2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
46 #include <asm/cpu-type.h>
49 #include <asm/fpu_emulator.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/siginfo.h>
60 #include <asm/tlbdebug.h>
61 #include <asm/traps.h>
62 #include <asm/uaccess.h>
63 #include <asm/watch.h>
64 #include <asm/mmu_context.h>
65 #include <asm/types.h>
66 #include <asm/stacktrace.h>
69 extern void check_wait(void);
70 extern asmlinkage
void rollback_handle_int(void);
71 extern asmlinkage
void handle_int(void);
72 extern u32 handle_tlbl
[];
73 extern u32 handle_tlbs
[];
74 extern u32 handle_tlbm
[];
75 extern asmlinkage
void handle_adel(void);
76 extern asmlinkage
void handle_ades(void);
77 extern asmlinkage
void handle_ibe(void);
78 extern asmlinkage
void handle_dbe(void);
79 extern asmlinkage
void handle_sys(void);
80 extern asmlinkage
void handle_bp(void);
81 extern asmlinkage
void handle_ri(void);
82 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
83 extern asmlinkage
void handle_ri_rdhwr(void);
84 extern asmlinkage
void handle_cpu(void);
85 extern asmlinkage
void handle_ov(void);
86 extern asmlinkage
void handle_tr(void);
87 extern asmlinkage
void handle_msa_fpe(void);
88 extern asmlinkage
void handle_fpe(void);
89 extern asmlinkage
void handle_ftlb(void);
90 extern asmlinkage
void handle_msa(void);
91 extern asmlinkage
void handle_mdmx(void);
92 extern asmlinkage
void handle_watch(void);
93 extern asmlinkage
void handle_mt(void);
94 extern asmlinkage
void handle_dsp(void);
95 extern asmlinkage
void handle_mcheck(void);
96 extern asmlinkage
void handle_reserved(void);
97 extern void tlb_do_page_fault_0(void);
99 void (*board_be_init
)(void);
100 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
101 void (*board_nmi_handler_setup
)(void);
102 void (*board_ejtag_handler_setup
)(void);
103 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
104 void (*board_ebase_setup
)(void);
105 void(*board_cache_error_setup
)(void);
107 static void show_raw_backtrace(unsigned long reg29
)
109 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
112 printk("Call Trace:");
113 #ifdef CONFIG_KALLSYMS
116 while (!kstack_end(sp
)) {
117 unsigned long __user
*p
=
118 (unsigned long __user
*)(unsigned long)sp
++;
119 if (__get_user(addr
, p
)) {
120 printk(" (Bad stack address)");
123 if (__kernel_text_address(addr
))
129 #ifdef CONFIG_KALLSYMS
131 static int __init
set_raw_show_trace(char *str
)
136 __setup("raw_show_trace", set_raw_show_trace
);
139 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
141 unsigned long sp
= regs
->regs
[29];
142 unsigned long ra
= regs
->regs
[31];
143 unsigned long pc
= regs
->cp0_epc
;
148 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
149 show_raw_backtrace(sp
);
152 printk("Call Trace:\n");
155 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
161 * This routine abuses get_user()/put_user() to reference pointers
162 * with at least a bit of error checking ...
164 static void show_stacktrace(struct task_struct
*task
,
165 const struct pt_regs
*regs
)
167 const int field
= 2 * sizeof(unsigned long);
170 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
174 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
175 if (i
&& ((i
% (64 / field
)) == 0))
182 if (__get_user(stackdata
, sp
++)) {
183 printk(" (Bad stack address)");
187 printk(" %0*lx", field
, stackdata
);
191 show_backtrace(task
, regs
);
194 void show_stack(struct task_struct
*task
, unsigned long *sp
)
197 mm_segment_t old_fs
= get_fs();
199 regs
.regs
[29] = (unsigned long)sp
;
203 if (task
&& task
!= current
) {
204 regs
.regs
[29] = task
->thread
.reg29
;
206 regs
.cp0_epc
= task
->thread
.reg31
;
207 #ifdef CONFIG_KGDB_KDB
208 } else if (atomic_read(&kgdb_active
) != -1 &&
210 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
211 #endif /* CONFIG_KGDB_KDB */
213 prepare_frametrace(®s
);
217 * show_stack() deals exclusively with kernel mode, so be sure to access
218 * the stack in the kernel (not user) address space.
221 show_stacktrace(task
, ®s
);
225 static void show_code(unsigned int __user
*pc
)
228 unsigned short __user
*pc16
= NULL
;
232 if ((unsigned long)pc
& 1)
233 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
234 for(i
= -3 ; i
< 6 ; i
++) {
236 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
237 printk(" (Bad address in epc)\n");
240 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
244 static void __show_regs(const struct pt_regs
*regs
)
246 const int field
= 2 * sizeof(unsigned long);
247 unsigned int cause
= regs
->cp0_cause
;
248 unsigned int exccode
;
251 show_regs_print_info(KERN_DEFAULT
);
254 * Saved main processor registers
256 for (i
= 0; i
< 32; ) {
260 printk(" %0*lx", field
, 0UL);
261 else if (i
== 26 || i
== 27)
262 printk(" %*s", field
, "");
264 printk(" %0*lx", field
, regs
->regs
[i
]);
271 #ifdef CONFIG_CPU_HAS_SMARTMIPS
272 printk("Acx : %0*lx\n", field
, regs
->acx
);
274 printk("Hi : %0*lx\n", field
, regs
->hi
);
275 printk("Lo : %0*lx\n", field
, regs
->lo
);
278 * Saved cp0 registers
280 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
281 (void *) regs
->cp0_epc
);
282 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
283 (void *) regs
->regs
[31]);
285 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
288 if (regs
->cp0_status
& ST0_KUO
)
290 if (regs
->cp0_status
& ST0_IEO
)
292 if (regs
->cp0_status
& ST0_KUP
)
294 if (regs
->cp0_status
& ST0_IEP
)
296 if (regs
->cp0_status
& ST0_KUC
)
298 if (regs
->cp0_status
& ST0_IEC
)
300 } else if (cpu_has_4kex
) {
301 if (regs
->cp0_status
& ST0_KX
)
303 if (regs
->cp0_status
& ST0_SX
)
305 if (regs
->cp0_status
& ST0_UX
)
307 switch (regs
->cp0_status
& ST0_KSU
) {
312 printk("SUPERVISOR ");
321 if (regs
->cp0_status
& ST0_ERL
)
323 if (regs
->cp0_status
& ST0_EXL
)
325 if (regs
->cp0_status
& ST0_IE
)
330 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
331 printk("Cause : %08x (ExcCode %02x)\n", cause
, exccode
);
333 if (1 <= exccode
&& exccode
<= 5)
334 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
336 printk("PrId : %08x (%s)\n", read_c0_prid(),
341 * FIXME: really the generic show_regs should take a const pointer argument.
