2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
42 #include "free-space-cache.h"
44 static struct extent_io_ops btree_extent_io_ops
;
45 static void end_workqueue_fn(struct btrfs_work
*work
);
46 static void free_fs_root(struct btrfs_root
*root
);
47 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
49 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
50 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
52 struct btrfs_root
*root
);
53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
55 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
56 struct extent_io_tree
*dirty_pages
,
58 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
59 struct extent_io_tree
*pinned_extents
);
60 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
63 * end_io_wq structs are used to do processing in task context when an IO is
64 * complete. This is used during reads to verify checksums, and it is used
65 * by writes to insert metadata for new file extents after IO is complete.
71 struct btrfs_fs_info
*info
;
74 struct list_head list
;
75 struct btrfs_work work
;
79 * async submit bios are used to offload expensive checksumming
80 * onto the worker threads. They checksum file and metadata bios
81 * just before they are sent down the IO stack.
83 struct async_submit_bio
{
86 struct list_head list
;
87 extent_submit_bio_hook_t
*submit_bio_start
;
88 extent_submit_bio_hook_t
*submit_bio_done
;
91 unsigned long bio_flags
;
93 * bio_offset is optional, can be used if the pages in the bio
94 * can't tell us where in the file the bio should go
97 struct btrfs_work work
;
100 /* These are used to set the lockdep class on the extent buffer locks.
101 * The class is set by the readpage_end_io_hook after the buffer has
102 * passed csum validation but before the pages are unlocked.
104 * The lockdep class is also set by btrfs_init_new_buffer on freshly
107 * The class is based on the level in the tree block, which allows lockdep
108 * to know that lower nodes nest inside the locks of higher nodes.
110 * We also add a check to make sure the highest level of the tree is
111 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
112 * code needs update as well.
114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
115 # if BTRFS_MAX_LEVEL != 8
118 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
119 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
129 /* highest possible level */
135 * extents on the btree inode are pretty simple, there's one extent
136 * that covers the entire device
138 static struct extent_map
*btree_get_extent(struct inode
*inode
,
139 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
142 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
143 struct extent_map
*em
;
146 read_lock(&em_tree
->lock
);
147 em
= lookup_extent_mapping(em_tree
, start
, len
);
150 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
151 read_unlock(&em_tree
->lock
);
154 read_unlock(&em_tree
->lock
);
156 em
= alloc_extent_map(GFP_NOFS
);
158 em
= ERR_PTR(-ENOMEM
);
163 em
->block_len
= (u64
)-1;
165 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
167 write_lock(&em_tree
->lock
);
168 ret
= add_extent_mapping(em_tree
, em
);
169 if (ret
== -EEXIST
) {
170 u64 failed_start
= em
->start
;
171 u64 failed_len
= em
->len
;
174 em
= lookup_extent_mapping(em_tree
, start
, len
);
178 em
= lookup_extent_mapping(em_tree
, failed_start
,
186 write_unlock(&em_tree
->lock
);
194 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
196 return crc32c(seed
, data
, len
);
199 void btrfs_csum_final(u32 crc
, char *result
)
201 *(__le32
*)result
= ~cpu_to_le32(crc
);
205 * compute the csum for a btree block, and either verify it or write it
206 * into the csum field of the block.
208 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
212 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
215 unsigned long cur_len
;
216 unsigned long offset
= BTRFS_CSUM_SIZE
;
217 char *map_token
= NULL
;
219 unsigned long map_start
;
220 unsigned long map_len
;
223 unsigned long inline_result
;
225 len
= buf
->len
- offset
;
227 err
= map_private_extent_buffer(buf
, offset
, 32,
229 &map_start
, &map_len
, KM_USER0
);
232 cur_len
= min(len
, map_len
- (offset
- map_start
));
233 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
237 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
239 if (csum_size
> sizeof(inline_result
)) {
240 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
244 result
= (char *)&inline_result
;
247 btrfs_csum_final(crc
, result
);
250 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
253 memcpy(&found
, result
, csum_size
);
255 read_extent_buffer(buf
, &val
, 0, csum_size
);
256 if (printk_ratelimit()) {
257 printk(KERN_INFO
"btrfs: %s checksum verify "
258 "failed on %llu wanted %X found %X "
260 root
->fs_info
->sb
->s_id
,
261 (unsigned long long)buf
->start
, val
, found
,
262 btrfs_header_level(buf
));
264 if (result
!= (char *)&inline_result
)
269 write_extent_buffer(buf
, result
, 0, csum_size
);
271 if (result
!= (char *)&inline_result
)
277 * we can't consider a given block up to date unless the transid of the
278 * block matches the transid in the parent node's pointer. This is how we
279 * detect blocks that either didn't get written at all or got written
280 * in the wrong place.
282 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
283 struct extent_buffer
*eb
, u64 parent_transid
)
285 struct extent_state
*cached_state
= NULL
;
288 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
291 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
292 0, &cached_state
, GFP_NOFS
);
293 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
294 btrfs_header_generation(eb
) == parent_transid
) {
298 if (printk_ratelimit()) {
299 printk("parent transid verify failed on %llu wanted %llu "
301 (unsigned long long)eb
->start
,
302 (unsigned long long)parent_transid
,
303 (unsigned long long)btrfs_header_generation(eb
));
306 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
308 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
309 &cached_state
, GFP_NOFS
);
314 * helper to read a given tree block, doing retries as required when
315 * the checksums don't match and we have alternate mirrors to try.
317 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
318 struct extent_buffer
*eb
,
319 u64 start
, u64 parent_transid
)
321 struct extent_io_tree
*io_tree
;
326 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
328 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
329 btree_get_extent
, mirror_num
);
331 !verify_parent_transid(io_tree
, eb
, parent_transid
))
334 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
340 if (mirror_num
> num_copies
)
347 * checksum a dirty tree block before IO. This has extra checks to make sure
348 * we only fill in the checksum field in the first page of a multi-page block
351 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
353 struct extent_io_tree
*tree
;
354 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
357 struct extent_buffer
*eb
;
360 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
362 if (page
->private == EXTENT_PAGE_PRIVATE
) {
366 if (!page
->private) {
370 len
= page
->private >> 2;
373 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
378 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
379 btrfs_header_generation(eb
));
381 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
383 found_start
= btrfs_header_bytenr(eb
);
384 if (found_start
