x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU...
[cris-mirror.git] / fs / jbd2 / journal.c
blob3fbf48ec21881698325f3b84c4b2654485d7711b
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107 unsigned int line, const char *fmt, ...)
109 struct va_format vaf;
110 va_list args;
112 if (level > jbd2_journal_enable_debug)
113 return;
114 va_start(args, fmt);
115 vaf.fmt = fmt;
116 vaf.va = &args;
117 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
118 va_end(args);
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 if (!jbd2_journal_has_csum_v2or3_feature(j))
127 return 1;
129 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 __u32 csum;
135 __be32 old_csum;
137 old_csum = sb->s_checksum;
138 sb->s_checksum = 0;
139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 sb->s_checksum = old_csum;
142 return cpu_to_be32(csum);
145 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 if (!jbd2_journal_has_csum_v2or3(j))
148 return 1;
150 return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 if (!jbd2_journal_has_csum_v2or3(j))
156 return;
158 sb->s_checksum = jbd2_superblock_csum(j, sb);
162 * Helper function used to manage commit timeouts
165 static void commit_timeout(struct timer_list *t)
167 journal_t *journal = from_timer(journal, t, j_commit_timer);
169 wake_up_process(journal->j_task);
173 * kjournald2: The main thread function used to manage a logging device
174 * journal.
176 * This kernel thread is responsible for two things:
178 * 1) COMMIT: Every so often we need to commit the current state of the
179 * filesystem to disk. The journal thread is responsible for writing
180 * all of the metadata buffers to disk.
182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183 * of the data in that part of the log has been rewritten elsewhere on
184 * the disk. Flushing these old buffers to reclaim space in the log is
185 * known as checkpointing, and this thread is responsible for that job.
188 static int kjournald2(void *arg)
190 journal_t *journal = arg;
191 transaction_t *transaction;
194 * Set up an interval timer which can be used to trigger a commit wakeup
195 * after the commit interval expires
197 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
199 set_freezable();
201 /* Record that the journal thread is running */
202 journal->j_task = current;
203 wake_up(&journal->j_wait_done_commit);
206 * Make sure that no allocations from this kernel thread will ever
207 * recurse to the fs layer because we are responsible for the
208 * transaction commit and any fs involvement might get stuck waiting for
209 * the trasn. commit.
211 memalloc_nofs_save();
214 * And now, wait forever for commit wakeup events.
216 write_lock(&journal->j_state_lock);
218 loop:
219 if (journal->j_flags & JBD2_UNMOUNT)
220 goto end_loop;
222 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
223 journal->j_commit_sequence, journal->j_commit_request);
225 if (journal->j_commit_sequence != journal->j_commit_request) {
226 jbd_debug(1, "OK, requests differ\n");
227 write_unlock(&journal->j_state_lock);
228 del_timer_sync(&journal->j_commit_timer);
229 jbd2_journal_commit_transaction(journal);
230 write_lock(&journal->j_state_lock);
231 goto loop;
234 wake_up(&journal->j_wait_done_commit);
235 if (freezing(current)) {
237 * The simpler the better. Flushing journal isn't a
238 * good idea, because that depends on threads that may
239 * be already stopped.
241 jbd_debug(1, "Now suspending kjournald2\n");
242 write_unlock(&journal->j_state_lock);
243 try_to_freeze();
244 write_lock(&journal->j_state_lock);
245 } else {
247 * We assume on resume that commits are already there,
248 * so we don't sleep
250 DEFINE_WAIT(wait);
251 int should_sleep = 1;
253 prepare_to_wait(&journal->j_wait_commit, &wait,
254 TASK_INTERRUPTIBLE);
255 if (journal->j_commit_sequence != journal->j_commit_request)
256 should_sleep = 0;
257 transaction = journal->j_running_transaction;
258 if (transaction && time_after_eq(jiffies,
259 transaction->t_expires))
260 should_sleep = 0;
261 if (journal->j_flags & JBD2_UNMOUNT)
262 should_sleep = 0;
263 if (should_sleep) {
264 write_unlock(&journal->j_state_lock);
265 schedule();
266 write_lock(&journal->j_state_lock);
268 finish_wait(&journal->j_wait_commit, &wait);
271 jbd_debug(1, "kjournald2 wakes\n");
274 * Were we woken up by a commit wakeup event?
276 transaction = journal->j_running_transaction;
277 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
278 journal->j_commit_request = transaction->t_tid;
279 jbd_debug(1, "woke because of timeout\n");
281 goto loop;
283 end_loop:
284 del_timer_sync(&journal->j_commit_timer);
285 journal->j_task = NULL;
286 wake_up(&journal->j_wait_done_commit);
287 jbd_debug(1, "Journal thread exiting.\n");
288 write_unlock(&journal->j_state_lock);
289 return 0;
292 static int jbd2_journal_start_thread(journal_t *journal)
294 struct task_struct *t;
296 t = kthread_run(kjournald2, journal, "jbd2/%s",
297 journal->j_devname);
298 if (IS_ERR(t))
299 return PTR_ERR(t);
301 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
302 return 0;
305 static void journal_kill_thread(journal_t *journal)
307 write_lock(&journal->j_state_lock);
308 journal->j_flags |= JBD2_UNMOUNT;
310 while (journal->j_task) {
311 write_unlock(&journal->j_state_lock);
312 wake_up(&journal->j_wait_commit);
313 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
314 write_lock(&journal->j_state_lock);
316 write_unlock(&journal->j_state_lock);
320 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
322 * Writes a metadata buffer to a given disk block. The actual IO is not
323 * performed but a new buffer_head is constructed which labels the data
324 * to be written with the correct destination disk block.
326 * Any magic-number escaping which needs to be done will cause a
327 * copy-out here. If the buffer happens to start with the
328 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
329 * magic number is only written to the log for descripter blocks. In
330 * this case, we copy the data and replace the first word with 0, and we
331 * return a result code which indicates that this buffer needs to be
332 * marked as an escaped buffer in the corresponding log descriptor
333 * block. The missing word can then be restored when the block is read
334 * during recovery.
336 * If the source buffer has already been modified by a new transaction
337 * since we took the last commit snapshot, we use the frozen copy of
338 * that data for IO. If we end up using the existing buffer_head's data
339 * for the write, then we have to make sure nobody modifies it while the
340 * IO is in progress. do_get_write_access() handles this.
342 * The function returns a pointer to the buffer_head to be used for IO.
345 * Return value:
346 * <0: Error
347 * >=0: Finished OK
349 * On success:
350 * Bit 0 set == escape performed on the data
351 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
354 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
355 struct journal_head *jh_in,
356 struct buffer_head **bh_out,
357 sector_t blocknr)
359 int need_copy_out = 0;
360 int done_copy_out = 0;
361 int do_escape = 0;
362 char *mapped_data;
363 struct buffer_head *new_bh;
364 struct page *new_page;
365 unsigned int new_offset;
366 struct buffer_head *bh_in = jh2bh(jh_in);
367 journal_t *journal = transaction->t_journal;
370 * The buffer really shouldn't be locked: only the current committing
371 * transaction is allowed to write it, so nobody else is allowed
372 * to do any IO.
374 * akpm: except if we're journalling data, and write() output is
375 * also part of a shared mapping, and another thread has
376 * decided to launch a writepage() against this buffer.
378 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
380 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
382 /* keep subsequent assertions sane */
383 atomic_set(&new_bh->b_count, 1);
385 jbd_lock_bh_state(bh_in);
386 repeat:
388 * If a new transaction has already done a buffer copy-out, then
389 * we use that version of the data for the commit.
391 if (jh_in->b_frozen_data) {
392 done_copy_out = 1;
393 new_page = virt_to_page(jh_in->b_frozen_data);
394 new_offset = offset_in_page(jh_in->b_frozen_data);
395 } else {
396 new_page = jh2bh(jh_in)->b_page;
397 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
400 mapped_data = kmap_atomic(new_page);
402 * Fire data frozen trigger if data already wasn't frozen. Do this
403 * before checking for escaping, as the trigger may modify the magic
404 * offset. If a copy-out happens afterwards, it will have the correct
405 * data in the buffer.
407 if (!done_copy_out)
408 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
409 jh_in->b_triggers);
412 * Check for escaping
414 if (*((__be32 *)(mapped_data + new_offset)) ==
415 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
416 need_copy_out = 1;
417 do_escape = 1;
419 kunmap_atomic(mapped_data);
422 * Do we need to do a data copy?
424 if (need_copy_out && !done_copy_out) {
425 char *tmp;
427 jbd_unlock_bh_state(bh_in);
428 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
429 if (!tmp) {
430 brelse(new_bh);
431 return -ENOMEM;
433 jbd_lock_bh_state(bh_in);
434 if (jh_in->b_frozen_data) {
435 jbd2_free(tmp, bh_in->b_size);
436 goto repeat;
439 jh_in->b_frozen_data = tmp;
440 mapped_data = kmap_atomic(new_page);
441 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
442 kunmap_atomic(mapped_data);
444 new_page = virt_to_page(tmp);
445 new_offset = offset_in_page(tmp);
446 done_copy_out = 1;
449 * This isn't strictly necessary, as we're using frozen
450 * data for the escaping, but it keeps consistency with
451 * b_frozen_data usage.
