Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / char / ipmi / ipmi_si_intf.c
bloba112c0146012e2ba1fb58b54be59d758d0349108
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
78 #define PFX "ipmi_si: "
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112 #define DEVICE_NAME "ipmi_si"
114 static struct platform_driver ipmi_driver;
117 * Indexes into stats[] in smi_info below.
119 enum si_stat_indexes {
121 * Number of times the driver requested a timer while an operation
122 * was in progress.
124 SI_STAT_short_timeouts = 0,
127 * Number of times the driver requested a timer while nothing was in
128 * progress.
130 SI_STAT_long_timeouts,
132 /* Number of times the interface was idle while being polled. */
133 SI_STAT_idles,
135 /* Number of interrupts the driver handled. */
136 SI_STAT_interrupts,
138 /* Number of time the driver got an ATTN from the hardware. */
139 SI_STAT_attentions,
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches,
144 /* Number of times the hardware didn't follow the state machine. */
145 SI_STAT_hosed_count,
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions,
150 /* Number of IPMI events received from the hardware. */
151 SI_STAT_events,
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts,
156 /* Number of asynchronous messages received. */
157 SI_STAT_incoming_messages,
160 /* This *must* remain last, add new values above this. */
161 SI_NUM_STATS
164 struct smi_info {
165 int intf_num;
166 ipmi_smi_t intf;
167 struct si_sm_data *si_sm;
168 const struct si_sm_handlers *handlers;
169 enum si_type si_type;
170 spinlock_t si_lock;
171 struct ipmi_smi_msg *waiting_msg;
172 struct ipmi_smi_msg *curr_msg;
173 enum si_intf_state si_state;
176 * Used to handle the various types of I/O that can occur with
177 * IPMI
179 struct si_sm_io io;
180 int (*io_setup)(struct smi_info *info);
181 void (*io_cleanup)(struct smi_info *info);
182 int (*irq_setup)(struct smi_info *info);
183 void (*irq_cleanup)(struct smi_info *info);
184 unsigned int io_size;
185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 void (*addr_source_cleanup)(struct smi_info *info);
187 void *addr_source_data;
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
194 int (*oem_data_avail_handler)(struct smi_info *smi_info);
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
199 * from the flags.
201 #define RECEIVE_MSG_AVAIL 0x01
202 #define EVENT_MSG_BUFFER_FULL 0x02
203 #define WDT_PRE_TIMEOUT_INT 0x08
204 #define OEM0_DATA_AVAIL 0x20
205 #define OEM1_DATA_AVAIL 0x40
206 #define OEM2_DATA_AVAIL 0x80
207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
208 OEM1_DATA_AVAIL | \
209 OEM2_DATA_AVAIL)
210 unsigned char msg_flags;
212 /* Does the BMC have an event buffer? */
213 bool has_event_buffer;
216 * If set to true, this will request events the next time the
217 * state machine is idle.
219 atomic_t req_events;
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
224 * out.
226 bool run_to_completion;
228 /* The I/O port of an SI interface. */
229 int port;
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
236 unsigned int spacing;
238 /* zero if no irq; */
239 int irq;
241 /* The timer for this si. */
242 struct timer_list si_timer;
244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 bool timer_running;
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
250 /* Are we waiting for the events, pretimeouts, received msgs? */
251 atomic_t need_watch;
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
259 bool interrupt_disabled;
262 * Does the BMC support events?
264 bool supports_event_msg_buff;
267 * Can we disable interrupts the global enables receive irq
268 * bit? There are currently two forms of brokenness, some
269 * systems cannot disable the bit (which is technically within
270 * the spec but a bad idea) and some systems have the bit
271 * forced to zero even though interrupts work (which is
272 * clearly outside the spec). The next bool tells which form
273 * of brokenness is present.
275 bool cannot_disable_irq;
278 * Some systems are broken and cannot set the irq enable
279 * bit, even if they support interrupts.
281 bool irq_enable_broken;
284 * Did we get an attention that we did not handle?
286 bool got_attn;
288 /* From the get device id response... */
289 struct ipmi_device_id device_id;
291 /* Driver model stuff. */
292 struct device *dev;
293 struct platform_device *pdev;
296 * True if we allocated the device, false if it came from
297 * someplace else (like PCI).
299 bool dev_registered;
301 /* Slave address, could be reported from DMI. */
302 unsigned char slave_addr;
304 /* Counters and things for the proc filesystem. */
305 atomic_t stats[SI_NUM_STATS];
307 struct task_struct *thread;
309 struct list_head link;
310 union ipmi_smi_info_union addr_info;
313 #define smi_inc_stat(smi, stat) \
314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
318 #define SI_MAX_PARMS 4
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
332 static bool unload_when_empty = true;
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
342 struct timespec64 t;
344 getnstimeofday64(&t);
345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
347 #else
348 #define debug_timestamp(x)
349 #endif
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
354 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 struct ipmi_smi_msg *msg)
360 /* Deliver the message to the upper layer. */
361 if (smi_info->intf)
362 ipmi_smi_msg_received(smi_info->intf, msg);
363 else
364 ipmi_free_smi_msg(msg);
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
369 struct ipmi_smi_msg *msg = smi_info->curr_msg;
371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 cCode = IPMI_ERR_UNSPECIFIED;
373 /* else use it as is */
375 /* Make it a response */
376 msg->rsp[0] = msg->data[0] | 4;
377 msg->rsp[1] = msg->data[1];
378 msg->rsp[2] = cCode;
379 msg->rsp_size = 3;
381 smi_info->curr_msg = NULL;
382 deliver_recv_msg(smi_info, msg);
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
387 int rv;
389 if (!smi_info->waiting_msg) {
390 smi_info->curr_msg = NULL;
391 rv = SI_SM_IDLE;
392 } else {
393 int err;
395 smi_info->curr_msg = smi_info->waiting_msg;
396 smi_info->waiting_msg = NULL;
397 debug_timestamp("Start2");
398 err = atomic_notifier_call_chain(&xaction_notifier_list,
399 0, smi_info);
400 if (err & NOTIFY_STOP_MASK) {
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 goto out;
404 err = smi_info->handlers->start_transaction(
405 smi_info->si_sm,
406 smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
408 if (err)
409 return_hosed_msg(smi_info, err);
411 rv = SI_SM_CALL_WITHOUT_DELAY;
413 out:
414 return rv;
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
419 smi_info->last_timeout_jiffies = jiffies;
420 mod_timer(&smi_info->si_timer, new_val);
421 smi_info->timer_running = true;
425 * Start a new message and (re)start the timer and thread.
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 unsigned int size)
430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
432 if (smi_info->thread)
433 wake_up_process(smi_info->thread);
435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
440 unsigned char msg[2];
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
445 if (start_timer)
446 start_new_msg(smi_info, msg, 2);
447 else
448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 smi_info->si_state = SI_CHECKING_ENABLES;
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
454 unsigned char msg[3];
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 msg[2] = WDT_PRE_TIMEOUT_INT;
461 if (start_timer)
462 start_new_msg(smi_info, msg, 3);
463 else
464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 smi_info->si_state = SI_CLEARING_FLAGS;
468 static void start_getting_msg_queue(struct smi_info *smi_info)
470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 smi_info->curr_msg->data_size = 2;
474 start_new_msg(smi_info, smi_info->curr_msg->data,
475 smi_info->curr_msg->data_size);
476 smi_info->si_state = SI_GETTING_MESSAGES;
479 static void start_getting_events(struct smi_info *smi_info)
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 smi_info->curr_msg->data_size = 2;
485 start_new_msg(smi_info, smi_info->curr_msg->data,
486 smi_info->curr_msg->data_size);
487 smi_info->si_state = SI_GETTING_EVENTS;
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
496 * Note that we cannot just use disable_irq(), since the interrupt may
497 * be shared.
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 smi_info->interrupt_disabled = true;
503 start_check_enables(smi_info, start_timer);
504 return true;
506 return false;
509 static inline bool enable_si_irq(struct smi_info *smi_info)
511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 smi_info->interrupt_disabled = false;
513 start_check_enables(smi_info, true);
514 return true;
516 return false;
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
527 struct ipmi_smi_msg *msg;
529 msg = ipmi_alloc_smi_msg();
530 if (!msg) {
531 if (!disable_si_irq(smi_info, true))
532 smi_info->si_state = SI_NORMAL;
533 } else if (enable_si_irq(smi_info)) {
534 ipmi_free_smi_msg(msg);
535 msg = NULL;
537 return msg;
540 static void handle_flags(struct smi_info *smi_info)
542 retry:
543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 /* Watchdog pre-timeout */
545 smi_inc_stat(smi_info, watchdog_pretimeouts);
547 start_clear_flags(smi_info, true);
548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 if (smi_info->intf)
550 ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 /* Messages available. */
553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 if (!smi_info->curr_msg)
555 return;
557 start_getting_msg_queue(smi_info);
558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 /* Events available. */
560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 if (!smi_info->curr_msg)
562 return;
564 start_getting_events(smi_info);
565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 smi_info->oem_data_avail_handler) {
567 if (smi_info->oem_data_avail_handler(smi_info))
568 goto retry;
569 } else
570 smi_info->si_state = SI_NORMAL;
574 * Global enables we care about.
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 bool *irq_on)
582 u8 enables = 0;
584 if (smi_info->supports_event_msg_buff)
585 enables |= IPMI_BMC_EVT_MSG_BUFF;
587 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 smi_info->cannot_disable_irq) &&
589 !smi_info->irq_enable_broken)
590 enables |= IPMI_BMC_RCV_MSG_INTR;
592 if (smi_info->supports_event_msg_buff &&
593 smi_info->irq && !smi_info->interrupt_disabled &&
594 !smi_info->irq_enable_broken)
595 enables |= IPMI_BMC_EVT_MSG_INTR;
597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
599 return enables;
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
608 if ((bool)irqstate == irq_on)
609 return;
611 if (irq_on)
612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 else
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
618 static void handle_transaction_done(struct smi_info *smi_info)
620 struct ipmi_smi_msg *msg;
622 debug_timestamp("Done");
623 switch (smi_info->si_state) {
624 case SI_NORMAL:
625 if (!smi_info->curr_msg)
626 break;
628 smi_info->curr_msg->rsp_size
629 = smi_info->handlers->get_result(
630 smi_info->si_sm,
631 smi_info->curr_msg->rsp,
632 IPMI_MAX_MSG_LENGTH);
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
639 msg = smi_info->curr_msg;
640 smi_info->curr_msg = NULL;
641 deliver_recv_msg(smi_info, msg);
642 break;
644 case SI_GETTING_FLAGS:
646 unsigned char msg[4];
647 unsigned int len;
649 /* We got the flags from the SMI, now handle them. */
650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 if (msg[2] != 0) {
652 /* Error fetching flags, just give up for now. */
653 smi_info->si_state = SI_NORMAL;
654 } else if (len < 4) {
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
659 smi_info->si_state = SI_NORMAL;
660 } else {
661 smi_info->msg_flags = msg[3];
662 handle_flags(smi_info);
664 break;
667 case SI_CLEARING_FLAGS:
669 unsigned char msg[3];
671 /* We cleared the flags. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 if (msg[2] != 0) {
674 /* Error clearing flags */
675 dev_warn(smi_info->dev,
676 "Error clearing flags: %2.2x\n", msg[2]);
678 smi_info->si_state = SI_NORMAL;
679 break;
682 case SI_GETTING_EVENTS:
684 smi_info->curr_msg->rsp_size
685 = smi_info->handlers->get_result(
686 smi_info->si_sm,
687 smi_info->curr_msg->rsp,
688 IPMI_MAX_MSG_LENGTH);
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
695 msg = smi_info->curr_msg;
696 smi_info->curr_msg = NULL;
697 if (msg->rsp[2] != 0) {
698 /* Error getting event, probably done. */
699 msg->done(msg);
701 /* Take off the event flag. */
702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 handle_flags(smi_info);
704 } else {
705 smi_inc_stat(smi_info, events);
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
711 * state.