!= start
) {
388 if (eb
->first_page
!= page
) {
392 if (!PageUptodate(page
)) {
396 csum_tree_block(root
, eb
, 0);
398 free_extent_buffer(eb
);
403 static int check_tree_block_fsid(struct btrfs_root
*root
,
404 struct extent_buffer
*eb
)
406 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
407 u8 fsid
[BTRFS_UUID_SIZE
];
410 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
413 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
417 fs_devices
= fs_devices
->seed
;
422 #ifdef CONFIG_DEBUG_LOCK_ALLOC
423 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
425 lockdep_set_class_and_name(&eb
->lock
,
426 &btrfs_eb_class
[level
],
427 btrfs_eb_name
[level
]);
431 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
432 struct extent_state
*state
)
434 struct extent_io_tree
*tree
;
438 struct extent_buffer
*eb
;
439 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
442 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
443 if (page
->private == EXTENT_PAGE_PRIVATE
)
448 len
= page
->private >> 2;
451 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
457 found_start
= btrfs_header_bytenr(eb
);
458 if (found_start
!= start
) {
459 if (printk_ratelimit()) {
460 printk(KERN_INFO
"btrfs bad tree block start "
462 (unsigned long long)found_start
,
463 (unsigned long long)eb
->start
);
468 if (eb
->first_page
!= page
) {
469 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
470 eb
->first_page
->index
, page
->index
);
475 if (check_tree_block_fsid(root
, eb
)) {
476 if (printk_ratelimit()) {
477 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
478 (unsigned long long)eb
->start
);
483 found_level
= btrfs_header_level(eb
);
485 btrfs_set_buffer_lockdep_class(eb
, found_level
);
487 ret
= csum_tree_block(root
, eb
, 1);
491 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
492 end
= eb
->start
+ end
- 1;
494 free_extent_buffer(eb
);
499 static void end_workqueue_bio(struct bio
*bio
, int err
)
501 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
502 struct btrfs_fs_info
*fs_info
;
504 fs_info
= end_io_wq
->info
;
505 end_io_wq
->error
= err
;
506 end_io_wq
->work
.func
= end_workqueue_fn
;
507 end_io_wq
->work
.flags
= 0;
509 if (bio
->bi_rw
& REQ_WRITE
) {
510 if (end_io_wq
->metadata
== 1)
511 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
513 else if (end_io_wq
->metadata
== 2)
514 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
517 btrfs_queue_worker(&fs_info
->endio_write_workers
,
520 if (end_io_wq
->metadata
)
521 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
524 btrfs_queue_worker(&fs_info
->endio_workers
,
530 * For the metadata arg you want
533 * 1 - if normal metadta
534 * 2 - if writing to the free space cache area
536 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
539 struct end_io_wq
*end_io_wq
;
540 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
544 end_io_wq
->private = bio
->bi_private
;
545 end_io_wq
->end_io
= bio
->bi_end_io
;
546 end_io_wq
->info
= info
;
547 end_io_wq
->error
= 0;
548 end_io_wq
->bio
= bio
;
549 end_io_wq
->metadata
= metadata
;
551 bio
->bi_private
= end_io_wq
;
552 bio
->bi_end_io
= end_workqueue_bio
;
556 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
558 unsigned long limit
= min_t(unsigned long,
559 info
->workers
.max_workers
,
560 info
->fs_devices
->open_devices
);
564 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
566 return atomic_read(&info
->nr_async_bios
) >
567 btrfs_async_submit_limit(info
);
570 static void run_one_async_start(struct btrfs_work
*work
)
572 struct async_submit_bio
*async
;
574 async
= container_of(work
, struct async_submit_bio
, work
);
575 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
576 async
->mirror_num
, async
->bio_flags
,
580 static void run_one_async_done(struct btrfs_work
*work
)
582 struct btrfs_fs_info
*fs_info
;
583 struct async_submit_bio
*async
;
586 async
= container_of(work
, struct async_submit_bio
, work
);
587 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
589 limit
= btrfs_async_submit_limit(fs_info
);
590 limit
= limit
* 2 / 3;
592 atomic_dec(&fs_info
->nr_async_submits
);
594 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
595 waitqueue_active(&fs_info
->async_submit_wait
))
596 wake_up(&fs_info
->async_submit_wait
);
598 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
599 async
->mirror_num
, async
->bio_flags
,
603 static void run_one_async_free(struct btrfs_work
*work
)
605 struct async_submit_bio
*async
;
607 async
= container_of(work
, struct async_submit_bio
, work
);
611 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
612 int rw
, struct bio
*bio
, int mirror_num
,
613 unsigned long bio_flags
,
615 extent_submit_bio_hook_t
*submit_bio_start
,
616 extent_submit_bio_hook_t
*submit_bio_done
)
618 struct async_submit_bio
*async
;
620 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
624 async
->inode
= inode
;
627 async
->mirror_num
= mirror_num
;
628 async
->submit_bio_start
= submit_bio_start
;
629 async
->submit_bio_done
= submit_bio_done
;
631 async
->work
.func
= run_one_async_start
;
632 async
->work
.ordered_func
= run_one_async_done
;
633 async
->work
.ordered_free
= run_one_async_free
;
635 async
->work
.flags
= 0;
636 async
->bio_flags
= bio_flags
;
637 async
->bio_offset
= bio_offset
;
639 atomic_inc(&fs_info
->nr_async_submits
);
642 btrfs_set_work_high_prio(&async
->work
);
644 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
646 while (atomic_read(&fs_info
->async_submit_draining
) &&
647 atomic_read(&fs_info
->nr_async_submits
)) {
648 wait_event(fs_info
->async_submit_wait
,
649 (atomic_read(&fs_info
->nr_async_submits
) == 0));
655 static int btree_csum_one_bio(struct bio
*bio
)
657 struct bio_vec
*bvec
= bio
->bi_io_vec
;
659 struct btrfs_root
*root
;
661 WARN_ON(bio
->bi_vcnt
<= 0);
662 while (bio_index
< bio
->bi_vcnt
) {
663 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
664 csum_dirty_buffer(root
, bvec
->bv_page
);
671 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
672 struct bio
*bio
, int mirror_num
,
673 unsigned long bio_flags
,
677 * when we're called for a write, we're already in the async
678 * submission context. Just jump into btrfs_map_bio
680 btree_csum_one_bio(bio
);
684 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
685 int mirror_num
, unsigned long bio_flags
,
689 * when we're called for a write, we're already in the async
690 * submission context. Just jump into btrfs_map_bio
692 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
695 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
696 int mirror_num
, unsigned long bio_flags
,
701 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
705 if (!(rw
& REQ_WRITE
)) {
707 * called for a read, do the setup so that checksum validation
708 * can happen in the async kernel threads
710 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
715 * kthread helpers are used to submit writes so that checksumming
716 * can happen in parallel across all CPUs
718 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
719 inode
, rw
, bio
, mirror_num
, 0,
721 __btree_submit_bio_start
,
722 __btree_submit_bio_done
);
725 #ifdef CONFIG_MIGRATION
726 static int btree_migratepage(struct address_space
*mapping
,
727 struct page
*newpage
, struct page
*page
)
730 * we can't safely write a btree page from here,
731 * we haven't done the locking hook
736 * Buffers may be managed in a filesystem specific way.
737 * We must have no buffers or drop them.