453 jh_in->b_frozen_triggers = jh_in->b_triggers;
457 * Did we need to do an escaping? Now we've done all the
458 * copying, we can finally do so.
460 if (do_escape) {
461 mapped_data = kmap_atomic(new_page);
462 *((unsigned int *)(mapped_data + new_offset)) = 0;
463 kunmap_atomic(mapped_data);
466 set_bh_page(new_bh, new_page, new_offset);
467 new_bh->b_size = bh_in->b_size;
468 new_bh->b_bdev = journal->j_dev;
469 new_bh->b_blocknr = blocknr;
470 new_bh->b_private = bh_in;
471 set_buffer_mapped(new_bh);
472 set_buffer_dirty(new_bh);
474 *bh_out = new_bh;
477 * The to-be-written buffer needs to get moved to the io queue,
478 * and the original buffer whose contents we are shadowing or
479 * copying is moved to the transaction's shadow queue.
481 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
482 spin_lock(&journal->j_list_lock);
483 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
484 spin_unlock(&journal->j_list_lock);
485 set_buffer_shadow(bh_in);
486 jbd_unlock_bh_state(bh_in);
488 return do_escape | (done_copy_out << 1);
492 * Allocation code for the journal file. Manage the space left in the
493 * journal, so that we can begin checkpointing when appropriate.
497 * Called with j_state_lock locked for writing.
498 * Returns true if a transaction commit was started.
500 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
502 /* Return if the txn has already requested to be committed */
503 if (journal->j_commit_request == target)
504 return 0;
507 * The only transaction we can possibly wait upon is the
508 * currently running transaction (if it exists). Otherwise,
509 * the target tid must be an old one.
511 if (journal->j_running_transaction &&
512 journal->j_running_transaction->t_tid == target) {
514 * We want a new commit: OK, mark the request and wakeup the
515 * commit thread. We do _not_ do the commit ourselves.
518 journal->j_commit_request = target;
519 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
520 journal->j_commit_request,
521 journal->j_commit_sequence);
522 journal->j_running_transaction->t_requested = jiffies;
523 wake_up(&journal->j_wait_commit);
524 return 1;
525 } else if (!tid_geq(journal->j_commit_request, target))
526 /* This should never happen, but if it does, preserve
527 the evidence before kjournald goes into a loop and
528 increments j_commit_sequence beyond all recognition. */
529 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
530 journal->j_commit_request,
531 journal->j_commit_sequence,
532 target, journal->j_running_transaction ?
533 journal->j_running_transaction->t_tid : 0);
534 return 0;
537 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
539 int ret;
541 write_lock(&journal->j_state_lock);
542 ret = __jbd2_log_start_commit(journal, tid);
543 write_unlock(&journal->j_state_lock);
544 return ret;
548 * Force and wait any uncommitted transactions. We can only force the running
549 * transaction if we don't have an active handle, otherwise, we will deadlock.
550 * Returns: <0 in case of error,
551 * 0 if nothing to commit,
552 * 1 if transaction was successfully committed.
554 static int __jbd2_journal_force_commit(journal_t *journal)
556 transaction_t *transaction = NULL;
557 tid_t tid;
558 int need_to_start = 0, ret = 0;
560 read_lock(&journal->j_state_lock);
561 if (journal->j_running_transaction && !current->journal_info) {
562 transaction = journal->j_running_transaction;
563 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
564 need_to_start = 1;
565 } else if (journal->j_committing_transaction)
566 transaction = journal->j_committing_transaction;
568 if (!transaction) {
569 /* Nothing to commit */
570 read_unlock(&journal->j_state_lock);
571 return 0;
573 tid = transaction->t_tid;
574 read_unlock(&journal->j_state_lock);
575 if (need_to_start)
576 jbd2_log_start_commit(journal, tid);
577 ret = jbd2_log_wait_commit(journal, tid);
578 if (!ret)
579 ret = 1;
581 return ret;
585 * Force and wait upon a commit if the calling process is not within
586 * transaction. This is used for forcing out undo-protected data which contains
587 * bitmaps, when the fs is running out of space.
589 * @journal: journal to force
590 * Returns true if progress was made.
592 int jbd2_journal_force_commit_nested(journal_t *journal)
594 int ret;
596 ret = __jbd2_journal_force_commit(journal);
597 return ret > 0;
601 * int journal_force_commit() - force any uncommitted transactions
602 * @journal: journal to force
604 * Caller want unconditional commit. We can only force the running transaction
605 * if we don't have an active handle, otherwise, we will deadlock.
607 int jbd2_journal_force_commit(journal_t *journal)
609 int ret;
611 J_ASSERT(!current->journal_info);
612 ret = __jbd2_journal_force_commit(journal);
613 if (ret > 0)
614 ret = 0;
615 return ret;
619 * Start a commit of the current running transaction (if any). Returns true
620 * if a transaction is going to be committed (or is currently already
621 * committing), and fills its tid in at *ptid
623 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
625 int ret = 0;
627 write_lock(&journal->j_state_lock);
628 if (journal->j_running_transaction) {
629 tid_t tid = journal->j_running_transaction->t_tid;
631 __jbd2_log_start_commit(journal, tid);
632 /* There's a running transaction and we've just made sure
633 * it's commit has been scheduled. */
634 if (ptid)
635 *ptid = tid;
636 ret = 1;
637 } else if (journal->j_committing_transaction) {
639 * If commit has been started, then we have to wait for
640 * completion of that transaction.
642 if (ptid)
643 *ptid = journal->j_committing_transaction->t_tid;
644 ret = 1;
646 write_unlock(&journal->j_state_lock);
647 return ret;
651 * Return 1 if a given transaction has not yet sent barrier request
652 * connected with a transaction commit. If 0 is returned, transaction
653 * may or may not have sent the barrier. Used to avoid sending barrier
654 * twice in common cases.
656 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
658 int ret = 0;
659 transaction_t *commit_trans;
661 if (!(journal->j_flags & JBD2_BARRIER))
662 return 0;
663 read_lock(&journal->j_state_lock);
664 /* Transaction already committed? */
665 if (tid_geq(journal->j_commit_sequence, tid))
666 goto out;
667 commit_trans = journal->j_committing_transaction;
668 if (!commit_trans || commit_trans->t_tid != tid) {
669 ret = 1;
670 goto out;
673 * Transaction is being committed and we already proceeded to
674 * submitting a flush to fs partition?
676 if (journal->j_fs_dev != journal->j_dev) {
677 if (!commit_trans->t_need_data_flush ||
678 commit_trans->t_state >= T_COMMIT_DFLUSH)
679 goto out;
680 } else {
681 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
682 goto out;
684 ret = 1;
685 out:
686 read_unlock(&journal->j_state_lock);
687 return ret;
689 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
692 * Wait for a specified commit to complete.
693 * The caller may not hold the journal lock.
695 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
697 int err = 0;
699 read_lock(&journal->j_state_lock);
700 #ifdef CONFIG_PROVE_LOCKING
702 * Some callers make sure transaction is already committing and in that
703 * case we cannot block on open handles anymore. So don't warn in that
704 * case.
706 if (tid_gt(tid, journal->j_commit_sequence) &&
707 (!journal->j_committing_transaction ||
708 journal->j_committing_transaction->t_tid != tid)) {
709 read_unlock(&journal->j_state_lock);
710 jbd2_might_wait_for_commit(journal);
711 read_lock(&journal->j_state_lock);
713 #endif
714 #ifdef CONFIG_JBD2_DEBUG
715 if (!tid_geq(journal->j_commit_request, tid)) {
716 printk(KERN_ERR
717 "%s: error: j_commit_request=%d, tid=%d\n",
718 __func__, journal->j_commit_request, tid);
720 #endif
721 while (tid_gt(tid, journal->j_commit_sequence)) {
722 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
723 tid, journal->j_commit_sequence);
724 read_unlock(&journal->j_state_lock);
725 wake_up(&journal->j_wait_commit);
726 wait_event(journal->j_wait_done_commit,
727 !tid_gt(tid, journal->j_commit_sequence));
728 read_lock(&journal->j_state_lock);
730 read_unlock(&journal->j_state_lock);
732 if (unlikely(is_journal_aborted(journal)))
733 err = -EIO;
734 return err;
737 /* Return 1 when transaction with given tid has already committed. */
738 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
740 int ret = 1;
742 read_lock(&journal->j_state_lock);
743 if (journal->j_running_transaction &&
744 journal->j_running_transaction->t_tid == tid)
745 ret = 0;
746 if (journal->j_committing_transaction &&
747 journal->j_committing_transaction->t_tid == tid)
748 ret = 0;
749 read_unlock(&journal->j_state_lock);
750 return ret;
752 EXPORT_SYMBOL(jbd2_transaction_committed);
755 * When this function returns the transaction corresponding to tid
756 * will be completed. If the transaction has currently running, start
757 * committing that transaction before waiting for it to complete. If
758 * the transaction id is stale, it is by definition already completed,
759 * so just return SUCCESS.
