map after here in old
4977 here_new
= mddev
->reshape_position
;
4978 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4979 (mddev
->raid_disks
- max_degraded
))) {
4980 printk(KERN_ERR
"md/raid:%s: reshape_position not "
4981 "on a stripe boundary\n", mdname(mddev
));
4984 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
4985 /* here_new is the stripe we will write to */
4986 here_old
= mddev
->reshape_position
;
4987 sector_div(here_old
, mddev
->chunk_sectors
*
4988 (old_disks
-max_degraded
));
4989 /* here_old is the first stripe that we might need to read
4991 if (mddev
->delta_disks
== 0) {
4992 /* We cannot be sure it is safe to start an in-place
4993 * reshape. It is only safe if user-space if monitoring
4994 * and taking constant backups.
4995 * mdadm always starts a situation like this in
4996 * readonly mode so it can take control before
4997 * allowing any writes. So just check for that.
4999 if ((here_new
* mddev
->new_chunk_sectors
!=
5000 here_old
* mddev
->chunk_sectors
) ||
5002 printk(KERN_ERR
"md/raid:%s: in-place reshape must be started"
5003 " in read-only mode - aborting\n",
5007 } else if (mddev
->delta_disks
< 0
5008 ? (here_new
* mddev
->new_chunk_sectors
<=
5009 here_old
* mddev
->chunk_sectors
)
5010 : (here_new
* mddev
->new_chunk_sectors
>=
5011 here_old
* mddev
->chunk_sectors
)) {
5012 /* Reading from the same stripe as writing to - bad */
5013 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
5014 "auto-recovery - aborting.\n",
5018 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
5020 /* OK, we should be able to continue; */
5022 BUG_ON(mddev
->level
!= mddev
->new_level
);
5023 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
5024 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
5025 BUG_ON(mddev
->delta_disks
!= 0);
5028 if (mddev
->private == NULL
)
5029 conf
= setup_conf(mddev
);
5031 conf
= mddev
->private;
5034 return PTR_ERR(conf
);
5036 mddev
->thread
= conf
->thread
;
5037 conf
->thread
= NULL
;
5038 mddev
->private = conf
;
5041 * 0 for a fully functional array, 1 or 2 for a degraded array.
5043 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
5044 if (rdev
->raid_disk
< 0)
5046 if (test_bit(In_sync
, &rdev
->flags
)) {
5050 /* This disc is not fully in-sync. However if it
5051 * just stored parity (beyond the recovery_offset),
5052 * when we don't need to be concerned about the
5053 * array being dirty.
5054 * When reshape goes 'backwards', we never have
5055 * partially completed devices, so we only need
5056 * to worry about reshape going forwards.
5058 /* Hack because v0.91 doesn't store recovery_offset properly. */
5059 if (mddev
->major_version
== 0 &&
5060 mddev
->minor_version
> 90)
5061 rdev
->recovery_offset
= reshape_offset
;
5063 if (rdev
->recovery_offset
< reshape_offset
) {
5064 /* We need to check old and new layout */
5065 if (!only_parity(rdev
->raid_disk
,
5068 conf
->max_degraded
))
5071 if (!only_parity(rdev
->raid_disk
,
5073 conf
->previous_raid_disks
,
5074 conf
->max_degraded
))
5076 dirty_parity_disks
++;
5079 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
5082 if (has_failed(conf
)) {
5083 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
5084 " (%d/%d failed)\n",
5085 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5089 /* device size must be a multiple of chunk size */
5090 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5091 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5093 if (mddev
->degraded
> dirty_parity_disks
&&
5094 mddev
->recovery_cp
!= MaxSector
) {
5095 if (mddev
->ok_start_degraded
)
5097 "md/raid:%s: starting dirty degraded array"
5098 " - data corruption possible.\n",
5102 "md/raid:%s: cannot start dirty degraded array.\n",
5108 if (mddev
->degraded
== 0)
5109 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
5110 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
5111 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5114 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
5115 " out of %d devices, algorithm %d\n",
5116 mdname(mddev
), conf
->level
,
5117 mddev
->raid_disks
- mddev
->degraded
,
5118 mddev
->raid_disks
, mddev
->new_layout
);
5120 print_raid5_conf(conf
);
5122 if (conf
->reshape_progress
!= MaxSector
) {
5123 conf
->reshape_safe
= conf