739 if (page_has_private(page
) &&
740 !try_to_release_page(page
, GFP_KERNEL
))
742 return migrate_page(mapping
, newpage
, page
);
746 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
748 struct extent_io_tree
*tree
;
749 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
750 struct extent_buffer
*eb
;
753 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
754 if (!(current
->flags
& PF_MEMALLOC
)) {
755 return extent_write_full_page(tree
, page
,
756 btree_get_extent
, wbc
);
759 redirty_page_for_writepage(wbc
, page
);
760 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
763 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
765 spin_lock(&root
->fs_info
->delalloc_lock
);
766 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
767 spin_unlock(&root
->fs_info
->delalloc_lock
);
769 free_extent_buffer(eb
);
775 static int btree_writepages(struct address_space
*mapping
,
776 struct writeback_control
*wbc
)
778 struct extent_io_tree
*tree
;
779 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
780 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
781 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
783 unsigned long thresh
= 32 * 1024 * 1024;
785 if (wbc
->for_kupdate
)
788 /* this is a bit racy, but that's ok */
789 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
790 if (num_dirty
< thresh
)
793 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
796 static int btree_readpage(struct file
*file
, struct page
*page
)
798 struct extent_io_tree
*tree
;
799 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
800 return extent_read_full_page(tree
, page
, btree_get_extent
);
803 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
805 struct extent_io_tree
*tree
;
806 struct extent_map_tree
*map
;
809 if (PageWriteback(page
) || PageDirty(page
))
812 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
813 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
815 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
819 ret
= try_release_extent_buffer(tree
, page
);
821 ClearPagePrivate(page
);
822 set_page_private(page
, 0);
823 page_cache_release(page
);
829 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
831 struct extent_io_tree
*tree
;
832 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
833 extent_invalidatepage(tree
, page
, offset
);
834 btree_releasepage(page
, GFP_NOFS
);
835 if (PagePrivate(page
)) {
836 printk(KERN_WARNING
"btrfs warning page private not zero "
837 "on page %llu\n", (unsigned long long)page_offset(page
));
838 ClearPagePrivate(page
);
839 set_page_private(page
, 0);
840 page_cache_release(page
);
844 static const struct address_space_operations btree_aops
= {
845 .readpage
= btree_readpage
,
846 .writepage
= btree_writepage
,
847 .writepages
= btree_writepages
,
848 .releasepage
= btree_releasepage
,
849 .invalidatepage
= btree_invalidatepage
,
850 #ifdef CONFIG_MIGRATION
851 .migratepage
= btree_migratepage
,
855 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
858 struct extent_buffer
*buf
= NULL
;
859 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
862 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
865 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
866 buf
, 0, 0, btree_get_extent
, 0);
867 free_extent_buffer(buf
);
871 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
872 u64 bytenr
, u32 blocksize
)
874 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
875 struct extent_buffer
*eb
;
876 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
877 bytenr
, blocksize
, GFP_NOFS
);
881 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
882 u64 bytenr
, u32 blocksize
)
884 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
885 struct extent_buffer
*eb
;
887 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
888 bytenr
, blocksize
, NULL
, GFP_NOFS
);
893 int btrfs_write_tree_block(struct extent_buffer
*buf
)
895 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
896 buf
->start
+ buf
->len
- 1);
899 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
901 return filemap_fdatawait_range(buf
->first_page
->mapping
,
902 buf
->start
, buf
->start
+ buf
->len
- 1);
905 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
906 u32 blocksize
, u64 parent_transid
)
908 struct extent_buffer
*buf
= NULL
;
911 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
915 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
918 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
923 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
924 struct extent_buffer
*buf
)
926 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
927 if (btrfs_header_generation(buf
) ==
928 root
->fs_info
->running_transaction
->transid
) {
929 btrfs_assert_tree_locked(buf
);
931 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
932 spin_lock(&root
->fs_info
->delalloc_lock
);
933 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
934 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
937 spin_unlock(&root
->fs_info
->delalloc_lock
);
940 /* ugh, clear_extent_buffer_dirty needs to lock the page */
941 btrfs_set_lock_blocking(buf
);
942 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
948 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
949 u32 stripesize
, struct btrfs_root
*root
,
950 struct btrfs_fs_info
*fs_info
,
954 root
->commit_root
= NULL
;
955 root
->sectorsize
= sectorsize
;
956 root
->nodesize
= nodesize
;
957 root
->leafsize
= leafsize
;
958 root
->stripesize
= stripesize
;
960 root
->track_dirty
= 0;
962 root
->orphan_item_inserted
= 0;
963 root
->orphan_cleanup_state
= 0;
965 root
->fs_info
= fs_info
;
966 root
->objectid
= objectid
;
967 root
->last_trans
= 0;
968 root
->highest_objectid
= 0;
971 root
->inode_tree
= RB_ROOT
;
972 root
->block_rsv
= NULL
;
973 root
->orphan_block_rsv
= NULL
;
975 INIT_LIST_HEAD(&root
->dirty_list
);
976 INIT_LIST_HEAD(&root
->orphan_list
);
977 INIT_LIST_HEAD(&root
->root_list
);
978 spin_lock_init(&root
->node_lock
);
979 spin_lock_init(&root
->orphan_lock
);
980 spin_lock_init(&root
->inode_lock
);
981 spin_lock_init(&root
->accounting_lock
);
982 mutex_init(&root
->objectid_mutex
);
983 mutex_init(&root
->log_mutex
);
984 init_waitqueue_head(&root
->log_writer_wait
);
985 init_waitqueue_head(&root
->log_commit_wait
[0]);
986 init_waitqueue_head(&root
->log_commit_wait
[1]);
987 atomic_set(&root
->log_commit
[0], 0);
988 atomic_set(&root
->log_commit
[1], 0);
989 atomic_set(&root
->log_writers
, 0);
991 root
->log_transid
= 0;
992 root
->last_log_commit
= 0;
993 extent_io_tree_init(&root
->dirty_log_pages
,
994 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
996 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
997 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
998 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
999 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1000 root
->defrag_trans_start
= fs_info
->generation
;
1001 init_completion(&root
->kobj_unregister
);
1002 root
->defrag_running
= 0;
1003 root
->root_key
.objectid
= objectid
;
1004 root
->anon_super
.s_root
= NULL
;
1005 root
->anon_super
.s_dev
= 0;
1006 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
1007 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
1008 init_rwsem(&root
->anon_super
.s_umount
);
1013 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1014 struct btrfs_fs_info
*fs_info
,
1016 struct btrfs_root
*root
)
1022 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1023 tree_root
->sectorsize
, tree_root
->stripesize
,
1024 root
, fs_info
, objectid
);
1025 ret
= btrfs_find_last_root(tree_root
, objectid
,
1026 &root
->root_item
, &root
->root_key
);
1031 generation
= btrfs_root_generation(&root
->root_item
);
1032 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1033 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1034 blocksize
, generation
);
1035 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1036 free_extent_buffer(root
->node
);
1039 root
->commit_root
= btrfs_root_node(root
);
1043 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1044 struct btrfs_fs_info
*fs_info
)
1046 struct btrfs_root
*root
;
1047 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1048 struct extent_buffer
*leaf
;
1050 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1052 return ERR_PTR(-ENOMEM
);
1054 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1055 tree_root
->sectorsize
, tree_root
->stripesize
,
1056 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1058 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1059 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1060 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1062 * log trees do not get reference counted because they go away
1063 * before a real commit is actually done. They do store pointers
1064 * to file data extents, and those reference counts still get
1065 * updated (along with back refs to the log tree).
1069 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1070 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1073 return ERR_CAST(leaf
);
1076 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1077 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1078 btrfs_set_header_generation(leaf
, trans
->transid
);
1079 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1080 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1083 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1084 (unsigned long)btrfs_header_fsid(root
->node
),
1086 btrfs_mark_buffer_dirty(root
->node
);
1087 btrfs_tree_unlock(root
->node
);
1091 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1092 struct btrfs_fs_info
*fs_info
)
1094 struct btrfs_root
*log_root
;
1096 log_root
= alloc_log_tree(trans
, fs_info
);
1097 if (IS_ERR(log_root
))
1098 return PTR_ERR(log_root
);
1099 WARN_ON(fs_info
->log_root_tree
);
1100 fs_info
->log_root_tree
= log_root
;
1104 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1105 struct btrfs_root
*root
)
1107 struct btrfs_root
*log_root
;
1108 struct btrfs_inode_item
*inode_item
;
1110 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1111 if (IS_ERR(log_root
))
1112 return PTR_ERR(log_root
);
1114 log_root
->last_trans
= trans
->transid
;
1115 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1117 inode_item
= &log_root
->root_item
.inode
;
1118 inode_item
->generation
= cpu_to_le64(1);
1119 inode_item
->size
= cpu_to_le64(3);
1120 inode_item
->nlink
= cpu_to_le32(1);
1121 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1122 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1124 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1126 WARN_ON(root
->log_root
);
1127 root
->log_root
= log_root
;
1128 root
->log_transid
= 0;
1129 root
->last_log_commit
= 0;
1133 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1134 struct btrfs_key
*location
)
1136 struct btrfs_root
*root
;
1137 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1138 struct btrfs_path
*path
;