761 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
763 int need_to_wait = 1;
765 read_lock(&journal->j_state_lock);
766 if (journal->j_running_transaction &&
767 journal->j_running_transaction->t_tid == tid) {
768 if (journal->j_commit_request != tid) {
769 /* transaction not yet started, so request it */
770 read_unlock(&journal->j_state_lock);
771 jbd2_log_start_commit(journal, tid);
772 goto wait_commit;
774 } else if (!(journal->j_committing_transaction &&
775 journal->j_committing_transaction->t_tid == tid))
776 need_to_wait = 0;
777 read_unlock(&journal->j_state_lock);
778 if (!need_to_wait)
779 return 0;
780 wait_commit:
781 return jbd2_log_wait_commit(journal, tid);
783 EXPORT_SYMBOL(jbd2_complete_transaction);
786 * Log buffer allocation routines:
789 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
791 unsigned long blocknr;
793 write_lock(&journal->j_state_lock);
794 J_ASSERT(journal->j_free > 1);
796 blocknr = journal->j_head;
797 journal->j_head++;
798 journal->j_free--;
799 if (journal->j_head == journal->j_last)
800 journal->j_head = journal->j_first;
801 write_unlock(&journal->j_state_lock);
802 return jbd2_journal_bmap(journal, blocknr, retp);
806 * Conversion of logical to physical block numbers for the journal
808 * On external journals the journal blocks are identity-mapped, so
809 * this is a no-op. If needed, we can use j_blk_offset - everything is
810 * ready.
812 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
813 unsigned long long *retp)
815 int err = 0;
816 unsigned long long ret;
818 if (journal->j_inode) {
819 ret = bmap(journal->j_inode, blocknr);
820 if (ret)
821 *retp = ret;
822 else {
823 printk(KERN_ALERT "%s: journal block not found "
824 "at offset %lu on %s\n",
825 __func__, blocknr, journal->j_devname);
826 err = -EIO;
827 __journal_abort_soft(journal, err);
829 } else {
830 *retp = blocknr; /* +journal->j_blk_offset */
832 return err;
836 * We play buffer_head aliasing tricks to write data/metadata blocks to
837 * the journal without copying their contents, but for journal
838 * descriptor blocks we do need to generate bona fide buffers.
840 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
841 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
842 * But we don't bother doing that, so there will be coherency problems with
843 * mmaps of blockdevs which hold live JBD-controlled filesystems.
845 struct buffer_head *
846 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
848 journal_t *journal = transaction->t_journal;
849 struct buffer_head *bh;
850 unsigned long long blocknr;
851 journal_header_t *header;
852 int err;
854 err = jbd2_journal_next_log_block(journal, &blocknr);
856 if (err)
857 return NULL;
859 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
860 if (!bh)
861 return NULL;
862 lock_buffer(bh);
863 memset(bh->b_data, 0, journal->j_blocksize);
864 header = (journal_header_t *)bh->b_data;
865 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
866 header->h_blocktype = cpu_to_be32(type);
867 header->h_sequence = cpu_to_be32(transaction->t_tid);
868 set_buffer_uptodate(bh);
869 unlock_buffer(bh);
870 BUFFER_TRACE(bh, "return this buffer");
871 return bh;
874 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
876 struct jbd2_journal_block_tail *tail;
877 __u32 csum;
879 if (!jbd2_journal_has_csum_v2or3(j))
880 return;
882 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
883 sizeof(struct jbd2_journal_block_tail));
884 tail->t_checksum = 0;
885 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
886 tail->t_checksum = cpu_to_be32(csum);
890 * Return tid of the oldest transaction in the journal and block in the journal
891 * where the transaction starts.
893 * If the journal is now empty, return which will be the next transaction ID
894 * we will write and where will that transaction start.
896 * The return value is 0 if journal tail cannot be pushed any further, 1 if
897 * it can.
899 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
900 unsigned long *block)
902 transaction_t *transaction;
903 int ret;
905 read_lock(&journal->j_state_lock);
906 spin_lock(&journal->j_list_lock);
907 transaction = journal->j_checkpoint_transactions;
908 if (transaction) {
909 *tid = transaction->t_tid;
910 *block = transaction->t_log_start;
911 } else if ((transaction = journal->j_committing_transaction) != NULL) {
912 *tid = transaction->t_tid;
913 *block = transaction->t_log_start;
914 } else if ((transaction = journal->j_running_transaction) != NULL) {
915 *tid = transaction->t_tid;
916 *block = journal->j_head;
917 } else {
918 *tid = journal->j_transaction_sequence;
919 *block = journal->j_head;
921 ret = tid_gt(*tid, journal->j_tail_sequence);
922 spin_unlock(&journal->j_list_lock);
923 read_unlock(&journal->j_state_lock);
925 return ret;
929 * Update information in journal structure and in on disk journal superblock
930 * about log tail. This function does not check whether information passed in
931 * really pushes log tail further. It's responsibility of the caller to make
932 * sure provided log tail information is valid (e.g. by holding
933 * j_checkpoint_mutex all the time between computing log tail and calling this
934 * function as is the case with jbd2_cleanup_journal_tail()).
936 * Requires j_checkpoint_mutex
938 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
940 unsigned long freed;
941 int ret;
943 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
946 * We cannot afford for write to remain in drive's caches since as
947 * soon as we update j_tail, next transaction can start reusing journal
948 * space and if we lose sb update during power failure we'd replay
949 * old transaction with possibly newly overwritten data.
951 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
952 REQ_SYNC | REQ_FUA);
953 if (ret)
954 goto out;
956 write_lock(&journal->j_state_lock);
957 freed = block - journal->j_tail;
958 if (block < journal->j_tail)
959 freed += journal->j_last - journal->j_first;
961 trace_jbd2_update_log_tail(journal, tid, block, freed);
962 jbd_debug(1,
963 "Cleaning journal tail from %d to %d (offset %lu), "
964 "freeing %lu\n",
965 journal->j_tail_sequence, tid, block, freed);
967 journal->j_free += freed;
968 journal->j_tail_sequence = tid;
969 journal->j_tail = block;
970 write_unlock(&journal->j_state_lock);
972 out:
973 return ret;
977 * This is a variaon of __jbd2_update_log_tail which checks for validity of
978 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
979 * with other threads updating log tail.