713 handle_flags(smi_info);
715 deliver_recv_msg(smi_info, msg);
717 break;
720 case SI_GETTING_MESSAGES:
722 smi_info->curr_msg->rsp_size
723 = smi_info->handlers->get_result(
724 smi_info->si_sm,
725 smi_info->curr_msg->rsp,
726 IPMI_MAX_MSG_LENGTH);
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
733 msg = smi_info->curr_msg;
734 smi_info->curr_msg = NULL;
735 if (msg->rsp[2] != 0) {
736 /* Error getting event, probably done. */
737 msg->done(msg);
739 /* Take off the msg flag. */
740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 handle_flags(smi_info);
742 } else {
743 smi_inc_stat(smi_info, incoming_messages);
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
749 * state.
751 handle_flags(smi_info);
753 deliver_recv_msg(smi_info, msg);
755 break;
758 case SI_CHECKING_ENABLES:
760 unsigned char msg[4];
761 u8 enables;
762 bool irq_on;
764 /* We got the flags from the SMI, now handle them. */
765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 if (msg[2] != 0) {
767 dev_warn(smi_info->dev,
768 "Couldn't get irq info: %x.\n", msg[2]);
769 dev_warn(smi_info->dev,
770 "Maybe ok, but ipmi might run very slowly.\n");
771 smi_info->si_state = SI_NORMAL;
772 break;
774 enables = current_global_enables(smi_info, 0, &irq_on);
775 if (smi_info->si_type == SI_BT)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info, irq_on);
778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 /* Enables are not correct, fix them. */
780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 smi_info->handlers->start_transaction(
784 smi_info->si_sm, msg, 3);
785 smi_info->si_state = SI_SETTING_ENABLES;
786 } else if (smi_info->supports_event_msg_buff) {
787 smi_info->curr_msg = ipmi_alloc_smi_msg();
788 if (!smi_info->curr_msg) {
789 smi_info->si_state = SI_NORMAL;
790 break;
792 start_getting_msg_queue(smi_info);
793 } else {
794 smi_info->si_state = SI_NORMAL;
796 break;
799 case SI_SETTING_ENABLES:
801 unsigned char msg[4];
803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 if (msg[2] != 0)
805 dev_warn(smi_info->dev,
806 "Could not set the global enables: 0x%x.\n",
807 msg[2]);
809 if (smi_info->supports_event_msg_buff) {
810 smi_info->curr_msg = ipmi_alloc_smi_msg();
811 if (!smi_info->curr_msg) {
812 smi_info->si_state = SI_NORMAL;
813 break;
815 start_getting_msg_queue(smi_info);
816 } else {
817 smi_info->si_state = SI_NORMAL;
819 break;
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 int time)
832 enum si_sm_result si_sm_result;
834 restart:
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 time = 0;
845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 smi_inc_stat(smi_info, complete_transactions);
851 handle_transaction_done(smi_info);
852 goto restart;
853 } else if (si_sm_result == SI_SM_HOSED) {
854 smi_inc_stat(smi_info, hosed_count);
857 * Do the before return_hosed_msg, because that
858 * releases the lock.
860 smi_info->si_state = SI_NORMAL;
861 if (smi_info->curr_msg != NULL) {
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
869 goto restart;
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
876 if (likely(smi_info->intf) &&
877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 unsigned char msg[2];
880 if (smi_info->si_state != SI_NORMAL) {
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
885 smi_info->got_attn = true;
886 } else {
887 smi_info->got_attn = false;
888 smi_inc_stat(smi_info, attentions);
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
895 * possible.
897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
900 start_new_msg(smi_info, msg, 2);
901 smi_info->si_state = SI_GETTING_FLAGS;
902 goto restart;
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result == SI_SM_IDLE) {
908 smi_inc_stat(smi_info, idles);
910 si_sm_result = start_next_msg(smi_info);
911 if (si_sm_result != SI_SM_IDLE)
912 goto restart;
915 if ((si_sm_result == SI_SM_IDLE)
916 && (atomic_read(&smi_info->req_events))) {
918 * We are idle and the upper layer requested that I fetch
919 * events, so do so.
921 atomic_set(&smi_info->req_events, 0);
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
929 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 start_check_enables(smi_info, true);
931 } else {
932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 if (!smi_info->curr_msg)
934 goto out;
936 start_getting_events(smi_info);
938 goto restart;
941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info->si_timer))
944 smi_info->timer_running = false;
947 out:
948 return si_sm_result;
951 static void check_start_timer_thread(struct smi_info *smi_info)
953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
956 if (smi_info->thread)
957 wake_up_process(smi_info->thread);
959 start_next_msg(smi_info);
960 smi_event_handler(smi_info, 0);
964 static void flush_messages(void *send_info)
966 struct smi_info *smi_info = send_info;
967 enum si_sm_result result;
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
973 result = smi_event_handler(smi_info, 0);
974 while (result != SI_SM_IDLE) {
975 udelay(SI_SHORT_TIMEOUT_USEC);
976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
980 static void sender(void *send_info,
981 struct ipmi_smi_msg *msg)
983 struct smi_info *smi_info = send_info;
984 unsigned long flags;
986 debug_timestamp("Enqueue");
988 if (smi_info->run_to_completion) {
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
993 smi_info->waiting_msg = msg;
994 return;
997 spin_lock_irqsave(&smi_info->si_lock, flags);
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1003 * ordering problem.
1005 BUG_ON(smi_info->waiting_msg);
1006 smi_info->waiting_msg = msg;
1007 check_start_timer_thread(smi_info);
1008 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1013 struct smi_info *smi_info = send_info;
1015 smi_info->run_to_completion = i_run_to_completion;
1016 if (i_run_to_completion)
1017 flush_messages(smi_info);
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1027 ts->tv_nsec = -1;
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1031 return ts->tv_nsec != -1;
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 const struct smi_info *smi_info,
1036 struct timespec64 *busy_until)
1038 unsigned int max_busy_us = 0;
1040 if (smi_info->intf_num < num_max_busy_us)
1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 ipmi_si_set_not_busy(busy_until);
1044 else if (!ipmi_si_is_busy(busy_until)) {
1045 getnstimeofday64(busy_until);
1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 } else {
1048 struct timespec64 now;
1050 getnstimeofday64(&now);
1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 ipmi_si_set_not_busy(busy_until);
1053 return 0;
1056 return 1;
1061 * A busy-waiting loop for speeding up IPMI operation.
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1069 static int ipmi_thread(void *data)
1071 struct smi_info *smi_info = data;
1072 unsigned long flags;
1073 enum si_sm_result smi_result;
1074 struct timespec64 busy_until;
1076 ipmi_si_set_not_busy(&busy_until);
1077 set_user_nice(current, MAX_NICE);
1078 while (!kthread_should_stop()) {
1079 int busy_wait;
1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 smi_result = smi_event_handler(smi_info, 0);
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 &busy_until);
1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 ; /* do nothing */
1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 schedule();
1101 else if (smi_result == SI_SM_IDLE) {
1102 if (atomic_read(&smi_info->need_watch)) {
1103 schedule_timeout_interruptible(100);
1104 } else {
1105 /* Wait to be woken up when we are needed. */
1106 __set_current_state(TASK_INTERRUPTIBLE);
1107 schedule();
1109 } else
1110 schedule_timeout_interruptible(1);
1112 return 0;
1116 static void poll(void *send_info)
1118 struct smi_info *smi_info = send_info;
1119 unsigned long flags = 0;
1120 bool run_to_completion = smi_info->run_to_completion;
1123 * Make sure there is some delay in the poll loop so we can
1124 * drive time forward and timeout things.
1126 udelay(10);
1127 if (!run_to_completion)
1128 spin_lock_irqsave(&smi_info->si_lock, flags);
1129 smi_event_handler(smi_info, 10);
1130 if (!run_to_completion)
1131 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1134 static void request_events(void *send_info)
1136 struct smi_info *smi_info = send_info;
1138 if (!smi_info->has_event_buffer)
1139 return;
1141 atomic_set(&smi_info->req_events, 1);
1144 static void set_need_watch(void *send_info, bool enable)
1146 struct smi_info *smi_info = send_info;
1147 unsigned long flags;
1149 atomic_set(&smi_info->need_watch, enable);
1150 spin_lock_irqsave(&smi_info->si_lock, flags);
1151 check_start_timer_thread(smi_info);
1152 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1155 static int initialized;
1157 static void smi_timeout(unsigned long data)
1159 struct smi_info *smi_info = (struct smi_info *) data;
1160 enum si_sm_result smi_result;
1161 unsigned long flags;
1162 unsigned long jiffies_now;
1163 long time_diff;
1164 long timeout;
1166 spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 debug_timestamp("Timer");
1169 jiffies_now = jiffies;
1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 * SI_USEC_PER_JIFFY);
1172 smi_result = smi_event_handler(smi_info, time_diff);
1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 /* Running with interrupts, only do long timeouts. */
1176 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 smi_inc_stat(smi_info, long_timeouts);
1178 goto do_mod_timer;
1182 * If the state machine asks for a short delay, then shorten
1183 * the timer timeout.
1185 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 smi_inc_stat(smi_info, short_timeouts);
1187 timeout = jiffies + 1;
1188 } else {
1189 smi_inc_stat(smi_info, long_timeouts);
1190 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1193 do_mod_timer:
1194 if (smi_result != SI_SM_IDLE)
1195 smi_mod_timer(smi_info, timeout);
1196 else
1197 smi_info->timer_running = false;
1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1203 struct smi_info *smi_info = data;
1204 unsigned long flags;
1206 spin_lock_irqsave(&(smi_info->si_lock), flags);
1208 smi_inc_stat(smi_info, interrupts);
1210 debug_timestamp("Interrupt");
1212 smi_event_handler(smi_info, 0);
1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 return IRQ_HANDLED;
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1219 struct smi_info *smi_info = data;
1220 /* We need to clear the IRQ flag for the BT interface. */
1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 return si_irq_handler(irq, data);
1227 static int smi_start_processing(void *send_info,
1228 ipmi_smi_t intf)
1230 struct smi_info *new_smi = send_info;
1231 int enable = 0;
1233 new_smi->intf = intf;
1235 /* Set up the timer that drives the interface. */
1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1239 /* Try to claim any interrupts. */
1240 if (new_smi->irq_setup)
1241 new_smi->irq_setup(new_smi);
1244 * Check if the user forcefully enabled the daemon.