1139 struct extent_buffer
*l
;
1144 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1146 return ERR_PTR(-ENOMEM
);
1147 if (location
->offset
== (u64
)-1) {
1148 ret
= find_and_setup_root(tree_root
, fs_info
,
1149 location
->objectid
, root
);
1152 return ERR_PTR(ret
);
1157 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1158 tree_root
->sectorsize
, tree_root
->stripesize
,
1159 root
, fs_info
, location
->objectid
);
1161 path
= btrfs_alloc_path();
1163 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1166 read_extent_buffer(l
, &root
->root_item
,
1167 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1168 sizeof(root
->root_item
));
1169 memcpy(&root
->root_key
, location
, sizeof(*location
));
1171 btrfs_free_path(path
);
1176 return ERR_PTR(ret
);
1179 generation
= btrfs_root_generation(&root
->root_item
);
1180 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1181 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1182 blocksize
, generation
);
1183 root
->commit_root
= btrfs_root_node(root
);
1184 BUG_ON(!root
->node
);
1186 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1192 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1195 struct btrfs_root
*root
;
1197 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1198 return fs_info
->tree_root
;
1199 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1200 return fs_info
->extent_root
;
1202 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1203 (unsigned long)root_objectid
);
1207 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1208 struct btrfs_key
*location
)
1210 struct btrfs_root
*root
;
1213 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1214 return fs_info
->tree_root
;
1215 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1216 return fs_info
->extent_root
;
1217 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1218 return fs_info
->chunk_root
;
1219 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1220 return fs_info
->dev_root
;
1221 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1222 return fs_info
->csum_root
;
1224 spin_lock(&fs_info
->fs_roots_radix_lock
);
1225 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1226 (unsigned long)location
->objectid
);
1227 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1231 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1235 set_anon_super(&root
->anon_super
, NULL
);
1237 if (btrfs_root_refs(&root
->root_item
) == 0) {
1242 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1246 root
->orphan_item_inserted
= 1;
1248 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1252 spin_lock(&fs_info
->fs_roots_radix_lock
);
1253 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1254 (unsigned long)root
->root_key
.objectid
,
1259 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1260 radix_tree_preload_end();
1262 if (ret
== -EEXIST
) {
1269 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1270 root
->root_key
.objectid
);
1275 return ERR_PTR(ret
);
1278 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1279 struct btrfs_key
*location
,
1280 const char *name
, int namelen
)
1282 return btrfs_read_fs_root_no_name(fs_info
, location
);
1284 struct btrfs_root
*root
;
1287 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1294 ret
= btrfs_set_root_name(root
, name
, namelen
);
1296 free_extent_buffer(root
->node
);
1298 return ERR_PTR(ret
);
1301 ret
= btrfs_sysfs_add_root(root
);
1303 free_extent_buffer(root
->node
);
1306 return ERR_PTR(ret
);
1313 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1315 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1317 struct btrfs_device
*device
;
1318 struct backing_dev_info
*bdi
;
1320 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1323 bdi
= blk_get_backing_dev_info(device
->bdev
);
1324 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1333 * If this fails, caller must call bdi_destroy() to get rid of the
1336 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1340 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1341 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1345 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1346 bdi
->congested_fn
= btrfs_congested_fn
;
1347 bdi
->congested_data
= info
;
1351 static int bio_ready_for_csum(struct bio
*bio
)
1357 struct extent_io_tree
*io_tree
= NULL
;
1358 struct bio_vec
*bvec
;
1362 bio_for_each_segment(bvec
, bio
, i
) {
1363 page
= bvec
->bv_page
;
1364 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1365 length
+= bvec
->bv_len
;
1368 if (!page
->private) {
1369 length
+= bvec
->bv_len
;
1372 length
= bvec
->bv_len
;
1373 buf_len
= page
->private >> 2;
1374 start
= page_offset(page
) + bvec
->bv_offset
;
1375 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1377 /* are we fully contained in this bio? */
1378 if (buf_len
<= length
)
1381 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1382 start
+ buf_len
- 1);
1387 * called by the kthread helper functions to finally call the bio end_io
1388 * functions. This is where read checksum verification actually happens
1390 static void end_workqueue_fn(struct btrfs_work
*work
)
1393 struct end_io_wq
*end_io_wq
;
1394 struct btrfs_fs_info
*fs_info
;
1397 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1398 bio
= end_io_wq
->bio
;
1399 fs_info
= end_io_wq
->info
;
1401 /* metadata bio reads are special because the whole tree block must
1402 * be checksummed at once. This makes sure the entire block is in
1403 * ram and up to date before trying to verify things. For
1404 * blocksize <= pagesize, it is basically a noop
1406 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1407 !bio_ready_for_csum(bio
)) {
1408 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1412 error
= end_io_wq
->error
;
1413 bio
->bi_private
= end_io_wq
->private;
1414 bio
->bi_end_io
= end_io_wq
->end_io
;
1416 bio_endio(bio
, error
);
1419 static int cleaner_kthread(void *arg
)
1421 struct btrfs_root
*root
= arg
;
1424 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1426 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1427 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1428 btrfs_run_delayed_iputs(root
);
1429 btrfs_clean_old_snapshots(root
);
1430 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1433 if (freezing(current
)) {
1436 set_current_state(TASK_INTERRUPTIBLE
);
1437 if (!kthread_should_stop())
1439 __set_current_state(TASK_RUNNING
);
1441 } while (!kthread_should_stop());
1445 static int transaction_kthread(void *arg
)
1447 struct btrfs_root
*root
= arg
;
1448 struct btrfs_trans_handle
*trans
;
1449 struct btrfs_transaction
*cur
;
1452 unsigned long delay
;
1457 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1458 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1460 spin_lock(&root
->fs_info
->new_trans_lock
);
1461 cur
= root
->fs_info
->running_transaction
;
1463 spin_unlock(&root
->fs_info
->new_trans_lock
);
1467 now
= get_seconds();
1468 if (!cur
->blocked
&&
1469 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1470 spin_unlock(&root
->fs_info
->new_trans_lock
);
1474 transid
= cur
->transid
;
1475 spin_unlock(&root
->fs_info
->new_trans_lock
);
1477 trans
= btrfs_join_transaction(root
, 1);
1478 BUG_ON(IS_ERR(trans
));
1479 if (transid
== trans
->transid
) {
1480 ret
= btrfs_commit_transaction(trans
, root
);
1483 btrfs_end_transaction(trans
, root
);
1486 wake_up_process(root
->fs_info
->cleaner_kthread
);
1487 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1489 if (freezing(current
)) {
1492 set_current_state(TASK_INTERRUPTIBLE
);
1493 if (!kthread_should_stop() &&
1494 !btrfs_transaction_blocked(root
->fs_info
))
1495 schedule_timeout(delay
);
1496 __set_current_state(TASK_RUNNING
);
1498 } while (!kthread_should_stop());
1502 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1503 struct btrfs_fs_devices
*fs_devices
,
1513 struct btrfs_key location
;
1514 struct buffer_head
*bh
;
1515 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1517 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1519 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1520 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1521 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1523 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1525 struct btrfs_root
*log_tree_root
;
1530 struct btrfs_super_block
*disk_super
;
1532 if (!extent_root
|| !tree_root
|| !fs_info
||
1533 !chunk_root
|| !dev_root
|| !csum_root
) {
1538 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1544 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1550 fs_info
->btree_inode
= new_inode(sb
);
1551 if (!fs_info
->btree_inode
) {
1556 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1557 INIT_LIST_HEAD(&fs_info
->trans_list
);
1558 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1559 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1560 INIT_LIST_HEAD(&fs_info
->hashers
);
1561 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1562 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1563 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1564 spin_lock_init(&fs_info
->delalloc_lock
);
1565 spin_lock_init(&fs_info
->new_trans_lock
);
1566 spin_lock_init(&fs_info
->ref_cache_lock
);
1567 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1568 spin_lock_init(&fs_info
->delayed_iput_lock
);
1570 init_completion(&fs_info
->kobj_unregister
);
1571 fs_info
->tree_root
= tree_root
;
1572 fs_info
->extent_root
= extent_root
;
1573 fs_info
->csum_root
= csum_root
;
1574 fs_info
->chunk_root
= chunk_root
;
1575 fs_info
->dev_root
= dev_root
;
1576 fs_info
->fs_devices
= fs_devices
;
1577 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1578 INIT_LIST_HEAD(&fs_info
->space_info
);
1579 btrfs_mapping_init(&fs_info
->mapping_tree
);
1580 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1581 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1582 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1583 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1584 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1585 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1586 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1587 atomic_set(&fs_info
->nr_async_submits
, 0);
1588 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1589 atomic_set(&fs_info
->async_submit_draining
, 0);
1590 atomic_set(&fs_info
->nr_async_bios
, 0);
1592 fs_info
->max_inline
= 8192 * 1024;
1593 fs_info
->metadata_ratio
= 0;
1595 fs_info
->thread_pool_size
= min_t(unsigned long,
1596 num_online_cpus() + 2, 8);
1598 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1599 spin_lock_init(&fs_info
->ordered_extent_lock
);
1601 sb
->s_blocksize
= 4096;
1602 sb
->s_blocksize_bits
= blksize_bits(4096);
1603 sb
->s_bdi
= &fs_info
->bdi
;
1605 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1606 fs_info
->btree_inode
->i_nlink
= 1;
1608 * we set the i_size on the btree inode to the max possible int.
