2 * Analog Devices AD9389B/AD9889B video encoder driver
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * References (c = chapter, p = page):
22 * REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B,
23 * HDMI Transitter, Rev. A, October 2010
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/delay.h>
31 #include <linux/videodev2.h>
32 #include <linux/workqueue.h>
33 #include <linux/v4l2-dv-timings.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-common.h>
36 #include <media/v4l2-dv-timings.h>
37 #include <media/v4l2-ctrls.h>
38 #include <media/i2c/ad9389b.h>
41 module_param(debug
, int, 0644);
42 MODULE_PARM_DESC(debug
, "debug level (0-2)");
44 MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
47 MODULE_LICENSE("GPL");
49 #define MASK_AD9389B_EDID_RDY_INT 0x04
50 #define MASK_AD9389B_MSEN_INT 0x40
51 #define MASK_AD9389B_HPD_INT 0x80
53 #define MASK_AD9389B_HPD_DETECT 0x40
54 #define MASK_AD9389B_MSEN_DETECT 0x20
55 #define MASK_AD9389B_EDID_RDY 0x10
57 #define EDID_MAX_RETRIES (8)
58 #define EDID_DELAY 250
59 #define EDID_MAX_SEGM 8
62 **********************************************************************
64 * Arrays with configuration parameters for the AD9389B
66 **********************************************************************
69 struct ad9389b_state_edid
{
70 /* total number of blocks */
72 /* Number of segments read */
74 u8 data
[EDID_MAX_SEGM
* 256];
75 /* Number of EDID read retries left */
76 unsigned read_retries
;
79 struct ad9389b_state
{
80 struct ad9389b_platform_data pdata
;
81 struct v4l2_subdev sd
;
83 struct v4l2_ctrl_handler hdl
;
85 /* Is the ad9389b powered on? */
87 /* Did we receive hotplug and rx-sense signals? */
89 /* timings from s_dv_timings */
90 struct v4l2_dv_timings dv_timings
;
92 struct v4l2_ctrl
*hdmi_mode_ctrl
;
93 struct v4l2_ctrl
*hotplug_ctrl
;
94 struct v4l2_ctrl
*rx_sense_ctrl
;
95 struct v4l2_ctrl
*have_edid0_ctrl
;
96 struct v4l2_ctrl
*rgb_quantization_range_ctrl
;
97 struct i2c_client
*edid_i2c_client
;
98 struct ad9389b_state_edid edid
;
99 /* Running counter of the number of detected EDIDs (for debugging) */
100 unsigned edid_detect_counter
;
101 struct workqueue_struct
*work_queue
;
102 struct delayed_work edid_handler
; /* work entry */
105 static void ad9389b_check_monitor_present_status(struct v4l2_subdev
*sd
);
106 static bool ad9389b_check_edid_status(struct v4l2_subdev
*sd
);
107 static void ad9389b_setup(struct v4l2_subdev
*sd
);
108 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
);
109 static int ad9389b_s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
);
111 static inline struct ad9389b_state
*get_ad9389b_state(struct v4l2_subdev
*sd
)
113 return container_of(sd
, struct ad9389b_state
, sd
);
116 static inline struct v4l2_subdev
*to_sd(struct v4l2_ctrl
*ctrl
)
118 return &container_of(ctrl
->handler
, struct ad9389b_state
, hdl
)->sd
;
121 /* ------------------------ I2C ----------------------------------------------- */
123 static int ad9389b_rd(struct v4l2_subdev
*sd
, u8 reg
)
125 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
127 return i2c_smbus_read_byte_data(client
, reg
);
130 static int ad9389b_wr(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
132 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
136 for (i
= 0; i
< 3; i
++) {
137 ret
= i2c_smbus_write_byte_data(client
, reg
, val
);
141 v4l2_err(sd
, "%s: failed reg 0x%x, val 0x%x\n", __func__
, reg
, val
);
145 /* To set specific bits in the register, a clear-mask is given (to be AND-ed),
146 and then the value-mask (to be OR-ed). */
147 static inline void ad9389b_wr_and_or(struct v4l2_subdev
*sd
, u8 reg
,
148 u8 clr_mask
, u8 val_mask
)
150 ad9389b_wr(sd
, reg
, (ad9389b_rd(sd
, reg
) & clr_mask
) | val_mask
);
153 static void ad9389b_edid_rd(struct v4l2_subdev
*sd
, u16 len
, u8
*buf
)
155 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