343 void show_regs(struct pt_regs
*regs
)
345 __show_regs((struct pt_regs
*)regs
);
348 void show_registers(struct pt_regs
*regs
)
350 const int field
= 2 * sizeof(unsigned long);
351 mm_segment_t old_fs
= get_fs();
355 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
356 current
->comm
, current
->pid
, current_thread_info(), current
,
357 field
, current_thread_info()->tp_value
);
358 if (cpu_has_userlocal
) {
361 tls
= read_c0_userlocal();
362 if (tls
!= current_thread_info()->tp_value
)
363 printk("*HwTLS: %0*lx\n", field
, tls
);
366 if (!user_mode(regs
))
367 /* Necessary for getting the correct stack content */
369 show_stacktrace(current
, regs
);
370 show_code((unsigned int __user
*) regs
->cp0_epc
);
375 static DEFINE_RAW_SPINLOCK(die_lock
);
377 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
379 static int die_counter
;
384 if (notify_die(DIE_OOPS
, str
, regs
, 0, current
->thread
.trap_nr
,
385 SIGSEGV
) == NOTIFY_STOP
)
389 raw_spin_lock_irq(&die_lock
);
392 printk("%s[#%d]:\n", str
, ++die_counter
);
393 show_registers(regs
);
394 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
395 raw_spin_unlock_irq(&die_lock
);
400 panic("Fatal exception in interrupt");
403 panic("Fatal exception");
405 if (regs
&& kexec_should_crash(current
))
411 extern struct exception_table_entry __start___dbe_table
[];
412 extern struct exception_table_entry __stop___dbe_table
[];
415 " .section __dbe_table, \"a\"\n"
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
421 const struct exception_table_entry
*e
;
423 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
425 e
= search_module_dbetables(addr
);
429 asmlinkage
void do_be(struct pt_regs
*regs
)
431 const int field
= 2 * sizeof(unsigned long);
432 const struct exception_table_entry
*fixup
= NULL
;
433 int data
= regs
->cp0_cause
& 4;
434 int action
= MIPS_BE_FATAL
;
435 enum ctx_state prev_state
;
437 prev_state
= exception_enter();
438 /* XXX For now. Fixme, this searches the wrong table ... */
439 if (data
&& !user_mode(regs
))
440 fixup
= search_dbe_tables(exception_epc(regs
));
443 action
= MIPS_BE_FIXUP
;
445 if (board_be_handler
)
446 action
= board_be_handler(regs
, fixup
!= NULL
);
449 case MIPS_BE_DISCARD
:
453 regs
->cp0_epc
= fixup
->nextinsn
;
462 * Assume it would be too dangerous to continue ...
464 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
465 data
? "Data" : "Instruction",
466 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
467 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, current
->thread
.trap_nr
,
468 SIGBUS
) == NOTIFY_STOP
)
471 die_if_kernel("Oops", regs
);
472 force_sig(SIGBUS
, current
);
475 exception_exit(prev_state
);
479 * ll/sc, rdhwr, sync emulation
482 #define OPCODE 0xfc000000
483 #define BASE 0x03e00000
484 #define RT 0x001f0000
485 #define OFFSET 0x0000ffff
486 #define LL 0xc0000000
487 #define SC 0xe0000000
488 #define SPEC0 0x00000000
489 #define SPEC3 0x7c000000
490 #define RD 0x0000f800
491 #define FUNC 0x0000003f
492 #define SYNC 0x0000000f
493 #define RDHWR 0x0000003b
495 /* microMIPS definitions */
496 #define MM_POOL32A_FUNC 0xfc00ffff
497 #define MM_RDHWR 0x00006b3c
498 #define MM_RS 0x001f0000
499 #define MM_RT 0x03e00000
502 * The ll_bit is cleared by r*_switch.S
506 struct task_struct
*ll_task
;
508 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
510 unsigned long value
, __user
*vaddr
;
514 * analyse the ll instruction that just caused a ri exception
515 * and put the referenced address to addr.
518 /* sign extend offset */
519 offset
= opcode
& OFFSET
;
523 vaddr
= (unsigned long __user
*)
524 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
526 if ((unsigned long)vaddr
& 3)
528 if (get_user(value
, vaddr
))
533 if (ll_task
== NULL
|| ll_task
== current
) {
542 regs
->regs
[(opcode
& RT
) >> 16] = value
;
547 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
549 unsigned long __user
*vaddr
;
554 * analyse the sc instruction that just caused a ri exception
555 * and put the referenced address to addr.
558 /* sign extend offset */
559 offset
= opcode
& OFFSET
;
563 vaddr
= (unsigned long __user
*)
564 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
565 reg
= (opcode
& RT
) >> 16;
567 if ((unsigned long)vaddr
& 3)
572 if (ll_bit
== 0 || ll_task
!= current
) {
580 if (put_user(regs
->regs
[reg
], vaddr
))
589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
590 * opcodes are supposed to result in coprocessor unusable exceptions if
591 * executed on ll/sc-less processors. That's the theory. In practice a
592 * few processors such as NEC's VR4100 throw reserved instruction exceptions
593 * instead, so we're doing the emulation thing in both exception handlers.
595 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
597 if ((opcode
& OPCODE
) == LL
) {
598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
600 return simulate_ll(regs
, opcode
);
602 if ((opcode
& OPCODE
) == SC
) {
603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
605 return simulate_sc(regs
, opcode
);
608 return -1; /* Must be something else ... */
612 * Simulate trapping 'rdhwr' instructions to provide user accessible
613 * registers not implemented in hardware.
615 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
617 struct thread_info
*ti
= task_thread_info(current
);
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
622 case MIPS_HWR_CPUNUM
: /* CPU number */
623 regs
->regs
[rt
] = smp_processor_id();
625 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
626 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
627 current_cpu_data
.icache
.linesz
);
629 case MIPS_HWR_CC
: /* Read count register */
630 regs
->regs
[rt
] = read_c0_count();
632 case MIPS_HWR_CCRES
: /* Count register resolution */
633 switch (current_cpu_type()) {
642 case MIPS_HWR_ULR
: /* Read UserLocal register */
643 regs
->regs
[rt
] = ti
->tp_value
;
650 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
652 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
653 int rd
= (opcode
& RD
) >> 11;
654 int rt
= (opcode
& RT
) >> 16;
656 simulate_rdhwr(regs
, rd
, rt
);
664 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned int opcode
)
666 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
667 int rd
= (opcode
& MM_RS
) >> 16;
668 int rt
= (opcode
& MM_RT
) >> 21;
669 simulate_rdhwr(regs
, rd
, rt
);
677 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
679 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
685 return -1; /* Must be something else ... */
688 asmlinkage
void do_ov(struct pt_regs
*regs
)
690 enum ctx_state prev_state
;
693 .si_code
= FPE_INTOVF
,
694 .si_addr
= (void __user
*)regs
->cp0_epc
,
697 prev_state
= exception_enter();
698 die_if_kernel("Integer overflow", regs
);
700 force_sig_info(SIGFPE
, &info
, current
);
701 exception_exit(prev_state
);
704 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
706 struct siginfo si
= { 0 };
707 struct vm_area_struct
*vma
;
714 si
.si_addr
= fault_addr
;
717 * Inexact can happen together with Overflow or Underflow.
