2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init
ath9k_init(void)
37 module_init(ath9k_init
);
39 static void __exit
ath9k_exit(void)
43 module_exit(ath9k_exit
);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
49 ath9k_hw_private_ops(ah
)->init_cal_settings(ah
);
52 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
54 ath9k_hw_private_ops(ah
)->init_mode_regs(ah
);
57 static u32
ath9k_hw_compute_pll_control(struct ath_hw
*ah
,
58 struct ath9k_channel
*chan
)
60 return ath9k_hw_private_ops(ah
)->compute_pll_control(ah
, chan
);
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
65 if (!ath9k_hw_private_ops(ah
)->init_mode_gain_regs
)
68 ath9k_hw_private_ops(ah
)->init_mode_gain_regs(ah
);
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw
*ah
)
73 /* You will not have this callback if using the old ANI */
74 if (!ath9k_hw_private_ops(ah
)->ani_cache_ini_regs
)
77 ath9k_hw_private_ops(ah
)->ani_cache_ini_regs(ah
);
80 /********************/
81 /* Helper Functions */
82 /********************/
84 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
86 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
87 struct ath_common
*common
= ath9k_hw_common(ah
);
88 unsigned int clockrate
;
90 if (!ah
->curchan
) /* should really check for CCK instead */
91 clockrate
= ATH9K_CLOCK_RATE_CCK
;
92 else if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
93 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
94 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
95 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
97 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
99 if (conf_is_ht40(conf
))
102 common
->clockrate
= clockrate
;
105 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
107 struct ath_common
*common
= ath9k_hw_common(ah
);
109 return usecs
* common
->clockrate
;
112 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
116 BUG_ON(timeout
< AH_TIME_QUANTUM
);
118 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
119 if ((REG_READ(ah
, reg
) & mask
) == val
)
122 udelay(AH_TIME_QUANTUM
);
125 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_ANY
,
126 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
131 EXPORT_SYMBOL(ath9k_hw_wait
);
133 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
138 for (i
= 0, retval
= 0; i
< n
; i
++) {
139 retval
= (retval
<< 1) | (val
& 1);
145 bool ath9k_get_channel_edges(struct ath_hw
*ah
,
149 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
151 if (flags
& CHANNEL_5GHZ
) {
152 *low
= pCap
->low_5ghz_chan
;
153 *high
= pCap
->high_5ghz_chan
;
156 if ((flags
& CHANNEL_2GHZ
)) {
157 *low
= pCap
->low_2ghz_chan
;
158 *high
= pCap
->high_2ghz_chan
;
164 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
166 u32 frameLen
, u16 rateix
,
169 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
175 case WLAN_RC_PHY_CCK
:
176 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
179 numBits
= frameLen
<< 3;
180 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
182 case WLAN_RC_PHY_OFDM
:
183 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
184 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
185 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
186 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
187 txTime
= OFDM_SIFS_TIME_QUARTER
188 + OFDM_PREAMBLE_TIME_QUARTER
189 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
190 } else if (ah
->curchan
&&
191 IS_CHAN_HALF_RATE(ah
->curchan
)) {
192 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
193 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
194 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
195 txTime
= OFDM_SIFS_TIME_HALF
+
196 OFDM_PREAMBLE_TIME_HALF
197 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
199 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
200 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
201 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
202 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
203 + (numSymbols
* OFDM_SYMBOL_TIME
);
207 ath_err(ath9k_hw_common(ah
),
208 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
215 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
217 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
218 struct ath9k_channel
*chan
,
219 struct chan_centers
*centers
)
223 if (!IS_CHAN_HT40(chan
)) {
224 centers
->ctl_center
= centers
->ext_center
=
225 centers
->synth_center
= chan
->channel
;
229 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
230 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
231 centers
->synth_center
=
232 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
235 centers
->synth_center
=
236 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
240 centers
->ctl_center
=
241 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
242 /* 25 MHz spacing is supported by hw but not on upper layers */
243 centers
->ext_center
=
244 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
251 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
255 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
258 val
= REG_READ(ah
, AR_SREV
);
259 ah
->hw_version
.macVersion
=
260 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
261 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
262 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
264 if (!AR_SREV_9100(ah
))
265 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
267 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
269 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
270 ah
->is_pciexpress
= true;
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
278 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
280 if (!AR_SREV_5416(ah
))
283 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
284 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
285 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
286 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
287 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
288 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
289 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
290 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
291 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
293 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
299 struct ath_common
*common
= ath9k_hw_common(ah
);
300 u32 regAddr
[2] = { AR_STA_ID0
};
302 static const u32 patternData
[4] = {
303 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
309 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
313 for (i
= 0; i
< loop_max
; i
++) {
314 u32 addr
= regAddr
[i
];
317 regHold
[i
] = REG_READ(ah
, addr
);
318 for (j
= 0; j
< 0x100; j
++) {
319 wrData
= (j
<< 16) | j
;
320 REG_WRITE(ah
, addr
, wrData
);
321 rdData
= REG_READ(ah
, addr
);
322 if (rdData
!= wrData
) {
324 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 addr
, wrData
, rdData
);
329 for (j
= 0; j
< 4; j
++) {
330 wrData
= patternData
[j
];
331 REG_WRITE(ah
, addr
, wrData
);
332 rdData
= REG_READ(ah
, addr
);
333 if (wrData
!= rdData
) {
335 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 addr
, wrData
, rdData
);
340 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
347 static void ath9k_hw_init_config(struct ath_hw
*ah
)
351 ah
->config
.dma_beacon_response_time
= 2;
352 ah
->config
.sw_beacon_response_time
= 10;
353 ah
->config
.additional_swba_backoff
= 0;
354 ah
->config
.ack_6mb
= 0x0;
355 ah
->config
.cwm_ignore_extcca
= 0;
356 ah
->config
.pcie_powersave_enable
= 0;
357 ah
->config
.pcie_clock_req
= 0;
358 ah
->config
.pcie_waen
= 0;
359 ah
->config
.analog_shiftreg
= 1;
360 ah
->config
.enable_ani
= true;
362 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
363 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
364 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
367 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
368 ah
->config
.ht_enable
= 1;
370 ah
->config
.ht_enable
= 0;
372 /* PAPRD needs some more work to be enabled */
373 ah
->config
.paprd_disable
= 1;
375 ah
->config
.rx_intr_mitigation
= true;
376 ah
->config
.pcieSerDesWrite
= true;
379 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
380 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
381 * This means we use it for all AR5416 devices, and the few
382 * minor PCI AR9280 devices out there.
384 * Serialization is required because these devices do not handle
385 * well the case of two concurrent reads/writes due to the latency
386 * involved. During one read/write another read/write can be issued
387 * on another CPU while the previous read/write may still be working
388 * on our hardware, if we hit this case the hardware poops in a loop.
389 * We prevent this by serializing reads and writes.
391 * This issue is not present on PCI-Express devices or pre-AR5416
392 * devices (legacy, 802.11abg).