->reshape_progress
;
5124 atomic_set(&conf
->reshape_stripes
, 0);
5125 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5126 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5127 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5128 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5129 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5134 /* Ok, everything is just fine now */
5135 if (mddev
->to_remove
== &raid5_attrs_group
)
5136 mddev
->to_remove
= NULL
;
5137 else if (mddev
->kobj
.sd
&&
5138 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5140 "raid5: failed to create sysfs attributes for %s\n",
5142 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5144 plugger_init(&conf
->plug
, raid5_unplug
);
5145 mddev
->plug
= &conf
->plug
;
5148 /* read-ahead size must cover two whole stripes, which
5149 * is 2 * (datadisks) * chunksize where 'n' is the
5150 * number of raid devices
5152 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5153 int stripe
= data_disks
*
5154 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5155 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5156 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5158 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5160 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5161 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5162 mddev
->queue
->queue_lock
= &conf
->device_lock
;
5164 chunk_size
= mddev
->chunk_sectors
<< 9;
5165 blk_queue_io_min(mddev
->queue
, chunk_size
);
5166 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5167 (conf
->raid_disks
- conf
->max_degraded
));
5169 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5170 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5171 rdev
->data_offset
<< 9);
5176 md_unregister_thread(mddev
->thread
);
5177 mddev
->thread
= NULL
;
5179 print_raid5_conf(conf
);
5182 mddev
->private = NULL
;
5183 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
5187 static int stop(mddev_t
*mddev
)
5189 raid5_conf_t
*conf
= mddev
->private;
5191 md_unregister_thread(mddev
->thread
);
5192 mddev
->thread
= NULL
;
5194 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5195 plugger_flush(&conf
->plug
); /* the unplug fn references 'conf'*/
5197 mddev
->private = NULL
;
5198 mddev
->to_remove
= &raid5_attrs_group
;
5203 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
5207 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
5208 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
5209 seq_printf(seq
, "sh %llu, count %d.\n",
5210 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
5211 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
5212 for (i
= 0; i
< sh
->disks
; i
++) {
5213 seq_printf(seq
, "(cache%d: %p %ld) ",
5214 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
5216 seq_printf(seq
, "\n");
5219 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
5221 struct stripe_head
*sh
;
5222 struct hlist_node
*hn
;
5225 spin_lock_irq(&conf
->device_lock
);
5226 for (i
= 0; i
< NR_HASH
; i
++) {
5227 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
5228 if (sh
->raid_conf
!= conf
)
5233 spin_unlock_irq(&conf
->device_lock
);
5237 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5239 raid5_conf_t
*conf
= mddev
->private;
5242 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5243 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5244 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5245 for (i
= 0; i
< conf
->raid_disks
; i
++)
5246 seq_printf (seq
, "%s",
5247 conf
->disks
[i
].rdev
&&
5248 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5249 seq_printf (seq
, "]");
5251 seq_printf (seq
, "\n");
5252 printall(seq
, conf
);
5256 static void print_raid5_conf (raid5_conf_t
*conf
)
5259 struct disk_info
*tmp
;
5261 printk(KERN_DEBUG
"RAID conf printout:\n");
5263 printk("(conf==NULL)\n");
5266 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5268 conf
->raid_disks
- conf
->mddev
->degraded
);
5270 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5271 char b
[BDEVNAME_SIZE
];
5272 tmp
= conf
->disks
+ i
;
5274 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5275 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5276 bdevname(tmp
->rdev
->bdev
, b
));
5280 static int raid5_spare_active(mddev_t
*mddev