158 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
160 for (i
= 0; i
< len
; i
++)
161 buf
[i
] = i2c_smbus_read_byte_data(state
->edid_i2c_client
, i
);
164 static inline bool ad9389b_have_hotplug(struct v4l2_subdev
*sd
)
166 return ad9389b_rd(sd
, 0x42) & MASK_AD9389B_HPD_DETECT
;
169 static inline bool ad9389b_have_rx_sense(struct v4l2_subdev
*sd
)
171 return ad9389b_rd(sd
, 0x42) & MASK_AD9389B_MSEN_DETECT
;
174 static void ad9389b_csc_conversion_mode(struct v4l2_subdev
*sd
, u8 mode
)
176 ad9389b_wr_and_or(sd
, 0x17, 0xe7, (mode
& 0x3)<<3);
177 ad9389b_wr_and_or(sd
, 0x18, 0x9f, (mode
& 0x3)<<5);
180 static void ad9389b_csc_coeff(struct v4l2_subdev
*sd
,
181 u16 A1
, u16 A2
, u16 A3
, u16 A4
,
182 u16 B1
, u16 B2
, u16 B3
, u16 B4
,
183 u16 C1
, u16 C2
, u16 C3
, u16 C4
)
186 ad9389b_wr_and_or(sd
, 0x18, 0xe0, A1
>>8);
187 ad9389b_wr(sd
, 0x19, A1
);
188 ad9389b_wr_and_or(sd
, 0x1A, 0xe0, A2
>>8);
189 ad9389b_wr(sd
, 0x1B, A2
);
190 ad9389b_wr_and_or(sd
, 0x1c, 0xe0, A3
>>8);
191 ad9389b_wr(sd
, 0x1d, A3
);
192 ad9389b_wr_and_or(sd
, 0x1e, 0xe0, A4
>>8);
193 ad9389b_wr(sd
, 0x1f, A4
);
196 ad9389b_wr_and_or(sd
, 0x20, 0xe0, B1
>>8);
197 ad9389b_wr(sd
, 0x21, B1
);
198 ad9389b_wr_and_or(sd
, 0x22, 0xe0, B2
>>8);
199 ad9389b_wr(sd
, 0x23, B2
);
200 ad9389b_wr_and_or(sd
, 0x24, 0xe0, B3
>>8);
201 ad9389b_wr(sd
, 0x25, B3
);
202 ad9389b_wr_and_or(sd
, 0x26, 0xe0, B4
>>8);
203 ad9389b_wr(sd
, 0x27, B4
);
206 ad9389b_wr_and_or(sd
, 0x28, 0xe0, C1
>>8);
207 ad9389b_wr(sd
, 0x29, C1
);
208 ad9389b_wr_and_or(sd
, 0x2A, 0xe0, C2
>>8);
209 ad9389b_wr(sd
, 0x2B, C2
);
210 ad9389b_wr_and_or(sd
, 0x2C, 0xe0, C3
>>8);
211 ad9389b_wr(sd
, 0x2D, C3
);
212 ad9389b_wr_and_or(sd
, 0x2E, 0xe0, C4
>>8);
213 ad9389b_wr(sd
, 0x2F, C4
);
216 static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev
*sd
, bool enable
)
221 ad9389b_csc_conversion_mode(sd
, csc_mode
);
222 ad9389b_csc_coeff(sd
,
225 0, 0, 4096-564, 256);
227 ad9389b_wr_and_or(sd
, 0x3b, 0xfe, 0x1);
228 /* AVI infoframe: Limited range RGB (16-235) */
229 ad9389b_wr_and_or(sd
, 0xcd, 0xf9, 0x02);
232 ad9389b_wr_and_or(sd
, 0x3b, 0xfe, 0x0);
233 /* AVI infoframe: Full range RGB (0-255) */
234 ad9389b_wr_and_or(sd
, 0xcd, 0xf9, 0x04);
238 static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev
*sd
)
240 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
242 if (state
->dv_timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
243 /* CE format, not IT */
244 ad9389b_wr_and_or(sd
, 0xcd, 0xbf, 0x00);
247 ad9389b_wr_and_or(sd
, 0xcd, 0xbf, 0x40);
251 static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev
*sd
, struct v4l2_ctrl
*ctrl
)
253 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
256 case V4L2_DV_RGB_RANGE_AUTO
:
258 if (state
->dv_timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
259 /* CE format, RGB limited range (16-235) */
260 ad9389b_csc_rgb_full2limit(sd
, true);
262 /* not CE format, RGB full range (0-255) */
263 ad9389b_csc_rgb_full2limit(sd
, false);
266 case V4L2_DV_RGB_RANGE_LIMITED
:
267 /* RGB limited range (16-235) */
268 ad9389b_csc_rgb_full2limit(sd
, true);
270 case V4L2_DV_RGB_RANGE_FULL
:
271 /* RGB full range (0-255) */
272 ad9389b_csc_rgb_full2limit(sd
, false);
280 static void ad9389b_set_manual_pll_gear(struct v4l2_subdev
*sd
, u32 pixelclock
)
284 /* Workaround for TMDS PLL problem
285 * The TMDS PLL in AD9389b change gear when the chip is heated above a
286 * certain temperature. The output is disabled when the PLL change gear
287 * so the monitor has to lock on the signal again. A workaround for
288 * this is to use the manual PLL gears. This is a solution from Analog
289 * Devices that is not documented in the datasheets.
290 * 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear
292 * The pixel frequency ranges are based on readout of the gear the
293 * automatic gearing selects for different pixel clocks
294 * (read from 0x9e [3:1]).