394 if (num_possible_cpus() > 1)
395 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
398 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
400 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
402 regulatory
->country_code
= CTRY_DEFAULT
;
403 regulatory
->power_limit
= MAX_RATE_POWER
;
404 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
406 ah
->hw_version
.magic
= AR5416_MAGIC
;
407 ah
->hw_version
.subvendorid
= 0;
410 ah
->sta_id1_defaults
=
411 AR_STA_ID1_CRPT_MIC_ENABLE
|
412 AR_STA_ID1_MCAST_KSRCH
;
413 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
415 ah
->globaltxtimeout
= (u32
) -1;
416 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
419 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
421 struct ath_common
*common
= ath9k_hw_common(ah
);
425 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
428 for (i
= 0; i
< 3; i
++) {
429 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
431 common
->macaddr
[2 * i
] = eeval
>> 8;
432 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
434 if (sum
== 0 || sum
== 0xffff * 3)
435 return -EADDRNOTAVAIL
;
440 static int ath9k_hw_post_init(struct ath_hw
*ah
)
442 struct ath_common
*common
= ath9k_hw_common(ah
);
445 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
446 if (!ath9k_hw_chip_test(ah
))
450 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
451 ecode
= ar9002_hw_rf_claim(ah
);
456 ecode
= ath9k_hw_eeprom_init(ah
);
460 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_CONFIG
,
461 "Eeprom VER: %d, REV: %d\n",
462 ah
->eep_ops
->get_eeprom_ver(ah
),
463 ah
->eep_ops
->get_eeprom_rev(ah
));
465 ecode
= ath9k_hw_rf_alloc_ext_banks(ah
);
467 ath_err(ath9k_hw_common(ah
),
468 "Failed allocating banks for external radio\n");
469 ath9k_hw_rf_free_ext_banks(ah
);
473 if (!AR_SREV_9100(ah
)) {
474 ath9k_hw_ani_setup(ah
);
475 ath9k_hw_ani_init(ah
);
481 static void ath9k_hw_attach_ops(struct ath_hw
*ah
)
483 if (AR_SREV_9300_20_OR_LATER(ah
))
484 ar9003_hw_attach_ops(ah
);
486 ar9002_hw_attach_ops(ah
);
489 /* Called for all hardware families */
490 static int __ath9k_hw_init(struct ath_hw
*ah
)
492 struct ath_common
*common
= ath9k_hw_common(ah
);
495 if (ah
->hw_version
.devid
== AR5416_AR9100_DEVID
)
496 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
498 ath9k_hw_read_revisions(ah
);
501 * Read back AR_WA into a permanent copy and set bits 14 and 17.
502 * We need to do this to avoid RMW of this register. We cannot
503 * read the reg when chip is asleep.
505 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
506 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
507 AR_WA_ASPM_TIMER_BASED_DISABLE
);
509 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
510 ath_err(common
, "Couldn't reset chip\n");
514 ath9k_hw_init_defaults(ah
);
515 ath9k_hw_init_config(ah
);
517 ath9k_hw_attach_ops(ah
);
519 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
520 ath_err(common
, "Couldn't wakeup chip\n");
524 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
525 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
526 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
)) &&
527 !ah
->is_pciexpress
)) {
528 ah
->config
.serialize_regmode
=
531 ah
->config
.serialize_regmode
=
536 ath_dbg(common
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
537 ah
->config
.serialize_regmode
);
539 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
540 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
542 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
544 switch (ah
->hw_version
.macVersion
) {
545 case AR_SREV_VERSION_5416_PCI
:
546 case AR_SREV_VERSION_5416_PCIE
:
547 case AR_SREV_VERSION_9160
:
548 case AR_SREV_VERSION_9100
:
549 case AR_SREV_VERSION_9280
:
550 case AR_SREV_VERSION_9285
:
551 case AR_SREV_VERSION_9287
:
552 case AR_SREV_VERSION_9271
:
553 case AR_SREV_VERSION_9300
:
554 case AR_SREV_VERSION_9485
:
558 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
559 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
563 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
))
564 ah
->is_pciexpress
= false;
566 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
567 ath9k_hw_init_cal_settings(ah
);
569 ah
->ani_function
= ATH9K_ANI_ALL
;
570 if (AR_SREV_9280_20_OR_LATER(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
571 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
572 if (!AR_SREV_9300_20_OR_LATER(ah
))
573 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
575 ath9k_hw_init_mode_regs(ah
);
578 if (ah
->is_pciexpress
)
579 ath9k_hw_configpcipowersave(ah
, 0, 0);
581 ath9k_hw_disablepcie(ah
);
583 if (!AR_SREV_9300_20_OR_LATER(ah
))
584 ar9002_hw_cck_chan14_spread(ah
);
586 r
= ath9k_hw_post_init(ah
);
590 ath9k_hw_init_mode_gain_regs(ah
);
591 r
= ath9k_hw_fill_cap_info(ah
);
595 r
= ath9k_hw_init_macaddr(ah
);
597 ath_err(common
, "Failed to initialize MAC address\n");
601 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
602 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
604 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
606 ah
->bb_watchdog_timeout_ms
= 25;
608 common
->state
= ATH_HW_INITIALIZED
;
613 int ath9k_hw_init(struct ath_hw
*ah
)
616 struct ath_common
*common
= ath9k_hw_common(ah
);
618 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
619 switch (ah
->hw_version
.devid
) {
620 case AR5416_DEVID_PCI
:
621 case AR5416_DEVID_PCIE
:
622 case AR5416_AR9100_DEVID
:
623 case AR9160_DEVID_PCI
:
624 case AR9280_DEVID_PCI
:
625 case AR9280_DEVID_PCIE
:
626 case AR9285_DEVID_PCIE
:
627 case AR9287_DEVID_PCI
:
628 case AR9287_DEVID_PCIE
:
629 case AR2427_DEVID_PCIE
:
630 case AR9300_DEVID_PCIE
:
631 case AR9300_DEVID_AR9485_PCIE
:
634 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
636 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
637 ah
->hw_version
.devid
);
641 ret
= __ath9k_hw_init(ah
);
644 "Unable to initialize hardware; initialization status: %d\n",
651 EXPORT_SYMBOL(ath9k_hw_init
);
653 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
655 ENABLE_REGWRITE_BUFFER(ah
);
657 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
658 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
660 REG_WRITE(ah
, AR_QOS_NO_ACK
,
661 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
662 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
663 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
665 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
666 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
667 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
668 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
669 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
671 REGWRITE_BUFFER_FLUSH(ah
);
674 unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
676 REG_WRITE(ah
, PLL3
, (REG_READ(ah
, PLL3
) & ~(PLL3_DO_MEAS_MASK
)));
678 REG_WRITE(ah
, PLL3
, (REG_READ(ah
, PLL3
) | PLL3_DO_MEAS_MASK
));
680 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0)
683 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
685 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