1246 if (new_smi->intf_num < num_force_kipmid)
1247 enable = force_kipmid[new_smi->intf_num];
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 enable = 1;
1255 if (enable) {
1256 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 "kipmi%d", new_smi->intf_num);
1258 if (IS_ERR(new_smi->thread)) {
1259 dev_notice(new_smi->dev, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi->thread));
1263 new_smi->thread = NULL;
1267 return 0;
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1272 struct smi_info *smi = send_info;
1274 data->addr_src = smi->addr_source;
1275 data->dev = smi->dev;
1276 data->addr_info = smi->addr_info;
1277 get_device(smi->dev);
1279 return 0;
1282 static void set_maintenance_mode(void *send_info, bool enable)
1284 struct smi_info *smi_info = send_info;
1286 if (!enable)
1287 atomic_set(&smi_info->req_events, 0);
1290 static const struct ipmi_smi_handlers handlers = {
1291 .owner = THIS_MODULE,
1292 .start_processing = smi_start_processing,
1293 .get_smi_info = get_smi_info,
1294 .sender = sender,
1295 .request_events = request_events,
1296 .set_need_watch = set_need_watch,
1297 .set_maintenance_mode = set_maintenance_mode,
1298 .set_run_to_completion = set_run_to_completion,
1299 .flush_messages = flush_messages,
1300 .poll = poll,
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1312 #define DEFAULT_REGSPACING 1
1313 #define DEFAULT_REGSIZE 1
1315 #ifdef CONFIG_ACPI
1316 static bool si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool si_trydmi = true;
1320 #endif
1321 static bool si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool si_trypci = true;
1324 #endif
1325 static char *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1343 #define IPMI_IO_ADDR_SPACE 0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1351 " Documentation/IPMI.txt in the kernel sources for the"
1352 " gory details.");
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362 " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1366 " default scan of the interfaces identified via platform"
1367 " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1371 " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1375 " interface separated by commas. The types are 'kcs',"
1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1377 " the first interface to kcs and the second to bt");
1378 module_param_array(addrs, ulong, &num_addrs, 0);
1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1380 " addresses separated by commas. Only use if an interface"
1381 " is in memory. Otherwise, set it to zero or leave"
1382 " it blank.");
1383 module_param_array(ports, uint, &num_ports, 0);
1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is a port. Otherwise, set it to zero or leave"
1387 " it blank.");
1388 module_param_array(irqs, int, &num_irqs, 0);
1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " has an interrupt. Otherwise, set it to zero or leave"
1392 " it blank.");
1393 module_param_array(regspacings, int, &num_regspacings, 0);
1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1395 " and each successive register used by the interface. For"
1396 " instance, if the start address is 0xca2 and the spacing"
1397 " is 2, then the second address is at 0xca4. Defaults"
1398 " to 1.");
1399 module_param_array(regsizes, int, &num_regsizes, 0);
1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1401 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1403 " the 8-bit IPMI register has to be read from a larger"
1404 " register.");
1405 module_param_array(regshifts, int, &num_regshifts, 0);
1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1407 " IPMI register, in bits. For instance, if the data"
1408 " is read from a 32-bit word and the IPMI data is in"
1409 " bit 8-15, then the shift would be 8");
1410 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1412 " the controller. Normally this is 0x20, but can be"
1413 " overridden by this parm. This is an array indexed"
1414 " by interface number.");
1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1417 " disabled(0). Normally the IPMI driver auto-detects"
1418 " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1421 " specified or found, default is 1. Setting to 0"
1422 " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us,
1425 "Max time (in microseconds) to busy-wait for IPMI data before"
1426 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427 " if kipmid is using up a lot of CPU time.");
1430 static void std_irq_cleanup(struct smi_info *info)
1432 if (info->si_type == SI_BT)
1433 /* Disable the interrupt in the BT interface. */
1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1435 free_irq(info->irq, info);
1438 static int std_irq_setup(struct smi_info *info)
1440 int rv;
1442 if (!info->irq)
1443 return 0;
1445 if (info->si_type == SI_BT) {
1446 rv = request_irq(info->irq,
1447 si_bt_irq_handler,
1448 IRQF_SHARED,
1449 DEVICE_NAME,
1450 info);
1451 if (!rv)
1452 /* Enable the interrupt in the BT interface. */
1453 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1455 } else
1456 rv = request_irq(info->irq,
1457 si_irq_handler,
1458 IRQF_SHARED,
1459 DEVICE_NAME,
1460 info);
1461 if (rv) {
1462 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1463 " running polled\n",
1464 DEVICE_NAME, info->irq);
1465 info->irq = 0;
1466 } else {
1467 info->irq_cleanup = std_irq_cleanup;
1468 dev_info(info->dev, "Using irq %d\n", info->irq);
1471 return rv;
1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1476 unsigned int addr = io->addr_data;
1478 return inb(addr + (offset * io->regspacing));
1481 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1482 unsigned char b)
1484 unsigned int addr = io->addr_data;
1486 outb(b, addr + (offset * io->regspacing));
1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1491 unsigned int addr = io->addr_data;
1493 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1496 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1497 unsigned char b)
1499 unsigned int addr = io->addr_data;
1501 outw(b << io->regshift, addr + (offset * io->regspacing));
1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1506 unsigned int addr = io->addr_data;
1508 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1511 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1512 unsigned char b)
1514 unsigned int addr = io->addr_data;
1516 outl(b << io->regshift, addr+(offset * io->regspacing));
1519 static void port_cleanup(struct smi_info *info)
1521 unsigned int addr = info->io.addr_data;
1522 int idx;
1524 if (addr) {
1525 for (idx = 0; idx < info->io_size; idx++)
1526 release_region(addr + idx * info->io.regspacing,
1527 info->io.regsize);
1531 static int port_setup(struct smi_info *info)
1533 unsigned int addr = info->io.addr_data;
1534 int idx;
1536 if (!addr)
1537 return -ENODEV;
1539 info->io_cleanup = port_cleanup;
1542 * Figure out the actual inb/inw/inl/etc routine to use based
1543 * upon the register size.
1545 switch (info->io.regsize) {
1546 case 1:
1547 info->io.inputb = port_inb;
1548 info->io.outputb = port_outb;
1549 break;
1550 case 2:
1551 info->io.inputb = port_inw;
1552 info->io.outputb = port_outw;
1553 break;
1554 case 4:
1555 info->io.inputb = port_inl;
1556 info->io.outputb = port_outl;
1557 break;
1558 default:
1559 dev_warn(info->dev, "Invalid register size: %d\n",
1560 info->io.regsize);
1561 return -EINVAL;
1565 * Some BIOSes reserve disjoint I/O regions in their ACPI
1566 * tables. This causes problems when trying to register the
1567 * entire I/O region. Therefore we must register each I/O
1568 * port separately.
1570 for (idx = 0; idx < info->io_size; idx++) {
1571 if (request_region(addr + idx * info->io.regspacing,
1572 info->io.regsize, DEVICE_NAME) == NULL) {
1573 /* Undo allocations */
1574 while (idx--)
1575 release_region(addr + idx * info->io.regspacing,
1576 info->io.regsize);
1577 return -EIO;
1580 return 0;
1583 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1584 unsigned int offset)
1586 return readb((io->addr)+(offset * io->regspacing));
1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1590 unsigned char b)
1592 writeb(b, (io->addr)+(offset * io->regspacing));
1595 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1596 unsigned int offset)
1598 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599 & 0xff;
1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1603 unsigned char b)
1605 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1608 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1609 unsigned int offset)
1611 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1612 & 0xff;
1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1616 unsigned char b)
1618 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1621 #ifdef readq
1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1624 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1625 & 0xff;
1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1629 unsigned char b)
1631 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 #endif
1635 static void mem_region_cleanup(struct smi_info *info, int num)
1637 unsigned long addr = info->io.addr_data;
1638 int idx;
1640 for (idx = 0; idx < num; idx++)
1641 release_mem_region(addr + idx * info->io.regspacing,
1642 info->io.regsize);
1645 static void mem_cleanup(struct smi_info *info)
1647 if (info->io.addr) {
1648 iounmap(info->io.addr);
1649 mem_region_cleanup(info, info->io_size);
1653 static int mem_setup(struct smi_info *info)
1655 unsigned long addr = info->io.addr_data;
1656 int mapsize, idx;
1658 if (!addr)
1659 return -ENODEV;
1661 info->io_cleanup = mem_cleanup;
1664 * Figure out the actual readb/readw/readl/etc routine to use based
1665 * upon the register size.
1667 switch (info->io.regsize) {
1668 case 1:
1669 info->io.inputb = intf_mem_inb;
1670 info->io.outputb = intf_mem_outb;
1671 break;
1672 case 2:
1673 info->io.inputb = intf_mem_inw;
1674 info->io.outputb = intf_mem_outw;
1675 break;
1676 case 4:
1677 info->io.inputb = intf_mem_inl;
1678 info->io.outputb = intf_mem_outl;
1679 break;
1680 #ifdef readq
1681 case 8:
1682 info->io.inputb = mem_inq;
1683 info->io.outputb = mem_outq;
1684 break;
1685 #endif
1686 default:
1687 dev_warn(info->dev, "Invalid register size: %d\n",
1688 info->io.regsize);
1689 return -EINVAL;
1693 * Some BIOSes reserve disjoint memory regions in their ACPI
1694 * tables. This causes problems when trying to request the
1695 * entire region. Therefore we must request each register
1696 * separately.
1698 for (idx = 0; idx < info->io_size; idx++) {
1699 if (request_mem_region(addr + idx * info->io.regspacing,
1700 info->io.regsize, DEVICE_NAME) == NULL) {
1701 /* Undo allocations */
1702 mem_region_cleanup(info, idx);
1703 return -EIO;
1708 * Calculate the total amount of memory to claim. This is an
1709 * unusual looking calculation, but it avoids claiming any
1710 * more memory than it has to. It will claim everything
1711 * between the first address to the end of the last full
1712 * register.