297 if (pixelclock
> 140000000)
298 gear
= 0xc0; /* 4th gear */
299 else if (pixelclock
> 117000000)
300 gear
= 0xb0; /* 3rd gear */
301 else if (pixelclock
> 87000000)
302 gear
= 0xa0; /* 2nd gear */
303 else if (pixelclock
> 60000000)
304 gear
= 0x90; /* 1st gear */
306 gear
= 0x80; /* 0th gear */
308 ad9389b_wr_and_or(sd
, 0x98, 0x0f, gear
);
311 /* ------------------------------ CTRL OPS ------------------------------ */
313 static int ad9389b_s_ctrl(struct v4l2_ctrl
*ctrl
)
315 struct v4l2_subdev
*sd
= to_sd(ctrl
);
316 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
318 v4l2_dbg(1, debug
, sd
,
319 "%s: ctrl id: %d, ctrl->val %d\n", __func__
, ctrl
->id
, ctrl
->val
);
321 if (state
->hdmi_mode_ctrl
== ctrl
) {
322 /* Set HDMI or DVI-D */
323 ad9389b_wr_and_or(sd
, 0xaf, 0xfd,
324 ctrl
->val
== V4L2_DV_TX_MODE_HDMI
? 0x02 : 0x00);
327 if (state
->rgb_quantization_range_ctrl
== ctrl
)
328 return ad9389b_set_rgb_quantization_mode(sd
, ctrl
);
332 static const struct v4l2_ctrl_ops ad9389b_ctrl_ops
= {
333 .s_ctrl
= ad9389b_s_ctrl
,
336 /* ---------------------------- CORE OPS ------------------------------------------- */
338 #ifdef CONFIG_VIDEO_ADV_DEBUG
339 static int ad9389b_g_register(struct v4l2_subdev
*sd
, struct v4l2_dbg_register
*reg
)
341 reg
->val
= ad9389b_rd(sd
, reg
->reg
& 0xff);
346 static int ad9389b_s_register(struct v4l2_subdev
*sd
, const struct v4l2_dbg_register
*reg
)
348 ad9389b_wr(sd
, reg
->reg
& 0xff, reg
->val
& 0xff);
353 static int ad9389b_log_status(struct v4l2_subdev
*sd
)
355 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
356 struct ad9389b_state_edid
*edid
= &state
->edid
;
358 static const char * const states
[] = {
364 "initializing HDCP repeater",
365 "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
367 static const char * const errors
[] = {
374 "max repeater cascade exceeded",
377 "9", "A", "B", "C", "D", "E", "F"
382 v4l2_info(sd
, "chip revision %d\n", state
->chip_revision
);
383 v4l2_info(sd
, "power %s\n", state
->power_on
? "on" : "off");
384 v4l2_info(sd
, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n",
385 (ad9389b_rd(sd
, 0x42) & MASK_AD9389B_HPD_DETECT
) ?
387 (ad9389b_rd(sd
, 0x42) & MASK_AD9389B_MSEN_DETECT
) ?
389 edid
->segments
? "found" : "no", edid
->blocks
);
390 v4l2_info(sd
, "%s output %s\n",
391 (ad9389b_rd(sd
, 0xaf) & 0x02) ?
393 (ad9389b_rd(sd
, 0xa1) & 0x3c) ?
394 "disabled" : "enabled");
395 v4l2_info(sd
, "ad9389b: %s\n", (ad9389b_rd(sd
, 0xb8) & 0x40) ?
396 "encrypted" : "no encryption");
397 v4l2_info(sd
, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n",
398 states
[ad9389b_rd(sd
, 0xc8) & 0xf],
399 errors
[ad9389b_rd(sd
, 0xc8) >> 4],
400 state
->edid_detect_counter
,
401 ad9389b_rd(sd
, 0x94), ad9389b_rd(sd
, 0x96));
402 manual_gear
= ad9389b_rd(sd
, 0x98) & 0x80;
403 v4l2_info(sd
, "ad9389b: RGB quantization: %s range\n",
404 ad9389b_rd(sd
, 0x3b) & 0x01 ? "limited" : "full");
405 v4l2_info(sd
, "ad9389b: %s gear %d\n",
406 manual_gear
? "manual" : "automatic",
407 manual_gear
? ((ad9389b_rd(sd
, 0x98) & 0x70) >> 4) :
408 ((ad9389b_rd(sd
, 0x9e) & 0x0e) >> 1));
409 if (ad9389b_rd(sd
, 0xaf) & 0x02) {
411 u8 manual_cts
= ad9389b_rd(sd
, 0x0a) & 0x80;
412 u32 N
= (ad9389b_rd(sd
, 0x01) & 0xf) << 16 |
413 ad9389b_rd(sd
, 0x02) << 8 |
414 ad9389b_rd(sd
, 0x03);
415 u8 vic_detect
= ad9389b_rd(sd
, 0x3e) >> 2;
416 u8 vic_sent
= ad9389b_rd(sd
, 0x3d) & 0x3f;
420 CTS
= (ad9389b_rd(sd
, 0x07) & 0xf) << 16 |
421 ad9389b_rd(sd
, 0x08) << 8 |
422 ad9389b_rd(sd
, 0x09);
424 CTS
= (ad9389b_rd(sd
, 0x04) & 0xf) << 16 |
425 ad9389b_rd(sd
, 0x05) << 8 |
426 ad9389b_rd(sd
, 0x06);
427 N
= (ad9389b_rd(sd
, 0x01) & 0xf) << 16 |
428 ad9389b_rd(sd
, 0x02) << 8 |
429 ad9389b_rd(sd
, 0x03);
431 v4l2_info(sd
, "ad9389b: CTS %s mode: N %d, CTS %d\n",
432 manual_cts
? "manual" : "automatic", N
, CTS
);
434 v4l2_info(sd
, "ad9389b: VIC: detected %d, sent %d\n",
435 vic_detect
, vic_sent
);
437 if (state
->dv_timings
.type
== V4L2_DV_BT_656_1120
)
438 v4l2_print_dv_timings(sd
->name
, "timings: ",
439 &state
->dv_timings
, false);
441 v4l2_info(sd
, "no timings set\n");
445 /* Power up/down ad9389b */
446 static int ad9389b_s_power(struct v4l2_subdev
*sd
, int on
)
448 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
449 struct ad9389b_platform_data
*pdata
= &state
->pdata
;
450 const int retries
= 20;
453 v4l2_dbg(1, debug
, sd
, "%s: power %s\n", __func__
, on
? "on" : "off");
455 state
->power_on
= on
;
459 ad9389b_wr_and_or(sd
, 0x41, 0xbf, 0x40);
464 /* The ad9389b does not always come up immediately.