718 * Respect the mask to deliver the correct exception.
720 fcr31
&= (fcr31
& FPU_CSR_ALL_E
) <<
721 (ffs(FPU_CSR_ALL_X
) - ffs(FPU_CSR_ALL_E
));
722 if (fcr31
& FPU_CSR_INV_X
)
723 si
.si_code
= FPE_FLTINV
;
724 else if (fcr31
& FPU_CSR_DIV_X
)
725 si
.si_code
= FPE_FLTDIV
;
726 else if (fcr31
& FPU_CSR_OVF_X
)
727 si
.si_code
= FPE_FLTOVF
;
728 else if (fcr31
& FPU_CSR_UDF_X
)
729 si
.si_code
= FPE_FLTUND
;
730 else if (fcr31
& FPU_CSR_INE_X
)
731 si
.si_code
= FPE_FLTRES
;
733 si
.si_code
= __SI_FAULT
;
734 force_sig_info(sig
, &si
, current
);
738 si
.si_addr
= fault_addr
;
740 si
.si_code
= BUS_ADRERR
;
741 force_sig_info(sig
, &si
, current
);
745 si
.si_addr
= fault_addr
;
747 down_read(¤t
->mm
->mmap_sem
);
748 vma
= find_vma(current
->mm
, (unsigned long)fault_addr
);
749 if (vma
&& (vma
->vm_start
<= (unsigned long)fault_addr
))
750 si
.si_code
= SEGV_ACCERR
;
752 si
.si_code
= SEGV_MAPERR
;
753 up_read(¤t
->mm
->mmap_sem
);
754 force_sig_info(sig
, &si
, current
);
758 force_sig(sig
, current
);
763 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
764 unsigned long old_epc
, unsigned long old_ra
)
766 union mips_instruction inst
= { .word
= opcode
};
767 void __user
*fault_addr
;
771 /* If it's obviously not an FP instruction, skip it */
772 switch (inst
.i_format
.opcode
) {
786 * do_ri skipped over the instruction via compute_return_epc, undo
787 * that for the FPU emulator.
789 regs
->cp0_epc
= old_epc
;
790 regs
->regs
[31] = old_ra
;
792 /* Save the FP context to struct thread_struct */
795 /* Run the emulator */
796 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
798 fcr31
= current
->thread
.fpu
.fcr31
;
801 * We can't allow the emulated instruction to leave any of
802 * the cause bits set in $fcr31.
804 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
806 /* Restore the hardware register state */
809 /* Send a signal if required. */
810 process_fpemu_return(sig
, fault_addr
, fcr31
);
816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
818 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
820 enum ctx_state prev_state
;
821 void __user
*fault_addr
;
824 prev_state
= exception_enter();
825 if (notify_die(DIE_FP
, "FP exception", regs
, 0, current
->thread
.trap_nr
,
826 SIGFPE
) == NOTIFY_STOP
)
829 /* Clear FCSR.Cause before enabling interrupts */
830 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~FPU_CSR_ALL_X
);
833 die_if_kernel("FP exception in kernel code", regs
);
835 if (fcr31
& FPU_CSR_UNI_X
) {
837 * Unimplemented operation exception. If we've got the full
838 * software emulator on-board, let's use it...
840 * Force FPU to dump state into task/thread context. We're
841 * moving a lot of data here for what is probably a single
842 * instruction, but the alternative is to pre-decode the FP
843 * register operands before invoking the emulator, which seems
844 * a bit extreme for what should be an infrequent event.
846 /* Ensure 'resume' not overwrite saved fp context again. */
849 /* Run the emulator */
850 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
852 fcr31
= current
->thread
.fpu
.fcr31
;
855 * We can't allow the emulated instruction to leave any of
856 * the cause bits set in $fcr31.
858 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
860 /* Restore the hardware register state */
861 own_fpu(1); /* Using the FPU again. */
864 fault_addr
= (void __user
*) regs
->cp0_epc
;
867 /* Send a signal if required. */
868 process_fpemu_return(sig
, fault_addr
, fcr31
);
871 exception_exit(prev_state
);
874 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
, int si_code
,
877 siginfo_t info
= { 0 };
880 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
881 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
882 SIGTRAP
) == NOTIFY_STOP
)
884 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
886 if (notify_die(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
887 SIGTRAP
) == NOTIFY_STOP
)
891 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
892 * insns, even for trap and break codes that indicate arithmetic
893 * failures. Weird ...
894 * But should we continue the brokenness??? --macro
899 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
900 die_if_kernel(b
, regs
);
901 if (code
== BRK_DIVZERO
)
902 info
.si_code
= FPE_INTDIV
;
904 info
.si_code
= FPE_INTOVF
;
905 info
.si_signo
= SIGFPE
;
906 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
907 force_sig_info(SIGFPE
, &info
, current
);
910 die_if_kernel("Kernel bug detected", regs
);
911 force_sig(SIGTRAP
, current
);
915 * This breakpoint code is used by the FPU emulator to retake
916 * control of the CPU after executing the instruction from the
917 * delay slot of an emulated branch.
919 * Terminate if exception was recognized as a delay slot return
920 * otherwise handle as normal.
922 if (do_dsemulret(regs
))
925 die_if_kernel("Math emu break/trap", regs
);
926 force_sig(SIGTRAP
, current
);
929 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
930 die_if_kernel(b
, regs
);
932 info
.si_signo
= SIGTRAP
;
933 info
.si_code
= si_code
;
934 force_sig_info(SIGTRAP
, &info
, current
);
936 force_sig(SIGTRAP
, current
);
941 asmlinkage
void do_bp(struct pt_regs
*regs
)
943 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
944 unsigned int opcode
, bcode
;
945 enum ctx_state prev_state
;
949 if (!user_mode(regs
))
952 prev_state
= exception_enter();
953 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
954 if (get_isa16_mode(regs
->cp0_epc
)) {
957 if (__get_user(instr
[0], (u16 __user
*)epc
))
960 if (!cpu_has_mmips
) {
962 bcode
= (instr
[0] >> 5) & 0x3f;
963 } else if (mm_insn_16bit(instr
[0])) {
964 /* 16-bit microMIPS BREAK */
965 bcode
= instr
[0] & 0xf;
967 /* 32-bit microMIPS BREAK */
968 if (__get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
970 opcode
= (instr
[0] << 16) | instr
[1];
971 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
974 if (__get_user(opcode
, (unsigned int __user
*)epc
))
976 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
980 * There is the ancient bug in the MIPS assemblers that the break
981 * code starts left to bit 16 instead to bit 6 in the opcode.