1714 mapsize = ((info->io_size * info->io.regspacing)
1715 - (info->io.regspacing - info->io.regsize));
1716 info->io.addr = ioremap(addr, mapsize);
1717 if (info->io.addr == NULL) {
1718 mem_region_cleanup(info, info->io_size);
1719 return -EIO;
1721 return 0;
1725 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1727 * Options are:
1728 * rsp=<regspacing>
1729 * rsi=<regsize>
1730 * rsh=<regshift>
1731 * irq=<irq>
1732 * ipmb=<ipmb addr>
1734 enum hotmod_op { HM_ADD, HM_REMOVE };
1735 struct hotmod_vals {
1736 const char *name;
1737 const int val;
1740 static const struct hotmod_vals hotmod_ops[] = {
1741 { "add", HM_ADD },
1742 { "remove", HM_REMOVE },
1743 { NULL }
1746 static const struct hotmod_vals hotmod_si[] = {
1747 { "kcs", SI_KCS },
1748 { "smic", SI_SMIC },
1749 { "bt", SI_BT },
1750 { NULL }
1753 static const struct hotmod_vals hotmod_as[] = {
1754 { "mem", IPMI_MEM_ADDR_SPACE },
1755 { "i/o", IPMI_IO_ADDR_SPACE },
1756 { NULL }
1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1760 char **curr)
1762 char *s;
1763 int i;
1765 s = strchr(*curr, ',');
1766 if (!s) {
1767 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1768 return -EINVAL;
1770 *s = '\0';
1771 s++;
1772 for (i = 0; v[i].name; i++) {
1773 if (strcmp(*curr, v[i].name) == 0) {
1774 *val = v[i].val;
1775 *curr = s;
1776 return 0;
1780 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781 return -EINVAL;
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785 const char *name, int *val)
1787 char *n;
1789 if (strcmp(curr, name) == 0) {
1790 if (!option) {
1791 printk(KERN_WARNING PFX
1792 "No option given for '%s'\n",
1793 curr);
1794 return -EINVAL;
1796 *val = simple_strtoul(option, &n, 0);
1797 if ((*n != '\0') || (*option == '\0')) {
1798 printk(KERN_WARNING PFX
1799 "Bad option given for '%s'\n",
1800 curr);
1801 return -EINVAL;
1803 return 1;
1805 return 0;
1808 static struct smi_info *smi_info_alloc(void)
1810 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1812 if (info)
1813 spin_lock_init(&info->si_lock);
1814 return info;
1817 static int hotmod_handler(const char *val, struct kernel_param *kp)
1819 char *str = kstrdup(val, GFP_KERNEL);
1820 int rv;
1821 char *next, *curr, *s, *n, *o;
1822 enum hotmod_op op;
1823 enum si_type si_type;
1824 int addr_space;
1825 unsigned long addr;
1826 int regspacing;
1827 int regsize;
1828 int regshift;
1829 int irq;
1830 int ipmb;
1831 int ival;
1832 int len;
1833 struct smi_info *info;
1835 if (!str)
1836 return -ENOMEM;
1838 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1839 len = strlen(str);
1840 ival = len - 1;
1841 while ((ival >= 0) && isspace(str[ival])) {
1842 str[ival] = '\0';
1843 ival--;
1846 for (curr = str; curr; curr = next) {
1847 regspacing = 1;
1848 regsize = 1;
1849 regshift = 0;
1850 irq = 0;
1851 ipmb = 0; /* Choose the default if not specified */
1853 next = strchr(curr, ':');
1854 if (next) {
1855 *next = '\0';
1856 next++;
1859 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1860 if (rv)
1861 break;
1862 op = ival;
1864 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1865 if (rv)
1866 break;
1867 si_type = ival;
1869 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1870 if (rv)
1871 break;
1873 s = strchr(curr, ',');
1874 if (s) {
1875 *s = '\0';
1876 s++;
1878 addr = simple_strtoul(curr, &n, 0);
1879 if ((*n != '\0') || (*curr == '\0')) {
1880 printk(KERN_WARNING PFX "Invalid hotmod address"
1881 " '%s'\n", curr);
1882 break;
1885 while (s) {
1886 curr = s;
1887 s = strchr(curr, ',');
1888 if (s) {
1889 *s = '\0';
1890 s++;
1892 o = strchr(curr, '=');
1893 if (o) {
1894 *o = '\0';
1895 o++;
1897 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1898 if (rv < 0)
1899 goto out;
1900 else if (rv)
1901 continue;
1902 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1903 if (rv < 0)
1904 goto out;
1905 else if (rv)
1906 continue;
1907 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1908 if (rv < 0)
1909 goto out;
1910 else if (rv)
1911 continue;
1912 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1913 if (rv < 0)
1914 goto out;
1915 else if (rv)
1916 continue;
1917 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1918 if (rv < 0)
1919 goto out;
1920 else if (rv)
1921 continue;
1923 rv = -EINVAL;
1924 printk(KERN_WARNING PFX
1925 "Invalid hotmod option '%s'\n",
1926 curr);
1927 goto out;
1930 if (op == HM_ADD) {
1931 info = smi_info_alloc();
1932 if (!info) {
1933 rv = -ENOMEM;
1934 goto out;
1937 info->addr_source = SI_HOTMOD;
1938 info->si_type = si_type;
1939 info->io.addr_data = addr;
1940 info->io.addr_type = addr_space;
1941 if (addr_space == IPMI_MEM_ADDR_SPACE)
1942 info->io_setup = mem_setup;
1943 else
1944 info->io_setup = port_setup;
1946 info->io.addr = NULL;
1947 info->io.regspacing = regspacing;
1948 if (!info->io.regspacing)
1949 info->io.regspacing = DEFAULT_REGSPACING;
1950 info->io.regsize = regsize;
1951 if (!info->io.regsize)
1952 info->io.regsize = DEFAULT_REGSPACING;
1953 info->io.regshift = regshift;
1954 info->irq = irq;
1955 if (info->irq)
1956 info->irq_setup = std_irq_setup;
1957 info->slave_addr = ipmb;
1959 rv = add_smi(info);
1960 if (rv) {
1961 kfree(info);
1962 goto out;
1964 rv = try_smi_init(info);
1965 if (rv) {
1966 cleanup_one_si(info);
1967 goto out;
1969 } else {
1970 /* remove */
1971 struct smi_info *e, *tmp_e;
1973 mutex_lock(&smi_infos_lock);
1974 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1975 if (e->io.addr_type != addr_space)
1976 continue;
1977 if (e->si_type != si_type)
1978 continue;
1979 if (e->io.addr_data == addr)
1980 cleanup_one_si(e);
1982 mutex_unlock(&smi_infos_lock);
1985 rv = len;
1986 out:
1987 kfree(str);
1988 return rv;
1991 static int hardcode_find_bmc(void)
1993 int ret = -ENODEV;
1994 int i;
1995 struct smi_info *info;
1997 for (i = 0; i < SI_MAX_PARMS; i++) {
1998 if (!ports[i] && !addrs[i])
1999 continue;
2001 info = smi_info_alloc();
2002 if (!info)
2003 return -ENOMEM;
2005 info->addr_source = SI_HARDCODED;
2006 printk(KERN_INFO PFX "probing via hardcoded address\n");
2008 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2009 info->si_type = SI_KCS;
2010 } else if (strcmp(si_type[i], "smic") == 0) {
2011 info->si_type = SI_SMIC;
2012 } else if (strcmp(si_type[i], "bt") == 0) {
2013 info->si_type = SI_BT;
2014 } else {
2015 printk(KERN_WARNING PFX "Interface type specified "
2016 "for interface %d, was invalid: %s\n",
2017 i, si_type[i]);
2018 kfree(info);
2019 continue;
2022 if (ports[i]) {
2023 /* An I/O port */
2024 info->io_setup = port_setup;
2025 info->io.addr_data = ports[i];
2026 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2027 } else if (addrs[i]) {
2028 /* A memory port */
2029 info->io_setup = mem_setup;
2030 info->io.addr_data = addrs[i];
2031 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2032 } else {
2033 printk(KERN_WARNING PFX "Interface type specified "
2034 "for interface %d, but port and address were "
2035 "not set or set to zero.\n", i);
2036 kfree(info);
2037 continue;
2040 info->io.addr = NULL;
2041 info->io.regspacing = regspacings[i];
2042 if (!info->io.regspacing)
2043 info->io.regspacing = DEFAULT_REGSPACING;
2044 info->io.regsize = regsizes[i];
2045 if (!info->io.regsize)
2046 info->io.regsize = DEFAULT_REGSPACING;
2047 info->io.regshift = regshifts[i];
2048 info->irq = irqs[i];
2049 if (info->irq)
2050 info->irq_setup = std_irq_setup;
2051 info->slave_addr = slave_addrs[i];
2053 if (!add_smi(info)) {
2054 if (try_smi_init(info))
2055 cleanup_one_si(info);
2056 ret = 0;
2057 } else {
2058 kfree(info);
2061 return ret;
2064 #ifdef CONFIG_ACPI
2067 * Once we get an ACPI failure, we don't try any more, because we go
2068 * through the tables sequentially. Once we don't find a table, there
2069 * are no more.
2071 static int acpi_failure;
2073 /* For GPE-type interrupts. */
2074 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2075 u32 gpe_number, void *context)
2077 struct smi_info *smi_info = context;
2078 unsigned long flags;
2080 spin_lock_irqsave(&(smi_info->si_lock), flags);
2082 smi_inc_stat(smi_info, interrupts);
2084 debug_timestamp("ACPI_GPE");
2086 smi_event_handler(smi_info, 0);
2087 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2089 return ACPI_INTERRUPT_HANDLED;
2092 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2094 if (!info->irq)
2095 return;
2097 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2100 static int acpi_gpe_irq_setup(struct smi_info *info)
2102 acpi_status status;
2104 if (!info->irq)
2105 return 0;
2107 status = acpi_install_gpe_handler(NULL,
2108 info->irq,
2109 ACPI_GPE_LEVEL_TRIGGERED,
2110 &ipmi_acpi_gpe,
2111 info);
2112 if (status != AE_OK) {
2113 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2114 " running polled\n", DEVICE_NAME, info->irq);
2115 info->irq = 0;
2116 return -EINVAL;
2117 } else {
2118 info->irq_cleanup = acpi_gpe_irq_cleanup;
2119 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2120 return 0;
2125 * Defined at
2126 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2128 struct SPMITable {
2129 s8 Signature[4];
2130 u32 Length;
2131 u8 Revision;
2132 u8 Checksum;
2133 s8 OEMID[6];
2134 s8 OEMTableID[8];
2135 s8 OEMRevision[4];
2136 s8 CreatorID[4];
2137 s8 CreatorRevision[4];
2138 u8 InterfaceType;
2139 u8 IPMIlegacy;
2140 s16 SpecificationRevision;
2143 * Bit 0 - SCI interrupt supported
2144 * Bit 1 - I/O APIC/SAPIC
2146 u8 InterruptType;
2149 * If bit 0 of InterruptType is set, then this is the SCI
2150 * interrupt in the GPEx_STS register.
2152 u8 GPE;
2154 s16 Reserved;
2157 * If bit 1 of InterruptType is set, then this is the I/O
2158 * APIC/SAPIC interrupt.