465 Retry multiple times. */
466 for (i
= 0; i
< retries
; i
++) {
467 ad9389b_wr_and_or(sd
, 0x41, 0xbf, 0x0);
468 if ((ad9389b_rd(sd
, 0x41) & 0x40) == 0)
470 ad9389b_wr_and_or(sd
, 0x41, 0xbf, 0x40);
474 v4l2_dbg(1, debug
, sd
, "failed to powerup the ad9389b\n");
475 ad9389b_s_power(sd
, 0);
479 v4l2_dbg(1, debug
, sd
,
480 "needed %d retries to powerup the ad9389b\n", i
);
482 /* Select chip: AD9389B */
483 ad9389b_wr_and_or(sd
, 0xba, 0xef, 0x10);
485 /* Reserved registers that must be set according to REF_01 p. 11*/
486 ad9389b_wr_and_or(sd
, 0x98, 0xf0, 0x07);
487 ad9389b_wr(sd
, 0x9c, 0x38);
488 ad9389b_wr_and_or(sd
, 0x9d, 0xfc, 0x01);
490 /* Differential output drive strength */
491 if (pdata
->diff_data_drive_strength
> 0)
492 ad9389b_wr(sd
, 0xa2, pdata
->diff_data_drive_strength
);
494 ad9389b_wr(sd
, 0xa2, 0x87);
496 if (pdata
->diff_clk_drive_strength
> 0)
497 ad9389b_wr(sd
, 0xa3, pdata
->diff_clk_drive_strength
);
499 ad9389b_wr(sd
, 0xa3, 0x87);
501 ad9389b_wr(sd
, 0x0a, 0x01);
502 ad9389b_wr(sd
, 0xbb, 0xff);
504 /* Set number of attempts to read the EDID */
505 ad9389b_wr(sd
, 0xc9, 0xf);
509 /* Enable interrupts */
510 static void ad9389b_set_isr(struct v4l2_subdev
*sd
, bool enable
)
512 u8 irqs
= MASK_AD9389B_HPD_INT
| MASK_AD9389B_MSEN_INT
;
516 /* The datasheet says that the EDID ready interrupt should be
517 disabled if there is no hotplug. */
520 else if (ad9389b_have_hotplug(sd
))
521 irqs
|= MASK_AD9389B_EDID_RDY_INT
;
524 * This i2c write can fail (approx. 1 in 1000 writes). But it
525 * is essential that this register is correct, so retry it
528 * Note that the i2c write does not report an error, but the readback
529 * clearly shows the wrong value.
532 ad9389b_wr(sd
, 0x94, irqs
);
533 irqs_rd
= ad9389b_rd(sd
, 0x94);
534 } while (retries
-- && irqs_rd
!= irqs
);
537 v4l2_err(sd
, "Could not set interrupts: hw failure?\n");
540 /* Interrupt handler */
541 static int ad9389b_isr(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
545 /* disable interrupts to prevent a race condition */
546 ad9389b_set_isr(sd
, false);
547 irq_status
= ad9389b_rd(sd
, 0x96);
548 /* clear detected interrupts */
549 ad9389b_wr(sd
, 0x96, irq_status
);
550 /* enable interrupts */
551 ad9389b_set_isr(sd
, true);
553 v4l2_dbg(1, debug
, sd
, "%s: irq_status 0x%x\n", __func__
, irq_status
);
555 if (irq_status
& (MASK_AD9389B_HPD_INT
))
556 ad9389b_check_monitor_present_status(sd
);
557 if (irq_status
& MASK_AD9389B_EDID_RDY_INT
)
558 ad9389b_check_edid_status(sd
);
564 static const struct v4l2_subdev_core_ops ad9389b_core_ops
= {
565 .log_status
= ad9389b_log_status
,
566 #ifdef CONFIG_VIDEO_ADV_DEBUG
567 .g_register
= ad9389b_g_register
,
568 .s_register
= ad9389b_s_register
,
570 .s_power
= ad9389b_s_power
,
571 .interrupt_service_routine
= ad9389b_isr
,
574 /* ------------------------------ VIDEO OPS ------------------------------ */
576 /* Enable/disable ad9389b output */
577 static int ad9389b_s_stream(struct v4l2_subdev
*sd
, int enable
)
579 v4l2_dbg(1, debug
, sd
, "%s: %sable\n", __func__
, (enable
? "en" : "dis"));
581 ad9389b_wr_and_or(sd
, 0xa1, ~0x3c, (enable
? 0 : 0x3c));
583 ad9389b_check_monitor_present_status(sd
);
585 ad9389b_s_power(sd
, 0);
590 static const struct v4l2_dv_timings_cap ad9389b_timings_cap
= {
591 .type
= V4L2_DV_BT_656_1120
,
592 /* keep this initialization for compatibility with GCC < 4.4.6 */
594 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
595 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
596 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
597 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
598 V4L2_DV_BT_CAP_CUSTOM
)
601 static int ad9389b_s_dv_timings(struct v4l2_subdev
*sd
,
602 struct v4l2_dv_timings
*timings
)
604 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
606 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
608 /* quick sanity check */
609 if (!v4l2_valid_dv_timings(timings
, &ad9389b_timings_cap
, NULL
, NULL
))
612 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
613 if the format is one of the CEA or DMT timings. */
614 v4l2_find_dv_timings_cap(timings
, &ad9389b_timings_cap
, 0, NULL
, NULL
);
616 timings
->bt
.flags
&= ~V4L2_DV_FL_REDUCED_FPS
;
619 state
->dv_timings
= *timings
;
621 /* update quantization range based on new dv_timings */
622 ad9389b_set_rgb_quantization_mode(sd
, state
->rgb_quantization_range_ctrl
);
624 /* update PLL gear based on new dv_timings */
625 if (state
->pdata
.tmds_pll_gear
== AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC
)
626 ad9389b_set_manual_pll_gear(sd