)
5283 raid5_conf_t
*conf
= mddev
->private;
5284 struct disk_info
*tmp
;
5286 unsigned long flags
;
5288 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5289 tmp
= conf
->disks
+ i
;
5291 && tmp
->rdev
->recovery_offset
== MaxSector
5292 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5293 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5295 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
5298 spin_lock_irqsave(&conf
->device_lock
, flags
);
5299 mddev
->degraded
-= count
;
5300 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5301 print_raid5_conf(conf
);
5305 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5307 raid5_conf_t
*conf
= mddev
->private;
5310 struct disk_info
*p
= conf
->disks
+ number
;
5312 print_raid5_conf(conf
);
5315 if (number
>= conf
->raid_disks
&&
5316 conf
->reshape_progress
== MaxSector
)
5317 clear_bit(In_sync
, &rdev
->flags
);
5319 if (test_bit(In_sync
, &rdev
->flags
) ||
5320 atomic_read(&rdev
->nr_pending
)) {
5324 /* Only remove non-faulty devices if recovery
5327 if (!test_bit(Faulty
, &rdev
->flags
) &&
5328 !has_failed(conf
) &&
5329 number
< conf
->raid_disks
) {
5335 if (atomic_read(&rdev
->nr_pending
)) {
5336 /* lost the race, try later */
5343 print_raid5_conf(conf
);
5347 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5349 raid5_conf_t
*conf
= mddev
->private;
5352 struct disk_info
*p
;
5354 int last
= conf
->raid_disks
- 1;
5356 if (has_failed(conf
))
5357 /* no point adding a device */
5360 if (rdev
->raid_disk
>= 0)
5361 first
= last
= rdev
->raid_disk
;
5364 * find the disk ... but prefer rdev->saved_raid_disk
5367 if (rdev
->saved_raid_disk
>= 0 &&
5368 rdev
->saved_raid_disk
>= first
&&
5369 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5370 disk
= rdev
->saved_raid_disk
;
5373 for ( ; disk
<= last
; disk
++)
5374 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5375 clear_bit(In_sync
, &rdev
->flags
);
5376 rdev
->raid_disk
= disk
;
5378 if (rdev
->saved_raid_disk
!= disk
)
5380 rcu_assign_pointer(p
->rdev
, rdev
);
5383 print_raid5_conf(conf
);
5387 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5389 /* no resync is happening, and there is enough space
5390 * on all devices, so we can resize.
5391 * We need to make sure resync covers any new space.
5392 * If the array is shrinking we should possibly wait until
5393 * any io in the removed space completes, but it hardly seems
5396 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5397 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5398 mddev
->raid_disks
));
5399 if (mddev
->array_sectors
>
5400 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5402 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5403 revalidate_disk(mddev
->gendisk
);
5404 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
5405 mddev
->recovery_cp
= mddev
->dev_sectors
;
5406 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5408 mddev
->dev_sectors
= sectors
;
5409 mddev
->resync_max_sectors
= sectors
;
5413 static int check_stripe_cache(mddev_t
*mddev
)
5415 /* Can only proceed if there are plenty of stripe_heads.
5416 * We need a minimum of one full stripe,, and for sensible progress
5417 * it is best to have about 4 times that.
5418 * If we require 4 times, then the default 256 4K stripe_heads will
5419 * allow for chunk sizes up to 256K, which is probably OK.
5420 * If the chunk size is greater, user-space should request more
5421 * stripe_heads first.
5423 raid5_conf_t
*conf
= mddev
->private;
5424 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5425 > conf
->max_nr_stripes
||
5426 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5427 > conf
->max_nr_stripes
) {
5428 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5430 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5437 static int check_reshape(mddev_t
*mddev
)
5439 raid5_conf_t
*conf
= mddev
->private;
5441 if (mddev
->delta_disks
== 0 &&
5442 mddev
->new_layout
== mddev
->layout
&&
5443 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5444 return 0; /* nothing to do */
5446 /* Cannot grow a bitmap yet */
5448 if (has_failed(conf
))
5450 if (mddev
->delta_disks
< 0) {
5451 /* We might be able to shrink, but the devices must
5452 * be made bigger first.
5453 * For raid6, 4 is the minimum size.