1609 * the real end of the address space is determined by all of
1610 * the devices in the system
1612 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1613 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1614 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1616 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1617 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1618 fs_info
->btree_inode
->i_mapping
,
1620 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1623 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1625 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1626 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1627 sizeof(struct btrfs_key
));
1628 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1629 insert_inode_hash(fs_info
->btree_inode
);
1631 spin_lock_init(&fs_info
->block_group_cache_lock
);
1632 fs_info
->block_group_cache_tree
= RB_ROOT
;
1634 extent_io_tree_init(&fs_info
->freed_extents
[0],
1635 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1636 extent_io_tree_init(&fs_info
->freed_extents
[1],
1637 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1638 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1639 fs_info
->do_barriers
= 1;
1642 mutex_init(&fs_info
->trans_mutex
);
1643 mutex_init(&fs_info
->ordered_operations_mutex
);
1644 mutex_init(&fs_info
->tree_log_mutex
);
1645 mutex_init(&fs_info
->chunk_mutex
);
1646 mutex_init(&fs_info
->transaction_kthread_mutex
);
1647 mutex_init(&fs_info
->cleaner_mutex
);
1648 mutex_init(&fs_info
->volume_mutex
);
1649 init_rwsem(&fs_info
->extent_commit_sem
);
1650 init_rwsem(&fs_info
->cleanup_work_sem
);
1651 init_rwsem(&fs_info
->subvol_sem
);
1653 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1654 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1656 init_waitqueue_head(&fs_info
->transaction_throttle
);
1657 init_waitqueue_head(&fs_info
->transaction_wait
);
1658 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1659 init_waitqueue_head(&fs_info
->async_submit_wait
);
1661 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1662 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1664 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1670 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1671 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1672 sizeof(fs_info
->super_for_commit
));
1675 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1677 disk_super
= &fs_info
->super_copy
;
1678 if (!btrfs_super_root(disk_super
))
1681 /* check FS state, whether FS is broken. */
1682 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
1684 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
1686 ret
= btrfs_parse_options(tree_root
, options
);
1692 features
= btrfs_super_incompat_flags(disk_super
) &
1693 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1695 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1696 "unsupported optional features (%Lx).\n",
1697 (unsigned long long)features
);
1702 features
= btrfs_super_incompat_flags(disk_super
);
1703 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1704 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
1705 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1706 btrfs_set_super_incompat_flags(disk_super
, features
);
1708 features
= btrfs_super_compat_ro_flags(disk_super
) &
1709 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1710 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1711 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1712 "unsupported option features (%Lx).\n",
1713 (unsigned long long)features
);
1718 btrfs_init_workers(&fs_info
->generic_worker
,
1719 "genwork", 1, NULL
);
1721 btrfs_init_workers(&fs_info
->workers
, "worker",
1722 fs_info
->thread_pool_size
,
1723 &fs_info
->generic_worker
);
1725 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1726 fs_info
->thread_pool_size
,
1727 &fs_info
->generic_worker
);
1729 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1730 min_t(u64
, fs_devices
->num_devices
,
1731 fs_info
->thread_pool_size
),
1732 &fs_info
->generic_worker
);
1734 /* a higher idle thresh on the submit workers makes it much more
1735 * likely that bios will be send down in a sane order to the
1738 fs_info
->submit_workers
.idle_thresh
= 64;
1740 fs_info
->workers
.idle_thresh
= 16;
1741 fs_info
->workers
.ordered
= 1;
1743 fs_info
->delalloc_workers
.idle_thresh
= 2;
1744 fs_info
->delalloc_workers
.ordered
= 1;
1746 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1747 &fs_info
->generic_worker
);
1748 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1749 fs_info
->thread_pool_size
,
1750 &fs_info
->generic_worker
);
1751 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1752 fs_info
->thread_pool_size
,
1753 &fs_info
->generic_worker
);
1754 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1755 "endio-meta-write", fs_info
->thread_pool_size
,
1756 &fs_info
->generic_worker
);
1757 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1758 fs_info
->thread_pool_size
,
1759 &fs_info
->generic_worker
);
1760 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1761 1, &fs_info
->generic_worker
);
1764 * endios are largely parallel and should have a very
1767 fs_info
->endio_workers
.idle_thresh
= 4;
1768 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1770 fs_info
->endio_write_workers
.idle_thresh
= 2;
1771 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1773 btrfs_start_workers(&fs_info
->workers
, 1);
1774 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1775 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1776 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1777 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1778 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1779 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1780 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1781 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1782 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1784 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1785 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1786 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1788 nodesize
= btrfs_super_nodesize(disk_super
);
1789 leafsize
= btrfs_super_leafsize(disk_super
);
1790 sectorsize
= btrfs_super_sectorsize(disk_super
);
1791 stripesize
= btrfs_super_stripesize(disk_super
);
1792 tree_root
->nodesize
= nodesize
;
1793 tree_root
->leafsize
= leafsize
;
1794 tree_root
->sectorsize
= sectorsize
;
1795 tree_root
->stripesize
= stripesize
;
1797 sb
->s_blocksize
= sectorsize
;
1798 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1800 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1801 sizeof(disk_super
->magic
))) {
1802 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1803 goto fail_sb_buffer
;
1806 mutex_lock(&fs_info
->chunk_mutex
);
1807 ret
= btrfs_read_sys_array(tree_root
);
1808 mutex_unlock(&fs_info
->chunk_mutex
);
1810 printk(KERN_WARNING
"btrfs: failed to read the system "
1811 "array on %s\n", sb
->s_id
);
1812 goto fail_sb_buffer
;
1815 blocksize
= btrfs_level_size(tree_root
,
1816 btrfs_super_chunk_root_level(disk_super
));
1817 generation
= btrfs_super_chunk_root_generation(disk_super
);
1819 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1820 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1822 chunk_root
->node
= read_tree_block(chunk_root
,
1823 btrfs_super_chunk_root(disk_super
),
1824 blocksize
, generation
);
1825 BUG_ON(!chunk_root
->node
);
1826 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1827 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1829 goto fail_chunk_root
