Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / net / wireless / ath / wil6210 / txrx.c
blobf2f6a404d3d1c3480599e13e7b54addc1858adf1
1 /*
2 * Copyright (c) 2012-2016 Qualcomm Atheros, Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/etherdevice.h>
18 #include <net/ieee80211_radiotap.h>
19 #include <linux/if_arp.h>
20 #include <linux/moduleparam.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <net/ipv6.h>
24 #include <linux/prefetch.h>
26 #include "wil6210.h"
27 #include "wmi.h"
28 #include "txrx.h"
29 #include "trace.h"
31 static bool rtap_include_phy_info;
32 module_param(rtap_include_phy_info, bool, S_IRUGO);
33 MODULE_PARM_DESC(rtap_include_phy_info,
34 " Include PHY info in the radiotap header, default - no");
36 bool rx_align_2;
37 module_param(rx_align_2, bool, S_IRUGO);
38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
40 static inline uint wil_rx_snaplen(void)
42 return rx_align_2 ? 6 : 0;
45 static inline int wil_vring_is_empty(struct vring *vring)
47 return vring->swhead == vring->swtail;
50 static inline u32 wil_vring_next_tail(struct vring *vring)
52 return (vring->swtail + 1) % vring->size;
55 static inline void wil_vring_advance_head(struct vring *vring, int n)
57 vring->swhead = (vring->swhead + n) % vring->size;
60 static inline int wil_vring_is_full(struct vring *vring)
62 return wil_vring_next_tail(vring) == vring->swhead;
65 /* Used space in Tx Vring */
66 static inline int wil_vring_used_tx(struct vring *vring)
68 u32 swhead = vring->swhead;
69 u32 swtail = vring->swtail;
70 return (vring->size + swhead - swtail) % vring->size;
73 /* Available space in Tx Vring */
74 static inline int wil_vring_avail_tx(struct vring *vring)
76 return vring->size - wil_vring_used_tx(vring) - 1;
79 /* wil_vring_wmark_low - low watermark for available descriptor space */
80 static inline int wil_vring_wmark_low(struct vring *vring)
82 return vring->size/8;
85 /* wil_vring_wmark_high - high watermark for available descriptor space */
86 static inline int wil_vring_wmark_high(struct vring *vring)
88 return vring->size/4;
91 /* wil_val_in_range - check if value in [min,max) */
92 static inline bool wil_val_in_range(int val, int min, int max)
94 return val >= min && val < max;
97 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
99 struct device *dev = wil_to_dev(wil);
100 size_t sz = vring->size * sizeof(vring->va[0]);
101 uint i;
103 wil_dbg_misc(wil, "%s()\n", __func__);
105 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
107 vring->swhead = 0;
108 vring->swtail = 0;
109 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
110 if (!vring->ctx) {
111 vring->va = NULL;
112 return -ENOMEM;
114 /* vring->va should be aligned on its size rounded up to power of 2
115 * This is granted by the dma_alloc_coherent
117 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
118 if (!vring->va) {
119 kfree(vring->ctx);
120 vring->ctx = NULL;
121 return -ENOMEM;
123 /* initially, all descriptors are SW owned
124 * For Tx and Rx, ownership bit is at the same location, thus
125 * we can use any
127 for (i = 0; i < vring->size; i++) {
128 volatile struct vring_tx_desc *_d = &vring->va[i].tx;
130 _d->dma.status = TX_DMA_STATUS_DU;
133 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
134 vring->va, &vring->pa, vring->ctx);
136 return 0;
139 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d,
140 struct wil_ctx *ctx)
142 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
143 u16 dmalen = le16_to_cpu(d->dma.length);
145 switch (ctx->mapped_as) {
146 case wil_mapped_as_single:
147 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
148 break;
149 case wil_mapped_as_page:
150 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
151 break;
152 default:
153 break;
157 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
158 int tx)
160 struct device *dev = wil_to_dev(wil);
161 size_t sz = vring->size * sizeof(vring->va[0]);
163 lockdep_assert_held(&wil->mutex);
164 if (tx) {
165 int vring_index = vring - wil->vring_tx;
167 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
168 vring_index, vring->size, vring->va,
169 &vring->pa, vring->ctx);
170 } else {
171 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
172 vring->size, vring->va,
173 &vring->pa, vring->ctx);
176 while (!wil_vring_is_empty(vring)) {
177 dma_addr_t pa;
178 u16 dmalen;
179 struct wil_ctx *ctx;
181 if (tx) {
182 struct vring_tx_desc dd, *d = &dd;
183 volatile struct vring_tx_desc *_d =
184 &vring->va[vring->swtail].tx;
186 ctx = &vring->ctx[vring->swtail];
187 if (!ctx) {
188 wil_dbg_txrx(wil,
189 "ctx(%d) was already completed\n",
190 vring->swtail);
191 vring->swtail = wil_vring_next_tail(vring);
192 continue;
194 *d = *_d;
195 wil_txdesc_unmap(dev, d, ctx);
196 if (ctx->skb)
197 dev_kfree_skb_any(ctx->skb);
198 vring->swtail = wil_vring_next_tail(vring);
199 } else { /* rx */
200 struct vring_rx_desc dd, *d = &dd;
201 volatile struct vring_rx_desc *_d =
202 &vring->va[vring->swhead].rx;
204 ctx = &vring->ctx[vring->swhead];
205 *d = *_d;
206 pa = wil_desc_addr(&d->dma.addr);
207 dmalen = le16_to_cpu(d->dma.length);
208 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
209 kfree_skb(ctx->skb);
210 wil_vring_advance_head(vring, 1);
213 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
214 kfree(vring->ctx);
215 vring->pa = 0;
216 vring->va = NULL;
217 vring->ctx = NULL;
221 * Allocate one skb for Rx VRING
223 * Safe to call from IRQ
225 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
226 u32 i, int headroom)
228 struct device *dev = wil_to_dev(wil);
229 unsigned int sz = mtu_max + ETH_HLEN + wil_rx_snaplen();
230 struct vring_rx_desc dd, *d = &dd;
231 volatile struct vring_rx_desc *_d = &vring->va[i].rx;
232 dma_addr_t pa;
233 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
235 if (unlikely(!skb))
236 return -ENOMEM;
238 skb_reserve(skb, headroom);
239 skb_put(skb, sz);
241 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
242 if (unlikely(dma_mapping_error(dev, pa))) {
243 kfree_skb(skb);
244 return -ENOMEM;
247 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
248 wil_desc_addr_set(&d->dma.addr, pa);
249 /* ip_length don't care */
250 /* b11 don't care */
251 /* error don't care */
252 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
253 d->dma.length = cpu_to_le16(sz);
254 *_d = *d;
255 vring->ctx[i].skb = skb;
257 return 0;
261 * Adds radiotap header
263 * Any error indicated as "Bad FCS"
265 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
266 * - Rx descriptor: 32 bytes
267 * - Phy info
269 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
270 struct sk_buff *skb)
272 struct wireless_dev *wdev = wil->wdev;
273 struct wil6210_rtap {
274 struct ieee80211_radiotap_header rthdr;
275 /* fields should be in the order of bits in rthdr.it_present */
276 /* flags */
277 u8 flags;
278 /* channel */
279 __le16 chnl_freq __aligned(2);
280 __le16 chnl_flags;
281 /* MCS */
282 u8 mcs_present;
283 u8 mcs_flags;
284 u8 mcs_index;
285 } __packed;
286 struct wil6210_rtap_vendor {
287 struct wil6210_rtap rtap;
288 /* vendor */
289 u8 vendor_oui[3] __aligned(2);
290 u8 vendor_ns;
291 __le16 vendor_skip;
292 u8 vendor_data[0];
293 } __packed;
294 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
295 struct wil6210_rtap_vendor *rtap_vendor;
296 int rtap_len = sizeof(struct wil6210_rtap);
297 int phy_length = 0; /* phy info header size, bytes */
298 static char phy_data[128];
299 struct ieee80211_channel *ch = wdev->preset_chandef.chan;
301 if (rtap_include_phy_info) {
302 rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
303 /* calculate additional length */
304 if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
306 * PHY info starts from 8-byte boundary
307 * there are 8-byte lines, last line may be partially
308 * written (HW bug), thus FW configures for last line
309 * to be excessive. Driver skips this last line.