982 * Gas is bug-compatible, but not always, grrr...
983 * We handle both cases with a simple heuristics. --macro
985 if (bcode
>= (1 << 10))
986 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
989 * notify the kprobe handlers, if instruction is likely to
994 if (notify_die(DIE_UPROBE
, "uprobe", regs
, bcode
,
995 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1000 if (notify_die(DIE_UPROBE_XOL
, "uprobe_xol", regs
, bcode
,
1001 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1006 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
1007 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1011 case BRK_KPROBE_SSTEPBP
:
1012 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
1013 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1021 do_trap_or_bp(regs
, bcode
, TRAP_BRKPT
, "Break");
1025 exception_exit(prev_state
);
1029 force_sig(SIGSEGV
, current
);
1033 asmlinkage
void do_tr(struct pt_regs
*regs
)
1035 u32 opcode
, tcode
= 0;
1036 enum ctx_state prev_state
;
1039 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1042 if (!user_mode(regs
))
1045 prev_state
= exception_enter();
1046 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1047 if (get_isa16_mode(regs
->cp0_epc
)) {
1048 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
1049 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1051 opcode
= (instr
[0] << 16) | instr
[1];
1052 /* Immediate versions don't provide a code. */
1053 if (!(opcode
& OPCODE
))
1054 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1056 if (__get_user(opcode
, (u32 __user
*)epc
))
1058 /* Immediate versions don't provide a code. */
1059 if (!(opcode
& OPCODE
))
1060 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1063 do_trap_or_bp(regs
, tcode
, 0, "Trap");
1067 exception_exit(prev_state
);
1071 force_sig(SIGSEGV
, current
);
1075 asmlinkage
void do_ri(struct pt_regs
*regs
)
1077 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1078 unsigned long old_epc
= regs
->cp0_epc
;
1079 unsigned long old31
= regs
->regs
[31];
1080 enum ctx_state prev_state
;
1081 unsigned int opcode
= 0;
1085 * Avoid any kernel code. Just emulate the R2 instruction
1086 * as quickly as possible.
1088 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1089 likely(user_mode(regs
)) &&
1090 likely(get_user(opcode
, epc
) >= 0)) {
1091 unsigned long fcr31
= 0;
1093 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1097 task_thread_info(current
)->r2_emul_return
= 1;
1102 process_fpemu_return(status
,
1103 ¤t
->thread
.cp0_baduaddr
,
1105 task_thread_info(current
)->r2_emul_return
= 1;
1112 prev_state
= exception_enter();
1113 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1115 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, current
->thread
.trap_nr
,
1116 SIGILL
) == NOTIFY_STOP
)
1119 die_if_kernel("Reserved instruction in kernel code", regs
);
1121 if (unlikely(compute_return_epc(regs
) < 0))
1124 if (!get_isa16_mode(regs
->cp0_epc
)) {
1125 if (unlikely(get_user(opcode
, epc
) < 0))
1128 if (!cpu_has_llsc
&& status
< 0)
1129 status
= simulate_llsc(regs
, opcode
);
1132 status
= simulate_rdhwr_normal(regs
, opcode
);
1135 status
= simulate_sync(regs
, opcode
);
1138 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1139 } else if (cpu_has_mmips
) {
1140 unsigned short mmop
[2] = { 0 };
1142 if (unlikely(get_user(mmop
[0], (u16 __user
*)epc
+ 0) < 0))
1144 if (unlikely(get_user(mmop
[1], (u16 __user
*)epc
+ 1) < 0))
1147 opcode
= (opcode
<< 16) | mmop
[1];
1150 status
= simulate_rdhwr_mm(regs
, opcode
);
1156 if (unlikely(status
> 0)) {
1157 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1158 regs
->regs
[31] = old31
;
1159 force_sig(status
, current
);
1163 exception_exit(prev_state
);
1167 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1168 * emulated more than some threshold number of instructions, force migration to
1169 * a "CPU" that has FP support.
1171 static void mt_ase_fp_affinity(void)
1173 #ifdef CONFIG_MIPS_MT_FPAFF
1174 if (mt_fpemul_threshold
> 0 &&
1175 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1177 * If there's no FPU present, or if the application has already
1178 * restricted the allowed set to exclude any CPUs with FPUs,
1179 * we'll skip the procedure.
1181 if (cpumask_intersects(¤t
->cpus_allowed
, &mt_fpu_cpumask
)) {
1184 current
->thread
.user_cpus_allowed
1185 = current
->cpus_allowed
;
1186 cpumask_and(&tmask
, ¤t
->cpus_allowed
,
1188 set_cpus_allowed_ptr(current
, &tmask
);
1189 set_thread_flag(TIF_FPUBOUND
);
1192 #endif /* CONFIG_MIPS_MT_FPAFF */
1196 * No lock; only written during early bootup by CPU 0.
1198 static RAW_NOTIFIER_HEAD(cu2_chain
);
1200 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1202 return raw_notifier_chain_register(&cu2_chain
, nb
);
1205 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1207 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1210 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1213 struct pt_regs
*regs
= data
;
1215 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1216 "instruction", regs
);
1217 force_sig(SIGILL
, current
);
1222 static int wait_on_fp_mode_switch(atomic_t
*p
)
1225 * The FP mode for this task is currently being switched. That may
1226 * involve modifications to the format of this tasks FP context which
1227 * make it unsafe to proceed with execution for the moment. Instead,
1228 * schedule some other task.
1234 static int enable_restore_fp_context(int msa
)
1236 int err
, was_fpu_owner
, prior_msa
;
1239 * If an FP mode switch is currently underway, wait for it to
1240 * complete before proceeding.
1242 wait_on_atomic_t(¤t
->mm
->context
.fp_mode_switching
,
1243 wait_on_fp_mode_switch
, TASK_KILLABLE
);
1246 /* First time FP context user. */
1252 set_thread_flag(TIF_USEDMSA
);
1253 set_thread_flag(TIF_MSA_CTX_LIVE
);
1262 * This task has formerly used the FP context.
1264 * If this thread has no live MSA vector context then we can simply
1265 * restore the scalar FP context. If it has live MSA vector context
1266 * (that is, it has or may have used MSA since last performing a
1267 * function call) then we'll need to restore the vector context. This
1268 * applies even if we're currently only executing a scalar FP
1269 * instruction. This is because if we were to later execute an MSA
1270 * instruction then we'd either have to:
1272 * - Restore the vector context & clobber any registers modified by
1273 * scalar FP instructions between now & then.
1277 * - Not restore the vector context & lose the most significant bits
1278 * of all vector registers.