981 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
983 mutex_lock_io(&journal->j_checkpoint_mutex);
984 if (tid_gt(tid, journal->j_tail_sequence))
985 __jbd2_update_log_tail(journal, tid, block);
986 mutex_unlock(&journal->j_checkpoint_mutex);
989 struct jbd2_stats_proc_session {
990 journal_t *journal;
991 struct transaction_stats_s *stats;
992 int start;
993 int max;
996 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
998 return *pos ? NULL : SEQ_START_TOKEN;
1001 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1003 return NULL;
1006 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1008 struct jbd2_stats_proc_session *s = seq->private;
1010 if (v != SEQ_START_TOKEN)
1011 return 0;
1012 seq_printf(seq, "%lu transactions (%lu requested), "
1013 "each up to %u blocks\n",
1014 s->stats->ts_tid, s->stats->ts_requested,
1015 s->journal->j_max_transaction_buffers);
1016 if (s->stats->ts_tid == 0)
1017 return 0;
1018 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1019 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1020 seq_printf(seq, " %ums request delay\n",
1021 (s->stats->ts_requested == 0) ? 0 :
1022 jiffies_to_msecs(s->stats->run.rs_request_delay /
1023 s->stats->ts_requested));
1024 seq_printf(seq, " %ums running transaction\n",
1025 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1026 seq_printf(seq, " %ums transaction was being locked\n",
1027 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1028 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1029 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1030 seq_printf(seq, " %ums logging transaction\n",
1031 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1032 seq_printf(seq, " %lluus average transaction commit time\n",
1033 div_u64(s->journal->j_average_commit_time, 1000));
1034 seq_printf(seq, " %lu handles per transaction\n",
1035 s->stats->run.rs_handle_count / s->stats->ts_tid);
1036 seq_printf(seq, " %lu blocks per transaction\n",
1037 s->stats->run.rs_blocks / s->stats->ts_tid);
1038 seq_printf(seq, " %lu logged blocks per transaction\n",
1039 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1040 return 0;
1043 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 static const struct seq_operations jbd2_seq_info_ops = {
1048 .start = jbd2_seq_info_start,
1049 .next = jbd2_seq_info_next,
1050 .stop = jbd2_seq_info_stop,
1051 .show = jbd2_seq_info_show,
1054 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1056 journal_t *journal = PDE_DATA(inode);
1057 struct jbd2_stats_proc_session *s;
1058 int rc, size;
1060 s = kmalloc(sizeof(*s), GFP_KERNEL);
1061 if (s == NULL)
1062 return -ENOMEM;
1063 size = sizeof(struct transaction_stats_s);
1064 s->stats = kmalloc(size, GFP_KERNEL);
1065 if (s->stats == NULL) {
1066 kfree(s);
1067 return -ENOMEM;
1069 spin_lock(&journal->j_history_lock);
1070 memcpy(s->stats, &journal->j_stats, size);
1071 s->journal = journal;
1072 spin_unlock(&journal->j_history_lock);
1074 rc = seq_open(file, &jbd2_seq_info_ops);
1075 if (rc == 0) {
1076 struct seq_file *m = file->private_data;
1077 m->private = s;
1078 } else {
1079 kfree(s->stats);
1080 kfree(s);
1082 return rc;
1086 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1088 struct seq_file *seq = file->private_data;
1089 struct jbd2_stats_proc_session *s = seq->private;
1090 kfree(s->stats);
1091 kfree(s);
1092 return seq_release(inode, file);
1095 static const struct file_operations jbd2_seq_info_fops = {
1096 .owner = THIS_MODULE,
1097 .open = jbd2_seq_info_open,
1098 .read = seq_read,
1099 .llseek = seq_lseek,
1100 .release = jbd2_seq_info_release,
1103 static struct proc_dir_entry *proc_jbd2_stats;
1105 static void jbd2_stats_proc_init(journal_t *journal)
1107 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1108 if (journal->j_proc_entry) {
1109 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1110 &jbd2_seq_info_fops, journal);
1114 static void jbd2_stats_proc_exit(journal_t *journal)
1116 remove_proc_entry("info", journal->j_proc_entry);
1117 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 * Management for journal control blocks: functions to create and
1122 * destroy journal_t structures, and to initialise and read existing
1123 * journal blocks from disk. */
1125 /* First: create and setup a journal_t object in memory. We initialise
1126 * very few fields yet: that has to wait until we have created the
1127 * journal structures from from scratch, or loaded them from disk. */
1129 static journal_t *journal_init_common(struct block_device *bdev,
1130 struct block_device *fs_dev,
1131 unsigned long long start, int len, int blocksize)
1133 static struct lock_class_key jbd2_trans_commit_key;
1134 journal_t *journal;
1135 int err;
1136 struct buffer_head *bh;
1137 int n;
1139 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1140 if (!journal)
1141 return NULL;
1143 init_waitqueue_head(&journal->j_wait_transaction_locked);
1144 init_waitqueue_head(&journal->j_wait_done_commit);
1145 init_waitqueue_head(&journal->j_wait_commit);
1146 init_waitqueue_head(&journal->j_wait_updates);
1147 init_waitqueue_head(&journal->j_wait_reserved);
1148 mutex_init(&journal->j_barrier);
1149 mutex_init(&journal->j_checkpoint_mutex);
1150 spin_lock_init(&journal->j_revoke_lock);
1151 spin_lock_init(&journal->j_list_lock);
1152 rwlock_init(&journal->j_state_lock);
1154 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1155 journal->j_min_batch_time = 0;
1156 journal->j_max_batch_time = 15000; /* 15ms */
1157 atomic_set(&journal->j_reserved_credits, 0);
1159 /* The journal is marked for error until we succeed with recovery! */
1160 journal->j_flags = JBD2_ABORT;
1162 /* Set up a default-sized revoke table for the new mount. */
1163 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1164 if (err)
1165 goto err_cleanup;
1167 spin_lock_init(&journal->j_history_lock);
1169 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1170 &jbd2_trans_commit_key, 0);
1172 /* journal descriptor can store up to n blocks -bzzz */
1173 journal->j_blocksize = blocksize;
1174 journal->j_dev = bdev;
1175 journal->j_fs_dev = fs_dev;
1176 journal->j_blk_offset = start;
1177 journal->j_maxlen = len;
1178 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179 journal->j_wbufsize = n;
1180 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1181 GFP_KERNEL);
1182 if (!journal->j_wbuf)
1183 goto err_cleanup;
1185 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1186 if (!bh) {
1187 pr_err("%s: Cannot get buffer for journal superblock\n",
1188 __func__);
1189 goto err_cleanup;
1191 journal->j_sb_buffer = bh;
1192 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1194 return journal;
1196 err_cleanup:
1197 kfree(journal->j_wbuf);
1198 jbd2_journal_destroy_revoke(journal);
1199 kfree(journal);
1200 return NULL;
1203 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1205 * Create a journal structure assigned some fixed set of disk blocks to
1206 * the journal. We don't actually touch those disk blocks yet, but we
1207 * need to set up all of the mapping information to tell the journaling
1208 * system where the journal blocks are.
1213 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1214 * @bdev: Block device on which to create the journal
1215 * @fs_dev: Device which hold journalled filesystem for this journal.
1216 * @start: Block nr Start of journal.
1217 * @len: Length of the journal in blocks.
1218 * @blocksize: blocksize of journalling device
1220 * Returns: a newly created journal_t *
1222 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1223 * range of blocks on an arbitrary block device.
1226 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1227 struct block_device *fs_dev,
1228 unsigned long long start, int len, int blocksize)
1230 journal_t *journal;
1232 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1233 if (!journal)
1234 return NULL;
1236 bdevname(journal->j_dev, journal->j_devname);
1237 strreplace(journal->j_devname, '/', '!');
1238 jbd2_stats_proc_init(journal);
1240 return journal;
1244 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1245 * @inode: An inode to create the journal in
1247 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1248 * the journal. The inode must exist already, must support bmap() and
1249 * must have all data blocks preallocated.
1251 journal_t *jbd2_journal_init_inode(struct inode *inode)
1253 journal_t *journal;
1254 char *p;
1255 unsigned long long blocknr;
1257 blocknr = bmap(inode, 0);
1258 if (!blocknr) {
1259 pr_err("%s: Cannot locate journal superblock\n",
1260 __func__);
1261 return NULL;
1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1268 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 inode->i_sb->s_blocksize);
1271 if (!journal)
1272 return NULL;
1274 journal->j_inode = inode;
1275 bdevname(journal->j_dev, journal->j_devname);
1276 p = strreplace(journal->j_devname, '/', '!');
1277 sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 jbd2_stats_proc_init(journal);
1280 return journal;
1284 * If the journal init or create aborts, we need to mark the journal
1285 * superblock as being NULL to prevent the journal destroy from writing
1286 * back a bogus superblock.
1288 static void journal_fail_superblock (journal_t *journal)
1290 struct buffer_head *bh = journal->j_sb_buffer;
1291 brelse(bh);
1292 journal->j_sb_buffer = NULL;
1296 * Given a journal_t structure, initialise the various fields for
1297 * startup of a new journaling session. We use this both when creating
1298 * a journal, and after recovering an old journal to reset it for
1299 * subsequent use.
1302 static int journal_reset(journal_t *journal)
1304 journal_superblock_t *sb = journal->j_superblock;
1305 unsigned long long first, last;
1307 first = be32_to_cpu(sb->s_first);
1308 last = be32_to_cpu(sb->s_maxlen);
1309 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 first, last);
1312 journal_fail_superblock(journal);
1313 return -EINVAL;
1316 journal->j_first = first;
1317 journal->j_last = last;
1319 journal->j_head = first;
1320 journal->j_tail = first;
1321 journal->j_free = last - first;
1323 journal->j_tail_sequence = journal->j_transaction_sequence;
1324 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 journal->j_commit_request = journal->j_commit_sequence;
1327 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1330 * As a special case, if the on-disk copy is already marked as needing
1331 * no recovery (s_start == 0), then we can safely defer the superblock
1332 * update until the next commit by setting JBD2_FLUSHED. This avoids
1333 * attempting a write to a potential-readonly device.
1335 if (sb->s_start == 0) {
1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 "(start %ld, seq %d, errno %d)\n",
1338 journal->j_tail, journal->j_tail_sequence,
1339 journal->j_errno);
1340 journal->j_flags |= JBD2_FLUSHED;
1341 } else {
1342 /* Lock here to make assertions happy... */
1343 mutex_lock_io(&journal->j_checkpoint_mutex);
1345 * Update log tail information. We use REQ_FUA since new
1346 * transaction will start reusing journal space and so we
1347 * must make sure information about current log tail is on
1348 * disk before that.