311 int len = min_t(int, 8 + sizeof(phy_data),
312 wil_rxdesc_phy_length(d));
314 if (len > 8) {
315 void *p = skb_tail_pointer(skb);
316 void *pa = PTR_ALIGN(p, 8);
318 if (skb_tailroom(skb) >= len + (pa - p)) {
319 phy_length = len - 8;
320 memcpy(phy_data, pa, phy_length);
324 rtap_len += phy_length;
327 if (skb_headroom(skb) < rtap_len &&
328 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
329 wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
330 return;
333 rtap_vendor = (void *)skb_push(skb, rtap_len);
334 memset(rtap_vendor, 0, rtap_len);
336 rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
337 rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
338 rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
339 (1 << IEEE80211_RADIOTAP_FLAGS) |
340 (1 << IEEE80211_RADIOTAP_CHANNEL) |
341 (1 << IEEE80211_RADIOTAP_MCS));
342 if (d->dma.status & RX_DMA_STATUS_ERROR)
343 rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
345 rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
346 rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
348 rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
349 rtap_vendor->rtap.mcs_flags = 0;
350 rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
352 if (rtap_include_phy_info) {
353 rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
354 IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
355 /* OUI for Wilocity 04:ce:14 */
356 rtap_vendor->vendor_oui[0] = 0x04;
357 rtap_vendor->vendor_oui[1] = 0xce;
358 rtap_vendor->vendor_oui[2] = 0x14;
359 rtap_vendor->vendor_ns = 1;
360 /* Rx descriptor + PHY data */
361 rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
362 phy_length);
363 memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
364 memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
365 phy_length);
369 /* similar to ieee80211_ version, but FC contain only 1-st byte */
370 static inline int wil_is_back_req(u8 fc)
372 return (fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
373 (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
377 * reap 1 frame from @swhead
379 * Rx descriptor copied to skb->cb
381 * Safe to call from IRQ
383 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
384 struct vring *vring)
386 struct device *dev = wil_to_dev(wil);
387 struct net_device *ndev = wil_to_ndev(wil);
388 volatile struct vring_rx_desc *_d;
389 struct vring_rx_desc *d;
390 struct sk_buff *skb;
391 dma_addr_t pa;
392 unsigned int snaplen = wil_rx_snaplen();
393 unsigned int sz = mtu_max + ETH_HLEN + snaplen;
394 u16 dmalen;
395 u8 ftype;
396 int cid;
397 int i;
398 struct wil_net_stats *stats;
400 BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
402 again:
403 if (unlikely(wil_vring_is_empty(vring)))
404 return NULL;
406 i = (int)vring->swhead;
407 _d = &vring->va[i].rx;
408 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
409 /* it is not error, we just reached end of Rx done area */
410 return NULL;
413 skb = vring->ctx[i].skb;
414 vring->ctx[i].skb = NULL;
415 wil_vring_advance_head(vring, 1);
416 if (!skb) {
417 wil_err(wil, "No Rx skb at [%d]\n", i);
418 goto again;
420 d = wil_skb_rxdesc(skb);
421 *d = *_d;
422 pa = wil_desc_addr(&d->dma.addr);
424 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
425 dmalen = le16_to_cpu(d->dma.length);
427 trace_wil6210_rx(i, d);
428 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
429 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
430 (const void *)d, sizeof(*d), false);
432 cid = wil_rxdesc_cid(d);
433 stats = &wil->sta[cid].stats;
435 if (unlikely(dmalen > sz)) {
436 wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
437 stats->rx_large_frame++;
438 kfree_skb(skb);
439 goto again;
441 skb_trim(skb, dmalen);
443 prefetch(skb->data);
445 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
446 skb->data, skb_headlen(skb), false);
448 stats->last_mcs_rx = wil_rxdesc_mcs(d);
449 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
450 stats->rx_per_mcs[stats->last_mcs_rx]++;
452 /* use radiotap header only if required */
453 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
454 wil_rx_add_radiotap_header(wil, skb);
456 /* no extra checks if in sniffer mode */
457 if (ndev->type != ARPHRD_ETHER)
458 return skb;
459 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
460 * Driver should recognize it by frame type, that is found
461 * in Rx descriptor. If type is not data, it is 802.11 frame as is
463 ftype = wil_rxdesc_ftype(d) << 2;
464 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
465 u8 fc1 = wil_rxdesc_fc1(d);
466 int mid = wil_rxdesc_mid(d);
467 int tid = wil_rxdesc_tid(d);
468 u16 seq = wil_rxdesc_seq(d);
470 wil_dbg_txrx(wil,
471 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
472 fc1, mid, cid, tid, seq);
473 stats->rx_non_data_frame++;
474 if (wil_is_back_req(fc1)) {
475 wil_dbg_txrx(wil,
476 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
477 mid, cid, tid, seq);
478 wil_rx_bar(wil, cid, tid, seq);
479 } else {
480 /* print again all info. One can enable only this
481 * without overhead for printing every Rx frame
483 wil_dbg_txrx(wil,
484 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
485 fc1, mid, cid, tid, seq);
486 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
487 (const void *)d, sizeof(*d), false);
488 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
489 skb->data, skb_headlen(skb), false);
491 kfree_skb(skb);
492 goto again;
495 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
496 wil_err(wil, "Short frame, len = %d\n", skb->len);
497 stats->rx_short_frame++;
498 kfree_skb(skb);
499 goto again;
502 /* L4 IDENT is on when HW calculated checksum, check status
503 * and in case of error drop the packet
504 * higher stack layers will handle retransmission (if required)
506 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
507 /* L4 protocol identified, csum calculated */
508 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
509 skb->ip_summed = CHECKSUM_UNNECESSARY;
510 /* If HW reports bad checksum, let IP stack re-check it
511 * For example, HW don't understand Microsoft IP stack that
512 * mis-calculates TCP checksum - if it should be 0x0,
513 * it writes 0xffff in violation of RFC 1624
517 if (snaplen) {
518 /* Packet layout
519 * +-------+-------+---------+------------+------+
520 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
521 * +-------+-------+---------+------------+------+
522 * Need to remove SNAP, shifting SA and DA forward
524 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
525 skb_pull(skb, snaplen);
528 return skb;
532 * allocate and fill up to @count buffers in rx ring
533 * buffers posted at @swtail
535 static int wil_rx_refill(struct wil6210_priv *wil, int count)
537 struct net_device *ndev = wil_to_ndev(wil);
538 struct vring *v = &wil->vring_rx;
539 u32 next_tail;
540 int rc = 0;
541 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
542 WIL6210_RTAP_SIZE : 0;
544 for (; next_tail = wil_vring_next_tail(v),
545 (next_tail != v->swhead) && (count-- > 0);
546 v->swtail = next_tail) {
547 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
548 if (unlikely(rc)) {
549 wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
550 rc, v->swtail);
551 break;
555 /* make sure all writes to descriptors (shared memory) are done before
556 * committing them to HW
558 wmb();
560 wil_w(wil, v->hwtail, v->swtail);
562 return rc;
566 * reverse_memcmp - Compare two areas of memory, in reverse order
567 * @cs: One area of memory
568 * @ct: Another area of memory
569 * @count: The size of the area.