5454 * Otherwise 2 is the minimum
5457 if (mddev
->level
== 6)
5459 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5463 if (!check_stripe_cache(mddev
))
5466 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5469 static int raid5_start_reshape(mddev_t
*mddev
)
5471 raid5_conf_t
*conf
= mddev
->private;
5474 unsigned long flags
;
5476 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5479 if (!check_stripe_cache(mddev
))
5482 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5483 if (!test_bit(In_sync
, &rdev
->flags
)
5484 && !test_bit(Faulty
, &rdev
->flags
))
5487 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5488 /* Not enough devices even to make a degraded array
5493 /* Refuse to reduce size of the array. Any reductions in
5494 * array size must be through explicit setting of array_size
5497 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5498 < mddev
->array_sectors
) {
5499 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5500 "before number of disks\n", mdname(mddev
));
5504 atomic_set(&conf
->reshape_stripes
, 0);
5505 spin_lock_irq(&conf
->device_lock
);
5506 conf
->previous_raid_disks
= conf
->raid_disks
;
5507 conf
->raid_disks
+= mddev
->delta_disks
;
5508 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5509 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5510 conf
->prev_algo
= conf
->algorithm
;
5511 conf
->algorithm
= mddev
->new_layout
;
5512 if (mddev
->delta_disks
< 0)
5513 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5515 conf
->reshape_progress
= 0;
5516 conf
->reshape_safe
= conf
->reshape_progress
;
5518 spin_unlock_irq(&conf
->device_lock
);
5520 /* Add some new drives, as many as will fit.
5521 * We know there are enough to make the newly sized array work.
5522 * Don't add devices if we are reducing the number of
5523 * devices in the array. This is because it is not possible
5524 * to correctly record the "partially reconstructed" state of
5525 * such devices during the reshape and confusion could result.
5527 if (mddev
->delta_disks
>= 0) {
5528 int added_devices
= 0;
5529 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5530 if (rdev
->raid_disk
< 0 &&
5531 !test_bit(Faulty
, &rdev
->flags
)) {
5532 if (raid5_add_disk(mddev
, rdev
) == 0) {
5535 >= conf
->previous_raid_disks
) {
5536 set_bit(In_sync
, &rdev
->flags
);
5539 rdev
->recovery_offset
= 0;
5540 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5541 if (sysfs_create_link(&mddev
->kobj
,
5543 /* Failure here is OK */;
5545 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
5546 && !test_bit(Faulty
, &rdev
->flags
)) {
5547 /* This is a spare that was manually added */
5548 set_bit(In_sync
, &rdev
->flags
);
5552 /* When a reshape changes the number of devices,
5553 * ->degraded is measured against the larger of the
5554 * pre and post number of devices.
5556 spin_lock_irqsave(&conf
->device_lock
, flags
);
5557 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5559 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5561 mddev
->raid_disks
= conf
->raid_disks
;
5562 mddev
->reshape_position
= conf
->reshape_progress
;
5563 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5565 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5566 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5567 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5568 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5569 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5571 if (!mddev
->sync_thread
) {
5572 mddev
->recovery
= 0;
5573 spin_lock_irq(&conf
->device_lock
);
5574 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5575 conf
->reshape_progress
= MaxSector
;
5576 spin_unlock_irq(&conf
->device_lock
);
5579 conf
->reshape_checkpoint
= jiffies
;
5580 md_wakeup_thread(mddev
->sync_thread
);
5581 md_new_event(mddev
);
5585 /* This is called from the reshape thread and should make any
5586 * changes needed in 'conf'
5588 static void end_reshape(raid5_conf_t
*conf
)
5591 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5593 spin_lock_irq(&conf
->device_lock
);
5594 conf
->previous_raid_disks
= conf
->raid_disks
;
5595 conf
->reshape_progress
= MaxSector
;
5596 spin_unlock_irq(&conf
->device_lock
);
5597 wake_up(&conf
->wait_for_overlap
);
5599 /* read-ahead size must cover two whole stripes, which is
5600 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5602 if (conf
->mddev
->queue
) {
5603 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5604 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5606 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5607 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5612 /* This is called from the raid5d thread with mddev_lock held.