1350 jbd2_journal_update_sb_log_tail(journal,
1351 journal->j_tail_sequence,
1352 journal->j_tail,
1353 REQ_SYNC | REQ_FUA);
1354 mutex_unlock(&journal->j_checkpoint_mutex);
1356 return jbd2_journal_start_thread(journal);
1359 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1361 struct buffer_head *bh = journal->j_sb_buffer;
1362 journal_superblock_t *sb = journal->j_superblock;
1363 int ret;
1365 trace_jbd2_write_superblock(journal, write_flags);
1366 if (!(journal->j_flags & JBD2_BARRIER))
1367 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1368 lock_buffer(bh);
1369 if (buffer_write_io_error(bh)) {
1371 * Oh, dear. A previous attempt to write the journal
1372 * superblock failed. This could happen because the
1373 * USB device was yanked out. Or it could happen to
1374 * be a transient write error and maybe the block will
1375 * be remapped. Nothing we can do but to retry the
1376 * write and hope for the best.
1378 printk(KERN_ERR "JBD2: previous I/O error detected "
1379 "for journal superblock update for %s.\n",
1380 journal->j_devname);
1381 clear_buffer_write_io_error(bh);
1382 set_buffer_uptodate(bh);
1384 jbd2_superblock_csum_set(journal, sb);
1385 get_bh(bh);
1386 bh->b_end_io = end_buffer_write_sync;
1387 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1388 wait_on_buffer(bh);
1389 if (buffer_write_io_error(bh)) {
1390 clear_buffer_write_io_error(bh);
1391 set_buffer_uptodate(bh);
1392 ret = -EIO;
1394 if (ret) {
1395 printk(KERN_ERR "JBD2: Error %d detected when updating "
1396 "journal superblock for %s.\n", ret,
1397 journal->j_devname);
1398 jbd2_journal_abort(journal, ret);
1401 return ret;
1405 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406 * @journal: The journal to update.
1407 * @tail_tid: TID of the new transaction at the tail of the log
1408 * @tail_block: The first block of the transaction at the tail of the log
1409 * @write_op: With which operation should we write the journal sb
1411 * Update a journal's superblock information about log tail and write it to
1412 * disk, waiting for the IO to complete.
1414 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1415 unsigned long tail_block, int write_op)
1417 journal_superblock_t *sb = journal->j_superblock;
1418 int ret;
1420 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1421 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1422 tail_block, tail_tid);
1424 sb->s_sequence = cpu_to_be32(tail_tid);
1425 sb->s_start = cpu_to_be32(tail_block);
1427 ret = jbd2_write_superblock(journal, write_op);
1428 if (ret)
1429 goto out;
1431 /* Log is no longer empty */
1432 write_lock(&journal->j_state_lock);
1433 WARN_ON(!sb->s_sequence);
1434 journal->j_flags &= ~JBD2_FLUSHED;
1435 write_unlock(&journal->j_state_lock);
1437 out:
1438 return ret;
1442 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1443 * @journal: The journal to update.
1444 * @write_op: With which operation should we write the journal sb
1446 * Update a journal's dynamic superblock fields to show that journal is empty.
1447 * Write updated superblock to disk waiting for IO to complete.
1449 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1451 journal_superblock_t *sb = journal->j_superblock;
1453 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1454 read_lock(&journal->j_state_lock);
1455 /* Is it already empty? */
1456 if (sb->s_start == 0) {
1457 read_unlock(&journal->j_state_lock);
1458 return;
1460 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1461 journal->j_tail_sequence);
1463 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1464 sb->s_start = cpu_to_be32(0);
1465 read_unlock(&journal->j_state_lock);
1467 jbd2_write_superblock(journal, write_op);
1469 /* Log is no longer empty */
1470 write_lock(&journal->j_state_lock);
1471 journal->j_flags |= JBD2_FLUSHED;
1472 write_unlock(&journal->j_state_lock);
1477 * jbd2_journal_update_sb_errno() - Update error in the journal.
1478 * @journal: The journal to update.
1480 * Update a journal's errno. Write updated superblock to disk waiting for IO
1481 * to complete.
1483 void jbd2_journal_update_sb_errno(journal_t *journal)
1485 journal_superblock_t *sb = journal->j_superblock;
1487 read_lock(&journal->j_state_lock);
1488 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1489 journal->j_errno);
1490 sb->s_errno = cpu_to_be32(journal->j_errno);
1491 read_unlock(&journal->j_state_lock);
1493 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1495 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1498 * Read the superblock for a given journal, performing initial
1499 * validation of the format.
1501 static int journal_get_superblock(journal_t *journal)
1503 struct buffer_head *bh;
1504 journal_superblock_t *sb;
1505 int err = -EIO;
1507 bh = journal->j_sb_buffer;
1509 J_ASSERT(bh != NULL);
1510 if (!buffer_uptodate(bh)) {
1511 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1512 wait_on_buffer(bh);
1513 if (!buffer_uptodate(bh)) {
1514 printk(KERN_ERR
1515 "JBD2: IO error reading journal superblock\n");
1516 goto out;
1520 if (buffer_verified(bh))
1521 return 0;
1523 sb = journal->j_superblock;
1525 err = -EINVAL;
1527 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1528 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1529 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1530 goto out;
1533 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1534 case JBD2_SUPERBLOCK_V1:
1535 journal->j_format_version = 1;
1536 break;
1537 case JBD2_SUPERBLOCK_V2:
1538 journal->j_format_version = 2;
1539 break;
1540 default:
1541 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1542 goto out;
1545 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1546 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1547 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1548 printk(KERN_WARNING "JBD2: journal file too short\n");
1549 goto out;
1552 if (be32_to_cpu(sb->s_first) == 0 ||
1553 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1554 printk(KERN_WARNING
1555 "JBD2: Invalid start block of journal: %u\n",
1556 be32_to_cpu(sb->s_first));
1557 goto out;
1560 if (jbd2_has_feature_csum2(journal) &&
1561 jbd2_has_feature_csum3(journal)) {
1562 /* Can't have checksum v2 and v3 at the same time! */
1563 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1564 "at the same time!\n");
1565 goto out;
1568 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1569 jbd2_has_feature_checksum(journal)) {
1570 /* Can't have checksum v1 and v2 on at the same time! */
1571 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1572 "at the same time!\n");
1573 goto out;
1576 if (!jbd2_verify_csum_type(journal, sb)) {
1577 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1578 goto out;
1581 /* Load the checksum driver */
1582 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1583 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1584 if (IS_ERR(journal->j_chksum_driver)) {
1585 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1586 err = PTR_ERR(journal->j_chksum_driver);
1587 journal->j_chksum_driver = NULL;
1588 goto out;
1592 /* Check superblock checksum */
1593 if (!jbd2_superblock_csum_verify(journal, sb)) {
1594 printk(KERN_ERR "JBD2: journal checksum error\n");
1595 err = -EFSBADCRC;
1596 goto out;
1599 /* Precompute checksum seed for all metadata */
1600 if (jbd2_journal_has_csum_v2or3(journal))
1601 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1602 sizeof(sb->s_uuid));
1604 set_buffer_verified(bh);
1606 return 0;
1608 out:
1609 journal_fail_superblock(journal);
1610 return err;
1614 * Load the on-disk journal superblock and read the key fields into the
1615 * journal_t.
1618 static int load_superblock(journal_t *journal)
1620 int err;
1621 journal_superblock_t *sb;
1623 err = journal_get_superblock(journal);
1624 if (err)
1625 return err;
1627 sb = journal->j_superblock;
1629 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1630 journal->j_tail = be32_to_cpu(sb->s_start);
1631 journal->j_first = be32_to_cpu(sb->s_first);
1632 journal->j_last = be32_to_cpu(sb->s_maxlen);
1633 journal->j_errno = be32_to_cpu(sb->s_errno);
1635 return 0;
1640 * int jbd2_journal_load() - Read journal from disk.
1641 * @journal: Journal to act on.
1643 * Given a journal_t structure which tells us which disk blocks contain
1644 * a journal, read the journal from disk to initialise the in-memory
1645 * structures.
1647 int jbd2_journal_load(journal_t *journal)
1649 int err;
1650 journal_superblock_t *sb;
1652 err = load_superblock(journal);
1653 if (err)
1654 return err;
1656 sb = journal->j_superblock;
1657 /* If this is a V2 superblock, then we have to check the
1658 * features flags on it. */
1660 if (journal->j_format_version >= 2) {
1661 if ((sb->s_feature_ro_compat &
1662 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1663 (sb->s_feature_incompat &
1664 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1665 printk(KERN_WARNING
1666 "JBD2: Unrecognised features on journal\n");
1667 return -EINVAL;
1672 * Create a slab for this blocksize
1674 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1675 if (err)
1676 return err;
1678 /* Let the recovery code check whether it needs to recover any
1679 * data from the journal. */
1680 if (jbd2_journal_recover(journal))
1681 goto recovery_error;
1683 if (journal->j_failed_commit) {
1684 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1685 "is corrupt.\n", journal->j_failed_commit,
1686 journal->j_devname);
1687 return -EFSCORRUPTED;
1690 /* OK, we've finished with the dynamic journal bits:
1691 * reinitialise the dynamic contents of the superblock in memory
1692 * and reset them on disk. */
1693 if (journal_reset(journal))
1694 goto recovery_error;
1696 journal->j_flags &= ~JBD2_ABORT;
1697 journal->j_flags |= JBD2_LOADED;
1698 return 0;
1700 recovery_error:
1701 printk(KERN_WARNING "JBD2: recovery failed\n");
1702 return -EIO;
1706 * void jbd2_journal_destroy() - Release a journal_t structure.