687 #define DPLL2_KD_VAL 0x3D
688 #define DPLL2_KI_VAL 0x06
689 #define DPLL3_PHASE_SHIFT_VAL 0x1
691 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
692 struct ath9k_channel
*chan
)
696 if (AR_SREV_9485(ah
)) {
697 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, 0x886666);
698 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, 0x19e82f01);
700 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
701 AR_CH0_DPLL3_PHASE_SHIFT
, DPLL3_PHASE_SHIFT_VAL
);
703 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
706 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, 0x886666);
708 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
709 AR_CH0_DPLL2_KD
, DPLL2_KD_VAL
);
710 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
711 AR_CH0_DPLL2_KI
, DPLL2_KI_VAL
);
713 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
714 AR_CH0_DPLL3_PHASE_SHIFT
, DPLL3_PHASE_SHIFT_VAL
);
715 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x142c);
719 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
721 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
723 /* Switch the core clock for ar9271 to 117Mhz */
724 if (AR_SREV_9271(ah
)) {
726 REG_WRITE(ah
, 0x50040, 0x304);
729 udelay(RTC_PLL_SETTLE_DELAY
);
731 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
734 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
735 enum nl80211_iftype opmode
)
737 u32 imr_reg
= AR_IMR_TXERR
|
743 if (AR_SREV_9300_20_OR_LATER(ah
)) {
744 imr_reg
|= AR_IMR_RXOK_HP
;
745 if (ah
->config
.rx_intr_mitigation
)
746 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
748 imr_reg
|= AR_IMR_RXOK_LP
;
751 if (ah
->config
.rx_intr_mitigation
)
752 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
754 imr_reg
|= AR_IMR_RXOK
;
757 if (ah
->config
.tx_intr_mitigation
)
758 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
760 imr_reg
|= AR_IMR_TXOK
;
762 if (opmode
== NL80211_IFTYPE_AP
)
763 imr_reg
|= AR_IMR_MIB
;
765 ENABLE_REGWRITE_BUFFER(ah
);
767 REG_WRITE(ah
, AR_IMR
, imr_reg
);
768 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
769 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
771 if (!AR_SREV_9100(ah
)) {
772 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
773 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, AR_INTR_SYNC_DEFAULT
);
774 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
777 REGWRITE_BUFFER_FLUSH(ah
);
779 if (AR_SREV_9300_20_OR_LATER(ah
)) {
780 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
781 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
782 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
783 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
787 static void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
789 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
790 val
= min(val
, (u32
) 0xFFFF);
791 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
794 static void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
796 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
797 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
798 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
801 static void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
803 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
804 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
805 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
808 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
811 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_XMIT
,
812 "bad global tx timeout %u\n", tu
);
813 ah
->globaltxtimeout
= (u32
) -1;
816 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
817 ah
->globaltxtimeout
= tu
;
822 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
824 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
829 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
832 if (ah
->misc_mode
!= 0)
833 REG_WRITE(ah
, AR_PCU_MISC
,
834 REG_READ(ah
, AR_PCU_MISC
) | ah
->misc_mode
);
836 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_5GHZ
)
841 /* As defined by IEEE 802.11-2007 17.3.8.6 */
842 slottime
= ah
->slottime
+ 3 * ah
->coverage_class
;
843 acktimeout
= slottime
+ sifstime
;
846 * Workaround for early ACK timeouts, add an offset to match the
847 * initval's 64us ack timeout value.
848 * This was initially only meant to work around an issue with delayed
849 * BA frames in some implementations, but it has been found to fix ACK
850 * timeout issues in other cases as well.
852 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
853 acktimeout
+= 64 - sifstime
- ah
->slottime
;
855 ath9k_hw_setslottime(ah
, ah
->slottime
);
856 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
857 ath9k_hw_set_cts_timeout(ah
, acktimeout
);
858 if (ah
->globaltxtimeout
!= (u32
) -1)
859 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
861 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
863 void ath9k_hw_deinit(struct ath_hw
*ah
)
865 struct ath_common
*common
= ath9k_hw_common(ah
);
867 if (common
->state
< ATH_HW_INITIALIZED
)
870 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
873 ath9k_hw_rf_free_ext_banks(ah
);
875 EXPORT_SYMBOL(ath9k_hw_deinit
);
881 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
883 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
887 else if (IS_CHAN_G(chan
))
895 /****************************************/
896 /* Reset and Channel Switching Routines */
897 /****************************************/
899 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
901 struct ath_common
*common
= ath9k_hw_common(ah
);
904 ENABLE_REGWRITE_BUFFER(ah
);
907 * set AHB_MODE not to do cacheline prefetches
909 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
910 regval
= REG_READ(ah
, AR_AHB_MODE
);
911 REG_WRITE(ah
, AR_AHB_MODE
, regval
| AR_AHB_PREFETCH_RD_EN
);
915 * let mac dma reads be in 128 byte chunks
917 regval
= REG_READ(ah
, AR_TXCFG
) & ~AR_TXCFG_DMASZ_MASK
;
918 REG_WRITE(ah
, AR_TXCFG
, regval
| AR_TXCFG_DMASZ_128B
);
920 REGWRITE_BUFFER_FLUSH(ah
);
923 * Restore TX Trigger Level to its pre-reset value.
924 * The initial value depends on whether aggregation is enabled, and is
925 * adjusted whenever underruns are detected.
927 if (!AR_SREV_9300_20_OR_LATER(ah
))
928 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
930 ENABLE_REGWRITE_BUFFER(ah
);
933 * let mac dma writes be in 128 byte chunks
935 regval
= REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_DMASZ_MASK
;
936 REG_WRITE(ah
, AR_RXCFG
, regval
| AR_RXCFG_DMASZ_128B
);
939 * Setup receive FIFO threshold to hold off TX activities
941 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
943 if (AR_SREV_9300_20_OR_LATER(ah
)) {
944 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
945 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
947 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
948 ah
->caps
.rx_status_len
);
952 * reduce the number of usable entries in PCU TXBUF to avoid
953 * wrap around issues.
955 if (AR_SREV_9285(ah
)) {
956 /* For AR9285 the number of Fifos are reduced to half.