571 * Cut'n'paste from original memcmp (see lib/string.c)
572 * with minimal modifications
574 static int reverse_memcmp(const void *cs, const void *ct, size_t count)
576 const unsigned char *su1, *su2;
577 int res = 0;
579 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
580 --su1, --su2, count--) {
581 res = *su1 - *su2;
582 if (res)
583 break;
585 return res;
588 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
590 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
591 int cid = wil_rxdesc_cid(d);
592 int tid = wil_rxdesc_tid(d);
593 int key_id = wil_rxdesc_key_id(d);
594 int mc = wil_rxdesc_mcast(d);
595 struct wil_sta_info *s = &wil->sta[cid];
596 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
597 &s->tid_crypto_rx[tid];
598 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
599 const u8 *pn = (u8 *)&d->mac.pn_15_0;
601 if (!cc->key_set) {
602 wil_err_ratelimited(wil,
603 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
604 cid, tid, mc, key_id);
605 return -EINVAL;
608 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
609 wil_err_ratelimited(wil,
610 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
611 cid, tid, mc, key_id, pn, cc->pn);
612 return -EINVAL;
614 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
616 return 0;
620 * Pass Rx packet to the netif. Update statistics.
621 * Called in softirq context (NAPI poll).
623 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
625 gro_result_t rc = GRO_NORMAL;
626 struct wil6210_priv *wil = ndev_to_wil(ndev);
627 struct wireless_dev *wdev = wil_to_wdev(wil);
628 unsigned int len = skb->len;
629 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
630 int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
631 int security = wil_rxdesc_security(d);
632 struct ethhdr *eth = (void *)skb->data;
633 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
634 * is not suitable, need to look at data
636 int mcast = is_multicast_ether_addr(eth->h_dest);
637 struct wil_net_stats *stats = &wil->sta[cid].stats;
638 struct sk_buff *xmit_skb = NULL;
639 static const char * const gro_res_str[] = {
640 [GRO_MERGED] = "GRO_MERGED",
641 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
642 [GRO_HELD] = "GRO_HELD",
643 [GRO_NORMAL] = "GRO_NORMAL",
644 [GRO_DROP] = "GRO_DROP",
647 if (ndev->features & NETIF_F_RXHASH)
648 /* fake L4 to ensure it won't be re-calculated later
649 * set hash to any non-zero value to activate rps
650 * mechanism, core will be chosen according
651 * to user-level rps configuration.
653 skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
655 skb_orphan(skb);
657 if (security && (wil_rx_crypto_check(wil, skb) != 0)) {
658 rc = GRO_DROP;
659 dev_kfree_skb(skb);
660 stats->rx_replay++;
661 goto stats;
664 if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) {
665 if (mcast) {
666 /* send multicast frames both to higher layers in
667 * local net stack and back to the wireless medium
669 xmit_skb = skb_copy(skb, GFP_ATOMIC);
670 } else {
671 int xmit_cid = wil_find_cid(wil, eth->h_dest);
673 if (xmit_cid >= 0) {
674 /* The destination station is associated to
675 * this AP (in this VLAN), so send the frame
676 * directly to it and do not pass it to local
677 * net stack.
679 xmit_skb = skb;
680 skb = NULL;
684 if (xmit_skb) {
685 /* Send to wireless media and increase priority by 256 to
686 * keep the received priority instead of reclassifying
687 * the frame (see cfg80211_classify8021d).