, (u32
)timings
->bt
.pixelclock
);
628 /* update AVI infoframe */
629 ad9389b_set_IT_content_AVI_InfoFrame(sd
);
634 static int ad9389b_g_dv_timings(struct v4l2_subdev
*sd
,
635 struct v4l2_dv_timings
*timings
)
637 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
639 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
644 *timings
= state
->dv_timings
;
649 static int ad9389b_enum_dv_timings(struct v4l2_subdev
*sd
,
650 struct v4l2_enum_dv_timings
*timings
)
652 if (timings
->pad
!= 0)
655 return v4l2_enum_dv_timings_cap(timings
, &ad9389b_timings_cap
,
659 static int ad9389b_dv_timings_cap(struct v4l2_subdev
*sd
,
660 struct v4l2_dv_timings_cap
*cap
)
665 *cap
= ad9389b_timings_cap
;
669 static const struct v4l2_subdev_video_ops ad9389b_video_ops
= {
670 .s_stream
= ad9389b_s_stream
,
671 .s_dv_timings
= ad9389b_s_dv_timings
,
672 .g_dv_timings
= ad9389b_g_dv_timings
,
675 /* ------------------------------ PAD OPS ------------------------------ */
677 static int ad9389b_get_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
679 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
683 if (edid
->blocks
== 0 || edid
->blocks
> 256)
685 if (!state
->edid
.segments
) {
686 v4l2_dbg(1, debug
, sd
, "EDID segment 0 not found\n");
689 if (edid
->start_block
>= state
->edid
.segments
* 2)
691 if (edid
->blocks
+ edid
->start_block
>= state
->edid
.segments
* 2)
692 edid
->blocks
= state
->edid
.segments
* 2 - edid
->start_block
;
693 memcpy(edid
->edid
, &state
->edid
.data
[edid
->start_block
* 128],
698 static const struct v4l2_subdev_pad_ops ad9389b_pad_ops
= {
699 .get_edid
= ad9389b_get_edid
,
700 .enum_dv_timings
= ad9389b_enum_dv_timings
,
701 .dv_timings_cap
= ad9389b_dv_timings_cap
,
704 /* ------------------------------ AUDIO OPS ------------------------------ */
706 static int ad9389b_s_audio_stream(struct v4l2_subdev
*sd
, int enable
)
708 v4l2_dbg(1, debug
, sd
, "%s: %sable\n", __func__
, (enable
? "en" : "dis"));
711 ad9389b_wr_and_or(sd
, 0x45, 0x3f, 0x80);
713 ad9389b_wr_and_or(sd
, 0x45, 0x3f, 0x40);
718 static int ad9389b_s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
)
723 case 32000: N
= 4096; break;
724 case 44100: N
= 6272; break;
725 case 48000: N
= 6144; break;
726 case 88200: N
= 12544; break;
727 case 96000: N
= 12288; break;
728 case 176400: N
= 25088; break;
729 case 192000: N
= 24576; break;
734 /* Set N (used with CTS to regenerate the audio clock) */
735 ad9389b_wr(sd
, 0x01, (N
>> 16) & 0xf);
736 ad9389b_wr(sd
, 0x02, (N
>> 8) & 0xff);
737 ad9389b_wr(sd
, 0x03, N
& 0xff);
742 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
)
747 case 32000: i2s_sf
= 0x30; break;
748 case 44100: i2s_sf
= 0x00; break;
749 case 48000: i2s_sf
= 0x20; break;
750 case 88200: i2s_sf
= 0x80; break;
751 case 96000: i2s_sf
= 0xa0; break;
752 case 176400: i2s_sf
= 0xc0; break;
753 case 192000: i2s_sf
= 0xe0; break;
758 /* Set sampling frequency for I2S audio to 48 kHz */
759 ad9389b_wr_and_or(sd
, 0x15, 0xf, i2s_sf
);
764 static int ad9389b_s_routing(struct v4l2_subdev
*sd
, u32 input
, u32 output
, u32 config
)
766 /* TODO based on input/output/config */
767 /* TODO See datasheet "Programmers guide" p. 39-40 */
769 /* Only 2 channels in use for application */
770 ad9389b_wr_and_or(sd
, 0x50, 0x1f, 0x20);
771 /* Speaker mapping */
772 ad9389b_wr(sd
, 0x51, 0x00);
774 /* TODO Where should this be placed? */
775 /* 16 bit audio word length */
776 ad9389b_wr_and_or(sd
, 0x14, 0xf0, 0x02);
781 static const struct v4l2_subdev_audio_ops ad9389b_audio_ops
= {
782 .s_stream
= ad9389b_s_audio_stream
,
783 .s_clock_freq
= ad9389b_s_clock_freq
,
784 .s_i2s_clock_freq
= ad9389b_s_i2s_clock_freq
,
785 .s_routing
= ad9389b_s_routing
,
788 /* --------------------- SUBDEV OPS --------------------------------------- */
790 static const struct v4l2_subdev_ops ad9389b_ops
= {
791 .core
= &ad9389b_core_ops
,
792 .video
= &ad9389b_video_ops
,
793 .audio
= &ad9389b_audio_ops
,
794 .pad
= &ad9389b_pad_ops
,
797 /* ----------------------------------------------------------------------- */
798 static void ad9389b_dbg_dump_edid(int lvl
, int debug
, struct v4l2_subdev
*sd
,
799 int segment
, u8
*buf
)
806 v4l2_dbg(lvl
, debug
, sd
, "edid segment %d\n", segment
);
807 for (i
= 0; i
< 256; i
+= 16) {
812 v4l2_dbg(lvl
, debug
, sd
, "\n");
813 for (j
= i
; j
< i
+ 16; j
++) {
814 sprintf(bp
, "0x%02x, ", buf
[j
]);
818 v4l2_dbg(lvl
, debug
, sd
, "%s\n", b
);
822 static void ad9389b_edid_handler(struct work_struct
*work
)
824 struct delayed_work
*dwork
= to_delayed_work(work
);
825 struct ad9389b_state