2160 u32 GlobalSystemInterrupt;
2162 /* The actual register address. */
2163 struct acpi_generic_address addr;
2165 u8 UID[4];
2167 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2170 static int try_init_spmi(struct SPMITable *spmi)
2172 struct smi_info *info;
2173 int rv;
2175 if (spmi->IPMIlegacy != 1) {
2176 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2177 return -ENODEV;
2180 info = smi_info_alloc();
2181 if (!info) {
2182 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2183 return -ENOMEM;
2186 info->addr_source = SI_SPMI;
2187 printk(KERN_INFO PFX "probing via SPMI\n");
2189 /* Figure out the interface type. */
2190 switch (spmi->InterfaceType) {
2191 case 1: /* KCS */
2192 info->si_type = SI_KCS;
2193 break;
2194 case 2: /* SMIC */
2195 info->si_type = SI_SMIC;
2196 break;
2197 case 3: /* BT */
2198 info->si_type = SI_BT;
2199 break;
2200 case 4: /* SSIF, just ignore */
2201 kfree(info);
2202 return -EIO;
2203 default:
2204 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2205 spmi->InterfaceType);
2206 kfree(info);
2207 return -EIO;
2210 if (spmi->InterruptType & 1) {
2211 /* We've got a GPE interrupt. */
2212 info->irq = spmi->GPE;
2213 info->irq_setup = acpi_gpe_irq_setup;
2214 } else if (spmi->InterruptType & 2) {
2215 /* We've got an APIC/SAPIC interrupt. */
2216 info->irq = spmi->GlobalSystemInterrupt;
2217 info->irq_setup = std_irq_setup;
2218 } else {
2219 /* Use the default interrupt setting. */
2220 info->irq = 0;
2221 info->irq_setup = NULL;
2224 if (spmi->addr.bit_width) {
2225 /* A (hopefully) properly formed register bit width. */
2226 info->io.regspacing = spmi->addr.bit_width / 8;
2227 } else {
2228 info->io.regspacing = DEFAULT_REGSPACING;
2230 info->io.regsize = info->io.regspacing;
2231 info->io.regshift = spmi->addr.bit_offset;
2233 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2234 info->io_setup = mem_setup;
2235 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2236 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2237 info->io_setup = port_setup;
2238 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2239 } else {
2240 kfree(info);
2241 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2242 return -EIO;
2244 info->io.addr_data = spmi->addr.address;
2246 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2247 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2248 info->io.addr_data, info->io.regsize, info->io.regspacing,
2249 info->irq);
2251 rv = add_smi(info);
2252 if (rv)
2253 kfree(info);
2255 return rv;
2258 static void spmi_find_bmc(void)
2260 acpi_status status;
2261 struct SPMITable *spmi;
2262 int i;
2264 if (acpi_disabled)
2265 return;
2267 if (acpi_failure)
2268 return;
2270 for (i = 0; ; i++) {
2271 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2272 (struct acpi_table_header **)&spmi);
2273 if (status != AE_OK)
2274 return;
2276 try_init_spmi(spmi);
2279 #endif
2281 #ifdef CONFIG_DMI
2282 struct dmi_ipmi_data {
2283 u8 type;
2284 u8 addr_space;
2285 unsigned long base_addr;
2286 u8 irq;
2287 u8 offset;
2288 u8 slave_addr;
2291 static int decode_dmi(const struct dmi_header *dm,
2292 struct dmi_ipmi_data *dmi)
2294 const u8 *data = (const u8 *)dm;
2295 unsigned long base_addr;
2296 u8 reg_spacing;
2297 u8 len = dm->length;
2299 dmi->type = data[4];
2301 memcpy(&base_addr, data+8, sizeof(unsigned long));
2302 if (len >= 0x11) {
2303 if (base_addr & 1) {
2304 /* I/O */
2305 base_addr &= 0xFFFE;
2306 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2307 } else
2308 /* Memory */
2309 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2311 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2312 is odd. */
2313 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2315 dmi->irq = data[0x11];
2317 /* The top two bits of byte 0x10 hold the register spacing. */
2318 reg_spacing = (data[0x10] & 0xC0) >> 6;
2319 switch (reg_spacing) {
2320 case 0x00: /* Byte boundaries */
2321 dmi->offset = 1;
2322 break;
2323 case 0x01: /* 32-bit boundaries */
2324 dmi->offset = 4;
2325 break;
2326 case 0x02: /* 16-byte boundaries */
2327 dmi->offset = 16;
2328 break;
2329 default:
2330 /* Some other interface, just ignore it. */
2331 return -EIO;
2333 } else {
2334 /* Old DMI spec. */
2336 * Note that technically, the lower bit of the base
2337 * address should be 1 if the address is I/O and 0 if
2338 * the address is in memory. So many systems get that
2339 * wrong (and all that I have seen are I/O) so we just
2340 * ignore that bit and assume I/O. Systems that use
2341 * memory should use the newer spec, anyway.
2343 dmi->base_addr = base_addr & 0xfffe;
2344 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2345 dmi->offset = 1;
2348 dmi->slave_addr = data[6];
2350 return 0;
2353 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2355 struct smi_info *info;
2357 info = smi_info_alloc();
2358 if (!info) {
2359 printk(KERN_ERR PFX "Could not allocate SI data\n");
2360 return;
2363 info->addr_source = SI_SMBIOS;
2364 printk(KERN_INFO PFX "probing via SMBIOS\n");
2366 switch (ipmi_data->type) {
2367 case 0x01: /* KCS */
2368 info->si_type = SI_KCS;
2369 break;
2370 case 0x02: /* SMIC */
2371 info->si_type = SI_SMIC;
2372 break;
2373 case 0x03: /* BT */
2374 info->si_type = SI_BT;
2375 break;
2376 default:
2377 kfree(info);
2378 return;
2381 switch (ipmi_data->addr_space) {
2382 case IPMI_MEM_ADDR_SPACE:
2383 info->io_setup = mem_setup;
2384 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2385 break;
2387 case IPMI_IO_ADDR_SPACE:
2388 info->io_setup = port_setup;
2389 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2390 break;
2392 default:
2393 kfree(info);
2394 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2395 ipmi_data->addr_space);
2396 return;
2398 info->io.addr_data = ipmi_data->base_addr;
2400 info->io.regspacing = ipmi_data->offset;
2401 if (!info->io.regspacing)
2402 info->io.regspacing = DEFAULT_REGSPACING;
2403 info->io.regsize = DEFAULT_REGSPACING;
2404 info->io.regshift = 0;
2406 info->slave_addr = ipmi_data->slave_addr;
2408 info->irq = ipmi_data->irq;
2409 if (info->irq)
2410 info->irq_setup = std_irq_setup;
2412 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2413 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2414 info->io.addr_data, info->io.regsize, info->io.regspacing,
2415 info->irq);
2417 if (add_smi(info))
2418 kfree(info);
2421 static void dmi_find_bmc(void)
2423 const struct dmi_device *dev = NULL;
2424 struct dmi_ipmi_data data;
2425 int rv;
2427 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2428 memset(&data, 0, sizeof(data));
2429 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2430 &data);
2431 if (!rv)
2432 try_init_dmi(&data);
2435 #endif /* CONFIG_DMI */
2437 #ifdef CONFIG_PCI
2439 #define PCI_ERMC_CLASSCODE 0x0C0700
2440 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2441 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2442 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2443 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2444 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2446 #define PCI_HP_VENDOR_ID 0x103C
2447 #define PCI_MMC_DEVICE_ID 0x121A
2448 #define PCI_MMC_ADDR_CW 0x10
2450 static void ipmi_pci_cleanup(struct smi_info *info)
2452 struct pci_dev *pdev = info->addr_source_data;
2454 pci_disable_device(pdev);
2457 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2459 if (info->si_type == SI_KCS) {
2460 unsigned char status;
2461 int regspacing;
2463 info->io.regsize = DEFAULT_REGSIZE;
2464 info->io.regshift = 0;
2465 info->io_size = 2;
2466 info->handlers = &kcs_smi_handlers;
2468 /* detect 1, 4, 16byte spacing */
2469 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2470 info->io.regspacing = regspacing;
2471 if (info->io_setup(info)) {
2472 dev_err(info->dev,
2473 "Could not setup I/O space\n");
2474 return DEFAULT_REGSPACING;
2476 /* write invalid cmd */
2477 info->io.outputb(&info->io, 1, 0x10);
2478 /* read status back */
2479 status = info->io.inputb(&info->io, 1);
2480 info->io_cleanup(info);
2481 if (status)
2482 return regspacing;
2483 regspacing *= 4;
2486 return DEFAULT_REGSPACING;
2489 static int ipmi_pci_probe(struct pci_dev *pdev,
2490 const struct pci_device_id *ent)
2492 int rv;
2493 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2494 struct smi_info *info;
2496 info = smi_info_alloc();
2497 if (!info)
2498 return -ENOMEM;
2500 info->addr_source = SI_PCI;
2501 dev_info(&pdev->dev, "probing via PCI");
2503 switch (class_type) {
2504 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2505 info->si_type = SI_SMIC;
2506 break;
2508 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2509 info->si_type = SI_KCS;
2510 break;
2512 case PCI_ERMC_CLASSCODE_TYPE_BT:
2513 info->si_type = SI_BT;
2514 break;
2516 default:
2517 kfree(info);
2518 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2519 return -ENOMEM;
2522 rv = pci_enable_device(pdev);
2523 if (rv) {
2524 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2525 kfree(info);
2526 return rv;
2529 info->addr_source_cleanup = ipmi_pci_cleanup;
2530 info->addr_source_data = pdev;
2532 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2533 info->io_setup = port_setup;
2534 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2535 } else {
2536 info->io_setup = mem_setup;
2537 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2539 info->io.addr_data = pci_resource_start(pdev, 0);
2541 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2542 info->io.regsize = DEFAULT_REGSIZE;
2543 info->io.regshift = 0;
2545 info->irq = pdev->irq;
2546 if (info->irq)
2547 info->irq_setup = std_irq_setup;
2549 info->dev = &pdev->dev;
2550 pci_set_drvdata(pdev, info);
2552 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2553 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2554 info->irq);
2556 rv = add_smi(info);
2557 if (rv) {
2558 kfree(info);
2559 pci_disable_device(pdev);
2562 return rv;
2565 static void ipmi_pci_remove(struct pci_dev *pdev)
2567 struct smi_info *info = pci_get_drvdata(pdev);
2568 cleanup_one_si(info);
2571 static const struct pci_device_id ipmi_pci_devices[] = {
2572 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2574 { 0, }
2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2578 static struct pci_driver ipmi_pci_driver = {
2579 .name = DEVICE_NAME,
2580 .id_table = ipmi_pci_devices,
2581 .probe = ipmi_pci_probe,
2582 .remove = ipmi_pci_remove,
2584 #endif /* CONFIG_PCI */
2586 #ifdef CONFIG_OF
2587 static const struct of_device_id of_ipmi_match[] = {
2588 { .type = "ipmi", .compatible = "ipmi-kcs",
2589 .data = (void *)(unsigned long) SI_KCS },
2590 { .type = "ipmi", .compatible = "ipmi-smic",
2591 .data = (void *)(unsigned long) SI_SMIC },
2592 { .type = "ipmi", .compatible = "ipmi-bt",
2593 .data = (void *)(unsigned long) SI_BT },
2596 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2598 static int of_ipmi_probe(struct platform_device *dev)
2600 const struct of_device_id *match;
2601 struct smi_info *info;
2602 struct resource resource;
2603 const __be32 *regsize, *regspacing, *regshift;
2604 struct device_node *np = dev->dev.of_node;
2605 int ret;
2606 int proplen;
2608 dev_info(&dev->dev, "probing via device tree\n");
2610 match = of_match_device(of_ipmi_match, &dev->dev);
2611 if (!match)
2612 return -ENODEV;
2614 if (!of_device_is_available(np))
2615 return -EINVAL;
2617 ret = of_address_to_resource(np, 0, &resource);
2618 if (ret) {
2619 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2620 return ret;