689 xmit_skb->dev = ndev;
690 xmit_skb->priority += 256;
691 xmit_skb->protocol = htons(ETH_P_802_3);
692 skb_reset_network_header(xmit_skb);
693 skb_reset_mac_header(xmit_skb);
694 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
695 dev_queue_xmit(xmit_skb);
698 if (skb) { /* deliver to local stack */
700 skb->protocol = eth_type_trans(skb, ndev);
701 rc = napi_gro_receive(&wil->napi_rx, skb);
702 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
703 len, gro_res_str[rc]);
705 stats:
706 /* statistics. rc set to GRO_NORMAL for AP bridging */
707 if (unlikely(rc == GRO_DROP)) {
708 ndev->stats.rx_dropped++;
709 stats->rx_dropped++;
710 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
711 } else {
712 ndev->stats.rx_packets++;
713 stats->rx_packets++;
714 ndev->stats.rx_bytes += len;
715 stats->rx_bytes += len;
716 if (mcast)
717 ndev->stats.multicast++;
722 * Proceed all completed skb's from Rx VRING
724 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
726 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
728 struct net_device *ndev = wil_to_ndev(wil);
729 struct vring *v = &wil->vring_rx;
730 struct sk_buff *skb;
732 if (unlikely(!v->va)) {
733 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
734 return;
736 wil_dbg_txrx(wil, "%s()\n", __func__);
737 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
738 (*quota)--;
740 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
741 skb->dev = ndev;
742 skb_reset_mac_header(skb);
743 skb->ip_summed = CHECKSUM_UNNECESSARY;
744 skb->pkt_type = PACKET_OTHERHOST;
745 skb->protocol = htons(ETH_P_802_2);
746 wil_netif_rx_any(skb, ndev);
747 } else {
748 wil_rx_reorder(wil, skb);
751 wil_rx_refill(wil, v->size);
754 int wil_rx_init(struct wil6210_priv *wil, u16 size)
756 struct vring *vring = &wil->vring_rx;
757 int rc;
759 wil_dbg_misc(wil, "%s()\n", __func__);
761 if (vring->va) {
762 wil_err(wil, "Rx ring already allocated\n");
763 return -EINVAL;
766 vring->size = size;
767 rc = wil_vring_alloc(wil, vring);
768 if (rc)
769 return rc;
771 rc = wmi_rx_chain_add(wil, vring);
772 if (rc)
773 goto err_free;
775 rc = wil_rx_refill(wil, vring->size);
776 if (rc)
777 goto err_free;
779 return 0;
780 err_free:
781 wil_vring_free(wil, vring, 0);
783 return rc;
786 void wil_rx_fini(struct wil6210_priv *wil)
788 struct vring *vring = &wil->vring_rx;
790 wil_dbg_misc(wil, "%s()\n", __func__);
792 if (vring->va)
793 wil_vring_free(wil, vring, 0);
796 static inline void wil_tx_data_init(struct vring_tx_data *txdata)
798 spin_lock_bh(&txdata->lock);
799 txdata->dot1x_open = 0;
800 txdata->enabled = 0;
801 txdata->idle = 0;
802 txdata->last_idle = 0;
803 txdata->begin = 0;
804 txdata->agg_wsize = 0;
805 txdata->agg_timeout = 0;
806 txdata->agg_amsdu = 0;
807 txdata->addba_in_progress = false;
808 spin_unlock_bh(&txdata->lock);
811 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
812 int cid, int tid)
814 int rc;
815 struct wmi_vring_cfg_cmd cmd = {
816 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
817 .vring_cfg = {
818 .tx_sw_ring = {
819 .max_mpdu_size =
820 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
821 .ring_size = cpu_to_le16(size),
823 .ringid = id,
824 .cidxtid = mk_cidxtid(cid, tid),
825 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
826 .mac_ctrl = 0,
827 .to_resolution = 0,
828 .agg_max_wsize = 0,
829 .schd_params = {
830 .priority = cpu_to_le16(0),
831 .timeslot_us = cpu_to_le16(0xfff),
835 struct {
836 struct wmi_cmd_hdr wmi;
837 struct wmi_vring_cfg_done_event cmd;
838 } __packed reply;
839 struct vring *vring = &wil->vring_tx[id];
840 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
842 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
843 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
844 lockdep_assert_held(&wil->mutex);
846 if (vring->va) {
847 wil_err(wil, "Tx ring [%d] already allocated\n", id);
848 rc = -EINVAL;
849 goto out;
852 wil_tx_data_init(txdata);
853 vring->size = size;
854 rc = wil_vring_alloc(wil, vring);
855 if (rc)
856 goto out;
858 wil->vring2cid_tid[id][0] = cid;
859 wil->vring2cid_tid[id][1] = tid;
861 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
863 if (!wil->privacy)
864 txdata->dot1x_open = true;
865 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
866 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
867 if (rc)
868 goto out_free;
870 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
871 wil_err(wil, "Tx config failed, status 0x%02x\n",
872 reply.cmd.status);
873 rc = -EINVAL;
874 goto out_free;
876 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
878 txdata->enabled = 1;
879 if (txdata->dot1x_open && (agg_wsize >= 0))
880 wil_addba_tx_request(wil, id, agg_wsize);
882 return 0;
883 out_free:
884 spin_lock_bh(&txdata->lock);
885 txdata->dot1x_open = false;
886 txdata->enabled = 0;
887 spin_unlock_bh(&txdata->lock);
888 wil_vring_free(wil, vring, 1);
889 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID;
890 wil->vring2cid_tid[id][1] = 0;
892 out:
894 return rc;
897 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size)
899 int rc;
900 struct wmi_bcast_vring_cfg_cmd cmd = {
901 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
902 .vring_cfg = {
903 .tx_sw_ring = {
904 .max_mpdu_size =
905 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
906 .ring_size = cpu_to_le16(size),
908 .ringid = id,
909 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
912 struct {
913 struct wmi_cmd_hdr wmi;
914 struct wmi_vring_cfg_done_event cmd;
915 } __packed reply;
916 struct vring *vring = &wil->vring_tx[id];
917 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
919 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
920 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
921 lockdep_assert_held(&wil->mutex);
923 if (vring->va) {
924 wil_err(wil, "Tx ring [%d] already allocated\n", id);
925 rc = -EINVAL;
926 goto out;
929 wil_tx_data_init(txdata);
930 vring->size = size;
931 rc = wil_vring_alloc(wil, vring);
932 if (rc)
933 goto out;
935 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
936 wil->vring2cid_tid[id][1] = 0; /* TID */
938 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
940 if (!wil->privacy)
941 txdata->dot1x_open = true;
942 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd),
943 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
944 if (rc)
945 goto out_free;
947 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
948 wil_err(wil, "Tx config failed, status 0x%02x\n",
949 reply.cmd.status);
950 rc = -EINVAL;
951 goto out_free;
953 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
955 txdata->enabled = 1;
957 return 0;
958 out_free:
959 spin_lock_bh(&txdata->lock);
960 txdata->enabled = 0;
961 txdata->dot1x_open = false;
962 spin_unlock_bh(&txdata->lock);
963 wil_vring_free(wil, vring, 1);
964 out:
966 return rc;
969 void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
971 struct vring *vring = &wil->vring_tx[id];
972 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
974 lockdep_assert_held(&wil->mutex);
976 if (!vring->va)
977 return;
979 wil_dbg_misc(wil, "%s() id=%d\n", __func__, id);
981 spin_lock_bh(&txdata->lock);
982 txdata->dot1x_open = false;
983 txdata->enabled = 0; /* no Tx can be in progress or start anew */
984 spin_unlock_bh(&txdata->lock);
985 /* napi_synchronize waits for completion of the current NAPI but will
986 * not prevent the next NAPI run.
987 * Add a memory barrier to guarantee that txdata->enabled is zeroed
988 * before napi_synchronize so that the next scheduled NAPI will not
989 * handle this vring
991 wmb();
992 /* make sure NAPI won't touch this vring */
993 if (test_bit(wil_status_napi_en, wil->status))
994 napi_synchronize(&wil->napi_tx);
996 wil_vring_free(wil, vring, 1);
999 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil,
1000 struct sk_buff *skb)
1002 int i;
1003 struct ethhdr *eth = (void *)skb->data;
1004 int cid = wil_find_cid(wil, eth->h_dest);
1006 if (cid < 0)
1007 return NULL;
1009 /* TODO: fix for multiple TID */
1010 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
1011 if (!wil->vring_tx_data[i].dot1x_open &&
1012 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1013 continue;
1014 if (wil->vring2cid_tid[i][0] == cid) {
1015 struct vring *v = &wil->vring_tx[i];
1016 struct vring_tx_data *txdata = &wil->vring_tx_data[i];
1018 wil_dbg_txrx(wil, "%s(%pM) -> [%d]\n",
1019 __func__, eth->h_dest, i);
1020 if (v->va && txdata->enabled) {
1021 return v;
1022 } else {
1023 wil_dbg_txrx(wil, "vring[%d] not valid\n", i);
1024 return NULL;
1029 return NULL;
1032 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1033 struct sk_buff *skb);
1035 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil,
1036 struct sk_buff *skb)
1038 struct vring *v;
1039 int i;
1040 u8 cid;
1041 struct vring_tx_data *txdata;
1043 /* In the STA mode, it is expected to have only 1 VRING
1044 * for the AP we connected to.