1707 * @journal: Journal to act on.
1709 * Release a journal_t structure once it is no longer in use by the
1710 * journaled object.
1711 * Return <0 if we couldn't clean up the journal.
1713 int jbd2_journal_destroy(journal_t *journal)
1715 int err = 0;
1717 /* Wait for the commit thread to wake up and die. */
1718 journal_kill_thread(journal);
1720 /* Force a final log commit */
1721 if (journal->j_running_transaction)
1722 jbd2_journal_commit_transaction(journal);
1724 /* Force any old transactions to disk */
1726 /* Totally anal locking here... */
1727 spin_lock(&journal->j_list_lock);
1728 while (journal->j_checkpoint_transactions != NULL) {
1729 spin_unlock(&journal->j_list_lock);
1730 mutex_lock_io(&journal->j_checkpoint_mutex);
1731 err = jbd2_log_do_checkpoint(journal);
1732 mutex_unlock(&journal->j_checkpoint_mutex);
1734 * If checkpointing failed, just free the buffers to avoid
1735 * looping forever
1737 if (err) {
1738 jbd2_journal_destroy_checkpoint(journal);
1739 spin_lock(&journal->j_list_lock);
1740 break;
1742 spin_lock(&journal->j_list_lock);
1745 J_ASSERT(journal->j_running_transaction == NULL);
1746 J_ASSERT(journal->j_committing_transaction == NULL);
1747 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1748 spin_unlock(&journal->j_list_lock);
1750 if (journal->j_sb_buffer) {
1751 if (!is_journal_aborted(journal)) {
1752 mutex_lock_io(&journal->j_checkpoint_mutex);
1754 write_lock(&journal->j_state_lock);
1755 journal->j_tail_sequence =
1756 ++journal->j_transaction_sequence;
1757 write_unlock(&journal->j_state_lock);
1759 jbd2_mark_journal_empty(journal,
1760 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1761 mutex_unlock(&journal->j_checkpoint_mutex);
1762 } else
1763 err = -EIO;
1764 brelse(journal->j_sb_buffer);
1767 if (journal->j_proc_entry)
1768 jbd2_stats_proc_exit(journal);
1769 iput(journal->j_inode);
1770 if (journal->j_revoke)
1771 jbd2_journal_destroy_revoke(journal);
1772 if (journal->j_chksum_driver)
1773 crypto_free_shash(journal->j_chksum_driver);
1774 kfree(journal->j_wbuf);
1775 kfree(journal);
1777 return err;
1782 *int jbd2_journal_check_used_features () - Check if features specified are used.
1783 * @journal: Journal to check.
1784 * @compat: bitmask of compatible features
1785 * @ro: bitmask of features that force read-only mount
1786 * @incompat: bitmask of incompatible features
1788 * Check whether the journal uses all of a given set of
1789 * features. Return true (non-zero) if it does.
1792 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1793 unsigned long ro, unsigned long incompat)
1795 journal_superblock_t *sb;
1797 if (!compat && !ro && !incompat)
1798 return 1;
1799 /* Load journal superblock if it is not loaded yet. */
1800 if (journal->j_format_version == 0 &&
1801 journal_get_superblock(journal) != 0)
1802 return 0;
1803 if (journal->j_format_version == 1)
1804 return 0;
1806 sb = journal->j_superblock;
1808 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1809 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1810 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1811 return 1;
1813 return 0;
1817 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1818 * @journal: Journal to check.
1819 * @compat: bitmask of compatible features
1820 * @ro: bitmask of features that force read-only mount
1821 * @incompat: bitmask of incompatible features
1823 * Check whether the journaling code supports the use of
1824 * all of a given set of features on this journal. Return true
1825 * (non-zero) if it can. */
1827 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1828 unsigned long ro, unsigned long incompat)
1830 if (!compat && !ro && !incompat)
1831 return 1;
1833 /* We can support any known requested features iff the
1834 * superblock is in version 2. Otherwise we fail to support any
1835 * extended sb features. */
1837 if (journal->j_format_version != 2)
1838 return 0;
1840 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1841 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1842 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1843 return 1;
1845 return 0;
1849 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1850 * @journal: Journal to act on.
1851 * @compat: bitmask of compatible features
1852 * @ro: bitmask of features that force read-only mount
1853 * @incompat: bitmask of incompatible features
1855 * Mark a given journal feature as present on the
1856 * superblock. Returns true if the requested features could be set.
1860 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1861 unsigned long ro, unsigned long incompat)
1863 #define INCOMPAT_FEATURE_ON(f) \
1864 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1865 #define COMPAT_FEATURE_ON(f) \
1866 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1867 journal_superblock_t *sb;
1869 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1870 return 1;
1872 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1873 return 0;
1875 /* If enabling v2 checksums, turn on v3 instead */
1876 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1877 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1878 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1881 /* Asking for checksumming v3 and v1? Only give them v3. */
1882 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1883 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1884 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1886 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1887 compat, ro, incompat);
1889 sb = journal->j_superblock;
1891 /* If enabling v3 checksums, update superblock */
1892 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1893 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1894 sb->s_feature_compat &=
1895 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1897 /* Load the checksum driver */
1898 if (journal->j_chksum_driver == NULL) {
1899 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1900 0, 0);
1901 if (IS_ERR(journal->j_chksum_driver)) {
1902 printk(KERN_ERR "JBD2: Cannot load crc32c "
1903 "driver.\n");
1904 journal->j_chksum_driver = NULL;
1905 return 0;
1908 /* Precompute checksum seed for all metadata */
1909 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1910 sb->s_uuid,
1911 sizeof(sb->s_uuid));
1915 /* If enabling v1 checksums, downgrade superblock */
1916 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1917 sb->s_feature_incompat &=
1918 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1919 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1921 sb->s_feature_compat |= cpu_to_be32(compat);
1922 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1923 sb->s_feature_incompat |= cpu_to_be32(incompat);
1925 return 1;
1926 #undef COMPAT_FEATURE_ON
1927 #undef INCOMPAT_FEATURE_ON
1931 * jbd2_journal_clear_features () - Clear a given journal feature in the
1932 * superblock
1933 * @journal: Journal to act on.
1934 * @compat: bitmask of compatible features
1935 * @ro: bitmask of features that force read-only mount
1936 * @incompat: bitmask of incompatible features
1938 * Clear a given journal feature as present on the
1939 * superblock.
1941 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1942 unsigned long ro, unsigned long incompat)
1944 journal_superblock_t *sb;
1946 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1947 compat, ro, incompat);
1949 sb = journal->j_superblock;
1951 sb->s_feature_compat &= ~cpu_to_be32(compat);
1952 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1953 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1955 EXPORT_SYMBOL(jbd2_journal_clear_features);
1958 * int jbd2_journal_flush () - Flush journal
1959 * @journal: Journal to act on.
1961 * Flush all data for a given journal to disk and empty the journal.
1962 * Filesystems can use this when remounting readonly to ensure that
1963 * recovery does not need to happen on remount.
1966 int jbd2_journal_flush(journal_t *journal)
1968 int err = 0;
1969 transaction_t *transaction = NULL;
1971 write_lock(&journal->j_state_lock);
1973 /* Force everything buffered to the log... */
1974 if (journal->j_running_transaction) {
1975 transaction = journal->j_running_transaction;
1976 __jbd2_log_start_commit(journal, transaction->t_tid);
1977 } else if (journal->j_committing_transaction)
1978 transaction = journal->j_committing_transaction;
1980 /* Wait for the log commit to complete... */
1981 if (transaction) {
1982 tid_t tid = transaction->t_tid;
1984 write_unlock(&journal->j_state_lock);
1985 jbd2_log_wait_commit(journal, tid);
1986 } else {
1987 write_unlock(&journal->j_state_lock);
1990 /* ...and flush everything in the log out to disk. */
1991 spin_lock(&journal->j_list_lock);
1992 while (!err && journal->j_checkpoint_transactions != NULL) {
1993 spin_unlock(&journal->j_list_lock);
1994 mutex_lock_io(&journal->j_checkpoint_mutex);
1995 err = jbd2_log_do_checkpoint(journal);
1996 mutex_unlock(&journal->j_checkpoint_mutex);
1997 spin_lock(&journal->j_list_lock);
1999 spin_unlock(&journal->j_list_lock);
2001 if (is_journal_aborted(journal))
2002 return -EIO;
2004 mutex_lock_io(&journal->j_checkpoint_mutex);
2005 if (!err) {
2006 err = jbd2_cleanup_journal_tail(journal);
2007 if (err < 0) {
2008 mutex_unlock(&journal->j_checkpoint_mutex);
2009 goto out;
2011 err = 0;
2014 /* Finally, mark the journal as really needing no recovery.