2623 regsize = of_get_property(np, "reg-size", &proplen);
2624 if (regsize && proplen != 4) {
2625 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2626 return -EINVAL;
2629 regspacing = of_get_property(np, "reg-spacing", &proplen);
2630 if (regspacing && proplen != 4) {
2631 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2632 return -EINVAL;
2635 regshift = of_get_property(np, "reg-shift", &proplen);
2636 if (regshift && proplen != 4) {
2637 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2638 return -EINVAL;
2641 info = smi_info_alloc();
2643 if (!info) {
2644 dev_err(&dev->dev,
2645 "could not allocate memory for OF probe\n");
2646 return -ENOMEM;
2649 info->si_type = (enum si_type) match->data;
2650 info->addr_source = SI_DEVICETREE;
2651 info->irq_setup = std_irq_setup;
2653 if (resource.flags & IORESOURCE_IO) {
2654 info->io_setup = port_setup;
2655 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2656 } else {
2657 info->io_setup = mem_setup;
2658 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2661 info->io.addr_data = resource.start;
2663 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2664 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2665 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2667 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2668 info->dev = &dev->dev;
2670 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2671 info->io.addr_data, info->io.regsize, info->io.regspacing,
2672 info->irq);
2674 dev_set_drvdata(&dev->dev, info);
2676 ret = add_smi(info);
2677 if (ret) {
2678 kfree(info);
2679 return ret;
2681 return 0;
2683 #else
2684 #define of_ipmi_match NULL
2685 static int of_ipmi_probe(struct platform_device *dev)
2687 return -ENODEV;
2689 #endif
2691 #ifdef CONFIG_ACPI
2692 static int acpi_ipmi_probe(struct platform_device *dev)
2694 struct smi_info *info;
2695 struct resource *res, *res_second;
2696 acpi_handle handle;
2697 acpi_status status;
2698 unsigned long long tmp;
2699 int rv = -EINVAL;
2701 if (!si_tryacpi)
2702 return 0;
2704 handle = ACPI_HANDLE(&dev->dev);
2705 if (!handle)
2706 return -ENODEV;
2708 info = smi_info_alloc();
2709 if (!info)
2710 return -ENOMEM;
2712 info->addr_source = SI_ACPI;
2713 dev_info(&dev->dev, PFX "probing via ACPI\n");
2715 info->addr_info.acpi_info.acpi_handle = handle;
2717 /* _IFT tells us the interface type: KCS, BT, etc */
2718 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2719 if (ACPI_FAILURE(status)) {
2720 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2721 goto err_free;
2724 switch (tmp) {
2725 case 1:
2726 info->si_type = SI_KCS;
2727 break;
2728 case 2:
2729 info->si_type = SI_SMIC;
2730 break;
2731 case 3:
2732 info->si_type = SI_BT;
2733 break;
2734 case 4: /* SSIF, just ignore */
2735 rv = -ENODEV;
2736 goto err_free;
2737 default:
2738 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2739 goto err_free;
2742 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2743 if (res) {
2744 info->io_setup = port_setup;
2745 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2746 } else {
2747 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2748 if (res) {
2749 info->io_setup = mem_setup;
2750 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2753 if (!res) {
2754 dev_err(&dev->dev, "no I/O or memory address\n");
2755 goto err_free;
2757 info->io.addr_data = res->start;
2759 info->io.regspacing = DEFAULT_REGSPACING;
2760 res_second = platform_get_resource(dev,
2761 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2762 IORESOURCE_IO : IORESOURCE_MEM,
2764 if (res_second) {
2765 if (res_second->start > info->io.addr_data)
2766 info->io.regspacing =
2767 res_second->start - info->io.addr_data;
2769 info->io.regsize = DEFAULT_REGSPACING;
2770 info->io.regshift = 0;
2772 /* If _GPE exists, use it; otherwise use standard interrupts */
2773 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2774 if (ACPI_SUCCESS(status)) {
2775 info->irq = tmp;
2776 info->irq_setup = acpi_gpe_irq_setup;
2777 } else {
2778 int irq = platform_get_irq(dev, 0);
2780 if (irq > 0) {
2781 info->irq = irq;
2782 info->irq_setup = std_irq_setup;
2786 info->dev = &dev->dev;
2787 platform_set_drvdata(dev, info);
2789 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2790 res, info->io.regsize, info->io.regspacing,
2791 info->irq);
2793 rv = add_smi(info);
2794 if (rv)
2795 kfree(info);
2797 return rv;
2799 err_free:
2800 kfree(info);
2801 return rv;
2804 static const struct acpi_device_id acpi_ipmi_match[] = {
2805 { "IPI0001", 0 },
2806 { },
2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2809 #else
2810 static int acpi_ipmi_probe(struct platform_device *dev)
2812 return -ENODEV;
2814 #endif
2816 static int ipmi_probe(struct platform_device *dev)
2818 if (of_ipmi_probe(dev) == 0)
2819 return 0;
2821 return acpi_ipmi_probe(dev);
2824 static int ipmi_remove(struct platform_device *dev)
2826 struct smi_info *info = dev_get_drvdata(&dev->dev);
2828 cleanup_one_si(info);
2829 return 0;
2832 static struct platform_driver ipmi_driver = {
2833 .driver = {
2834 .name = DEVICE_NAME,
2835 .of_match_table = of_ipmi_match,
2836 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2838 .probe = ipmi_probe,
2839 .remove = ipmi_remove,
2842 #ifdef CONFIG_PARISC
2843 static int ipmi_parisc_probe(struct parisc_device *dev)
2845 struct smi_info *info;
2846 int rv;
2848 info = smi_info_alloc();
2850 if (!info) {
2851 dev_err(&dev->dev,
2852 "could not allocate memory for PARISC probe\n");
2853 return -ENOMEM;
2856 info->si_type = SI_KCS;
2857 info->addr_source = SI_DEVICETREE;
2858 info->io_setup = mem_setup;
2859 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2860 info->io.addr_data = dev->hpa.start;
2861 info->io.regsize = 1;
2862 info->io.regspacing = 1;
2863 info->io.regshift = 0;
2864 info->irq = 0; /* no interrupt */
2865 info->irq_setup = NULL;
2866 info->dev = &dev->dev;
2868 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2870 dev_set_drvdata(&dev->dev, info);
2872 rv = add_smi(info);
2873 if (rv) {
2874 kfree(info);
2875 return rv;
2878 return 0;
2881 static int ipmi_parisc_remove(struct parisc_device *dev)
2883 cleanup_one_si(dev_get_drvdata(&dev->dev));
2884 return 0;
2887 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2888 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2889 { 0, }
2892 static struct parisc_driver ipmi_parisc_driver = {
2893 .name = "ipmi",
2894 .id_table = ipmi_parisc_tbl,
2895 .probe = ipmi_parisc_probe,
2896 .remove = ipmi_parisc_remove,
2898 #endif /* CONFIG_PARISC */
2900 static int wait_for_msg_done(struct smi_info *smi_info)
2902 enum si_sm_result smi_result;
2904 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905 for (;;) {
2906 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908 schedule_timeout_uninterruptible(1);
2909 smi_result = smi_info->handlers->event(
2910 smi_info->si_sm, jiffies_to_usecs(1));
2911 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912 smi_result = smi_info->handlers->event(
2913 smi_info->si_sm, 0);
2914 } else
2915 break;
2917 if (smi_result == SI_SM_HOSED)
2919 * We couldn't get the state machine to run, so whatever's at
2920 * the port is probably not an IPMI SMI interface.
2922 return -ENODEV;
2924 return 0;
2927 static int try_get_dev_id(struct smi_info *smi_info)
2929 unsigned char msg[2];
2930 unsigned char *resp;
2931 unsigned long resp_len;
2932 int rv = 0;
2934 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935 if (!resp)
2936 return -ENOMEM;
2939 * Do a Get Device ID command, since it comes back with some
2940 * useful info.
2942 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2946 rv = wait_for_msg_done(smi_info);
2947 if (rv)
2948 goto out;
2950 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951 resp, IPMI_MAX_MSG_LENGTH);
2953 /* Check and record info from the get device id, in case we need it. */
2954 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2956 out:
2957 kfree(resp);
2958 return rv;
2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2963 unsigned char msg[3];
2964 unsigned char *resp;
2965 unsigned long resp_len;
2966 int rv;
2968 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969 if (!resp)
2970 return -ENOMEM;
2972 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2976 rv = wait_for_msg_done(smi_info);
2977 if (rv) {
2978 dev_warn(smi_info->dev,
2979 "Error getting response from get global enables command: %d\n",
2980 rv);
2981 goto out;
2984 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985 resp, IPMI_MAX_MSG_LENGTH);
2987 if (resp_len < 4 ||
2988 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2990 resp[2] != 0) {
2991 dev_warn(smi_info->dev,
2992 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 resp_len, resp[0], resp[1], resp[2]);
2994 rv = -EINVAL;
2995 goto out;
2996 } else {
2997 *enables = resp[3];
3000 out:
3001 kfree(resp);
3002 return rv;
3006 * Returns 1 if it gets an error from the command.
3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3010 unsigned char msg[3];
3011 unsigned char *resp;
3012 unsigned long resp_len;
3013 int rv;
3015 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016 if (!resp)
3017 return -ENOMEM;
3019 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021 msg[2] = enables;
3022 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3024 rv = wait_for_msg_done(smi_info);
3025 if (rv) {
3026 dev_warn(smi_info->dev,
3027 "Error getting response from set global enables command: %d\n",
3028 rv);
3029 goto out;
3032 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033 resp, IPMI_MAX_MSG_LENGTH);
3035 if (resp_len < 3 ||
3036 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038 dev_warn(smi_info->dev,
3039 "Invalid return from set global enables command: %ld %x %x\n",
3040 resp_len, resp[0], resp[1]);
3041 rv = -EINVAL;
3042 goto out;
3045 if (resp[2] != 0)
3046 rv = 1;
3048 out:
3049 kfree(resp);
3050 return rv;
3054 * Some BMCs do not support clearing the receive irq bit in the global
3055 * enables (even if they don't support interrupts on the BMC). Check
3056 * for this and handle it properly.
3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3060 u8 enables = 0;
3061 int rv;
3063 rv = get_global_enables(smi_info, &enables);
3064 if (!rv) {
3065 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066 /* Already clear, should work ok. */
3067 return;
3069 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070 rv = set_global_enables(smi_info, enables);
3073 if (rv < 0) {
3074 dev_err(smi_info->dev,
3075 "Cannot check clearing the rcv irq: %d\n", rv);
3076 return;
3079 if (rv) {
3081 * An error when setting the event buffer bit means
3082 * clearing the bit is not supported.
3084 dev_warn(smi_info->dev,
3085 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 smi_info->cannot_disable_irq = true;
3091 * Some BMCs do not support setting the interrupt bits in the global
3092 * enables even if they support interrupts. Clearly bad, but we can
3093 * compensate.
3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3097 u8 enables = 0;
3098 int rv;
3100 if (!smi_info->irq)
3101 return;
3103 rv = get_global_enables(smi_info, &enables);
3104 if (!rv) {
3105 enables |= IPMI_BMC_RCV_MSG_INTR;
3106 rv = set_global_enables(smi_info, enables);
3109 if (rv < 0) {
3110 dev_err(smi_info->dev,
3111 "Cannot check setting the rcv irq: %d\n", rv);
3112 return;
3115 if (rv) {
3117 * An error when setting the event buffer bit means
3118 * setting the bit is not supported.