1045 * find 1-st vring eligible for this skb and use it.
1047 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1048 v = &wil->vring_tx[i];
1049 txdata = &wil->vring_tx_data[i];
1050 if (!v->va || !txdata->enabled)
1051 continue;
1053 cid = wil->vring2cid_tid[i][0];
1054 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1055 continue;
1057 if (!wil->vring_tx_data[i].dot1x_open &&
1058 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1059 continue;
1061 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1063 return v;
1066 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1068 return NULL;
1071 /* Use one of 2 strategies:
1073 * 1. New (real broadcast):
1074 * use dedicated broadcast vring
1075 * 2. Old (pseudo-DMS):
1076 * Find 1-st vring and return it;
1077 * duplicate skb and send it to other active vrings;
1078 * in all cases override dest address to unicast peer's address
1079 * Use old strategy when new is not supported yet:
1080 * - for PBSS
1082 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1083 struct sk_buff *skb)
1085 struct vring *v;
1086 struct vring_tx_data *txdata;
1087 int i = wil->bcast_vring;
1089 if (i < 0)
1090 return NULL;
1091 v = &wil->vring_tx[i];
1092 txdata = &wil->vring_tx_data[i];
1093 if (!v->va || !txdata->enabled)
1094 return NULL;
1095 if (!wil->vring_tx_data[i].dot1x_open &&
1096 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1097 return NULL;
1099 return v;
1102 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1103 struct sk_buff *skb, int vring_index)
1105 struct ethhdr *eth = (void *)skb->data;
1106 int cid = wil->vring2cid_tid[vring_index][0];
1108 ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1111 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1112 struct sk_buff *skb)
1114 struct vring *v, *v2;
1115 struct sk_buff *skb2;
1116 int i;
1117 u8 cid;
1118 struct ethhdr *eth = (void *)skb->data;
1119 char *src = eth->h_source;
1120 struct vring_tx_data *txdata;
1122 /* find 1-st vring eligible for data */
1123 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1124 v = &wil->vring_tx[i];
1125 txdata = &wil->vring_tx_data[i];
1126 if (!v->va || !txdata->enabled)
1127 continue;
1129 cid = wil->vring2cid_tid[i][0];
1130 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1131 continue;
1132 if (!wil->vring_tx_data[i].dot1x_open &&
1133 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1134 continue;
1136 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1137 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1138 continue;
1140 goto found;
1143 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1145 return NULL;
1147 found:
1148 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1149 wil_set_da_for_vring(wil, skb, i);
1151 /* find other active vrings and duplicate skb for each */
1152 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1153 v2 = &wil->vring_tx[i];
1154 if (!v2->va)
1155 continue;
1156 cid = wil->vring2cid_tid[i][0];
1157 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1158 continue;
1159 if (!wil->vring_tx_data[i].dot1x_open &&
1160 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1161 continue;
1163 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1164 continue;
1166 skb2 = skb_copy(skb, GFP_ATOMIC);
1167 if (skb2) {
1168 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1169 wil_set_da_for_vring(wil, skb2, i);
1170 wil_tx_vring(wil, v2, skb2);
1171 } else {
1172 wil_err(wil, "skb_copy failed\n");
1176 return v;
1179 static struct vring *wil_find_tx_bcast(struct wil6210_priv *wil,
1180 struct sk_buff *skb)
1182 struct wireless_dev *wdev = wil->wdev;
1184 if (wdev->iftype != NL80211_IFTYPE_AP)
1185 return wil_find_tx_bcast_2(wil, skb);
1187 return wil_find_tx_bcast_1(wil, skb);
1190 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
1191 int vring_index)
1193 wil_desc_addr_set(&d->dma.addr, pa);
1194 d->dma.ip_length = 0;
1195 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1196 d->dma.b11 = 0/*14 | BIT(7)*/;
1197 d->dma.error = 0;
1198 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1199 d->dma.length = cpu_to_le16((u16)len);
1200 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1201 d->mac.d[0] = 0;
1202 d->mac.d[1] = 0;
1203 d->mac.d[2] = 0;
1204 d->mac.ucode_cmd = 0;
1205 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1206 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1207 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1209 return 0;
1212 static inline
1213 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1215 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1219 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1220 * @skb is used to obtain the protocol and headers length.
1221 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1222 * 2 - middle, 3 - last descriptor.
1225 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1226 struct sk_buff *skb,
1227 int tso_desc_type, bool is_ipv4,
1228 int tcp_hdr_len, int skb_net_hdr_len)
1230 d->dma.b11 = ETH_HLEN; /* MAC header length */
1231 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1233 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1234 /* L4 header len: TCP header length */
1235 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1237 /* Setup TSO: bit and desc type */
1238 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1239 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1240 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1242 d->dma.ip_length = skb_net_hdr_len;
1243 /* Enable TCP/UDP checksum */
1244 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1245 /* Calculate pseudo-header */
1246 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1250 * Sets the descriptor @d up for csum. The corresponding
1251 * @skb is used to obtain the protocol and headers length.
1252 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1253 * Note, if d==NULL, the function only returns the protocol result.
1255 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1256 * is "if unrolling" to optimize the critical path.