957 * So set the usable tx buf size also to half to
958 * avoid data/delimiter underruns
960 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
961 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
962 } else if (!AR_SREV_9271(ah
)) {
963 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
964 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
967 REGWRITE_BUFFER_FLUSH(ah
);
969 if (AR_SREV_9300_20_OR_LATER(ah
))
970 ath9k_hw_reset_txstatus_ring(ah
);
973 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
977 val
= REG_READ(ah
, AR_STA_ID1
);
978 val
&= ~(AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
);
980 case NL80211_IFTYPE_AP
:
981 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_STA_AP
982 | AR_STA_ID1_KSRCH_MODE
);
983 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
985 case NL80211_IFTYPE_ADHOC
:
986 case NL80211_IFTYPE_MESH_POINT
:
987 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_ADHOC
988 | AR_STA_ID1_KSRCH_MODE
);
989 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
991 case NL80211_IFTYPE_STATION
:
992 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
995 if (ah
->is_monitoring
)
996 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
1001 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1002 u32
*coef_mantissa
, u32
*coef_exponent
)
1004 u32 coef_exp
, coef_man
;
1006 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1007 if ((coef_scaled
>> coef_exp
) & 0x1)
1010 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1012 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1014 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1015 *coef_exponent
= coef_exp
- 16;
1018 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1023 if (AR_SREV_9100(ah
)) {
1024 u32 val
= REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1025 val
&= ~AR_RTC_DERIVED_CLK_PERIOD
;
1026 val
|= SM(1, AR_RTC_DERIVED_CLK_PERIOD
);
1027 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, val
);
1028 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1031 ENABLE_REGWRITE_BUFFER(ah
);
1033 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1034 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1038 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1039 AR_RTC_FORCE_WAKE_ON_INT
);
1041 if (AR_SREV_9100(ah
)) {
1042 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1043 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1045 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1047 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1048 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1050 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1053 if (!AR_SREV_9300_20_OR_LATER(ah
))
1055 REG_WRITE(ah
, AR_RC
, val
);
1057 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1058 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1060 rst_flags
= AR_RTC_RC_MAC_WARM
;
1061 if (type
== ATH9K_RESET_COLD
)
1062 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1065 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1067 REGWRITE_BUFFER_FLUSH(ah
);
1071 REG_WRITE(ah
, AR_RTC_RC
, 0);
1072 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1073 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1074 "RTC stuck in MAC reset\n");
1078 if (!AR_SREV_9100(ah
))
1079 REG_WRITE(ah
, AR_RC
, 0);
1081 if (AR_SREV_9100(ah
))
1087 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1089 ENABLE_REGWRITE_BUFFER(ah
);
1091 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1092 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1096 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1097 AR_RTC_FORCE_WAKE_ON_INT
);
1099 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1100 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1102 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1104 REGWRITE_BUFFER_FLUSH(ah
);
1106 if (!AR_SREV_9300_20_OR_LATER(ah
))
1109 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1110 REG_WRITE(ah
, AR_RC
, 0);
1112 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1114 if (!ath9k_hw_wait(ah
,
1119 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1120 "RTC not waking up\n");
1124 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1127 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1129 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1130 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1134 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1135 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1138 case ATH9K_RESET_POWER_ON
:
1139 return ath9k_hw_set_reset_power_on(ah
);
1140 case ATH9K_RESET_WARM
:
1141 case ATH9K_RESET_COLD
:
1142 return ath9k_hw_set_reset(ah
, type
);
1148 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1149 struct ath9k_channel
*chan
)
1151 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1152 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1154 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1157 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1160 ah
->chip_fullsleep
= false;
1161 ath9k_hw_init_pll(ah
, chan
);
1162 ath9k_hw_set_rfmode(ah
, chan
);
1167 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1168 struct ath9k_channel
*chan
)
1170 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1171 struct ath_common
*common
= ath9k_hw_common(ah
);
1172 struct ieee80211_channel
*channel
= chan
->chan
;
1176 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1177 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1178 ath_dbg(common
, ATH_DBG_QUEUE
,
1179 "Transmit frames pending on queue %d\n", qnum
);
1184 if (!ath9k_hw_rfbus_req(ah
)) {
1185 ath_err(common
, "Could not kill baseband RX\n");
1189 ath9k_hw_set_channel_regs(ah
, chan
);
1191 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1193 ath_err(common
, "Failed to set channel\n");
1196 ath9k_hw_set_clockrate(ah
);
1198 ah
->eep_ops
->set_txpower(ah
, chan
,
1199 ath9k_regd_get_ctl(regulatory
, chan
),
1200 channel
->max_antenna_gain
* 2,
1201 channel
->max_power
* 2,
1202 min((u32
) MAX_RATE_POWER
,
1203 (u32
) regulatory
->power_limit
), false);
1205 ath9k_hw_rfbus_done(ah
);
1207 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1208 ath9k_hw_set_delta_slope(ah
, chan
);
1210 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1215 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1220 if (AR_SREV_9285_12_OR_LATER(ah
))
1224 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1226 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1229 switch (reg
& 0x7E000B00) {
1237 } while (count
-- > 0);
1241 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1243 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1244 struct ath9k_hw_cal_data
*caldata
, bool bChannelChange
)
1246 struct ath_common
*common
= ath9k_hw_common(ah
);
1248 struct ath9k_channel
*curchan
= ah
->curchan
;
1254 ah
->txchainmask
= common
->tx_chainmask
;
1255 ah
->rxchainmask
= common
->rx_chainmask
;
1257 if ((common
->bus_ops
->ath_bus_type
!= ATH_USB
) && !ah
->chip_fullsleep
) {
1258 ath9k_hw_abortpcurecv(ah
);
1259 if (!ath9k_hw_stopdmarecv(ah
)) {
1260 ath_dbg(common
, ATH_DBG_XMIT
,
1261 "Failed to stop receive dma\n");
1262 bChannelChange
= false;
1266 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1269 if (curchan
&& !ah
->chip_fullsleep
)
1270 ath9k_hw_getnf(ah
, curchan
);
1272 ah
->caldata
= caldata
;
1274 (chan
->channel
!= caldata
->channel
||
1275 (chan
->channelFlags
& ~CHANNEL_CW_INT
) !=
1276 (caldata
->channelFlags
& ~CHANNEL_CW_INT
))) {
1277 /* Operating channel changed, reset channel calibration data */
1278 memset(caldata
, 0, sizeof(*caldata
));
1279 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1282 if (bChannelChange
&&
1283 (ah
->chip_fullsleep
!= true) &&
1284 (ah
->curchan
!= NULL
) &&
1285 (chan
->channel
!= ah
->curchan
->channel
) &&
1286 ((chan
->channelFlags
& CHANNEL_ALL
) ==
1287 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
1288 (!AR_SREV_9280(ah
) || AR_DEVID_7010(ah
))) {
1290 if (ath9k_hw_channel_change(ah
, chan
)) {
1291 ath9k_hw_loadnf(ah
, ah
->curchan
);
1292 ath9k_hw_start_nfcal(ah
, true);
1293 if (AR_SREV_9271(ah
))
1294 ar9002_hw_load_ani_reg(ah
, chan
);
1299 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1300 if (saveDefAntenna
== 0)
1303 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1305 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1306 if (AR_SREV_9100(ah
) ||
1307 (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)))
1308 tsf
= ath9k_hw_gettsf64(ah
);
1310 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1311 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1312 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1314 ath9k_hw_mark_phy_inactive(ah
);
1316 ah
->paprd_table_write_done
= false;