;
1831 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1832 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1834 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1835 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1838 mutex_lock(&fs_info
->chunk_mutex
);
1839 ret
= btrfs_read_chunk_tree(chunk_root
);
1840 mutex_unlock(&fs_info
->chunk_mutex
);
1842 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1844 goto fail_chunk_root
;
1847 btrfs_close_extra_devices(fs_devices
);
1849 blocksize
= btrfs_level_size(tree_root
,
1850 btrfs_super_root_level(disk_super
));
1851 generation
= btrfs_super_generation(disk_super
);
1853 tree_root
->node
= read_tree_block(tree_root
,
1854 btrfs_super_root(disk_super
),
1855 blocksize
, generation
);
1856 if (!tree_root
->node
)
1857 goto fail_chunk_root
;
1858 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1859 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1861 goto fail_tree_root
;
1863 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1864 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1866 ret
= find_and_setup_root(tree_root
, fs_info
,
1867 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1869 goto fail_tree_root
;
1870 extent_root
->track_dirty
= 1;
1872 ret
= find_and_setup_root(tree_root
, fs_info
,
1873 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1875 goto fail_extent_root
;
1876 dev_root
->track_dirty
= 1;
1878 ret
= find_and_setup_root(tree_root
, fs_info
,
1879 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1883 csum_root
->track_dirty
= 1;
1885 fs_info
->generation
= generation
;
1886 fs_info
->last_trans_committed
= generation
;
1887 fs_info
->data_alloc_profile
= (u64
)-1;
1888 fs_info
->metadata_alloc_profile
= (u64
)-1;
1889 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1891 ret
= btrfs_read_block_groups(extent_root
);
1893 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1894 goto fail_block_groups
;
1897 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1899 if (IS_ERR(fs_info
->cleaner_kthread
))
1900 goto fail_block_groups
;
1902 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1904 "btrfs-transaction");
1905 if (IS_ERR(fs_info
->transaction_kthread
))
1908 if (!btrfs_test_opt(tree_root
, SSD
) &&
1909 !btrfs_test_opt(tree_root
, NOSSD
) &&
1910 !fs_info
->fs_devices
->rotating
) {
1911 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1913 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1916 /* do not make disk changes in broken FS */
1917 if (btrfs_super_log_root(disk_super
) != 0 &&
1918 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
1919 u64 bytenr
= btrfs_super_log_root(disk_super
);
1921 if (fs_devices
->rw_devices
== 0) {
1922 printk(KERN_WARNING
"Btrfs log replay required "
1925 goto fail_trans_kthread
;
1928 btrfs_level_size(tree_root
,
1929 btrfs_super_log_root_level(disk_super
));
1931 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1932 if (!log_tree_root
) {
1934 goto fail_trans_kthread
;
1937 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1938 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1940 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1943 ret
= btrfs_recover_log_trees(log_tree_root
);
1946 if (sb
->s_flags
& MS_RDONLY
) {
1947 ret
= btrfs_commit_super(tree_root
);
1952 ret
= btrfs_find_orphan_roots(tree_root
);
1955 if (!(sb
->s_flags
& MS_RDONLY
)) {
1956 ret
= btrfs_cleanup_fs_roots(fs_info
);
1959 ret
= btrfs_recover_relocation(tree_root
);
1962 "btrfs: failed to recover relocation\n");
1964 goto fail_trans_kthread
;
1968 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1969 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1970 location
.offset
= (u64
)-1;
1972 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1973 if (!fs_info
->fs_root
)
1974 goto fail_trans_kthread
;
1975 if (IS_ERR(fs_info
->fs_root
)) {
1976 err
= PTR_ERR(fs_info
->fs_root
);
1977 goto fail_trans_kthread
;
1980 if (!(sb
->s_flags
& MS_RDONLY
)) {
1981 down_read(&fs_info
->cleanup_work_sem
);
1982 btrfs_orphan_cleanup(fs_info
->fs_root
);
1983 btrfs_orphan_cleanup(fs_info
->tree_root
);
1984 up_read(&fs_info
->cleanup_work_sem
);
1990 kthread_stop(fs_info
->transaction_kthread
);
1992 kthread_stop(fs_info
->cleaner_kthread
);
1995 * make sure we're done with the btree inode before we stop our
1998 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1999 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2002 btrfs_free_block_groups(fs_info
);
2003 free_extent_buffer(csum_root
->node
);
2004 free_extent_buffer(csum_root
->commit_root
);
2006 free_extent_buffer(dev_root
->node
);
2007 free_extent_buffer(dev_root
->commit_root
);
2009 free_extent_buffer(extent_root
->node
);
2010 free_extent_buffer(extent_root
->commit_root
);
2012 free_extent_buffer(tree_root
->node
);
2013 free_extent_buffer(tree_root
->commit_root
);
2015 free_extent_buffer(chunk_root
->node
);
2016 free_extent_buffer(chunk_root
->commit_root
);
2018 btrfs_stop_workers(&fs_info
->generic_worker
);
2019 btrfs_stop_workers(&fs_info
->fixup_workers
);
2020 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2021 btrfs_stop_workers(&fs_info
->workers
);
2022 btrfs_stop_workers(&fs_info
->endio_workers
);
2023 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2024 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2025 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2026 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2027 btrfs_stop_workers(&fs_info
->submit_workers
);
2029 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2030 iput(fs_info
->btree_inode
);
2032 btrfs_close_devices(fs_info
->fs_devices
);
2033 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2035 bdi_destroy(&fs_info
->bdi
);
2037 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2045 return ERR_PTR(err
);
2048 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2050 char b
[BDEVNAME_SIZE
];
2053 set_buffer_uptodate(bh
);
2055 if (printk_ratelimit()) {
2056 printk(KERN_WARNING
"lost page write due to "
2057 "I/O error on %s\n",
2058 bdevname(bh
->b_bdev
, b
));
2060 /* note, we dont' set_buffer_write_io_error because we have
2061 * our own ways of dealing with the IO errors
2063 clear_buffer_uptodate(bh
);
2069 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2071 struct buffer_head
*bh
;
2072 struct buffer_head
*latest
= NULL
;
2073 struct btrfs_super_block
*super
;
2078 /* we would like to check all the supers, but that would make
2079 * a btrfs mount succeed after a mkfs from a different FS.
2080 * So, we need to add a special mount option to scan for
2081 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2083 for (i
= 0; i
< 1; i
++) {
2084 bytenr
= btrfs_sb_offset(i
);
2085 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2087 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2091 super
= (struct btrfs_super_block
*)bh
->b_data
;
2092 if (btrfs_super_bytenr(super
) != bytenr
||
2093 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2094 sizeof(super
->magic
))) {
2099 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2102 transid
= btrfs_super_generation(super
);
2111 * this should be called twice, once with wait == 0 and
2112 * once with wait == 1. When wait == 0 is done, all the buffer heads
2113 * we write are pinned.
2115 * They are released when wait == 1 is done.
2116 * max_mirrors must be the same for both runs, and it indicates how
2117 * many supers on this one device should be written.
2119 * max_mirrors == 0 means to write them all.