1259 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1260 struct sk_buff *skb){
1261 int protocol;
1263 if (skb->ip_summed != CHECKSUM_PARTIAL)
1264 return 0;
1266 d->dma.b11 = ETH_HLEN; /* MAC header length */
1268 switch (skb->protocol) {
1269 case cpu_to_be16(ETH_P_IP):
1270 protocol = ip_hdr(skb)->protocol;
1271 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1272 break;
1273 case cpu_to_be16(ETH_P_IPV6):
1274 protocol = ipv6_hdr(skb)->nexthdr;
1275 break;
1276 default:
1277 return -EINVAL;
1280 switch (protocol) {
1281 case IPPROTO_TCP:
1282 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1283 /* L4 header len: TCP header length */
1284 d->dma.d0 |=
1285 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1286 break;
1287 case IPPROTO_UDP:
1288 /* L4 header len: UDP header length */
1289 d->dma.d0 |=
1290 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1291 break;
1292 default:
1293 return -EINVAL;
1296 d->dma.ip_length = skb_network_header_len(skb);
1297 /* Enable TCP/UDP checksum */
1298 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1299 /* Calculate pseudo-header */
1300 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1302 return 0;
1305 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1307 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1308 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1309 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1312 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1314 d->dma.d0 |= wil_tso_type_lst <<
1315 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1318 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct vring *vring,
1319 struct sk_buff *skb)
1321 struct device *dev = wil_to_dev(wil);
1323 /* point to descriptors in shared memory */
1324 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1325 *_first_desc = NULL;
1327 /* pointers to shadow descriptors */
1328 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1329 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1330 *first_desc = &first_desc_mem;
1332 /* pointer to shadow descriptors' context */
1333 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1335 int descs_used = 0; /* total number of used descriptors */
1336 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1338 u32 swhead = vring->swhead;
1339 int used, avail = wil_vring_avail_tx(vring);
1340 int nr_frags = skb_shinfo(skb)->nr_frags;
1341 int min_desc_required = nr_frags + 1;
1342 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1343 int f, len, hdrlen, headlen;
1344 int vring_index = vring - wil->vring_tx;
1345 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1346 uint i = swhead;
1347 dma_addr_t pa;
1348 const skb_frag_t *frag = NULL;
1349 int rem_data = mss;
1350 int lenmss;
1351 int hdr_compensation_need = true;
1352 int desc_tso_type = wil_tso_type_first;
1353 bool is_ipv4;
1354 int tcp_hdr_len;
1355 int skb_net_hdr_len;
1356 int gso_type;
1357 int rc = -EINVAL;
1359 wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1360 __func__, skb->len, vring_index);
1362 if (unlikely(!txdata->enabled))
1363 return -EINVAL;
1365 /* A typical page 4K is 3-4 payloads, we assume each fragment
1366 * is a full payload, that's how min_desc_required has been
1367 * calculated. In real we might need more or less descriptors,
1368 * this is the initial check only.
1370 if (unlikely(avail < min_desc_required)) {
1371 wil_err_ratelimited(wil,
1372 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1373 vring_index, min_desc_required);
1374 return -ENOMEM;
1377 /* Header Length = MAC header len + IP header len + TCP header len*/
1378 hdrlen = ETH_HLEN +
1379 (int)skb_network_header_len(skb) +
1380 tcp_hdrlen(skb);
1382 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1383 switch (gso_type) {
1384 case SKB_GSO_TCPV4:
1385 /* TCP v4, zero out the IP length and IPv4 checksum fields
1386 * as required by the offloading doc
1388 ip_hdr(skb)->tot_len = 0;
1389 ip_hdr(skb)->check = 0;
1390 is_ipv4 = true;
1391 break;
1392 case SKB_GSO_TCPV6:
1393 /* TCP v6, zero out the payload length */
1394 ipv6_hdr(skb)->payload_len = 0;
1395 is_ipv4 = false;
1396 break;
1397 default:
1398 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1399 * It is also illegal for both to be set simultaneously
1401 return -EINVAL;
1404 if (skb->ip_summed != CHECKSUM_PARTIAL)
1405 return -EINVAL;
1407 /* tcp header length and skb network header length are fixed for all
1408 * packet's descriptors - read then once here
1410 tcp_hdr_len = tcp_hdrlen(skb);
1411 skb_net_hdr_len = skb_network_header_len(skb);
1413 _hdr_desc = &vring->va[i].tx;
1415 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1416 if (unlikely(dma_mapping_error(dev, pa))) {
1417 wil_err(wil, "TSO: Skb head DMA map error\n");
1418 goto err_exit;
1421 wil_tx_desc_map(hdr_desc, pa, hdrlen, vring_index);
1422 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1423 tcp_hdr_len, skb_net_hdr_len);
1424 wil_tx_last_desc(hdr_desc);
1426 vring->ctx[i].mapped_as = wil_mapped_as_single;
1427 hdr_ctx = &vring->ctx[i];
1429 descs_used++;
1430 headlen = skb_headlen(skb) - hdrlen;
1432 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1433 if (headlen) {
1434 len = headlen;
1435 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1436 len);
1437 } else {
1438 frag = &skb_shinfo(skb)->frags[f];
1439 len = frag->size;
1440 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1443 while (len) {
1444 wil_dbg_txrx(wil,
1445 "TSO: len %d, rem_data %d, descs_used %d\n",
1446 len, rem_data, descs_used);
1448 if (descs_used == avail) {
1449 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1450 rc = -ENOMEM;
1451 goto mem_error;
1454 lenmss = min_t(int, rem_data, len);
1455 i = (swhead + descs_used) % vring->size;
1456 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1458 if (!headlen) {
1459 pa = skb_frag_dma_map(dev, frag,
1460 frag->size - len, lenmss,
1461 DMA_TO_DEVICE);
1462 vring->ctx[i].mapped_as = wil_mapped_as_page;
1463 } else {
1464 pa = dma_map_single(dev,
1465 skb->data +
1466 skb_headlen(skb) - headlen,
1467 lenmss,
1468 DMA_TO_DEVICE);
1469 vring->ctx[i].mapped_as = wil_mapped_as_single;
1470 headlen -= lenmss;
1473 if (unlikely(dma_mapping_error(dev, pa))) {
1474 wil_err(wil, "TSO: DMA map page error\n");
1475 goto mem_error;
1478 _desc = &vring->va[i].tx;
1480 if (!_first_desc) {
1481 _first_desc = _desc;
1482 first_ctx = &vring->ctx[i];
1483 d = first_desc;
1484 } else {
1485 d = &desc_mem;
1488 wil_tx_desc_map(d, pa, lenmss, vring_index);
1489 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1490 is_ipv4, tcp_hdr_len,
1491 skb_net_hdr_len);
1493 /* use tso_type_first only once */
1494 desc_tso_type = wil_tso_type_mid;
1496 descs_used++; /* desc used so far */
1497 sg_desc_cnt++; /* desc used for this segment */
1498 len -= lenmss;
1499 rem_data -= lenmss;
1501 wil_dbg_txrx(wil,
1502 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1503 len, rem_data, descs_used, sg_desc_cnt);
1505 /* Close the segment if reached mss size or last frag*/
1506 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1507 if (hdr_compensation_need) {
1508 /* first segment include hdr desc for
1509 * release
1511 hdr_ctx->nr_frags = sg_desc_cnt;
1512 wil_tx_desc_set_nr_frags(first_desc,
1513 sg_desc_cnt +
1515 hdr_compensation_need = false;
1516 } else {
1517 wil_tx_desc_set_nr_frags(first_desc,
1518 sg_desc_cnt);
1520 first_ctx->nr_frags = sg_desc_cnt - 1;
1522 wil_tx_last_desc(d);
1524 /* first descriptor may also be the last
1525 * for this mss - make sure not to copy
1526 * it twice
1528 if (first_desc != d)
1529 *_first_desc = *first_desc;
1531 /*last descriptor will be copied at the end
1532 * of this TS processing
1534 if (f < nr_frags - 1 || len > 0)
1535 *_desc = *d;
1537 rem_data = mss;
1538 _first_desc = NULL;
1539 sg_desc_cnt = 0;
1540 } else if (first_desc != d) /* update mid descriptor */
1541 *_desc = *d;
1545 /* first descriptor may also be the last.