1318 /* Only required on the first reset */
1319 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1321 AR9271_RESET_POWER_DOWN_CONTROL
,
1322 AR9271_RADIO_RF_RST
);
1326 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1327 ath_err(common
, "Chip reset failed\n");
1331 /* Only required on the first reset */
1332 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1333 ah
->htc_reset_init
= false;
1335 AR9271_RESET_POWER_DOWN_CONTROL
,
1336 AR9271_GATE_MAC_CTL
);
1342 ath9k_hw_settsf64(ah
, tsf
);
1344 if (AR_SREV_9280_20_OR_LATER(ah
))
1345 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1347 if (!AR_SREV_9300_20_OR_LATER(ah
))
1348 ar9002_hw_enable_async_fifo(ah
);
1350 r
= ath9k_hw_process_ini(ah
, chan
);
1355 * Some AR91xx SoC devices frequently fail to accept TSF writes
1356 * right after the chip reset. When that happens, write a new
1357 * value after the initvals have been applied, with an offset
1358 * based on measured time difference
1360 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1362 ath9k_hw_settsf64(ah
, tsf
);
1365 /* Setup MFP options for CCMP */
1366 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1367 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1368 * frames when constructing CCMP AAD. */
1369 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1371 ah
->sw_mgmt_crypto
= false;
1372 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1373 /* Disable hardware crypto for management frames */
1374 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1375 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1376 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1377 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1378 ah
->sw_mgmt_crypto
= true;
1380 ah
->sw_mgmt_crypto
= true;
1382 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1383 ath9k_hw_set_delta_slope(ah
, chan
);
1385 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1386 ah
->eep_ops
->set_board_values(ah
, chan
);
1388 ENABLE_REGWRITE_BUFFER(ah
);
1390 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(common
->macaddr
));
1391 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(common
->macaddr
+ 4)
1393 | AR_STA_ID1_RTS_USE_DEF
1395 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
1396 | ah
->sta_id1_defaults
);
1397 ath_hw_setbssidmask(common
);
1398 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1399 ath9k_hw_write_associd(ah
);
1400 REG_WRITE(ah
, AR_ISR
, ~0);
1401 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1403 REGWRITE_BUFFER_FLUSH(ah
);
1405 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1407 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1411 ath9k_hw_set_clockrate(ah
);
1413 ENABLE_REGWRITE_BUFFER(ah
);
1415 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1416 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1418 REGWRITE_BUFFER_FLUSH(ah
);
1421 for (i
= 0; i
< ah
->caps
.total_queues
; i
++)
1422 ath9k_hw_resettxqueue(ah
, i
);
1424 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1425 ath9k_hw_ani_cache_ini_regs(ah
);
1426 ath9k_hw_init_qos(ah
);
1428 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1429 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
1431 ath9k_hw_init_global_settings(ah
);
1433 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
1434 ar9002_hw_update_async_fifo(ah
);
1435 ar9002_hw_enable_wep_aggregation(ah
);
1438 REG_WRITE(ah
, AR_STA_ID1
,
1439 REG_READ(ah
, AR_STA_ID1
) | AR_STA_ID1_PRESERVE_SEQNUM
);
1441 ath9k_hw_set_dma(ah
);
1443 REG_WRITE(ah
, AR_OBS
, 8);
1445 if (ah
->config
.rx_intr_mitigation
) {
1446 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
1447 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
1450 if (ah
->config
.tx_intr_mitigation
) {
1451 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1452 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1455 ath9k_hw_init_bb(ah
, chan
);
1457 if (!ath9k_hw_init_cal(ah
, chan
))
1460 ENABLE_REGWRITE_BUFFER(ah
);
1462 ath9k_hw_restore_chainmask(ah
);
1463 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
1465 REGWRITE_BUFFER_FLUSH(ah
);
1468 * For big endian systems turn on swapping for descriptors
1470 if (AR_SREV_9100(ah
)) {
1472 mask
= REG_READ(ah
, AR_CFG
);
1473 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1474 ath_dbg(common
, ATH_DBG_RESET
,
1475 "CFG Byte Swap Set 0x%x\n", mask
);
1478 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1479 REG_WRITE(ah
, AR_CFG
, mask
);
1480 ath_dbg(common
, ATH_DBG_RESET
,
1481 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
1484 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1485 /* Configure AR9271 target WLAN */
1486 if (AR_SREV_9271(ah
))
1487 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1489 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1493 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1497 if (ah
->btcoex_hw
.enabled
)
1498 ath9k_hw_btcoex_enable(ah
);
1500 if (AR_SREV_9300_20_OR_LATER(ah
))
1501 ar9003_hw_bb_watchdog_config(ah
);
1505 EXPORT_SYMBOL(ath9k_hw_reset
);
1507 /******************************/
1508 /* Power Management (Chipset) */
1509 /******************************/
1512 * Notify Power Mgt is disabled in self-generated frames.
1513 * If requested, force chip to sleep.
1515 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
1517 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1520 * Clear the RTC force wake bit to allow the
1521 * mac to go to sleep.
1523 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1524 AR_RTC_FORCE_WAKE_EN
);
1525 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1526 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1528 /* Shutdown chip. Active low */
1529 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
))
1530 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
1534 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1535 if (AR_SREV_9300_20_OR_LATER(ah
))
1536 REG_WRITE(ah
, AR_WA
,
1537 ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1541 * Notify Power Management is enabled in self-generating
1542 * frames. If request, set power mode of chip to
1543 * auto/normal. Duration in units of 128us (1/8 TU).
1545 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
1547 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1549 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1551 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1552 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1553 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1554 AR_RTC_FORCE_WAKE_ON_INT
);
1557 * Clear the RTC force wake bit to allow the
1558 * mac to go to sleep.
1560 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1561 AR_RTC_FORCE_WAKE_EN
);
1565 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1566 if (AR_SREV_9300_20_OR_LATER(ah
))
1567 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1570 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
1575 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1576 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1577 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1582 if ((REG_READ(ah
, AR_RTC_STATUS
) &
1583 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
1584 if (ath9k_hw_set_reset_reg(ah
,
1585 ATH9K_RESET_POWER_ON
) != true) {
1588 if (!AR_SREV_9300_20_OR_LATER(ah
))
1589 ath9k_hw_init_pll(ah
, NULL
);
1591 if (AR_SREV_9100(ah
))
1592 REG_SET_BIT(ah
, AR_RTC_RESET
,
1595 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1596 AR_RTC_FORCE_WAKE_EN
);
1599 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
1600 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
1601 if (val
== AR_RTC_STATUS_ON
)
1604 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1605 AR_RTC_FORCE_WAKE_EN
);
1608 ath_err(ath9k_hw_common(ah
),
1609 "Failed to wakeup in %uus\n",
1610 POWER_UP_TIME
/ 20);
1615 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1620 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
1622 struct ath_common
*common
= ath9k_hw_common(ah
);
1623 int status
= true, setChip
= true;
1624 static const char *modes
[] = {
1631 if (ah
->power_mode
== mode
)
1634 ath_dbg(common
, ATH_DBG_RESET
, "%s -> %s\n",
1635 modes
[ah
->power_mode
], modes
[mode
]);
1638 case ATH9K_PM_AWAKE
:
1639 status
= ath9k_hw_set_power_awake(ah
, setChip
);
1641 case ATH9K_PM_FULL_SLEEP
:
1642 ath9k_set_power_sleep(ah
, setChip
);
1643 ah
->chip_fullsleep
= true;
1645 case ATH9K_PM_NETWORK_SLEEP
:
1646 ath9k_set_power_network_sleep(ah
, setChip
);
1649 ath_err(common
, "Unknown power mode %u\n", mode
);
1652 ah
->power_mode
= mode
;
1655 * XXX: If this warning never comes up after a while then
1656 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1657 * ath9k_hw_setpower() return type void.