5613 * It makes config changes to the device.
5615 static void raid5_finish_reshape(mddev_t
*mddev
)
5617 raid5_conf_t
*conf
= mddev
->private;
5619 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5621 if (mddev
->delta_disks
> 0) {
5622 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5623 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5624 revalidate_disk(mddev
->gendisk
);
5627 mddev
->degraded
= conf
->raid_disks
;
5628 for (d
= 0; d
< conf
->raid_disks
; d
++)
5629 if (conf
->disks
[d
].rdev
&&
5631 &conf
->disks
[d
].rdev
->flags
))
5633 for (d
= conf
->raid_disks
;
5634 d
< conf
->raid_disks
- mddev
->delta_disks
;
5636 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5637 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5639 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5640 sysfs_remove_link(&mddev
->kobj
, nm
);
5641 rdev
->raid_disk
= -1;
5645 mddev
->layout
= conf
->algorithm
;
5646 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5647 mddev
->reshape_position
= MaxSector
;
5648 mddev
->delta_disks
= 0;
5652 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5654 raid5_conf_t
*conf
= mddev
->private;
5657 case 2: /* resume for a suspend */
5658 wake_up(&conf
->wait_for_overlap
);
5661 case 1: /* stop all writes */
5662 spin_lock_irq(&conf
->device_lock
);
5663 /* '2' tells resync/reshape to pause so that all
5664 * active stripes can drain
5667 wait_event_lock_irq(conf
->wait_for_stripe
,
5668 atomic_read(&conf
->active_stripes
) == 0 &&
5669 atomic_read(&conf
->active_aligned_reads
) == 0,
5670 conf
->device_lock
, /* nothing */);
5672 spin_unlock_irq(&conf
->device_lock
);
5673 /* allow reshape to continue */
5674 wake_up(&conf
->wait_for_overlap
);
5677 case 0: /* re-enable writes */
5678 spin_lock_irq(&conf
->device_lock
);
5680 wake_up(&conf
->wait_for_stripe
);
5681 wake_up(&conf
->wait_for_overlap
);
5682 spin_unlock_irq(&conf
->device_lock
);
5688 static void *raid45_takeover_raid0(mddev_t
*mddev
, int level
)
5690 struct raid0_private_data
*raid0_priv
= mddev
->private;
5692 /* for raid0 takeover only one zone is supported */
5693 if (raid0_priv
->nr_strip_zones
> 1) {
5694 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5696 return ERR_PTR(-EINVAL
);
5699 mddev
->new_level
= level
;
5700 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5701 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5702 mddev
->raid_disks
+= 1;
5703 mddev
->delta_disks
= 1;
5704 /* make sure it will be not marked as dirty */
5705 mddev
->recovery_cp
= MaxSector
;
5707 return setup_conf(mddev
);
5711 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5715 if (mddev
->raid_disks
!= 2 ||
5716 mddev
->degraded
> 1)
5717 return ERR_PTR(-EINVAL
);
5719 /* Should check if there are write-behind devices? */
5721 chunksect
= 64*2; /* 64K by default */
5723 /* The array must be an exact multiple of chunksize */
5724 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5727 if ((chunksect
<<9) < STRIPE_SIZE
)
5728 /* array size does not allow a suitable chunk size */
5729 return ERR_PTR(-EINVAL
);
5731 mddev
->new_level
= 5;
5732 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5733 mddev
->new_chunk_sectors
= chunksect
;
5735 return setup_conf(mddev
);
5738 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5742 switch (mddev
->layout
) {
5743 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5744 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5746 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5747 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5749 case ALGORITHM_LEFT_SYMMETRIC_6
:
5750 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5752 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5753 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5755 case ALGORITHM_PARITY_0_6
:
5756 new_layout
= ALGORITHM_PARITY_0
;
5758 case ALGORITHM_PARITY_N
:
5759 new_layout
= ALGORITHM_PARITY_N
;
5762 return ERR_PTR(-EINVAL
);
5764 mddev
->new_level
= 5;
5765 mddev
->new_layout
= new_layout
;
5766 mddev
->delta_disks
= -1;
5767 mddev
->raid_disks
-= 1;
5768 return setup_conf(mddev
);
5772 static int raid5_check_reshape(mddev_t
*mddev
)
5774 /* For a 2-drive array, the layout and chunk size can be changed
5775 * immediately as not restriping is needed.