1546 * in this case d pointer is invalid
1548 if (_first_desc == _desc)
1549 d = first_desc;
1551 /* Last data descriptor */
1552 wil_set_tx_desc_last_tso(d);
1553 *_desc = *d;
1555 /* Fill the total number of descriptors in first desc (hdr)*/
1556 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1557 *_hdr_desc = *hdr_desc;
1559 /* hold reference to skb
1560 * to prevent skb release before accounting
1561 * in case of immediate "tx done"
1563 vring->ctx[i].skb = skb_get(skb);
1565 /* performance monitoring */
1566 used = wil_vring_used_tx(vring);
1567 if (wil_val_in_range(vring_idle_trsh,
1568 used, used + descs_used)) {
1569 txdata->idle += get_cycles() - txdata->last_idle;
1570 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1571 vring_index, used, used + descs_used);
1574 /* Make sure to advance the head only after descriptor update is done.
1575 * This will prevent a race condition where the completion thread
1576 * will see the DU bit set from previous run and will handle the
1577 * skb before it was completed.
1579 wmb();
1581 /* advance swhead */
1582 wil_vring_advance_head(vring, descs_used);
1583 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1585 /* make sure all writes to descriptors (shared memory) are done before
1586 * committing them to HW
1588 wmb();
1590 wil_w(wil, vring->hwtail, vring->swhead);
1591 return 0;
1593 mem_error:
1594 while (descs_used > 0) {
1595 struct wil_ctx *ctx;
1597 i = (swhead + descs_used - 1) % vring->size;
1598 d = (struct vring_tx_desc *)&vring->va[i].tx;
1599 _desc = &vring->va[i].tx;
1600 *d = *_desc;
1601 _desc->dma.status = TX_DMA_STATUS_DU;
1602 ctx = &vring->ctx[i];
1603 wil_txdesc_unmap(dev, d, ctx);
1604 memset(ctx, 0, sizeof(*ctx));
1605 descs_used--;
1607 err_exit:
1608 return rc;
1611 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1612 struct sk_buff *skb)
1614 struct device *dev = wil_to_dev(wil);
1615 struct vring_tx_desc dd, *d = &dd;
1616 volatile struct vring_tx_desc *_d;
1617 u32 swhead = vring->swhead;
1618 int avail = wil_vring_avail_tx(vring);
1619 int nr_frags = skb_shinfo(skb)->nr_frags;
1620 uint f = 0;
1621 int vring_index = vring - wil->vring_tx;
1622 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1623 uint i = swhead;
1624 dma_addr_t pa;
1625 int used;
1626 bool mcast = (vring_index == wil->bcast_vring);
1627 uint len = skb_headlen(skb);
1629 wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1630 __func__, skb->len, vring_index);
1632 if (unlikely(!txdata->enabled))
1633 return -EINVAL;
1635 if (unlikely(avail < 1 + nr_frags)) {
1636 wil_err_ratelimited(wil,
1637 "Tx ring[%2d] full. No space for %d fragments\n",
1638 vring_index, 1 + nr_frags);
1639 return -ENOMEM;
1641 _d = &vring->va[i].tx;
1643 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1645 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index,
1646 skb_headlen(skb), skb->data, &pa);
1647 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1648 skb->data, skb_headlen(skb), false);
1650 if (unlikely(dma_mapping_error(dev, pa)))
1651 return -EINVAL;
1652 vring->ctx[i].mapped_as = wil_mapped_as_single;
1653 /* 1-st segment */
1654 wil_tx_desc_map(d, pa, len, vring_index);
1655 if (unlikely(mcast)) {
1656 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1657 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1658 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1660 /* Process TCP/UDP checksum offloading */
1661 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1662 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1663 vring_index);
1664 goto dma_error;
1667 vring->ctx[i].nr_frags = nr_frags;
1668 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1670 /* middle segments */
1671 for (; f < nr_frags; f++) {
1672 const struct skb_frag_struct *frag =
1673 &skb_shinfo(skb)->frags[f];
1674 int len = skb_frag_size(frag);
1676 *_d = *d;
1677 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1678 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1679 (const void *)d, sizeof(*d), false);
1680 i = (swhead + f + 1) % vring->size;
1681 _d = &vring->va[i].tx;
1682 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1683 DMA_TO_DEVICE);
1684 if (unlikely(dma_mapping_error(dev, pa))) {
1685 wil_err(wil, "Tx[%2d] failed to map fragment\n",
1686 vring_index);
1687 goto dma_error;
1689 vring->ctx[i].mapped_as = wil_mapped_as_page;
1690 wil_tx_desc_map(d, pa, len, vring_index);
1691 /* no need to check return code -
1692 * if it succeeded for 1-st descriptor,
1693 * it will succeed here too
1695 wil_tx_desc_offload_setup(d, skb);
1697 /* for the last seg only */
1698 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1699 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1700 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1701 *_d = *d;
1702 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1703 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1704 (const void *)d, sizeof(*d), false);
1706 /* hold reference to skb
1707 * to prevent skb release before accounting
1708 * in case of immediate "tx done"
1710 vring->ctx[i].skb = skb_get(skb);
1712 /* performance monitoring */
1713 used = wil_vring_used_tx(vring);
1714 if (wil_val_in_range(vring_idle_trsh,
1715 used, used + nr_frags + 1)) {
1716 txdata->idle += get_cycles() - txdata->last_idle;
1717 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1718 vring_index, used, used + nr_frags + 1);
1721 /* Make sure to advance the head only after descriptor update is done.
1722 * This will prevent a race condition where the completion thread
1723 * will see the DU bit set from previous run and will handle the
1724 * skb before it was completed.