1660 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
1661 ATH_DBG_WARN_ON_ONCE(!status
);
1665 EXPORT_SYMBOL(ath9k_hw_setpower
);
1667 /*******************/
1668 /* Beacon Handling */
1669 /*******************/
1671 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
1675 ENABLE_REGWRITE_BUFFER(ah
);
1677 switch (ah
->opmode
) {
1678 case NL80211_IFTYPE_ADHOC
:
1679 case NL80211_IFTYPE_MESH_POINT
:
1680 REG_SET_BIT(ah
, AR_TXCFG
,
1681 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
1682 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
,
1683 TU_TO_USEC(next_beacon
+
1684 (ah
->atim_window
? ah
->
1686 flags
|= AR_NDP_TIMER_EN
;
1687 case NL80211_IFTYPE_AP
:
1688 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
1689 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
,
1690 TU_TO_USEC(next_beacon
-
1692 dma_beacon_response_time
));
1693 REG_WRITE(ah
, AR_NEXT_SWBA
,
1694 TU_TO_USEC(next_beacon
-
1696 sw_beacon_response_time
));
1698 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
1701 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_BEACON
,
1702 "%s: unsupported opmode: %d\n",
1703 __func__
, ah
->opmode
);
1708 REG_WRITE(ah
, AR_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
1709 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
1710 REG_WRITE(ah
, AR_SWBA_PERIOD
, TU_TO_USEC(beacon_period
));
1711 REG_WRITE(ah
, AR_NDP_PERIOD
, TU_TO_USEC(beacon_period
));
1713 REGWRITE_BUFFER_FLUSH(ah
);
1715 beacon_period
&= ~ATH9K_BEACON_ENA
;
1716 if (beacon_period
& ATH9K_BEACON_RESET_TSF
) {
1717 ath9k_hw_reset_tsf(ah
);
1720 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
1722 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
1724 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
1725 const struct ath9k_beacon_state
*bs
)
1727 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
1728 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1729 struct ath_common
*common
= ath9k_hw_common(ah
);
1731 ENABLE_REGWRITE_BUFFER(ah
);
1733 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
1735 REG_WRITE(ah
, AR_BEACON_PERIOD
,
1736 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
1737 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
1738 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
1740 REGWRITE_BUFFER_FLUSH(ah
);
1742 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
1743 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
1745 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
1747 if (bs
->bs_sleepduration
> beaconintval
)
1748 beaconintval
= bs
->bs_sleepduration
;
1750 dtimperiod
= bs
->bs_dtimperiod
;
1751 if (bs
->bs_sleepduration
> dtimperiod
)
1752 dtimperiod
= bs
->bs_sleepduration
;
1754 if (beaconintval
== dtimperiod
)
1755 nextTbtt
= bs
->bs_nextdtim
;
1757 nextTbtt
= bs
->bs_nexttbtt
;
1759 ath_dbg(common
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
1760 ath_dbg(common
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
1761 ath_dbg(common
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
1762 ath_dbg(common
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
1764 ENABLE_REGWRITE_BUFFER(ah
);
1766 REG_WRITE(ah
, AR_NEXT_DTIM
,
1767 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
1768 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
1770 REG_WRITE(ah
, AR_SLEEP1
,
1771 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
1772 | AR_SLEEP1_ASSUME_DTIM
);
1774 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
1775 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
1777 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
1779 REG_WRITE(ah
, AR_SLEEP2
,
1780 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
1782 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
1783 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
1785 REGWRITE_BUFFER_FLUSH(ah
);
1787 REG_SET_BIT(ah
, AR_TIMER_MODE
,
1788 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
1791 /* TSF Out of Range Threshold */
1792 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
1794 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
1796 /*******************/
1797 /* HW Capabilities */
1798 /*******************/
1800 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
1802 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1803 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1804 struct ath_common
*common
= ath9k_hw_common(ah
);
1805 struct ath_btcoex_hw
*btcoex_hw
= &ah
->btcoex_hw
;
1807 u16 capField
= 0, eeval
;
1808 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
1810 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
1811 regulatory
->current_rd
= eeval
;
1813 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
1814 if (AR_SREV_9285_12_OR_LATER(ah
))
1815 eeval
|= AR9285_RDEXT_DEFAULT
;
1816 regulatory
->current_rd_ext
= eeval
;
1818 capField
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_CAP
);
1820 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
1821 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
1822 if (regulatory
->current_rd
== 0x64 ||
1823 regulatory
->current_rd
== 0x65)
1824 regulatory
->current_rd
+= 5;
1825 else if (regulatory
->current_rd
== 0x41)
1826 regulatory
->current_rd
= 0x43;
1827 ath_dbg(common
, ATH_DBG_REGULATORY
,
1828 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
1831 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
1832 if ((eeval
& (AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
)) == 0) {
1834 "no band has been marked as supported in EEPROM\n");
1838 if (eeval
& AR5416_OPFLAGS_11A
)
1839 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
1841 if (eeval
& AR5416_OPFLAGS_11G
)
1842 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
1844 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
1846 * For AR9271 we will temporarilly uses the rx chainmax as read from
1849 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
1850 !(eeval
& AR5416_OPFLAGS_11A
) &&
1851 !(AR_SREV_9271(ah
)))
1852 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1853 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
1855 /* Use rx_chainmask from EEPROM. */
1856 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
1858 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
1860 /* enable key search for every frame in an aggregate */
1861 if (AR_SREV_9300_20_OR_LATER(ah
))
1862 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
1864 pCap
->low_2ghz_chan
= 2312;
1865 pCap
->high_2ghz_chan
= 2732;
1867 pCap
->low_5ghz_chan
= 4920;
1868 pCap
->high_5ghz_chan
= 6100;
1870 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
1872 if (ah
->config
.ht_enable
)
1873 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
1875 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
1877 if (capField
& AR_EEPROM_EEPCAP_MAXQCU
)
1878 pCap
->total_queues
=
1879 MS(capField
, AR_EEPROM_EEPCAP_MAXQCU
);
1881 pCap
->total_queues
= ATH9K_NUM_TX_QUEUES
;
1883 if (capField
& AR_EEPROM_EEPCAP_KC_ENTRIES
)
1884 pCap
->keycache_size
=
1885 1 << MS(capField
, AR_EEPROM_EEPCAP_KC_ENTRIES
);
1887 pCap
->keycache_size
= AR_KEYTABLE_SIZE
;
1889 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
1890 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
>> 1;
1892 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
;
1894 if (AR_SREV_9271(ah
))
1895 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
1896 else if (AR_DEVID_7010(ah
))
1897 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
1898 else if (AR_SREV_9285_12_OR_LATER(ah
))
1899 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
1900 else if (AR_SREV_9280_20_OR_LATER(ah
))
1901 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
1903 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
1905 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
1906 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
1907 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
1909 pCap
->rts_aggr_limit
= (8 * 1024);
1912 pCap
->hw_caps
|= ATH9K_HW_CAP_ENHANCEDPM
;
1914 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1915 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
1916 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
1918 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
1919 ah
->rfkill_polarity
=
1920 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
1922 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
1925 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
1926 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
1928 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
1930 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
1931 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
1933 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
1935 if (regulatory
->current_rd_ext
& (1 << REG_EXT_JAPAN_MIDBAND
)) {
1937 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
1938 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
|
1939 AR_EEPROM_EEREGCAP_EN_KK_U2
|
1940 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND
;
1943 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
1944 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
;