*state
=
826 container_of(dwork
, struct ad9389b_state
, edid_handler
);
827 struct v4l2_subdev
*sd
= &state
->sd
;
828 struct ad9389b_edid_detect ed
;
830 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
832 if (ad9389b_check_edid_status(sd
)) {
833 /* Return if we received the EDID. */
837 if (ad9389b_have_hotplug(sd
)) {
838 /* We must retry reading the EDID several times, it is possible
839 * that initially the EDID couldn't be read due to i2c errors
840 * (DVI connectors are particularly prone to this problem). */
841 if (state
->edid
.read_retries
) {
842 state
->edid
.read_retries
--;
843 v4l2_dbg(1, debug
, sd
, "%s: edid read failed\n", __func__
);
844 ad9389b_s_power(sd
, false);
845 ad9389b_s_power(sd
, true);
846 queue_delayed_work(state
->work_queue
,
847 &state
->edid_handler
, EDID_DELAY
);
852 /* We failed to read the EDID, so send an event for this. */
854 ed
.segment
= ad9389b_rd(sd
, 0xc4);
855 v4l2_subdev_notify(sd
, AD9389B_EDID_DETECT
, (void *)&ed
);
856 v4l2_dbg(1, debug
, sd
, "%s: no edid found\n", __func__
);
859 static void ad9389b_audio_setup(struct v4l2_subdev
*sd
)
861 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
863 ad9389b_s_i2s_clock_freq(sd
, 48000);
864 ad9389b_s_clock_freq(sd
, 48000);
865 ad9389b_s_routing(sd
, 0, 0, 0);
868 /* Initial setup of AD9389b */
870 /* Configure hdmi transmitter. */
871 static void ad9389b_setup(struct v4l2_subdev
*sd
)
873 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
875 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
877 /* Input format: RGB 4:4:4 */
878 ad9389b_wr_and_or(sd
, 0x15, 0xf1, 0x0);
879 /* Output format: RGB 4:4:4 */
880 ad9389b_wr_and_or(sd
, 0x16, 0x3f, 0x0);
881 /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion,
882 Aspect ratio: 16:9 */
883 ad9389b_wr_and_or(sd
, 0x17, 0xf9, 0x06);
884 /* Output format: RGB 4:4:4, Active Format Information is valid. */
885 ad9389b_wr_and_or(sd
, 0x45, 0xc7, 0x08);
887 ad9389b_wr_and_or(sd
, 0x46, 0x3f, 0x80);
888 /* Setup video format */
889 ad9389b_wr(sd
, 0x3c, 0x0);
890 /* Active format aspect ratio: same as picure. */
891 ad9389b_wr(sd
, 0x47, 0x80);
893 ad9389b_wr_and_or(sd
, 0xaf, 0xef, 0x0);
894 /* Positive clk edge capture for input video clock */
895 ad9389b_wr_and_or(sd
, 0xba, 0x1f, 0x60);
897 ad9389b_audio_setup(sd
);
899 v4l2_ctrl_handler_setup(&state
->hdl
);
901 ad9389b_set_IT_content_AVI_InfoFrame(sd
);
904 static void ad9389b_notify_monitor_detect(struct v4l2_subdev
*sd
)
906 struct ad9389b_monitor_detect mdt
;
907 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
909 mdt
.present
= state
->have_monitor
;
910 v4l2_subdev_notify(sd
, AD9389B_MONITOR_DETECT
, (void *)&mdt
);
913 static void ad9389b_update_monitor_present_status(struct v4l2_subdev
*sd
)
915 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
916 /* read hotplug and rx-sense state */
917 u8 status
= ad9389b_rd(sd
, 0x42);
919 v4l2_dbg(1, debug
, sd
, "%s: status: 0x%x%s%s\n",
922 status
& MASK_AD9389B_HPD_DETECT
? ", hotplug" : "",
923 status
& MASK_AD9389B_MSEN_DETECT
? ", rx-sense" : "");
925 if (status
& MASK_AD9389B_HPD_DETECT
) {
926 v4l2_dbg(1, debug
, sd
, "%s: hotplug detected\n", __func__
);
927 state
->have_monitor
= true;
928 if (!ad9389b_s_power(sd
, true)) {
929 v4l2_dbg(1, debug
, sd
,
930 "%s: monitor detected, powerup failed\n", __func__
);
934 ad9389b_notify_monitor_detect(sd
);
935 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
936 queue_delayed_work(state
->work_queue
,
937 &state
->edid_handler
, EDID_DELAY
);
938 } else if (!(status
& MASK_AD9389B_HPD_DETECT
)) {
939 v4l2_dbg(1, debug
, sd
, "%s: hotplug not detected\n", __func__
);
940 state
->have_monitor
= false;
941 ad9389b_notify_monitor_detect(sd
);
942 ad9389b_s_power(sd
, false);
943 memset(&state
->edid
, 0, sizeof(struct ad9389b_state_edid
));
946 /* update read only ctrls */
947 v4l2_ctrl_s_ctrl(state
->hotplug_ctrl
, ad9389b_have_hotplug(sd
) ? 0x1 : 0x0);
948 v4l2_ctrl_s_ctrl(state
->rx_sense_ctrl
, ad9389b_have_rx_sense(sd
) ? 0x1 : 0x0);
949 v4l2_ctrl_s_ctrl(state
->have_edid0_ctrl
, state
->edid
.segments
? 0x1 : 0x0);
951 /* update with setting from ctrls */
952 ad9389b_s_ctrl(state
->rgb_quantization_range_ctrl
);
953 ad9389b_s_ctrl(state
->hdmi_mode_ctrl
);
956 static void ad9389b_check_monitor_present_status(struct v4l2_subdev
*sd
)
958 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
961 ad9389b_update_monitor_present_status(sd
);
964 * Rapid toggling of the hotplug may leave the chip powered off,
965 * even if we think it is on. In that case reset and power up again.