1280 * Neither of those options is acceptable. We cannot restore the least
1281 * significant bits of the registers now & only restore the most
1282 * significant bits later because the most significant bits of any
1283 * vector registers whose aliased FP register is modified now will have
1284 * been zeroed. We'd have no way to know that when restoring the vector
1285 * context & thus may load an outdated value for the most significant
1286 * bits of a vector register.
1288 if (!msa
&& !thread_msa_context_live())
1292 * This task is using or has previously used MSA. Thus we require
1293 * that Status.FR == 1.
1296 was_fpu_owner
= is_fpu_owner();
1297 err
= own_fpu_inatomic(0);
1302 write_msa_csr(current
->thread
.fpu
.msacsr
);
1303 set_thread_flag(TIF_USEDMSA
);
1306 * If this is the first time that the task is using MSA and it has
1307 * previously used scalar FP in this time slice then we already nave
1308 * FP context which we shouldn't clobber. We do however need to clear
1309 * the upper 64b of each vector register so that this task has no
1310 * opportunity to see data left behind by another.
1312 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1313 if (!prior_msa
&& was_fpu_owner
) {
1321 * Restore the least significant 64b of each vector register
1322 * from the existing scalar FP context.
1324 _restore_fp(current
);
1327 * The task has not formerly used MSA, so clear the upper 64b
1328 * of each vector register such that it cannot see data left
1329 * behind by another task.
1333 /* We need to restore the vector context. */
1334 restore_msa(current
);
1336 /* Restore the scalar FP control & status register */
1338 write_32bit_cp1_register(CP1_STATUS
,
1339 current
->thread
.fpu
.fcr31
);
1348 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1350 enum ctx_state prev_state
;
1351 unsigned int __user
*epc
;
1352 unsigned long old_epc
, old31
;
1353 void __user
*fault_addr
;
1354 unsigned int opcode
;
1355 unsigned long fcr31
;
1360 prev_state
= exception_enter();
1361 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1364 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1368 epc
= (unsigned int __user
*)exception_epc(regs
);
1369 old_epc
= regs
->cp0_epc
;
1370 old31
= regs
->regs
[31];
1374 if (unlikely(compute_return_epc(regs
) < 0))
1377 if (!get_isa16_mode(regs
->cp0_epc
)) {
1378 if (unlikely(get_user(opcode
, epc
) < 0))
1381 if (!cpu_has_llsc
&& status
< 0)
1382 status
= simulate_llsc(regs
, opcode
);
1388 if (unlikely(status
> 0)) {
1389 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1390 regs
->regs
[31] = old31
;
1391 force_sig(status
, current
);
1398 * The COP3 opcode space and consequently the CP0.Status.CU3
1399 * bit and the CP0.Cause.CE=3 encoding have been removed as
1400 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1401 * up the space has been reused for COP1X instructions, that
1402 * are enabled by the CP0.Status.CU1 bit and consequently
1403 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1404 * exceptions. Some FPU-less processors that implement one
1405 * of these ISAs however use this code erroneously for COP1X
1406 * instructions. Therefore we redirect this trap to the FP
1409 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1410 force_sig(SIGILL
, current
);
1416 err
= enable_restore_fp_context(0);
1418 if (raw_cpu_has_fpu
&& !err
)
1421 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1423 fcr31
= current
->thread
.fpu
.fcr31
;
1426 * We can't allow the emulated instruction to leave
1427 * any of the cause bits set in $fcr31.
1429 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
1431 /* Send a signal if required. */
1432 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1433 mt_ase_fp_affinity();
1438 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1442 exception_exit(prev_state
);
1445 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1447 enum ctx_state prev_state
;
1449 prev_state
= exception_enter();
1450 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1451 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1452 current
->thread
.trap_nr
, SIGFPE
) == NOTIFY_STOP
)
1455 /* Clear MSACSR.Cause before enabling interrupts */
1456 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1459 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1460 force_sig(SIGFPE
, current
);
1462 exception_exit(prev_state
);
1465 asmlinkage
void do_msa(struct pt_regs
*regs
)
1467 enum ctx_state prev_state
;
1470 prev_state
= exception_enter();
1472 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1473 force_sig(SIGILL
, current
);
1477 die_if_kernel("do_msa invoked from kernel context!", regs
);
1479 err
= enable_restore_fp_context(1);
1481 force_sig(SIGILL
, current
);
1483 exception_exit(prev_state
);
1486 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1488 enum ctx_state prev_state
;
1490 prev_state
= exception_enter();
1491 force_sig(SIGILL
, current
);
1492 exception_exit(prev_state
);
1496 * Called with interrupts disabled.
1498 asmlinkage
void do_watch(struct pt_regs
*regs
)
1500 siginfo_t info
= { .si_signo
= SIGTRAP
, .si_code
= TRAP_HWBKPT
};
1501 enum ctx_state prev_state
;
1503 prev_state
= exception_enter();
1505 * Clear WP (bit 22) bit of cause register so we don't loop
1508 clear_c0_cause(CAUSEF_WP
);
1511 * If the current thread has the watch registers loaded, save
1512 * their values and send SIGTRAP. Otherwise another thread
1513 * left the registers set, clear them and continue.
1515 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1516 mips_read_watch_registers();
1518 force_sig_info(SIGTRAP
, &info
, current
);
1520 mips_clear_watch_registers();
1523 exception_exit(prev_state
);
1526 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1528 int multi_match
= regs
->cp0_status
& ST0_TS
;
1529 enum ctx_state prev_state
;
1530 mm_segment_t old_fs
= get_fs();
1532 prev_state
= exception_enter();
1541 if (!user_mode(regs
))
1544 show_code((unsigned int __user
*) regs
->cp0_epc
);
1549 * Some chips may have other causes of machine check (e.g. SB1
1552 panic("Caught Machine Check exception - %scaused by multiple "
1553 "matching entries in the TLB.",
1554 (multi_match
) ? "" : "not ");
1557 asmlinkage
void do_mt(struct pt_regs
*regs
)
1561 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1562 >> VPECONTROL_EXCPT_SHIFT
;
1565 printk(KERN_DEBUG
"Thread Underflow\n");
1568 printk(KERN_DEBUG
"Thread Overflow\n");
1571 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1574 printk(KERN_DEBUG
"Gating Storage Exception\n");
1577 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1580 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1583 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1587 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1589 force_sig(SIGILL
, current
);
1593 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1596 panic("Unexpected DSP exception");
1598 force_sig(SIGILL
, current
);
1601 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1604 * Game over - no way to handle this if it ever occurs. Most probably
1605 * caused by a new unknown cpu type or after another deadly
1606 * hard/software error.