1947 /* Advertise midband for AR5416 with FCC midband set in eeprom */
1948 if (regulatory
->current_rd_ext
& (1 << REG_EXT_FCC_MIDBAND
) &&
1950 pCap
->reg_cap
|= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND
;
1952 if (AR_SREV_9280_20_OR_LATER(ah
) && common
->btcoex_enabled
) {
1953 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO
;
1954 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO
;
1956 if (AR_SREV_9285(ah
)) {
1957 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
1958 btcoex_hw
->btpriority_gpio
= ATH_BTPRIORITY_GPIO
;
1960 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_2WIRE
;
1963 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_NONE
;
1966 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1967 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
1968 if (!AR_SREV_9485(ah
))
1969 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
1971 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
1972 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
1973 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
1974 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
1975 pCap
->txs_len
= sizeof(struct ar9003_txs
);
1976 if (!ah
->config
.paprd_disable
&&
1977 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
1978 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
1980 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
1981 if (AR_SREV_9280_20(ah
) &&
1982 ((ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) <=
1983 AR5416_EEP_MINOR_VER_16
) ||
1984 ah
->eep_ops
->get_eeprom(ah
, EEP_FSTCLK_5G
)))
1985 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
1988 if (AR_SREV_9300_20_OR_LATER(ah
))
1989 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
1991 if (AR_SREV_9300_20_OR_LATER(ah
))
1992 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
1994 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
1995 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
1997 if (AR_SREV_9285(ah
))
1998 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2000 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2001 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1))
2002 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2004 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2005 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2006 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2011 if (AR_SREV_9485_10(ah
)) {
2012 pCap
->pcie_lcr_extsync_en
= true;
2013 pCap
->pcie_lcr_offset
= 0x80;
2016 tx_chainmask
= pCap
->tx_chainmask
;
2017 rx_chainmask
= pCap
->rx_chainmask
;
2018 while (tx_chainmask
|| rx_chainmask
) {
2019 if (tx_chainmask
& BIT(0))
2020 pCap
->max_txchains
++;
2021 if (rx_chainmask
& BIT(0))
2022 pCap
->max_rxchains
++;
2031 /****************************/
2032 /* GPIO / RFKILL / Antennae */
2033 /****************************/
2035 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2039 u32 gpio_shift
, tmp
;
2042 addr
= AR_GPIO_OUTPUT_MUX3
;
2044 addr
= AR_GPIO_OUTPUT_MUX2
;
2046 addr
= AR_GPIO_OUTPUT_MUX1
;
2048 gpio_shift
= (gpio
% 6) * 5;
2050 if (AR_SREV_9280_20_OR_LATER(ah
)
2051 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2052 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2053 (0x1f << gpio_shift
));
2055 tmp
= REG_READ(ah
, addr
);
2056 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2057 tmp
&= ~(0x1f << gpio_shift
);
2058 tmp
|= (type
<< gpio_shift
);
2059 REG_WRITE(ah
, addr
, tmp
);
2063 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2067 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2069 if (AR_DEVID_7010(ah
)) {
2071 REG_RMW(ah
, AR7010_GPIO_OE
,
2072 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2073 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2077 gpio_shift
= gpio
<< 1;
2080 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2081 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2083 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2085 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2087 #define MS_REG_READ(x, y) \
2088 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2090 if (gpio
>= ah
->caps
.num_gpio_pins
)
2093 if (AR_DEVID_7010(ah
)) {
2095 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2096 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2097 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2098 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2099 AR_GPIO_BIT(gpio
)) != 0;
2100 else if (AR_SREV_9271(ah
))
2101 return MS_REG_READ(AR9271
, gpio
) != 0;
2102 else if (AR_SREV_9287_11_OR_LATER(ah
))
2103 return MS_REG_READ(AR9287
, gpio
) != 0;
2104 else if (AR_SREV_9285_12_OR_LATER(ah
))
2105 return MS_REG_READ(AR9285
, gpio
) != 0;
2106 else if (AR_SREV_9280_20_OR_LATER(ah
))
2107 return MS_REG_READ(AR928X
, gpio
) != 0;
2109 return MS_REG_READ(AR
, gpio
) != 0;
2111 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2113 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2118 if (AR_DEVID_7010(ah
)) {
2120 REG_RMW(ah
, AR7010_GPIO_OE
,
2121 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2122 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2126 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2127 gpio_shift
= 2 * gpio
;
2130 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2131 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2133 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2135 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2137 if (AR_DEVID_7010(ah
)) {
2139 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2144 if (AR_SREV_9271(ah
))
2147 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2150 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2152 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
2154 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
2156 EXPORT_SYMBOL(ath9k_hw_getdefantenna
);
2158 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2160 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2162 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2164 /*********************/
2165 /* General Operation */
2166 /*********************/
2168 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2170 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2171 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2173 if (phybits
& AR_PHY_ERR_RADAR
)
2174 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2175 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2176 bits
|= ATH9K_RX_FILTER_PHYERR
;
2180 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2182 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2186 ENABLE_REGWRITE_BUFFER(ah
);
2188 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2191 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2192 phybits
|= AR_PHY_ERR_RADAR
;
2193 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2194 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2195 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2198 REG_WRITE(ah
, AR_RXCFG
,
2199 REG_READ(ah
, AR_RXCFG
) | AR_RXCFG_ZLFDMA
);
2201 REG_WRITE(ah
, AR_RXCFG
,
2202 REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_ZLFDMA
);
2204 REGWRITE_BUFFER_FLUSH(ah
);
2206 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2208 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2210 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2213 ath9k_hw_init_pll(ah
, NULL
);
2216 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2218 bool ath9k_hw_disable(struct ath_hw
*ah
)
2220 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2223 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2226 ath9k_hw_init_pll(ah
, NULL
);
2229 EXPORT_SYMBOL(ath9k_hw_disable
);
2231 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2233 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2234 struct ath9k_channel
*chan
= ah
->curchan
;
2235 struct ieee80211_channel
*channel
= chan
->chan
;
2237 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
2239 ah
->eep_ops
->set_txpower(ah
, chan
,
2240 ath9k_regd_get_ctl(regulatory
, chan
),
2241 channel
->max_antenna_gain
* 2,
2242 channel
->max_power
* 2,
2243 min((u32
) MAX_RATE_POWER
,
2244 (u32
) regulatory
->power_limit
), test
);
2246 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2248 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2250 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2252 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2254 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2256 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2257 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2259 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2261 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2263 struct ath_common
*common
= ath9k_hw_common(ah
);
2265 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2266 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2267 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2269 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2271 #define ATH9K_MAX_TSF_READ 10