967 while (state
->power_on
&& (ad9389b_rd(sd
, 0x41) & 0x40)) {
969 v4l2_err(sd
, "retried %d times, give up\n", retry
);
972 v4l2_dbg(1, debug
, sd
, "%s: reset and re-check status (%d)\n", __func__
, retry
);
973 ad9389b_notify_monitor_detect(sd
);
974 cancel_delayed_work_sync(&state
->edid_handler
);
975 memset(&state
->edid
, 0, sizeof(struct ad9389b_state_edid
));
976 ad9389b_s_power(sd
, false);
977 ad9389b_update_monitor_present_status(sd
);
981 static bool edid_block_verify_crc(u8
*edid_block
)
986 for (i
= 0; i
< 128; i
++)
987 sum
+= edid_block
[i
];
991 static bool edid_verify_crc(struct v4l2_subdev
*sd
, u32 segment
)
993 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
994 u32 blocks
= state
->edid
.blocks
;
995 u8
*data
= state
->edid
.data
;
997 if (edid_block_verify_crc(&data
[segment
* 256])) {
998 if ((segment
+ 1) * 2 <= blocks
)
999 return edid_block_verify_crc(&data
[segment
* 256 + 128]);
1005 static bool edid_verify_header(struct v4l2_subdev
*sd
, u32 segment
)
1007 static const u8 hdmi_header
[] = {
1008 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1010 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1011 u8
*data
= state
->edid
.data
;
1017 for (i
= 0; i
< ARRAY_SIZE(hdmi_header
); i
++)
1018 if (data
[i
] != hdmi_header
[i
])
1024 static bool ad9389b_check_edid_status(struct v4l2_subdev
*sd
)
1026 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1027 struct ad9389b_edid_detect ed
;
1029 u8 edidRdy
= ad9389b_rd(sd
, 0xc5);
1031 v4l2_dbg(1, debug
, sd
, "%s: edid ready (retries: %d)\n",
1032 __func__
, EDID_MAX_RETRIES
- state
->edid
.read_retries
);
1034 if (!(edidRdy
& MASK_AD9389B_EDID_RDY
))
1037 segment
= ad9389b_rd(sd
, 0xc4);
1038 if (segment
>= EDID_MAX_SEGM
) {
1039 v4l2_err(sd
, "edid segment number too big\n");
1042 v4l2_dbg(1, debug
, sd
, "%s: got segment %d\n", __func__
, segment
);
1043 ad9389b_edid_rd(sd
, 256, &state
->edid
.data
[segment
* 256]);
1044 ad9389b_dbg_dump_edid(2, debug
, sd
, segment
,
1045 &state
->edid
.data
[segment
* 256]);
1047 state
->edid
.blocks
= state
->edid
.data
[0x7e] + 1;
1048 v4l2_dbg(1, debug
, sd
, "%s: %d blocks in total\n",
1049 __func__
, state
->edid
.blocks
);
1051 if (!edid_verify_crc(sd
, segment
) ||
1052 !edid_verify_header(sd
, segment
)) {
1053 /* edid crc error, force reread of edid segment */
1054 v4l2_err(sd
, "%s: edid crc or header error\n", __func__
);
1055 ad9389b_s_power(sd
, false);
1056 ad9389b_s_power(sd
, true);
1059 /* one more segment read ok */
1060 state
->edid
.segments
= segment
+ 1;
1061 if (((state
->edid
.data
[0x7e] >> 1) + 1) > state
->edid
.segments
) {
1062 /* Request next EDID segment */
1063 v4l2_dbg(1, debug
, sd
, "%s: request segment %d\n",
1064 __func__
, state
->edid
.segments
);
1065 ad9389b_wr(sd
, 0xc9, 0xf);
1066 ad9389b_wr(sd
, 0xc4, state
->edid
.segments
);
1067 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
1068 queue_delayed_work(state
->work_queue
,
1069 &state
->edid_handler
, EDID_DELAY
);
1073 /* report when we have all segments but report only for segment 0 */
1076 v4l2_subdev_notify(sd
, AD9389B_EDID_DETECT
, (void *)&ed
);
1077 state
->edid_detect_counter
++;
1078 v4l2_ctrl_s_ctrl(state
->have_edid0_ctrl
, state
->edid
.segments
? 0x1 : 0x0);
1082 /* ----------------------------------------------------------------------- */
1084 static void ad9389b_init_setup(struct v4l2_subdev
*sd
)
1086 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1087 struct ad9389b_state_edid
*edid
= &state
->edid
;
1089 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
1091 /* clear all interrupts */
1092 ad9389b_wr(sd
, 0x96, 0xff);
1094 memset(edid
, 0, sizeof(struct ad9389b_state_edid
));
1095 state
->have_monitor
= false;
1096 ad9389b_set_isr(sd
, false);
1099 static int ad9389b_probe(struct i2c_client
*client
, const struct i2c_device_id
*id
)
1101 const struct v4l2_dv_timings dv1080p60