1609 panic("Caught reserved exception %ld - should not happen.",
1610 (regs
->cp0_cause
& 0x7f) >> 2);
1613 static int __initdata l1parity
= 1;
1614 static int __init
nol1parity(char *s
)
1619 __setup("nol1par", nol1parity
);
1620 static int __initdata l2parity
= 1;
1621 static int __init
nol2parity(char *s
)
1626 __setup("nol2par", nol2parity
);
1629 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1630 * it different ways.
1632 static inline void parity_protection_init(void)
1634 switch (current_cpu_type()) {
1640 case CPU_INTERAPTIV
:
1643 case CPU_QEMU_GENERIC
:
1647 #define ERRCTL_PE 0x80000000
1648 #define ERRCTL_L2P 0x00800000
1649 unsigned long errctl
;
1650 unsigned int l1parity_present
, l2parity_present
;
1652 errctl
= read_c0_ecc();
1653 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1655 /* probe L1 parity support */
1656 write_c0_ecc(errctl
| ERRCTL_PE
);
1657 back_to_back_c0_hazard();
1658 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1660 /* probe L2 parity support */
1661 write_c0_ecc(errctl
|ERRCTL_L2P
);
1662 back_to_back_c0_hazard();
1663 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1665 if (l1parity_present
&& l2parity_present
) {
1667 errctl
|= ERRCTL_PE
;
1668 if (l1parity
^ l2parity
)
1669 errctl
|= ERRCTL_L2P
;
1670 } else if (l1parity_present
) {
1672 errctl
|= ERRCTL_PE
;
1673 } else if (l2parity_present
) {
1675 errctl
|= ERRCTL_L2P
;
1677 /* No parity available */
1680 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1682 write_c0_ecc(errctl
);
1683 back_to_back_c0_hazard();
1684 errctl
= read_c0_ecc();
1685 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1687 if (l1parity_present
)
1688 printk(KERN_INFO
"Cache parity protection %sabled\n",
1689 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1691 if (l2parity_present
) {
1692 if (l1parity_present
&& l1parity
)
1693 errctl
^= ERRCTL_L2P
;
1694 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1695 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1703 write_c0_ecc(0x80000000);
1704 back_to_back_c0_hazard();
1705 /* Set the PE bit (bit 31) in the c0_errctl register. */
1706 printk(KERN_INFO
"Cache parity protection %sabled\n",
1707 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1711 /* Clear the DE bit (bit 16) in the c0_status register. */
1712 printk(KERN_INFO
"Enable cache parity protection for "
1713 "MIPS 20KC/25KF CPUs.\n");
1714 clear_c0_status(ST0_DE
);
1721 asmlinkage
void cache_parity_error(void)
1723 const int field
= 2 * sizeof(unsigned long);
1724 unsigned int reg_val
;
1726 /* For the moment, report the problem and hang. */
1727 printk("Cache error exception:\n");
1728 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1729 reg_val
= read_c0_cacheerr();
1730 printk("c0_cacheerr == %08x\n", reg_val
);
1732 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1733 reg_val
& (1<<30) ? "secondary" : "primary",
1734 reg_val
& (1<<31) ? "data" : "insn");
1735 if ((cpu_has_mips_r2_r6
) &&
1736 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1737 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1738 reg_val
& (1<<29) ? "ED " : "",
1739 reg_val
& (1<<28) ? "ET " : "",
1740 reg_val
& (1<<27) ? "ES " : "",
1741 reg_val
& (1<<26) ? "EE " : "",
1742 reg_val
& (1<<25) ? "EB " : "",
1743 reg_val
& (1<<24) ? "EI " : "",
1744 reg_val
& (1<<23) ? "E1 " : "",
1745 reg_val
& (1<<22) ? "E0 " : "");
1747 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1748 reg_val
& (1<<29) ? "ED " : "",
1749 reg_val
& (1<<28) ? "ET " : "",
1750 reg_val
& (1<<26) ? "EE " : "",
1751 reg_val
& (1<<25) ? "EB " : "",
1752 reg_val
& (1<<24) ? "EI " : "",
1753 reg_val
& (1<<23) ? "E1 " : "",
1754 reg_val
& (1<<22) ? "E0 " : "");
1756 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1758 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1759 if (reg_val
& (1<<22))
1760 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1762 if (reg_val
& (1<<23))
1763 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1766 panic("Can't handle the cache error!");
1769 asmlinkage
void do_ftlb(void)
1771 const int field
= 2 * sizeof(unsigned long);
1772 unsigned int reg_val
;
1774 /* For the moment, report the problem and hang. */
1775 if ((cpu_has_mips_r2_r6
) &&
1776 (((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
) ||
1777 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_LOONGSON
))) {
1778 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1780 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1781 reg_val
= read_c0_cacheerr();
1782 pr_err("c0_cacheerr == %08x\n", reg_val
);
1784 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1785 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1787 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1788 reg_val
& (1<<30) ? "secondary" : "primary",
1789 reg_val
& (1<<31) ? "data" : "insn");
1792 pr_err("FTLB error exception\n");
1794 /* Just print the cacheerr bits for now */
1795 cache_parity_error();
1799 * SDBBP EJTAG debug exception handler.
1800 * We skip the instruction and return to the next instruction.
1802 void ejtag_exception_handler(struct pt_regs
*regs
)
1804 const int field
= 2 * sizeof(unsigned long);
1805 unsigned long depc
, old_epc
, old_ra
;
1808 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1809 depc
= read_c0_depc();
1810 debug
= read_c0_debug();
1811 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1812 if (debug
& 0x80000000) {
1814 * In branch delay slot.
1815 * We cheat a little bit here and use EPC to calculate the
1816 * debug return address (DEPC). EPC is restored after the
1819 old_epc
= regs
->cp0_epc
;
1820 old_ra
= regs
->regs
[31];
1821 regs
->cp0_epc
= depc
;
1822 compute_return_epc(regs
);
1823 depc
= regs
->cp0_epc
;
1824 regs
->cp0_epc
= old_epc
;
1825 regs
->regs
[31] = old_ra
;
1828 write_c0_depc(depc
);
1831 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1832 write_c0_debug(debug
| 0x100);
1837 * NMI exception handler.
1838 * No lock; only written during early bootup by CPU 0.
1840 static RAW_NOTIFIER_HEAD(nmi_chain
);
1842 int register_nmi_notifier(struct notifier_block
*nb
)
1844 return raw_notifier_chain_register(&nmi_chain
, nb
);
1847 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1852 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1854 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1855 smp_processor_id(), regs
->cp0_epc
);
1856 regs
->cp0_epc
= read_c0_errorepc();
1861 #define VECTORSPACING 0x100 /* for EI/VI mode */
1863 unsigned long ebase
;
1864 EXPORT_SYMBOL_GPL(ebase
);
1865 unsigned long exception_handlers
[32];
1866 unsigned long vi_handlers
[64];
1868 void __init
*set_except_vector(int n
, void *addr
)
1870 unsigned long handler
= (unsigned long) addr
;
1871 unsigned long old_handler
;
1873 #ifdef CONFIG_CPU_MICROMIPS
1875 * Only the TLB handlers are cache aligned with an even
1876 * address. All other handlers are on an odd address and
1877 * require no modification. Otherwise, MIPS32 mode will
1878 * be entered when handling any TLB exceptions. That
1879 * would be bad...since we must stay in microMIPS mode.