3120 dev_warn(smi_info->dev,
3121 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 smi_info->cannot_disable_irq = true;
3123 smi_info->irq_enable_broken = true;
3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3129 unsigned char msg[3];
3130 unsigned char *resp;
3131 unsigned long resp_len;
3132 int rv = 0;
3134 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135 if (!resp)
3136 return -ENOMEM;
3138 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3142 rv = wait_for_msg_done(smi_info);
3143 if (rv) {
3144 printk(KERN_WARNING PFX "Error getting response from get"
3145 " global enables command, the event buffer is not"
3146 " enabled.\n");
3147 goto out;
3150 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3151 resp, IPMI_MAX_MSG_LENGTH);
3153 if (resp_len < 4 ||
3154 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3155 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3156 resp[2] != 0) {
3157 printk(KERN_WARNING PFX "Invalid return from get global"
3158 " enables command, cannot enable the event buffer.\n");
3159 rv = -EINVAL;
3160 goto out;
3163 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3164 /* buffer is already enabled, nothing to do. */
3165 smi_info->supports_event_msg_buff = true;
3166 goto out;
3169 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3170 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3171 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3172 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3174 rv = wait_for_msg_done(smi_info);
3175 if (rv) {
3176 printk(KERN_WARNING PFX "Error getting response from set"
3177 " global, enables command, the event buffer is not"
3178 " enabled.\n");
3179 goto out;
3182 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3183 resp, IPMI_MAX_MSG_LENGTH);
3185 if (resp_len < 3 ||
3186 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3187 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3188 printk(KERN_WARNING PFX "Invalid return from get global,"
3189 "enables command, not enable the event buffer.\n");
3190 rv = -EINVAL;
3191 goto out;
3194 if (resp[2] != 0)
3196 * An error when setting the event buffer bit means
3197 * that the event buffer is not supported.
3199 rv = -ENOENT;
3200 else
3201 smi_info->supports_event_msg_buff = true;
3203 out:
3204 kfree(resp);
3205 return rv;
3208 static int smi_type_proc_show(struct seq_file *m, void *v)
3210 struct smi_info *smi = m->private;
3212 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3214 return 0;
3217 static int smi_type_proc_open(struct inode *inode, struct file *file)
3219 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3222 static const struct file_operations smi_type_proc_ops = {
3223 .open = smi_type_proc_open,
3224 .read = seq_read,
3225 .llseek = seq_lseek,
3226 .release = single_release,
3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3231 struct smi_info *smi = m->private;
3233 seq_printf(m, "interrupts_enabled: %d\n",
3234 smi->irq && !smi->interrupt_disabled);
3235 seq_printf(m, "short_timeouts: %u\n",
3236 smi_get_stat(smi, short_timeouts));
3237 seq_printf(m, "long_timeouts: %u\n",
3238 smi_get_stat(smi, long_timeouts));
3239 seq_printf(m, "idles: %u\n",
3240 smi_get_stat(smi, idles));
3241 seq_printf(m, "interrupts: %u\n",
3242 smi_get_stat(smi, interrupts));
3243 seq_printf(m, "attentions: %u\n",
3244 smi_get_stat(smi, attentions));
3245 seq_printf(m, "flag_fetches: %u\n",
3246 smi_get_stat(smi, flag_fetches));
3247 seq_printf(m, "hosed_count: %u\n",
3248 smi_get_stat(smi, hosed_count));
3249 seq_printf(m, "complete_transactions: %u\n",
3250 smi_get_stat(smi, complete_transactions));
3251 seq_printf(m, "events: %u\n",
3252 smi_get_stat(smi, events));
3253 seq_printf(m, "watchdog_pretimeouts: %u\n",
3254 smi_get_stat(smi, watchdog_pretimeouts));
3255 seq_printf(m, "incoming_messages: %u\n",
3256 smi_get_stat(smi, incoming_messages));
3257 return 0;
3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3262 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3265 static const struct file_operations smi_si_stats_proc_ops = {
3266 .open = smi_si_stats_proc_open,
3267 .read = seq_read,
3268 .llseek = seq_lseek,
3269 .release = single_release,
3272 static int smi_params_proc_show(struct seq_file *m, void *v)
3274 struct smi_info *smi = m->private;
3276 seq_printf(m,
3277 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278 si_to_str[smi->si_type],
3279 addr_space_to_str[smi->io.addr_type],
3280 smi->io.addr_data,
3281 smi->io.regspacing,
3282 smi->io.regsize,
3283 smi->io.regshift,
3284 smi->irq,
3285 smi->slave_addr);
3287 return 0;
3290 static int smi_params_proc_open(struct inode *inode, struct file *file)
3292 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3295 static const struct file_operations smi_params_proc_ops = {
3296 .open = smi_params_proc_open,
3297 .read = seq_read,
3298 .llseek = seq_lseek,
3299 .release = single_release,
3303 * oem_data_avail_to_receive_msg_avail
3304 * @info - smi_info structure with msg_flags set
3306 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307 * Returns 1 indicating need to re-run handle_flags().
3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3311 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3312 RECEIVE_MSG_AVAIL);
3313 return 1;
3317 * setup_dell_poweredge_oem_data_handler
3318 * @info - smi_info.device_id must be populated
3320 * Systems that match, but have firmware version < 1.40 may assert
3321 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3323 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324 * as RECEIVE_MSG_AVAIL instead.
3326 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327 * assert the OEM[012] bits, and if it did, the driver would have to
3328 * change to handle that properly, we don't actually check for the
3329 * firmware version.
3330 * Device ID = 0x20 BMC on PowerEdge 8G servers
3331 * Device Revision = 0x80
3332 * Firmware Revision1 = 0x01 BMC version 1.40
3333 * Firmware Revision2 = 0x40 BCD encoded
3334 * IPMI Version = 0x51 IPMI 1.5
3335 * Manufacturer ID = A2 02 00 Dell IANA
3337 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3347 struct ipmi_device_id *id = &smi_info->device_id;
3348 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3349 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3350 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3351 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3352 smi_info->oem_data_avail_handler =
3353 oem_data_avail_to_receive_msg_avail;
3354 } else if (ipmi_version_major(id) < 1 ||
3355 (ipmi_version_major(id) == 1 &&
3356 ipmi_version_minor(id) < 5)) {
3357 smi_info->oem_data_avail_handler =
3358 oem_data_avail_to_receive_msg_avail;
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3364 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3366 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3368 /* Make it a response */
3369 msg->rsp[0] = msg->data[0] | 4;
3370 msg->rsp[1] = msg->data[1];
3371 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3372 msg->rsp_size = 3;
3373 smi_info->curr_msg = NULL;
3374 deliver_recv_msg(smi_info, msg);
3378 * dell_poweredge_bt_xaction_handler
3379 * @info - smi_info.device_id must be populated
3381 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382 * not respond to a Get SDR command if the length of the data
3383 * requested is exactly 0x3A, which leads to command timeouts and no
3384 * data returned. This intercepts such commands, and causes userspace
3385 * callers to try again with a different-sized buffer, which succeeds.
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3391 unsigned long unused,
3392 void *in)
3394 struct smi_info *smi_info = in;
3395 unsigned char *data = smi_info->curr_msg->data;
3396 unsigned int size = smi_info->curr_msg->data_size;
3397 if (size >= 8 &&
3398 (data[0]>>2) == STORAGE_NETFN &&
3399 data[1] == STORAGE_CMD_GET_SDR &&
3400 data[7] == 0x3A) {
3401 return_hosed_msg_badsize(smi_info);
3402 return NOTIFY_STOP;
3404 return NOTIFY_DONE;
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3408 .notifier_call = dell_poweredge_bt_xaction_handler,
3412 * setup_dell_poweredge_bt_xaction_handler
3413 * @info - smi_info.device_id must be filled in already
3415 * Fills in smi_info.device_id.start_transaction_pre_hook
3416 * when we know what function to use there.
3418 static void
3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3421 struct ipmi_device_id *id = &smi_info->device_id;
3422 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3423 smi_info->si_type == SI_BT)
3424 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3428 * setup_oem_data_handler
3429 * @info - smi_info.device_id must be filled in already
3431 * Fills in smi_info.device_id.oem_data_available_handler
3432 * when we know what function to use there.
3435 static void setup_oem_data_handler(struct smi_info *smi_info)
3437 setup_dell_poweredge_oem_data_handler(smi_info);
3440 static void setup_xaction_handlers(struct smi_info *smi_info)
3442 setup_dell_poweredge_bt_xaction_handler(smi_info);
3445 static void check_for_broken_irqs(struct smi_info *smi_info)
3447 check_clr_rcv_irq(smi_info);
3448 check_set_rcv_irq(smi_info);
3451 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3453 if (smi_info->thread != NULL)
3454 kthread_stop(smi_info->thread);
3455 if (smi_info->timer_running)
3456 del_timer_sync(&smi_info->si_timer);
3459 static int is_new_interface(struct smi_info *info)
3461 struct smi_info *e;
3463 list_for_each_entry(e, &smi_infos, link) {
3464 if (e->io.addr_type != info->io.addr_type)
3465 continue;
3466 if (e->io.addr_data == info->io.addr_data)
3467 return 0;
3470 return 1;
3473 static int add_smi(struct smi_info *new_smi)
3475 int rv = 0;
3477 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3478 ipmi_addr_src_to_str(new_smi->addr_source),
3479 si_to_str[new_smi->si_type]);
3480 mutex_lock(&smi_infos_lock);
3481 if (!is_new_interface(new_smi)) {
3482 printk(KERN_CONT " duplicate interface\n");
3483 rv = -EBUSY;
3484 goto out_err;
3487 printk(KERN_CONT "\n");
3489 /* So we know not to free it unless we have allocated one. */
3490 new_smi->intf = NULL;
3491 new_smi->si_sm = NULL;
3492 new_smi->handlers = NULL;
3494 list_add_tail(&new_smi->link, &smi_infos);
3496 out_err:
3497 mutex_unlock(&smi_infos_lock);
3498 return rv;
3501 static int try_smi_init(struct smi_info *new_smi)
3503 int rv = 0;
3504 int i;
3506 printk(KERN_INFO PFX "Trying %s-specified %s state"
3507 " machine at %s address 0x%lx, slave address 0x%x,"
3508 " irq %d\n",
3509 ipmi_addr_src_to_str(new_smi->addr_source),
3510 si_to_str[new_smi->si_type],
3511 addr_space_to_str[new_smi->io.addr_type],
3512 new_smi->io.addr_data,
3513 new_smi->slave_addr, new_smi->irq);
3515 switch (new_smi->si_type) {
3516 case SI_KCS:
3517 new_smi->handlers = &kcs_smi_handlers;
3518 break;
3520 case SI_SMIC:
3521 new_smi->handlers = &smic_smi_handlers;
3522 break;
3524 case SI_BT:
3525 new_smi->handlers = &bt_smi_handlers;
3526 break;
3528 default:
3529 /* No support for anything else yet. */
3530 rv = -EIO;
3531 goto out_err;
3534 /* Allocate the state machine's data and initialize it. */
3535 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3536 if (!new_smi->si_sm) {
3537 printk(KERN_ERR PFX
3538 "Could not allocate state machine memory\n");
3539 rv = -ENOMEM;
3540 goto out_err;
3542 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3543 &new_smi->io);
3545 /* Now that we know the I/O size, we can set up the I/O. */
3546 rv = new_smi->io_setup(new_smi);
3547 if (rv) {
3548 printk(KERN_ERR PFX "Could not set up I/O space\n");
3549 goto out_err;
3552 /* Do low-level detection first. */
3553 if (new_smi->handlers->detect(new_smi->si_sm)) {
3554 if (new_smi->addr_source)
3555 printk(KERN_INFO PFX "Interface detection failed\n");
3556 rv = -ENODEV;
3557 goto out_err;
3561 * Attempt a get device id command. If it fails, we probably
3562 * don't have a BMC here.