5776 * For larger arrays we record the new value - after validation
5777 * to be used by a reshape pass.
5779 raid5_conf_t
*conf
= mddev
->private;
5780 int new_chunk
= mddev
->new_chunk_sectors
;
5782 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5784 if (new_chunk
> 0) {
5785 if (!is_power_of_2(new_chunk
))
5787 if (new_chunk
< (PAGE_SIZE
>>9))
5789 if (mddev
->array_sectors
& (new_chunk
-1))
5790 /* not factor of array size */
5794 /* They look valid */
5796 if (mddev
->raid_disks
== 2) {
5797 /* can make the change immediately */
5798 if (mddev
->new_layout
>= 0) {
5799 conf
->algorithm
= mddev
->new_layout
;
5800 mddev
->layout
= mddev
->new_layout
;
5802 if (new_chunk
> 0) {
5803 conf
->chunk_sectors
= new_chunk
;
5804 mddev
->chunk_sectors
= new_chunk
;
5806 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5807 md_wakeup_thread(mddev
->thread
);
5809 return check_reshape(mddev
);
5812 static int raid6_check_reshape(mddev_t
*mddev
)
5814 int new_chunk
= mddev
->new_chunk_sectors
;
5816 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5818 if (new_chunk
> 0) {
5819 if (!is_power_of_2(new_chunk
))
5821 if (new_chunk
< (PAGE_SIZE
>> 9))
5823 if (mddev
->array_sectors
& (new_chunk
-1))
5824 /* not factor of array size */
5828 /* They look valid */
5829 return check_reshape(mddev
);
5832 static void *raid5_takeover(mddev_t
*mddev
)
5834 /* raid5 can take over:
5835 * raid0 - if there is only one strip zone - make it a raid4 layout
5836 * raid1 - if there are two drives. We need to know the chunk size
5837 * raid4 - trivial - just use a raid4 layout.
5838 * raid6 - Providing it is a *_6 layout
5840 if (mddev
->level
== 0)
5841 return raid45_takeover_raid0(mddev
, 5);
5842 if (mddev
->level
== 1)
5843 return raid5_takeover_raid1(mddev
);
5844 if (mddev
->level
== 4) {
5845 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5846 mddev
->new_level
= 5;
5847 return setup_conf(mddev
);
5849 if (mddev
->level
== 6)
5850 return raid5_takeover_raid6(mddev
);
5852 return ERR_PTR(-EINVAL
);
5855 static void *raid4_takeover(mddev_t
*mddev
)
5857 /* raid4 can take over:
5858 * raid0 - if there is only one strip zone
5859 * raid5 - if layout is right
5861 if (mddev
->level
== 0)
5862 return raid45_takeover_raid0(mddev
, 4);
5863 if (mddev
->level
== 5 &&
5864 mddev
->layout
== ALGORITHM_PARITY_N
) {
5865 mddev
->new_layout
= 0;
5866 mddev
->new_level
= 4;
5867 return setup_conf(mddev
);
5869 return ERR_PTR(-EINVAL
);
5872 static struct mdk_personality raid5_personality
;
5874 static void *raid6_takeover(mddev_t
*mddev
)
5876 /* Currently can only take over a raid5. We map the
5877 * personality to an equivalent raid6 personality
5878 * with the Q block at the end.