= V4L2_DV_BT_CEA_1920X1080P60
;
1102 struct ad9389b_state
*state
;
1103 struct ad9389b_platform_data
*pdata
= client
->dev
.platform_data
;
1104 struct v4l2_ctrl_handler
*hdl
;
1105 struct v4l2_subdev
*sd
;
1108 /* Check if the adapter supports the needed features */
1109 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_SMBUS_BYTE_DATA
))
1112 v4l_dbg(1, debug
, client
, "detecting ad9389b client on address 0x%x\n",
1115 state
= devm_kzalloc(&client
->dev
, sizeof(*state
), GFP_KERNEL
);
1120 if (pdata
== NULL
) {
1121 v4l_err(client
, "No platform data!\n");
1124 memcpy(&state
->pdata
, pdata
, sizeof(state
->pdata
));
1127 v4l2_i2c_subdev_init(sd
, client
, &ad9389b_ops
);
1128 sd
->flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
;
1131 v4l2_ctrl_handler_init(hdl
, 5);
1133 state
->hdmi_mode_ctrl
= v4l2_ctrl_new_std_menu(hdl
, &ad9389b_ctrl_ops
,
1134 V4L2_CID_DV_TX_MODE
, V4L2_DV_TX_MODE_HDMI
,
1135 0, V4L2_DV_TX_MODE_DVI_D
);
1136 state
->hotplug_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1137 V4L2_CID_DV_TX_HOTPLUG
, 0, 1, 0, 0);
1138 state
->rx_sense_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1139 V4L2_CID_DV_TX_RXSENSE
, 0, 1, 0, 0);
1140 state
->have_edid0_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1141 V4L2_CID_DV_TX_EDID_PRESENT
, 0, 1, 0, 0);
1142 state
->rgb_quantization_range_ctrl
=
1143 v4l2_ctrl_new_std_menu(hdl
, &ad9389b_ctrl_ops
,
1144 V4L2_CID_DV_TX_RGB_RANGE
, V4L2_DV_RGB_RANGE_FULL
,
1145 0, V4L2_DV_RGB_RANGE_AUTO
);
1146 sd
->ctrl_handler
= hdl
;
1152 state
->pad
.flags
= MEDIA_PAD_FL_SINK
;
1153 err
= media_entity_pads_init(&sd
->entity
, 1, &state
->pad
);
1157 state
->chip_revision
= ad9389b_rd(sd
, 0x0);
1158 if (state
->chip_revision
!= 2) {
1159 v4l2_err(sd
, "chip_revision %d != 2\n", state
->chip_revision
);
1163 v4l2_dbg(1, debug
, sd
, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n",
1164 ad9389b_rd(sd
, 0x41), state
->chip_revision
);
1166 state
->edid_i2c_client
= i2c_new_dummy(client
->adapter
, (0x7e>>1));
1167 if (state
->edid_i2c_client
== NULL
) {
1168 v4l2_err(sd
, "failed to register edid i2c client\n");
1173 state
->work_queue
= create_singlethread_workqueue(sd
->name
);
1174 if (state
->work_queue
== NULL
) {
1175 v4l2_err(sd
, "could not create workqueue\n");
1180 INIT_DELAYED_WORK(&state
->edid_handler
, ad9389b_edid_handler
);
1181 state
->dv_timings
= dv1080p60
;
1183 ad9389b_init_setup(sd
);
1184 ad9389b_set_isr(sd
, true);
1186 v4l2_info(sd
, "%s found @ 0x%x (%s)\n", client
->name
,
1187 client
->addr
<< 1, client
->adapter
->name
);
1191 i2c_unregister_device(state
->edid_i2c_client
);
1193 media_entity_cleanup(&sd
->entity
);
1195 v4l2_ctrl_handler_free(&state
->hdl
);
1199 /* ----------------------------------------------------------------------- */
1201 static int ad9389b_remove(struct i2c_client
*client
)
1203 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
1204 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1206 state
->chip_revision
= -1;
1208 v4l2_dbg(1, debug
, sd
, "%s removed @ 0x%x (%s)\n", client
->name
,
1209 client
->addr
<< 1, client
->adapter
->name
);
1211 ad9389b_s_stream(sd
, false);
1212 ad9389b_s_audio_stream(sd
, false);
1213 ad9389b_init_setup(sd
);
1214 cancel_delayed_work(&state
->edid_handler
);
1215 i2c_unregister_device(state
->edid_i2c_client
);
1216 destroy_workqueue(state
->work_queue
);
1217 v4l2_device_unregister_subdev(sd
);
1218 media_entity_cleanup(&sd
->entity
);
1219 v4l2_ctrl_handler_free(sd
->ctrl_handler
);
1223 /* ----------------------------------------------------------------------- */
1225 static struct i2c_device_id ad9389b_id
[] = {
1230 MODULE_DEVICE_TABLE(i2c
, ad9389b_id
);
1232 static struct i2c_driver ad9389b_driver
= {
1234 .owner
= THIS_MODULE
,
1237 .probe
= ad9389b_probe
,
1238 .remove
= ad9389b_remove
,
1239 .id_table
= ad9389b_id
,
1242 module_i2c_driver(ad9389b_driver
);