3564 rv = try_get_dev_id(new_smi);
3565 if (rv) {
3566 if (new_smi->addr_source)
3567 printk(KERN_INFO PFX "There appears to be no BMC"
3568 " at this location\n");
3569 goto out_err;
3572 setup_oem_data_handler(new_smi);
3573 setup_xaction_handlers(new_smi);
3574 check_for_broken_irqs(new_smi);
3576 new_smi->waiting_msg = NULL;
3577 new_smi->curr_msg = NULL;
3578 atomic_set(&new_smi->req_events, 0);
3579 new_smi->run_to_completion = false;
3580 for (i = 0; i < SI_NUM_STATS; i++)
3581 atomic_set(&new_smi->stats[i], 0);
3583 new_smi->interrupt_disabled = true;
3584 atomic_set(&new_smi->need_watch, 0);
3585 new_smi->intf_num = smi_num;
3586 smi_num++;
3588 rv = try_enable_event_buffer(new_smi);
3589 if (rv == 0)
3590 new_smi->has_event_buffer = true;
3593 * Start clearing the flags before we enable interrupts or the
3594 * timer to avoid racing with the timer.
3596 start_clear_flags(new_smi, false);
3599 * IRQ is defined to be set when non-zero. req_events will
3600 * cause a global flags check that will enable interrupts.
3602 if (new_smi->irq) {
3603 new_smi->interrupt_disabled = false;
3604 atomic_set(&new_smi->req_events, 1);
3607 if (!new_smi->dev) {
3609 * If we don't already have a device from something
3610 * else (like PCI), then register a new one.
3612 new_smi->pdev = platform_device_alloc("ipmi_si",
3613 new_smi->intf_num);
3614 if (!new_smi->pdev) {
3615 printk(KERN_ERR PFX
3616 "Unable to allocate platform device\n");
3617 goto out_err;
3619 new_smi->dev = &new_smi->pdev->dev;
3620 new_smi->dev->driver = &ipmi_driver.driver;
3622 rv = platform_device_add(new_smi->pdev);
3623 if (rv) {
3624 printk(KERN_ERR PFX
3625 "Unable to register system interface device:"
3626 " %d\n",
3627 rv);
3628 goto out_err;
3630 new_smi->dev_registered = true;
3633 rv = ipmi_register_smi(&handlers,
3634 new_smi,
3635 &new_smi->device_id,
3636 new_smi->dev,
3637 new_smi->slave_addr);
3638 if (rv) {
3639 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3640 rv);
3641 goto out_err_stop_timer;
3644 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3645 &smi_type_proc_ops,
3646 new_smi);
3647 if (rv) {
3648 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3649 goto out_err_stop_timer;
3652 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3653 &smi_si_stats_proc_ops,
3654 new_smi);
3655 if (rv) {
3656 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3657 goto out_err_stop_timer;
3660 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3661 &smi_params_proc_ops,
3662 new_smi);
3663 if (rv) {
3664 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3665 goto out_err_stop_timer;
3668 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3669 si_to_str[new_smi->si_type]);
3671 return 0;
3673 out_err_stop_timer:
3674 wait_for_timer_and_thread(new_smi);
3676 out_err:
3677 new_smi->interrupt_disabled = true;
3679 if (new_smi->intf) {
3680 ipmi_smi_t intf = new_smi->intf;
3681 new_smi->intf = NULL;
3682 ipmi_unregister_smi(intf);
3685 if (new_smi->irq_cleanup) {
3686 new_smi->irq_cleanup(new_smi);
3687 new_smi->irq_cleanup = NULL;
3691 * Wait until we know that we are out of any interrupt
3692 * handlers might have been running before we freed the
3693 * interrupt.
3695 synchronize_sched();
3697 if (new_smi->si_sm) {
3698 if (new_smi->handlers)
3699 new_smi->handlers->cleanup(new_smi->si_sm);
3700 kfree(new_smi->si_sm);
3701 new_smi->si_sm = NULL;
3703 if (new_smi->addr_source_cleanup) {
3704 new_smi->addr_source_cleanup(new_smi);
3705 new_smi->addr_source_cleanup = NULL;
3707 if (new_smi->io_cleanup) {
3708 new_smi->io_cleanup(new_smi);
3709 new_smi->io_cleanup = NULL;
3712 if (new_smi->dev_registered) {
3713 platform_device_unregister(new_smi->pdev);
3714 new_smi->dev_registered = false;
3717 return rv;
3720 static int init_ipmi_si(void)
3722 int i;
3723 char *str;
3724 int rv;
3725 struct smi_info *e;
3726 enum ipmi_addr_src type = SI_INVALID;
3728 if (initialized)
3729 return 0;
3730 initialized = 1;
3732 if (si_tryplatform) {
3733 rv = platform_driver_register(&ipmi_driver);
3734 if (rv) {
3735 printk(KERN_ERR PFX "Unable to register "
3736 "driver: %d\n", rv);
3737 return rv;
3741 /* Parse out the si_type string into its components. */
3742 str = si_type_str;
3743 if (*str != '\0') {
3744 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3745 si_type[i] = str;
3746 str = strchr(str, ',');
3747 if (str) {
3748 *str = '\0';
3749 str++;
3750 } else {
3751 break;
3756 printk(KERN_INFO "IPMI System Interface driver.\n");
3758 /* If the user gave us a device, they presumably want us to use it */
3759 if (!hardcode_find_bmc())
3760 return 0;
3762 #ifdef CONFIG_PCI
3763 if (si_trypci) {
3764 rv = pci_register_driver(&ipmi_pci_driver);
3765 if (rv)
3766 printk(KERN_ERR PFX "Unable to register "
3767 "PCI driver: %d\n", rv);
3768 else
3769 pci_registered = true;
3771 #endif
3773 #ifdef CONFIG_DMI
3774 if (si_trydmi)
3775 dmi_find_bmc();
3776 #endif
3778 #ifdef CONFIG_ACPI
3779 if (si_tryacpi)
3780 spmi_find_bmc();
3781 #endif
3783 #ifdef CONFIG_PARISC
3784 register_parisc_driver(&ipmi_parisc_driver);
3785 parisc_registered = true;
3786 #endif
3788 /* We prefer devices with interrupts, but in the case of a machine
3789 with multiple BMCs we assume that there will be several instances
3790 of a given type so if we succeed in registering a type then also
3791 try to register everything else of the same type */
3793 mutex_lock(&smi_infos_lock);
3794 list_for_each_entry(e, &smi_infos, link) {
3795 /* Try to register a device if it has an IRQ and we either
3796 haven't successfully registered a device yet or this
3797 device has the same type as one we successfully registered */
3798 if (e->irq && (!type || e->addr_source == type)) {
3799 if (!try_smi_init(e)) {
3800 type = e->addr_source;
3805 /* type will only have been set if we successfully registered an si */
3806 if (type) {
3807 mutex_unlock(&smi_infos_lock);
3808 return 0;
3811 /* Fall back to the preferred device */
3813 list_for_each_entry(e, &smi_infos, link) {
3814 if (!e->irq && (!type || e->addr_source == type)) {
3815 if (!try_smi_init(e)) {
3816 type = e->addr_source;
3820 mutex_unlock(&smi_infos_lock);
3822 if (type)
3823 return 0;
3825 mutex_lock(&smi_infos_lock);
3826 if (unload_when_empty && list_empty(&smi_infos)) {
3827 mutex_unlock(&smi_infos_lock);
3828 cleanup_ipmi_si();
3829 printk(KERN_WARNING PFX
3830 "Unable to find any System Interface(s)\n");
3831 return -ENODEV;
3832 } else {
3833 mutex_unlock(&smi_infos_lock);
3834 return 0;
3837 module_init(init_ipmi_si);
3839 static void cleanup_one_si(struct smi_info *to_clean)
3841 int rv = 0;
3843 if (!to_clean)
3844 return;
3846 if (to_clean->intf) {
3847 ipmi_smi_t intf = to_clean->intf;
3849 to_clean->intf = NULL;
3850 rv = ipmi_unregister_smi(intf);
3851 if (rv) {
3852 pr_err(PFX "Unable to unregister device: errno=%d\n",
3853 rv);
3857 if (to_clean->dev)
3858 dev_set_drvdata(to_clean->dev, NULL);
3860 list_del(&to_clean->link);
3863 * Make sure that interrupts, the timer and the thread are
3864 * stopped and will not run again.
3866 if (to_clean->irq_cleanup)
3867 to_clean->irq_cleanup(to_clean);
3868 wait_for_timer_and_thread(to_clean);
3871 * Timeouts are stopped, now make sure the interrupts are off
3872 * in the BMC. Note that timers and CPU interrupts are off,
3873 * so no need for locks.
3875 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3876 poll(to_clean);
3877 schedule_timeout_uninterruptible(1);
3879 disable_si_irq(to_clean, false);
3880 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3881 poll(to_clean);
3882 schedule_timeout_uninterruptible(1);
3885 if (to_clean->handlers)
3886 to_clean->handlers->cleanup(to_clean->si_sm);
3888 kfree(to_clean->si_sm);
3890 if (to_clean->addr_source_cleanup)
3891 to_clean->addr_source_cleanup(to_clean);
3892 if (to_clean->io_cleanup)
3893 to_clean->io_cleanup(to_clean);
3895 if (to_clean->dev_registered)
3896 platform_device_unregister(to_clean->pdev);
3898 kfree(to_clean);
3901 static void cleanup_ipmi_si(void)
3903 struct smi_info *e, *tmp_e;
3905 if (!initialized)
3906 return;
3908 #ifdef CONFIG_PCI
3909 if (pci_registered)
3910 pci_unregister_driver(&ipmi_pci_driver);
3911 #endif
3912 #ifdef CONFIG_PARISC
3913 if (parisc_registered)
3914 unregister_parisc_driver(&ipmi_parisc_driver);
3915 #endif
3917 platform_driver_unregister(&ipmi_driver);
3919 mutex_lock(&smi_infos_lock);
3920 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3921 cleanup_one_si(e);
3922 mutex_unlock(&smi_infos_lock);
3924 module_exit(cleanup_ipmi_si);
3926 MODULE_LICENSE("GPL");
3927 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3928 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3929 " system interfaces.");