2121 static int write_dev_supers(struct btrfs_device
*device
,
2122 struct btrfs_super_block
*sb
,
2123 int do_barriers
, int wait
, int max_mirrors
)
2125 struct buffer_head
*bh
;
2131 int last_barrier
= 0;
2133 if (max_mirrors
== 0)
2134 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2136 /* make sure only the last submit_bh does a barrier */
2138 for (i
= 0; i
< max_mirrors
; i
++) {
2139 bytenr
= btrfs_sb_offset(i
);
2140 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2141 device
->total_bytes
)
2147 for (i
= 0; i
< max_mirrors
; i
++) {
2148 bytenr
= btrfs_sb_offset(i
);
2149 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2153 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2154 BTRFS_SUPER_INFO_SIZE
);
2157 if (!buffer_uptodate(bh
))
2160 /* drop our reference */
2163 /* drop the reference from the wait == 0 run */
2167 btrfs_set_super_bytenr(sb
, bytenr
);
2170 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2171 BTRFS_CSUM_SIZE
, crc
,
2172 BTRFS_SUPER_INFO_SIZE
-
2174 btrfs_csum_final(crc
, sb
->csum
);
2177 * one reference for us, and we leave it for the
2180 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2181 BTRFS_SUPER_INFO_SIZE
);
2182 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2184 /* one reference for submit_bh */
2187 set_buffer_uptodate(bh
);
2189 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2192 if (i
== last_barrier
&& do_barriers
)
2193 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2195 ret
= submit_bh(WRITE_SYNC
, bh
);
2200 return errors
< i
? 0 : -1;
2203 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2205 struct list_head
*head
;
2206 struct btrfs_device
*dev
;
2207 struct btrfs_super_block
*sb
;
2208 struct btrfs_dev_item
*dev_item
;
2212 int total_errors
= 0;
2215 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2216 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2218 sb
= &root
->fs_info
->super_for_commit
;
2219 dev_item
= &sb
->dev_item
;
2221 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2222 head
= &root
->fs_info
->fs_devices
->devices
;
2223 list_for_each_entry(dev
, head
, dev_list
) {
2228 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2231 btrfs_set_stack_device_generation(dev_item
, 0);
2232 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2233 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2234 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2235 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2236 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2237 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2238 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2239 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2240 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2242 flags
= btrfs_super_flags(sb
);
2243 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2245 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2249 if (total_errors
> max_errors
) {
2250 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2256 list_for_each_entry(dev
, head
, dev_list
) {
2259 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2262 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2266 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2267 if (total_errors
> max_errors
) {
2268 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2275 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2276 struct btrfs_root
*root
, int max_mirrors
)
2280 ret
= write_all_supers(root
, max_mirrors
);
2284 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2286 spin_lock(&fs_info
->fs_roots_radix_lock
);
2287 radix_tree_delete(&fs_info
->fs_roots_radix
,
2288 (unsigned long)root
->root_key
.objectid
);
2289 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2291 if (btrfs_root_refs(&root
->root_item
) == 0)
2292 synchronize_srcu(&fs_info
->subvol_srcu
);
2298 static void free_fs_root(struct btrfs_root
*root
)
2300 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2301 if (root
->anon_super
.s_dev
) {
2302 down_write(&root
->anon_super
.s_umount
);
2303 kill_anon_super(&root
->anon_super
);
2305 free_extent_buffer(root
->node
);
2306 free_extent_buffer(root
->commit_root
);
2311 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2314 struct btrfs_root
*gang
[8];
2317 while (!list_empty(&fs_info
->dead_roots
)) {
2318 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2319 struct btrfs_root
, root_list
);
2320 list_del(&gang
[0]->root_list
);
2322 if (gang
[0]->in_radix
) {
2323 btrfs_free_fs_root(fs_info
, gang
[0]);
2325 free_extent_buffer(gang
[0]->node
);
2326 free_extent_buffer(gang
[0]->commit_root
);
2332 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2337 for (i
= 0; i
< ret
; i
++)
2338 btrfs_free_fs_root(fs_info
, gang
[i
]);
2343 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2345 u64 root_objectid
= 0;
2346 struct btrfs_root
*gang
[8];
2351 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2352 (void **)gang
, root_objectid
,
2357 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2358 for (i
= 0; i
< ret
; i
++) {
2359 root_objectid
= gang
[i
]->root_key
.objectid
;
2360 btrfs_orphan_cleanup(gang
[i
]);
2367 int btrfs_commit_super(struct btrfs_root
*root
)
2369 struct btrfs_trans_handle
*trans
;
2372 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2373 btrfs_run_delayed_iputs(root
);
2374 btrfs_clean_old_snapshots(root
);
2375 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2377 /* wait until ongoing cleanup work done */
2378 down_write(&root
->fs_info
->cleanup_work_sem
);
2379 up_write(&root
->fs_info
->cleanup_work_sem
);
2381 trans
= btrfs_join_transaction(root
, 1);
2383 return PTR_ERR(trans
);
2384 ret
= btrfs_commit_transaction(trans
, root
);
2386 /* run commit again to drop the original snapshot */
2387 trans
= btrfs_join_transaction(root
, 1);
2389 return PTR_ERR(trans
);
2390 btrfs_commit_transaction(trans
, root
);
2391 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2394 ret
= write_ctree_super(NULL
, root
, 0);
2398 int close_ctree(struct btrfs_root
*root
)
2400 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2403 fs_info
->closing
= 1;
2406 btrfs_put_block_group_cache(fs_info
);
2409 * Here come 2 situations when btrfs is broken to flip readonly:
2411 * 1. when btrfs flips readonly somewhere else before
2412 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2413 * and btrfs will skip to write sb directly to keep
2414 * ERROR state on disk.
2416 * 2. when btrfs flips readonly just in btrfs_commit_super,
2417 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2418 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2419 * btrfs will cleanup all FS resources first and write sb then.
2421 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2422 ret
= btrfs_commit_super(root
);
2424 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2427 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2428 ret
= btrfs_error_commit_super(root
);
2430 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2433 kthread_stop(root
->fs_info
->transaction_kthread
);
2434 kthread_stop(root
->fs_info
->cleaner_kthread
);
2436 fs_info
->closing
= 2;
2439 if (fs_info
->delalloc_bytes
) {
2440 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2441 (unsigned long long)fs_info
->delalloc_bytes
);
2443 if (fs_info
->total_ref_cache_size
) {
2444 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2445 (unsigned long long)fs_info
->total_ref_cache_size
);
2448 free_extent_buffer(fs_info
->extent_root
->node
);
2449 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2450 free_extent_buffer(fs_info
->tree_root
->node
);
2451 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2452 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2453 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2454 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2455 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2456 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2457 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2459 btrfs_free_block_groups(root
->fs_info
);
2461 del_fs_roots(fs_info
);
2463 iput(fs_info
->btree_inode
);
2465 btrfs_stop_workers(&fs_info
->generic_worker
);
2466 btrfs_stop_workers(&fs_info
->fixup_workers
);
2467 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2468 btrfs_stop_workers(&fs_info
->workers
);
2469 btrfs_stop_workers(&fs_info
->endio_workers
);
2470 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2471 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2472 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2473 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2474 btrfs_stop_workers(&fs_info
->submit_workers
);
2476 btrfs_close_devices(fs_info
->fs_devices
);
2477 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2479 bdi_destroy(&fs_info
->bdi
);
2480 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2482 kfree(fs_info
->extent_root
);
2483 kfree(fs_info
->tree_root
);
2484 kfree(fs_info
->chunk_root
);
2485 kfree(fs_info
->dev_root
);
2486 kfree(fs_info
->csum_root
);
2492 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2495 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2497 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2502 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2507 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2509 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2510 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2514 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2516 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2517 u64 transid
= btrfs_header_generation(buf
);
2518 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2521 btrfs_assert_tree_locked(buf
);
2522 if (transid
!= root
->fs_info
->generation
) {
2523 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2524 "found %llu running %llu\n",