5882 if (mddev
->pers
!= &raid5_personality
)
5883 return ERR_PTR(-EINVAL
);
5884 if (mddev
->degraded
> 1)
5885 return ERR_PTR(-EINVAL
);
5886 if (mddev
->raid_disks
> 253)
5887 return ERR_PTR(-EINVAL
);
5888 if (mddev
->raid_disks
< 3)
5889 return ERR_PTR(-EINVAL
);
5891 switch (mddev
->layout
) {
5892 case ALGORITHM_LEFT_ASYMMETRIC
:
5893 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5895 case ALGORITHM_RIGHT_ASYMMETRIC
:
5896 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5898 case ALGORITHM_LEFT_SYMMETRIC
:
5899 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5901 case ALGORITHM_RIGHT_SYMMETRIC
:
5902 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5904 case ALGORITHM_PARITY_0
:
5905 new_layout
= ALGORITHM_PARITY_0_6
;
5907 case ALGORITHM_PARITY_N
:
5908 new_layout
= ALGORITHM_PARITY_N
;
5911 return ERR_PTR(-EINVAL
);
5913 mddev
->new_level
= 6;
5914 mddev
->new_layout
= new_layout
;
5915 mddev
->delta_disks
= 1;
5916 mddev
->raid_disks
+= 1;
5917 return setup_conf(mddev
);
5921 static struct mdk_personality raid6_personality
=
5925 .owner
= THIS_MODULE
,
5926 .make_request
= make_request
,
5930 .error_handler
= error
,
5931 .hot_add_disk
= raid5_add_disk
,
5932 .hot_remove_disk
= raid5_remove_disk
,
5933 .spare_active
= raid5_spare_active
,
5934 .sync_request
= sync_request
,
5935 .resize
= raid5_resize
,
5937 .check_reshape
= raid6_check_reshape
,
5938 .start_reshape
= raid5_start_reshape
,
5939 .finish_reshape
= raid5_finish_reshape
,
5940 .quiesce
= raid5_quiesce
,
5941 .takeover
= raid6_takeover
,
5943 static struct mdk_personality raid5_personality
=
5947 .owner
= THIS_MODULE
,
5948 .make_request
= make_request
,
5952 .error_handler
= error
,
5953 .hot_add_disk
= raid5_add_disk
,
5954 .hot_remove_disk
= raid5_remove_disk
,
5955 .spare_active
= raid5_spare_active
,
5956 .sync_request
= sync_request
,
5957 .resize
= raid5_resize
,
5959 .check_reshape
= raid5_check_reshape
,
5960 .start_reshape
= raid5_start_reshape
,
5961 .finish_reshape
= raid5_finish_reshape
,
5962 .quiesce
= raid5_quiesce
,
5963 .takeover
= raid5_takeover
,
5966 static struct mdk_personality raid4_personality
=
5970 .owner
= THIS_MODULE
,
5971 .make_request
= make_request
,
5975 .error_handler
= error
,
5976 .hot_add_disk
= raid5_add_disk
,
5977 .hot_remove_disk
= raid5_remove_disk
,
5978 .spare_active
= raid5_spare_active
,
5979 .sync_request
= sync_request
,
5980 .resize
= raid5_resize
,
5982 .check_reshape
= raid5_check_reshape
,
5983 .start_reshape
= raid5_start_reshape
,
5984 .finish_reshape
= raid5_finish_reshape
,
5985 .quiesce
= raid5_quiesce
,
5986 .takeover
= raid4_takeover
,
5989 static int __init
raid5_init(void)
5991 register_md_personality(&raid6_personality
);
5992 register_md_personality(&raid5_personality
);
5993 register_md_personality(&raid4_personality
);
5997 static void raid5_exit(void)
5999 unregister_md_personality(&raid6_personality
);
6000 unregister_md_personality(&raid5_personality
);
6001 unregister_md_personality(&raid4_personality
);
6004 module_init(raid5_init
);
6005 module_exit(raid5_exit
);
6006 MODULE_LICENSE("GPL");
6007 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6008 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6009 MODULE_ALIAS("md-raid5");
6010 MODULE_ALIAS("md-raid4");
6011 MODULE_ALIAS("md-level-5");
6012 MODULE_ALIAS("md-level-4");
6013 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6014 MODULE_ALIAS("md-raid6");
6015 MODULE_ALIAS("md-level-6");
6017 /* This used to be two separate modules, they were: */
6018 MODULE_ALIAS("raid5");
6019 MODULE_ALIAS("raid6");