2273 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2275 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2278 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2279 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2280 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2281 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2282 if (tsf_upper2
== tsf_upper1
)
2284 tsf_upper1
= tsf_upper2
;
2287 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2289 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2291 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2293 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2295 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2296 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2298 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2300 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2302 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2303 AH_TSF_WRITE_TIMEOUT
))
2304 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
2305 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2307 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2309 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2311 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
2314 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2316 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2318 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2320 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
)
2322 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
2325 if (conf_is_ht40(conf
) && !ah
->config
.cwm_ignore_extcca
)
2326 macmode
= AR_2040_JOINED_RX_CLEAR
;
2330 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2333 /* HW Generic timers configuration */
2335 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2337 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2338 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2339 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2340 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2341 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2342 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2343 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2344 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2345 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2346 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2347 AR_NDP2_TIMER_MODE
, 0x0002},
2348 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2349 AR_NDP2_TIMER_MODE
, 0x0004},
2350 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2351 AR_NDP2_TIMER_MODE
, 0x0008},
2352 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2353 AR_NDP2_TIMER_MODE
, 0x0010},
2354 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2355 AR_NDP2_TIMER_MODE
, 0x0020},
2356 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2357 AR_NDP2_TIMER_MODE
, 0x0040},
2358 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2359 AR_NDP2_TIMER_MODE
, 0x0080}
2362 /* HW generic timer primitives */
2364 /* compute and clear index of rightmost 1 */
2365 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
2375 return timer_table
->gen_timer_index
[b
];
2378 static u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2380 return REG_READ(ah
, AR_TSF_L32
);
2383 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
2384 void (*trigger
)(void *),
2385 void (*overflow
)(void *),
2389 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2390 struct ath_gen_timer
*timer
;
2392 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
2394 if (timer
== NULL
) {
2395 ath_err(ath9k_hw_common(ah
),
2396 "Failed to allocate memory for hw timer[%d]\n",
2401 /* allocate a hardware generic timer slot */
2402 timer_table
->timers
[timer_index
] = timer
;
2403 timer
->index
= timer_index
;
2404 timer
->trigger
= trigger
;
2405 timer
->overflow
= overflow
;
2410 EXPORT_SYMBOL(ath_gen_timer_alloc
);
2412 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
2413 struct ath_gen_timer
*timer
,
2417 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2420 BUG_ON(!timer_period
);
2422 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2424 tsf
= ath9k_hw_gettsf32(ah
);
2426 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_HWTIMER
,
2427 "current tsf %x period %x timer_next %x\n",
2428 tsf
, timer_period
, timer_next
);
2431 * Pull timer_next forward if the current TSF already passed it
2432 * because of software latency
2434 if (timer_next
< tsf
)
2435 timer_next
= tsf
+ timer_period
;
2438 * Program generic timer registers
2440 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
2442 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
2444 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2445 gen_tmr_configuration
[timer
->index
].mode_mask
);
2447 /* Enable both trigger and thresh interrupt masks */
2448 REG_SET_BIT(ah
, AR_IMR_S5
,
2449 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2450 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2452 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
2454 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2456 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2458 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
2459 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
2463 /* Clear generic timer enable bits. */
2464 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2465 gen_tmr_configuration
[timer
->index
].mode_mask
);
2467 /* Disable both trigger and thresh interrupt masks */
2468 REG_CLR_BIT(ah
, AR_IMR_S5
,
2469 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2470 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2472 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2474 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
2476 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2478 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2480 /* free the hardware generic timer slot */
2481 timer_table
->timers
[timer
->index
] = NULL
;
2484 EXPORT_SYMBOL(ath_gen_timer_free
);
2487 * Generic Timer Interrupts handling
2489 void ath_gen_timer_isr(struct ath_hw
*ah
)
2491 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2492 struct ath_gen_timer
*timer
;
2493 struct ath_common
*common
= ath9k_hw_common(ah
);
2494 u32 trigger_mask
, thresh_mask
, index
;
2496 /* get hardware generic timer interrupt status */
2497 trigger_mask
= ah
->intr_gen_timer_trigger
;
2498 thresh_mask
= ah
->intr_gen_timer_thresh
;
2499 trigger_mask
&= timer_table
->timer_mask
.val
;
2500 thresh_mask
&= timer_table
->timer_mask
.val
;
2502 trigger_mask
&= ~thresh_mask
;
2504 while (thresh_mask
) {
2505 index
= rightmost_index(timer_table
, &thresh_mask
);
2506 timer
= timer_table
->timers
[index
];
2508 ath_dbg(common
, ATH_DBG_HWTIMER
,
2509 "TSF overflow for Gen timer %d\n", index
);
2510 timer
->overflow(timer
->arg
);
2513 while (trigger_mask
) {
2514 index
= rightmost_index(timer_table
, &trigger_mask
);
2515 timer
= timer_table
->timers
[index
];
2517 ath_dbg(common
, ATH_DBG_HWTIMER
,
2518 "Gen timer[%d] trigger\n", index
);
2519 timer
->trigger(timer
->arg
);
2522 EXPORT_SYMBOL(ath_gen_timer_isr
);
2528 void ath9k_hw_htc_resetinit(struct ath_hw
*ah
)
2530 ah
->htc_reset_init
= true;
2532 EXPORT_SYMBOL(ath9k_hw_htc_resetinit
);
2537 } ath_mac_bb_names
[] = {
2538 /* Devices with external radios */
2539 { AR_SREV_VERSION_5416_PCI
, "5416" },
2540 { AR_SREV_VERSION_5416_PCIE
, "5418" },
2541 { AR_SREV_VERSION_9100
, "9100" },
2542 { AR_SREV_VERSION_9160
, "9160" },
2543 /* Single-chip solutions */
2544 { AR_SREV_VERSION_9280
, "9280" },
2545 { AR_SREV_VERSION_9285
, "9285" },
2546 { AR_SREV_VERSION_9287
, "9287" },
2547 { AR_SREV_VERSION_9271
, "9271" },
2548 { AR_SREV_VERSION_9300
, "9300" },
2551 /* For devices with external radios */
2555 } ath_rf_names
[] = {
2557 { AR_RAD5133_SREV_MAJOR
, "5133" },
2558 { AR_RAD5122_SREV_MAJOR
, "5122" },
2559 { AR_RAD2133_SREV_MAJOR
, "2133" },
2560 { AR_RAD2122_SREV_MAJOR
, "2122" }
2564 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2566 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
2570 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
2571 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
2572 return ath_mac_bb_names
[i
].name
;
2580 * Return the RF name. "????" is returned if the RF is unknown.
2581 * Used for devices with external radios.
2583 static const char *ath9k_hw_rf_name(u16 rf_version
)
2587 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
2588 if (ath_rf_names
[i
].version
== rf_version
) {
2589 return ath_rf_names
[i
].name
;
2596 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
2600 /* chipsets >= AR9280 are single-chip */
2601 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2602 used
= snprintf(hw_name
, len
,
2603 "Atheros AR%s Rev:%x",
2604 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2605 ah
->hw_version
.macRev
);
2608 used
= snprintf(hw_name
, len
,
2609 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2610 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2611 ah
->hw_version
.macRev
,
2612 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
&
2613 AR_RADIO_SREV_MAJOR
)),
2614 ah
->hw_version
.phyRev
);
2617 hw_name
[used
] = '\0';
2619 EXPORT_SYMBOL(ath9k_hw_name
);