2015 * This sets s_start==0 in the underlying superblock, which is
2016 * the magic code for a fully-recovered superblock. Any future
2017 * commits of data to the journal will restore the current
2018 * s_start value. */
2019 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2020 mutex_unlock(&journal->j_checkpoint_mutex);
2021 write_lock(&journal->j_state_lock);
2022 J_ASSERT(!journal->j_running_transaction);
2023 J_ASSERT(!journal->j_committing_transaction);
2024 J_ASSERT(!journal->j_checkpoint_transactions);
2025 J_ASSERT(journal->j_head == journal->j_tail);
2026 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2027 write_unlock(&journal->j_state_lock);
2028 out:
2029 return err;
2033 * int jbd2_journal_wipe() - Wipe journal contents
2034 * @journal: Journal to act on.
2035 * @write: flag (see below)
2037 * Wipe out all of the contents of a journal, safely. This will produce
2038 * a warning if the journal contains any valid recovery information.
2039 * Must be called between journal_init_*() and jbd2_journal_load().
2041 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2042 * we merely suppress recovery.
2045 int jbd2_journal_wipe(journal_t *journal, int write)
2047 int err = 0;
2049 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2051 err = load_superblock(journal);
2052 if (err)
2053 return err;
2055 if (!journal->j_tail)
2056 goto no_recovery;
2058 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2059 write ? "Clearing" : "Ignoring");
2061 err = jbd2_journal_skip_recovery(journal);
2062 if (write) {
2063 /* Lock to make assertions happy... */
2064 mutex_lock(&journal->j_checkpoint_mutex);
2065 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2066 mutex_unlock(&journal->j_checkpoint_mutex);
2069 no_recovery:
2070 return err;
2074 * Journal abort has very specific semantics, which we describe
2075 * for journal abort.
2077 * Two internal functions, which provide abort to the jbd layer
2078 * itself are here.
2082 * Quick version for internal journal use (doesn't lock the journal).
2083 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2084 * and don't attempt to make any other journal updates.
2086 void __jbd2_journal_abort_hard(journal_t *journal)
2088 transaction_t *transaction;
2090 if (journal->j_flags & JBD2_ABORT)
2091 return;
2093 printk(KERN_ERR "Aborting journal on device %s.\n",
2094 journal->j_devname);
2096 write_lock(&journal->j_state_lock);
2097 journal->j_flags |= JBD2_ABORT;
2098 transaction = journal->j_running_transaction;
2099 if (transaction)
2100 __jbd2_log_start_commit(journal, transaction->t_tid);
2101 write_unlock(&journal->j_state_lock);
2104 /* Soft abort: record the abort error status in the journal superblock,
2105 * but don't do any other IO. */
2106 static void __journal_abort_soft (journal_t *journal, int errno)
2108 if (journal->j_flags & JBD2_ABORT)
2109 return;
2111 if (!journal->j_errno)
2112 journal->j_errno = errno;
2114 __jbd2_journal_abort_hard(journal);
2116 if (errno) {
2117 jbd2_journal_update_sb_errno(journal);
2118 write_lock(&journal->j_state_lock);
2119 journal->j_flags |= JBD2_REC_ERR;
2120 write_unlock(&journal->j_state_lock);
2125 * void jbd2_journal_abort () - Shutdown the journal immediately.
2126 * @journal: the journal to shutdown.
2127 * @errno: an error number to record in the journal indicating
2128 * the reason for the shutdown.
2130 * Perform a complete, immediate shutdown of the ENTIRE
2131 * journal (not of a single transaction). This operation cannot be
2132 * undone without closing and reopening the journal.
2134 * The jbd2_journal_abort function is intended to support higher level error
2135 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2136 * mode.
2138 * Journal abort has very specific semantics. Any existing dirty,
2139 * unjournaled buffers in the main filesystem will still be written to
2140 * disk by bdflush, but the journaling mechanism will be suspended
2141 * immediately and no further transaction commits will be honoured.
2143 * Any dirty, journaled buffers will be written back to disk without
2144 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2145 * filesystem, but we _do_ attempt to leave as much data as possible
2146 * behind for fsck to use for cleanup.
2148 * Any attempt to get a new transaction handle on a journal which is in
2149 * ABORT state will just result in an -EROFS error return. A
2150 * jbd2_journal_stop on an existing handle will return -EIO if we have
2151 * entered abort state during the update.
2153 * Recursive transactions are not disturbed by journal abort until the
2154 * final jbd2_journal_stop, which will receive the -EIO error.
2156 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2157 * which will be recorded (if possible) in the journal superblock. This
2158 * allows a client to record failure conditions in the middle of a
2159 * transaction without having to complete the transaction to record the
2160 * failure to disk. ext3_error, for example, now uses this
2161 * functionality.
2163 * Errors which originate from within the journaling layer will NOT
2164 * supply an errno; a null errno implies that absolutely no further
2165 * writes are done to the journal (unless there are any already in
2166 * progress).
2170 void jbd2_journal_abort(journal_t *journal, int errno)
2172 __journal_abort_soft(journal, errno);
2176 * int jbd2_journal_errno () - returns the journal's error state.
2177 * @journal: journal to examine.
2179 * This is the errno number set with jbd2_journal_abort(), the last
2180 * time the journal was mounted - if the journal was stopped
2181 * without calling abort this will be 0.
2183 * If the journal has been aborted on this mount time -EROFS will
2184 * be returned.
2186 int jbd2_journal_errno(journal_t *journal)
2188 int err;
2190 read_lock(&journal->j_state_lock);
2191 if (journal->j_flags & JBD2_ABORT)
2192 err = -EROFS;
2193 else
2194 err = journal->j_errno;
2195 read_unlock(&journal->j_state_lock);
2196 return err;
2200 * int jbd2_journal_clear_err () - clears the journal's error state
2201 * @journal: journal to act on.
2203 * An error must be cleared or acked to take a FS out of readonly
2204 * mode.
2206 int jbd2_journal_clear_err(journal_t *journal)
2208 int err = 0;
2210 write_lock(&journal->j_state_lock);
2211 if (journal->j_flags & JBD2_ABORT)
2212 err = -EROFS;
2213 else
2214 journal->j_errno = 0;
2215 write_unlock(&journal->j_state_lock);
2216 return err;
2220 * void jbd2_journal_ack_err() - Ack journal err.
2221 * @journal: journal to act on.
2223 * An error must be cleared or acked to take a FS out of readonly
2224 * mode.
2226 void jbd2_journal_ack_err(journal_t *journal)
2228 write_lock(&journal->j_state_lock);
2229 if (journal->j_errno)
2230 journal->j_flags |= JBD2_ACK_ERR;
2231 write_unlock(&journal->j_state_lock);
2234 int jbd2_journal_blocks_per_page(struct inode *inode)
2236 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2240 * helper functions to deal with 32 or 64bit block numbers.
2242 size_t journal_tag_bytes(journal_t *journal)
2244 size_t sz;
2246 if (jbd2_has_feature_csum3(journal))
2247 return sizeof(journal_block_tag3_t);
2249 sz = sizeof(journal_block_tag_t);
2251 if (jbd2_has_feature_csum2(journal))
2252 sz += sizeof(__u16);
2254 if (jbd2_has_feature_64bit(journal))
2255 return sz;
2256 else
2257 return sz - sizeof(__u32);
2261 * JBD memory management
2263 * These functions are used to allocate block-sized chunks of memory
2264 * used for making copies of buffer_head data. Very often it will be
2265 * page-sized chunks of data, but sometimes it will be in
2266 * sub-page-size chunks. (For example, 16k pages on Power systems
2267 * with a 4k block file system.) For blocks smaller than a page, we
2268 * use a SLAB allocator. There are slab caches for each block size,
2269 * which are allocated at mount time, if necessary, and we only free
2270 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2271 * this reason we don't need to a mutex to protect access to
2272 * jbd2_slab[] allocating or releasing memory; only in
2273 * jbd2_journal_create_slab().