2525 (unsigned long long)buf
->start
,
2526 (unsigned long long)transid
,
2527 (unsigned long long)root
->fs_info
->generation
);
2530 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2533 spin_lock(&root
->fs_info
->delalloc_lock
);
2534 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2535 spin_unlock(&root
->fs_info
->delalloc_lock
);
2539 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2542 * looks as though older kernels can get into trouble with
2543 * this code, they end up stuck in balance_dirty_pages forever
2546 unsigned long thresh
= 32 * 1024 * 1024;
2548 if (current
->flags
& PF_MEMALLOC
)
2551 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2553 if (num_dirty
> thresh
) {
2554 balance_dirty_pages_ratelimited_nr(
2555 root
->fs_info
->btree_inode
->i_mapping
, 1);
2560 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2562 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2564 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2566 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2570 int btree_lock_page_hook(struct page
*page
)
2572 struct inode
*inode
= page
->mapping
->host
;
2573 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2574 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2575 struct extent_buffer
*eb
;
2577 u64 bytenr
= page_offset(page
);
2579 if (page
->private == EXTENT_PAGE_PRIVATE
)
2582 len
= page
->private >> 2;
2583 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2587 btrfs_tree_lock(eb
);
2588 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2590 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2591 spin_lock(&root
->fs_info
->delalloc_lock
);
2592 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2593 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2596 spin_unlock(&root
->fs_info
->delalloc_lock
);
2599 btrfs_tree_unlock(eb
);
2600 free_extent_buffer(eb
);
2606 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
2612 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2613 printk(KERN_WARNING
"warning: mount fs with errors, "
2614 "running btrfsck is recommended\n");
2617 int btrfs_error_commit_super(struct btrfs_root
*root
)
2621 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2622 btrfs_run_delayed_iputs(root
);
2623 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2625 down_write(&root
->fs_info
->cleanup_work_sem
);
2626 up_write(&root
->fs_info
->cleanup_work_sem
);
2628 /* cleanup FS via transaction */
2629 btrfs_cleanup_transaction(root
);
2631 ret
= write_ctree_super(NULL
, root
, 0);
2636 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
2638 struct btrfs_inode
*btrfs_inode
;
2639 struct list_head splice
;
2641 INIT_LIST_HEAD(&splice
);
2643 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
2644 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2646 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
2647 while (!list_empty(&splice
)) {
2648 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2649 ordered_operations
);
2651 list_del_init(&btrfs_inode
->ordered_operations
);
2653 btrfs_invalidate_inodes(btrfs_inode
->root
);
2656 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2657 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
2662 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
2664 struct list_head splice
;
2665 struct btrfs_ordered_extent
*ordered
;
2666 struct inode
*inode
;
2668 INIT_LIST_HEAD(&splice
);
2670 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2672 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
2673 while (!list_empty(&splice
)) {
2674 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
2677 list_del_init(&ordered
->root_extent_list
);
2678 atomic_inc(&ordered
->refs
);
2680 /* the inode may be getting freed (in sys_unlink path). */
2681 inode
= igrab(ordered
->inode
);
2683 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2687 atomic_set(&ordered
->refs
, 1);
2688 btrfs_put_ordered_extent(ordered
);
2690 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2693 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2698 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
2699 struct btrfs_root
*root
)
2701 struct rb_node
*node
;
2702 struct btrfs_delayed_ref_root
*delayed_refs
;
2703 struct btrfs_delayed_ref_node
*ref
;
2706 delayed_refs
= &trans
->delayed_refs
;
2708 spin_lock(&delayed_refs
->lock
);
2709 if (delayed_refs
->num_entries
== 0) {
2710 printk(KERN_INFO
"delayed_refs has NO entry\n");
2714 node
= rb_first(&delayed_refs
->root
);
2716 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2717 node
= rb_next(node
);
2720 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2721 delayed_refs
->num_entries
--;
2723 atomic_set(&ref
->refs
, 1);
2724 if (btrfs_delayed_ref_is_head(ref
)) {
2725 struct btrfs_delayed_ref_head
*head
;
2727 head
= btrfs_delayed_node_to_head(ref
);
2728 mutex_lock(&head
->mutex
);
2729 kfree(head
->extent_op
);
2730 delayed_refs
->num_heads
--;
2731 if (list_empty(&head
->cluster
))
2732 delayed_refs
->num_heads_ready
--;
2733 list_del_init(&head
->cluster
);
2734 mutex_unlock(&head
->mutex
);
2737 spin_unlock(&delayed_refs
->lock
);
2738 btrfs_put_delayed_ref(ref
);
2741 spin_lock(&delayed_refs
->lock
);
2744 spin_unlock(&delayed_refs
->lock
);
2749 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
2751 struct btrfs_pending_snapshot
*snapshot
;
2752 struct list_head splice
;
2754 INIT_LIST_HEAD(&splice
);
2756 list_splice_init(&t
->pending_snapshots
, &splice
);
2758 while (!list_empty(&splice
)) {
2759 snapshot
= list_entry(splice
.next
,
2760 struct btrfs_pending_snapshot
,
2763 list_del_init(&snapshot
->list
);
2771 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
2773 struct btrfs_inode
*btrfs_inode
;
2774 struct list_head splice
;
2776 INIT_LIST_HEAD(&splice
);
2778 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
2780 spin_lock(&root
->fs_info
->delalloc_lock
);
2782 while (!list_empty(&splice
)) {
2783 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2786 list_del_init(&btrfs_inode
->delalloc_inodes
);
2788 btrfs_invalidate_inodes(btrfs_inode
->root
);
2791 spin_unlock(&root
->fs_info
->delalloc_lock
);
2796 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
2797 struct extent_io_tree
*dirty_pages
,
2802 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2803 struct extent_buffer
*eb
;
2807 unsigned long index
;
2810 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
2815 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
2816 while (start
<= end
) {
2817 index
= start
>> PAGE_CACHE_SHIFT
;
2818 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
2819 page
= find_get_page(btree_inode
->i_mapping
, index
);
2822 offset
= page_offset(page
);
2824 spin_lock(&dirty_pages
->buffer_lock
);
2825 eb
= radix_tree_lookup(
2826 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
2827 offset
>> PAGE_CACHE_SHIFT
);
2828 spin_unlock(&dirty_pages
->buffer_lock
);
2830 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
2832 atomic_set(&eb
->refs
, 1);
2834 if (PageWriteback(page
))
2835 end_page_writeback(page
);
2838 if (PageDirty(page
)) {
2839 clear_page_dirty_for_io(page
);
2840 spin_lock_irq(&page
->mapping
->tree_lock
);
2841 radix_tree_tag_clear(&page
->mapping
->page_tree
,
2843 PAGECACHE_TAG_DIRTY
);
2844 spin_unlock_irq(&page
->mapping
->tree_lock
);
2847 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2855 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
2856 struct extent_io_tree
*pinned_extents
)
2858 struct extent_io_tree
*unpin
;
2863 unpin
= pinned_extents
;
2865 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
2871 ret
= btrfs_error_discard_extent(root
, start
, end
+ 1 - start
);
2873 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
2874 btrfs_error_unpin_extent_range(root
, start
, end
);
2881 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
2883 struct btrfs_transaction
*t
;
2888 mutex_lock(&root
->fs_info
->trans_mutex
);
2889 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
2891 list_splice_init(&root
->fs_info
->trans_list
, &list
);
2892 while (!list_empty(&list
)) {
2893 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
2897 btrfs_destroy_ordered_operations(root
);
2899 btrfs_destroy_ordered_extents(root
);
2901 btrfs_destroy_delayed_refs(t
, root
);
2903 btrfs_block_rsv_release(root
,
2904 &root
->fs_info
->trans_block_rsv
,
2905 t
->dirty_pages
.dirty_bytes
);
2907 /* FIXME: cleanup wait for commit */
2910 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
2911 wake_up(&root
->fs_info
->transaction_blocked_wait
);
2914 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
2915 wake_up(&root
->fs_info
->transaction_wait
);
2916 mutex_unlock(&root
->fs_info
->trans_mutex
);
2918 mutex_lock(&root
->fs_info
->trans_mutex
);
2920 if (waitqueue_active(&t
->commit_wait
))
2921 wake_up(&t
->commit_wait
);
2922 mutex_unlock(&root
->fs_info
->trans_mutex
);
2924 mutex_lock(&root
->fs_info
->trans_mutex
);
2926 btrfs_destroy_pending_snapshots(t
);
2928 btrfs_destroy_delalloc_inodes(root
);
2930 spin_lock(&root
->fs_info
->new_trans_lock
);
2931 root
->fs_info
->running_transaction
= NULL
;
2932 spin_unlock(&root
->fs_info
->new_trans_lock
);
2934 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
2937 btrfs_destroy_pinned_extent(root
,
2938 root
->fs_info
->pinned_extents
);
2941 list_del_init(&t
->list
);
2942 memset(t
, 0, sizeof(*t
));
2943 kmem_cache_free(btrfs_transaction_cachep
, t
);
2946 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
2947 mutex_unlock(&root
->fs_info
->trans_mutex
);
2952 static struct extent_io_ops btree_extent_io_ops
= {
2953 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2954 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2955 .submit_bio_hook
= btree_submit_bio_hook
,
2956 /* note we're sharing with inode.c for the merge bio hook */
2957 .merge_bio_hook
= btrfs_merge_bio_hook
,