1881 if (!(handler
& 0x1))
1884 old_handler
= xchg(&exception_handlers
[n
], handler
);
1886 if (n
== 0 && cpu_has_divec
) {
1887 #ifdef CONFIG_CPU_MICROMIPS
1888 unsigned long jump_mask
= ~((1 << 27) - 1);
1890 unsigned long jump_mask
= ~((1 << 28) - 1);
1892 u32
*buf
= (u32
*)(ebase
+ 0x200);
1893 unsigned int k0
= 26;
1894 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1895 uasm_i_j(&buf
, handler
& ~jump_mask
);
1898 UASM_i_LA(&buf
, k0
, handler
);
1899 uasm_i_jr(&buf
, k0
);
1902 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1904 return (void *)old_handler
;
1907 static void do_default_vi(void)
1909 show_regs(get_irq_regs());
1910 panic("Caught unexpected vectored interrupt.");
1913 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1915 unsigned long handler
;
1916 unsigned long old_handler
= vi_handlers
[n
];
1917 int srssets
= current_cpu_data
.srsets
;
1921 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1924 handler
= (unsigned long) do_default_vi
;
1927 handler
= (unsigned long) addr
;
1928 vi_handlers
[n
] = handler
;
1930 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1933 panic("Shadow register set %d not supported", srs
);
1936 if (board_bind_eic_interrupt
)
1937 board_bind_eic_interrupt(n
, srs
);
1938 } else if (cpu_has_vint
) {
1939 /* SRSMap is only defined if shadow sets are implemented */
1941 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1946 * If no shadow set is selected then use the default handler
1947 * that does normal register saving and standard interrupt exit
1949 extern char except_vec_vi
, except_vec_vi_lui
;
1950 extern char except_vec_vi_ori
, except_vec_vi_end
;
1951 extern char rollback_except_vec_vi
;
1952 char *vec_start
= using_rollback_handler() ?
1953 &rollback_except_vec_vi
: &except_vec_vi
;
1954 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1955 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
1956 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
1958 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1959 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1961 const int handler_len
= &except_vec_vi_end
- vec_start
;
1963 if (handler_len
> VECTORSPACING
) {
1965 * Sigh... panicing won't help as the console
1966 * is probably not configured :(
1968 panic("VECTORSPACING too small");
1971 set_handler(((unsigned long)b
- ebase
), vec_start
,
1972 #ifdef CONFIG_CPU_MICROMIPS
1977 h
= (u16
*)(b
+ lui_offset
);
1978 *h
= (handler
>> 16) & 0xffff;
1979 h
= (u16
*)(b
+ ori_offset
);
1980 *h
= (handler
& 0xffff);
1981 local_flush_icache_range((unsigned long)b
,
1982 (unsigned long)(b
+handler_len
));
1986 * In other cases jump directly to the interrupt handler. It
1987 * is the handler's responsibility to save registers if required
1988 * (eg hi/lo) and return from the exception using "eret".
1994 #ifdef CONFIG_CPU_MICROMIPS
1995 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
1997 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
1999 h
[0] = (insn
>> 16) & 0xffff;
2000 h
[1] = insn
& 0xffff;
2003 local_flush_icache_range((unsigned long)b
,
2004 (unsigned long)(b
+8));
2007 return (void *)old_handler
;
2010 void *set_vi_handler(int n
, vi_handler_t addr
)
2012 return set_vi_srs_handler(n
, addr
, 0);
2015 extern void tlb_init(void);
2020 int cp0_compare_irq
;
2021 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2022 int cp0_compare_irq_shift
;
2025 * Performance counter IRQ or -1 if shared with timer
2027 int cp0_perfcount_irq
;
2028 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2031 * Fast debug channel IRQ or -1 if not present
2034 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2038 static int __init
ulri_disable(char *s
)
2040 pr_info("Disabling ulri\n");
2045 __setup("noulri", ulri_disable
);
2047 /* configure STATUS register */
2048 static void configure_status(void)
2051 * Disable coprocessors and select 32-bit or 64-bit addressing
2052 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2053 * flag that some firmware may have left set and the TS bit (for
2054 * IP27). Set XX for ISA IV code to work.
2056 unsigned int status_set
= ST0_CU0
;
2058 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2060 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2061 status_set
|= ST0_XX
;
2063 status_set
|= ST0_MX
;
2065 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2069 unsigned int hwrena
;
2070 EXPORT_SYMBOL_GPL(hwrena
);
2072 /* configure HWRENA register */
2073 static void configure_hwrena(void)
2075 hwrena
= cpu_hwrena_impl_bits
;
2077 if (cpu_has_mips_r2_r6
)
2078 hwrena
|= MIPS_HWRENA_CPUNUM
|
2079 MIPS_HWRENA_SYNCISTEP
|
2083 if (!noulri
&& cpu_has_userlocal
)
2084 hwrena
|= MIPS_HWRENA_ULR
;
2087 write_c0_hwrena(hwrena
);
2090 static void configure_exception_vector(void)
2092 if (cpu_has_veic
|| cpu_has_vint
) {
2093 unsigned long sr
= set_c0_status(ST0_BEV
);
2094 write_c0_ebase(ebase
);
2095 write_c0_status(sr
);
2096 /* Setting vector spacing enables EI/VI mode */
2097 change_c0_intctl(0x3e0, VECTORSPACING
);
2099 if (cpu_has_divec
) {
2100 if (cpu_has_mipsmt
) {
2101 unsigned int vpflags
= dvpe();
2102 set_c0_cause(CAUSEF_IV
);
2105 set_c0_cause(CAUSEF_IV
);
2109 void per_cpu_trap_init(bool is_boot_cpu
)
2111 unsigned int cpu
= smp_processor_id();
2116 configure_exception_vector();
2119 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2121 * o read IntCtl.IPTI to determine the timer interrupt
2122 * o read IntCtl.IPPCI to determine the performance counter interrupt
2123 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2125 if (cpu_has_mips_r2_r6
) {
2127 * We shouldn't trust a secondary core has a sane EBASE register
2128 * so use the one calculated by the boot CPU.