1726 wmb();
1728 /* advance swhead */
1729 wil_vring_advance_head(vring, nr_frags + 1);
1730 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead,
1731 vring->swhead);
1732 trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
1734 /* make sure all writes to descriptors (shared memory) are done before
1735 * committing them to HW
1737 wmb();
1739 wil_w(wil, vring->hwtail, vring->swhead);
1741 return 0;
1742 dma_error:
1743 /* unmap what we have mapped */
1744 nr_frags = f + 1; /* frags mapped + one for skb head */
1745 for (f = 0; f < nr_frags; f++) {
1746 struct wil_ctx *ctx;
1748 i = (swhead + f) % vring->size;
1749 ctx = &vring->ctx[i];
1750 _d = &vring->va[i].tx;
1751 *d = *_d;
1752 _d->dma.status = TX_DMA_STATUS_DU;
1753 wil_txdesc_unmap(dev, d, ctx);
1755 memset(ctx, 0, sizeof(*ctx));
1758 return -EINVAL;
1761 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1762 struct sk_buff *skb)
1764 int vring_index = vring - wil->vring_tx;
1765 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1766 int rc;
1768 spin_lock(&txdata->lock);
1770 rc = (skb_is_gso(skb) ? __wil_tx_vring_tso : __wil_tx_vring)
1771 (wil, vring, skb);
1773 spin_unlock(&txdata->lock);
1775 return rc;
1778 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1780 struct wil6210_priv *wil = ndev_to_wil(ndev);
1781 struct ethhdr *eth = (void *)skb->data;
1782 bool bcast = is_multicast_ether_addr(eth->h_dest);
1783 struct vring *vring;
1784 static bool pr_once_fw;
1785 int rc;
1787 wil_dbg_txrx(wil, "%s()\n", __func__);
1788 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
1789 if (!pr_once_fw) {
1790 wil_err(wil, "FW not ready\n");
1791 pr_once_fw = true;
1793 goto drop;
1795 if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) {
1796 wil_dbg_ratelimited(wil, "FW not connected, packet dropped\n");
1797 goto drop;
1799 if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) {
1800 wil_err(wil, "Xmit in monitor mode not supported\n");
1801 goto drop;
1803 pr_once_fw = false;
1805 /* find vring */
1806 if (wil->wdev->iftype == NL80211_IFTYPE_STATION) {
1807 /* in STA mode (ESS), all to same VRING */
1808 vring = wil_find_tx_vring_sta(wil, skb);
1809 } else { /* direct communication, find matching VRING */
1810 vring = bcast ? wil_find_tx_bcast(wil, skb) :
1811 wil_find_tx_ucast(wil, skb);
1813 if (unlikely(!vring)) {
1814 wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest);
1815 goto drop;
1817 /* set up vring entry */
1818 rc = wil_tx_vring(wil, vring, skb);
1820 /* do we still have enough room in the vring? */
1821 if (unlikely(wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring))) {
1822 netif_tx_stop_all_queues(wil_to_ndev(wil));
1823 wil_dbg_txrx(wil, "netif_tx_stop : ring full\n");
1826 switch (rc) {
1827 case 0:
1828 /* statistics will be updated on the tx_complete */
1829 dev_kfree_skb_any(skb);
1830 return NETDEV_TX_OK;
1831 case -ENOMEM:
1832 return NETDEV_TX_BUSY;
1833 default:
1834 break; /* goto drop; */
1836 drop:
1837 ndev->stats.tx_dropped++;
1838 dev_kfree_skb_any(skb);
1840 return NET_XMIT_DROP;
1843 static inline bool wil_need_txstat(struct sk_buff *skb)
1845 struct ethhdr *eth = (void *)skb->data;
1847 return is_unicast_ether_addr(eth->h_dest) && skb->sk &&
1848 (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS);
1851 static inline void wil_consume_skb(struct sk_buff *skb, bool acked)
1853 if (unlikely(wil_need_txstat(skb)))
1854 skb_complete_wifi_ack(skb, acked);
1855 else
1856 acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb);
1860 * Clean up transmitted skb's from the Tx VRING
1862 * Return number of descriptors cleared
1864 * Safe to call from IRQ
1866 int wil_tx_complete(struct wil6210_priv *wil, int ringid)
1868 struct net_device *ndev = wil_to_ndev(wil);
1869 struct device *dev = wil_to_dev(wil);
1870 struct vring *vring = &wil->vring_tx[ringid];
1871 struct vring_tx_data *txdata = &wil->vring_tx_data[ringid];
1872 int done = 0;
1873 int cid = wil->vring2cid_tid[ringid][0];
1874 struct wil_net_stats *stats = NULL;
1875 volatile struct vring_tx_desc *_d;
1876 int used_before_complete;
1877 int used_new;
1879 if (unlikely(!vring->va)) {
1880 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
1881 return 0;
1884 if (unlikely(!txdata->enabled)) {
1885 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
1886 return 0;
1889 wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
1891 used_before_complete = wil_vring_used_tx(vring);
1893 if (cid < WIL6210_MAX_CID)
1894 stats = &wil->sta[cid].stats;
1896 while (!wil_vring_is_empty(vring)) {
1897 int new_swtail;
1898 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
1900 * For the fragmented skb, HW will set DU bit only for the
1901 * last fragment. look for it.
1902 * In TSO the first DU will include hdr desc
1904 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
1905 /* TODO: check we are not past head */
1907 _d = &vring->va[lf].tx;
1908 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
1909 break;
1911 new_swtail = (lf + 1) % vring->size;
1912 while (vring->swtail != new_swtail) {
1913 struct vring_tx_desc dd, *d = &dd;
1914 u16 dmalen;
1915 struct sk_buff *skb;
1917 ctx = &vring->ctx[vring->swtail];
1918 skb = ctx->skb;
1919 _d = &vring->va[vring->swtail].tx;
1921 *d = *_d;
1923 dmalen = le16_to_cpu(d->dma.length);
1924 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
1925 d->dma.error);
1926 wil_dbg_txrx(wil,
1927 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
1928 ringid, vring->swtail, dmalen,
1929 d->dma.status, d->dma.error);
1930 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
1931 (const void *)d, sizeof(*d), false);
1933 wil_txdesc_unmap(dev, d, ctx);
1935 if (skb) {
1936 if (likely(d->dma.error == 0)) {
1937 ndev->stats.tx_packets++;
1938 ndev->stats.tx_bytes += skb->len;
1939 if (stats) {
1940 stats->tx_packets++;
1941 stats->tx_bytes += skb->len;
1943 } else {
1944 ndev->stats.tx_errors++;
1945 if (stats)
1946 stats->tx_errors++;
1948 wil_consume_skb(skb, d->dma.error == 0);
1950 memset(ctx, 0, sizeof(*ctx));
1951 /* Make sure the ctx is zeroed before updating the tail
1952 * to prevent a case where wil_tx_vring will see
1953 * this descriptor as used and handle it before ctx zero
1954 * is completed.
1956 wmb();
1957 /* There is no need to touch HW descriptor:
1958 * - ststus bit TX_DMA_STATUS_DU is set by design,
1959 * so hardware will not try to process this desc.,
1960 * - rest of descriptor will be initialized on Tx.
1962 vring->swtail = wil_vring_next_tail(vring);
1963 done++;
1967 /* performance monitoring */
1968 used_new = wil_vring_used_tx(vring);
1969 if (wil_val_in_range(vring_idle_trsh,
1970 used_new, used_before_complete)) {
1971 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
1972 ringid, used_before_complete, used_new);
1973 txdata->last_idle = get_cycles();
1976 if (wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring)) {
1977 wil_dbg_txrx(wil, "netif_tx_wake : ring not full\n");
1978 netif_tx_wake_all_queues(wil_to_ndev(wil));
1981 return done;