2131 write_c0_ebase(ebase
);
2133 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2134 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2135 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2136 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2141 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2142 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2143 cp0_perfcount_irq
= -1;
2147 if (!cpu_data
[cpu
].asid_cache
)
2148 cpu_data
[cpu
].asid_cache
= asid_first_version(cpu
);
2150 atomic_inc(&init_mm
.mm_count
);
2151 current
->active_mm
= &init_mm
;
2152 BUG_ON(current
->mm
);
2153 enter_lazy_tlb(&init_mm
, current
);
2155 /* Boot CPU's cache setup in setup_arch(). */
2159 TLBMISS_HANDLER_SETUP();
2162 /* Install CPU exception handler */
2163 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
2165 #ifdef CONFIG_CPU_MICROMIPS
2166 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2168 memcpy((void *)(ebase
+ offset
), addr
, size
);
2170 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2173 static char panic_null_cerr
[] =
2174 "Trying to set NULL cache error exception handler";
2177 * Install uncached CPU exception handler.
2178 * This is suitable only for the cache error exception which is the only
2179 * exception handler that is being run uncached.
2181 void set_uncached_handler(unsigned long offset
, void *addr
,
2184 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2187 panic(panic_null_cerr
);
2189 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2192 static int __initdata rdhwr_noopt
;
2193 static int __init
set_rdhwr_noopt(char *str
)
2199 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2201 void __init
trap_init(void)
2203 extern char except_vec3_generic
;
2204 extern char except_vec4
;
2205 extern char except_vec3_r4000
;
2210 if (cpu_has_veic
|| cpu_has_vint
) {
2211 unsigned long size
= 0x200 + VECTORSPACING
*64;
2212 ebase
= (unsigned long)
2213 __alloc_bootmem(size
, 1 << fls(size
), 0);
2217 if (cpu_has_mips_r2_r6
)
2218 ebase
+= (read_c0_ebase() & 0x3ffff000);
2221 if (cpu_has_mmips
) {
2222 unsigned int config3
= read_c0_config3();
2224 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2225 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2227 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2230 if (board_ebase_setup
)
2231 board_ebase_setup();
2232 per_cpu_trap_init(true);
2235 * Copy the generic exception handlers to their final destination.
2236 * This will be overridden later as suitable for a particular
2239 set_handler(0x180, &except_vec3_generic
, 0x80);
2242 * Setup default vectors
2244 for (i
= 0; i
<= 31; i
++)
2245 set_except_vector(i
, handle_reserved
);
2248 * Copy the EJTAG debug exception vector handler code to it's final
2251 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2252 board_ejtag_handler_setup();
2255 * Only some CPUs have the watch exceptions.
2258 set_except_vector(EXCCODE_WATCH
, handle_watch
);
2261 * Initialise interrupt handlers
2263 if (cpu_has_veic
|| cpu_has_vint
) {
2264 int nvec
= cpu_has_veic
? 64 : 8;
2265 for (i
= 0; i
< nvec
; i
++)
2266 set_vi_handler(i
, NULL
);
2268 else if (cpu_has_divec
)
2269 set_handler(0x200, &except_vec4
, 0x8);
2272 * Some CPUs can enable/disable for cache parity detection, but does
2273 * it different ways.
2275 parity_protection_init();
2278 * The Data Bus Errors / Instruction Bus Errors are signaled
2279 * by external hardware. Therefore these two exceptions
2280 * may have board specific handlers.
2285 set_except_vector(EXCCODE_INT
, using_rollback_handler() ?
2286 rollback_handle_int
: handle_int
);
2287 set_except_vector(EXCCODE_MOD
, handle_tlbm
);
2288 set_except_vector(EXCCODE_TLBL
, handle_tlbl
);
2289 set_except_vector(EXCCODE_TLBS
, handle_tlbs
);
2291 set_except_vector(EXCCODE_ADEL
, handle_adel
);
2292 set_except_vector(EXCCODE_ADES
, handle_ades
);
2294 set_except_vector(EXCCODE_IBE
, handle_ibe
);
2295 set_except_vector(EXCCODE_DBE
, handle_dbe
);
2297 set_except_vector(EXCCODE_SYS
, handle_sys
);
2298 set_except_vector(EXCCODE_BP
, handle_bp
);
2299 set_except_vector(EXCCODE_RI
, rdhwr_noopt
? handle_ri
:
2300 (cpu_has_vtag_icache
?
2301 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
2302 set_except_vector(EXCCODE_CPU
, handle_cpu
);
2303 set_except_vector(EXCCODE_OV
, handle_ov
);
2304 set_except_vector(EXCCODE_TR
, handle_tr
);
2305 set_except_vector(EXCCODE_MSAFPE
, handle_msa_fpe
);
2307 if (current_cpu_type() == CPU_R6000
||
2308 current_cpu_type() == CPU_R6000A
) {
2310 * The R6000 is the only R-series CPU that features a machine
2311 * check exception (similar to the R4000 cache error) and
2312 * unaligned ldc1/sdc1 exception. The handlers have not been
2313 * written yet. Well, anyway there is no R6000 machine on the
2314 * current list of targets for Linux/MIPS.
2315 * (Duh, crap, there is someone with a triple R6k machine)
2317 //set_except_vector(14, handle_mc);
2318 //set_except_vector(15, handle_ndc);
2322 if (board_nmi_handler_setup
)
2323 board_nmi_handler_setup();
2325 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2326 set_except_vector(EXCCODE_FPE
, handle_fpe
);
2328 set_except_vector(MIPS_EXCCODE_TLBPAR
, handle_ftlb
);
2330 if (cpu_has_rixiex
) {
2331 set_except_vector(EXCCODE_TLBRI
, tlb_do_page_fault_0
);
2332 set_except_vector(EXCCODE_TLBXI
, tlb_do_page_fault_0
);
2335 set_except_vector(EXCCODE_MSADIS
, handle_msa
);
2336 set_except_vector(EXCCODE_MDMX
, handle_mdmx
);
2339 set_except_vector(EXCCODE_MCHECK
, handle_mcheck
);
2342 set_except_vector(EXCCODE_THREAD
, handle_mt
);
2344 set_except_vector(EXCCODE_DSPDIS
, handle_dsp
);
2346 if (board_cache_error_setup
)
2347 board_cache_error_setup();
2350 /* Special exception: R4[04]00 uses also the divec space. */
2351 set_handler(0x180, &except_vec3_r4000
, 0x100);
2352 else if (cpu_has_4kex
)
2353 set_handler(0x180, &except_vec3_generic
, 0x80);
2355 set_handler(0x080, &except_vec3_generic
, 0x80);
2357 local_flush_icache_range(ebase
, ebase
+ 0x400);
2359 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2361 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2364 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2368 case CPU_PM_ENTER_FAILED
:
2372 configure_exception_vector();
2374 /* Restore register with CPU number for TLB handlers */
2375 TLBMISS_HANDLER_RESTORE();
2383 static struct notifier_block trap_pm_notifier_block
= {
2384 .notifier_call
= trap_pm_notifier
,
2387 static int __init
trap_pm_init(void)
2389 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2391 arch_initcall(trap_pm_init
);