2275 #define JBD2_MAX_SLABS 8
2276 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2278 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2279 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2280 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2284 static void jbd2_journal_destroy_slabs(void)
2286 int i;
2288 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2289 if (jbd2_slab[i])
2290 kmem_cache_destroy(jbd2_slab[i]);
2291 jbd2_slab[i] = NULL;
2295 static int jbd2_journal_create_slab(size_t size)
2297 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2298 int i = order_base_2(size) - 10;
2299 size_t slab_size;
2301 if (size == PAGE_SIZE)
2302 return 0;
2304 if (i >= JBD2_MAX_SLABS)
2305 return -EINVAL;
2307 if (unlikely(i < 0))
2308 i = 0;
2309 mutex_lock(&jbd2_slab_create_mutex);
2310 if (jbd2_slab[i]) {
2311 mutex_unlock(&jbd2_slab_create_mutex);
2312 return 0; /* Already created */
2315 slab_size = 1 << (i+10);
2316 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2317 slab_size, 0, NULL);
2318 mutex_unlock(&jbd2_slab_create_mutex);
2319 if (!jbd2_slab[i]) {
2320 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2321 return -ENOMEM;
2323 return 0;
2326 static struct kmem_cache *get_slab(size_t size)
2328 int i = order_base_2(size) - 10;
2330 BUG_ON(i >= JBD2_MAX_SLABS);
2331 if (unlikely(i < 0))
2332 i = 0;
2333 BUG_ON(jbd2_slab[i] == NULL);
2334 return jbd2_slab[i];
2337 void *jbd2_alloc(size_t size, gfp_t flags)
2339 void *ptr;
2341 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2343 if (size < PAGE_SIZE)
2344 ptr = kmem_cache_alloc(get_slab(size), flags);
2345 else
2346 ptr = (void *)__get_free_pages(flags, get_order(size));
2348 /* Check alignment; SLUB has gotten this wrong in the past,
2349 * and this can lead to user data corruption! */
2350 BUG_ON(((unsigned long) ptr) & (size-1));
2352 return ptr;
2355 void jbd2_free(void *ptr, size_t size)
2357 if (size < PAGE_SIZE)
2358 kmem_cache_free(get_slab(size), ptr);
2359 else
2360 free_pages((unsigned long)ptr, get_order(size));
2364 * Journal_head storage management
2366 static struct kmem_cache *jbd2_journal_head_cache;
2367 #ifdef CONFIG_JBD2_DEBUG
2368 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2369 #endif
2371 static int jbd2_journal_init_journal_head_cache(void)
2373 int retval;
2375 J_ASSERT(jbd2_journal_head_cache == NULL);
2376 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2377 sizeof(struct journal_head),
2378 0, /* offset */
2379 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2380 NULL); /* ctor */
2381 retval = 0;
2382 if (!jbd2_journal_head_cache) {
2383 retval = -ENOMEM;
2384 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2386 return retval;
2389 static void jbd2_journal_destroy_journal_head_cache(void)
2391 if (jbd2_journal_head_cache) {
2392 kmem_cache_destroy(jbd2_journal_head_cache);
2393 jbd2_journal_head_cache = NULL;
2398 * journal_head splicing and dicing
2400 static struct journal_head *journal_alloc_journal_head(void)
2402 struct journal_head *ret;
2404 #ifdef CONFIG_JBD2_DEBUG
2405 atomic_inc(&nr_journal_heads);
2406 #endif
2407 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2408 if (!ret) {
2409 jbd_debug(1, "out of memory for journal_head\n");
2410 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2411 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2412 GFP_NOFS | __GFP_NOFAIL);
2414 return ret;
2417 static void journal_free_journal_head(struct journal_head *jh)
2419 #ifdef CONFIG_JBD2_DEBUG
2420 atomic_dec(&nr_journal_heads);
2421 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2422 #endif
2423 kmem_cache_free(jbd2_journal_head_cache, jh);
2427 * A journal_head is attached to a buffer_head whenever JBD has an
2428 * interest in the buffer.
2430 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2431 * is set. This bit is tested in core kernel code where we need to take
2432 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2433 * there.
2435 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437 * When a buffer has its BH_JBD bit set it is immune from being released by
2438 * core kernel code, mainly via ->b_count.
2440 * A journal_head is detached from its buffer_head when the journal_head's
2441 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2442 * transaction (b_cp_transaction) hold their references to b_jcount.
2444 * Various places in the kernel want to attach a journal_head to a buffer_head
2445 * _before_ attaching the journal_head to a transaction. To protect the
2446 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2447 * journal_head's b_jcount refcount by one. The caller must call
2448 * jbd2_journal_put_journal_head() to undo this.
2450 * So the typical usage would be:
2452 * (Attach a journal_head if needed. Increments b_jcount)
2453 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2454 * ...
2455 * (Get another reference for transaction)
2456 * jbd2_journal_grab_journal_head(bh);
2457 * jh->b_transaction = xxx;
2458 * (Put original reference)
2459 * jbd2_journal_put_journal_head(jh);
2463 * Give a buffer_head a journal_head.
2465 * May sleep.
2467 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469 struct journal_head *jh;
2470 struct journal_head *new_jh = NULL;
2472 repeat:
2473 if (!buffer_jbd(bh))
2474 new_jh = journal_alloc_journal_head();
2476 jbd_lock_bh_journal_head(bh);
2477 if (buffer_jbd(bh)) {
2478 jh = bh2jh(bh);
2479 } else {
2480 J_ASSERT_BH(bh,
2481 (atomic_read(&bh->b_count) > 0) ||
2482 (bh->b_page && bh->b_page->mapping));
2484 if (!new_jh) {
2485 jbd_unlock_bh_journal_head(bh);
2486 goto repeat;
2489 jh = new_jh;
2490 new_jh = NULL; /* We consumed it */
2491 set_buffer_jbd(bh);
2492 bh->b_private = jh;
2493 jh->b_bh = bh;
2494 get_bh(bh);
2495 BUFFER_TRACE(bh, "added journal_head");
2497 jh->b_jcount++;
2498 jbd_unlock_bh_journal_head(bh);
2499 if (new_jh)
2500 journal_free_journal_head(new_jh);
2501 return bh->b_private;
2505 * Grab a ref against this buffer_head's journal_head. If it ended up not
2506 * having a journal_head, return NULL
2508 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510 struct journal_head *jh = NULL;
2512 jbd_lock_bh_journal_head(bh);
2513 if (buffer_jbd(bh)) {
2514 jh = bh2jh(bh);
2515 jh->b_jcount++;
2517 jbd_unlock_bh_journal_head(bh);
2518 return jh;
2521 static void __journal_remove_journal_head(struct buffer_head *bh)
2523 struct journal_head *jh = bh2jh(bh);
2525 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2526 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2527 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2528 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2529 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2530 J_ASSERT_BH(bh, buffer_jbd(bh));
2531 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2532 BUFFER_TRACE(bh, "remove journal_head");
2533 if (jh->b_frozen_data) {
2534 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2535 jbd2_free(jh->b_frozen_data, bh->b_size);
2537 if (jh->b_committed_data) {
2538 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2539 jbd2_free(jh->b_committed_data, bh->b_size);
2541 bh->b_private = NULL;
2542 jh->b_bh = NULL; /* debug, really */
2543 clear_buffer_jbd(bh);
2544 journal_free_journal_head(jh);
2548 * Drop a reference on the passed journal_head. If it fell to zero then
2549 * release the journal_head from the buffer_head.
2551 void jbd2_journal_put_journal_head(struct journal_head *jh)
2553 struct buffer_head *bh = jh2bh(jh);
2555 jbd_lock_bh_journal_head(bh);
2556 J_ASSERT_JH(jh, jh->b_jcount > 0);
2557 --jh->b_jcount;
2558 if (!jh->b_jcount) {
2559 __journal_remove_journal_head(bh);
2560 jbd_unlock_bh_journal_head(bh);
2561 __brelse(bh);
2562 } else
2563 jbd_unlock_bh_journal_head(bh);
2567 * Initialize jbd inode head
2569 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571 jinode->i_transaction = NULL;
2572 jinode->i_next_transaction = NULL;
2573 jinode->i_vfs_inode = inode;
2574 jinode->i_flags = 0;
2575 INIT_LIST_HEAD(&jinode->i_list);
2579 * Function to be called before we start removing inode from memory (i.e.,
2580 * clear_inode() is a fine place to be called from). It removes inode from
2581 * transaction's lists.
2583 void jbd2_journal_release_jbd_inode(journal_t *journal,
2584 struct jbd2_inode *jinode)
2586 if (!journal)
2587 return;
2588 restart:
2589 spin_lock(&journal->j_list_lock);
2590 /* Is commit writing out inode - we have to wait */
2591 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2592 wait_queue_head_t *wq;
2593 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2594 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2595 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2596 spin_unlock(&journal->j_list_lock);
2597 schedule();
2598 finish_wait(wq, &wait.wq_entry);
2599 goto restart;
2602 if (jinode->i_transaction) {
2603 list_del(&jinode->i_list);
2604 jinode->i_transaction = NULL;
2606 spin_unlock(&journal->j_list_lock);
2610 #ifdef CONFIG_PROC_FS
2612 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2619 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 if (proc_jbd2_stats)
2622 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2625 #else
2627 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2628 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630 #endif
2632 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634 static int __init jbd2_journal_init_handle_cache(void)
2636 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2637 if (jbd2_handle_cache == NULL) {
2638 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2639 return -ENOMEM;
2641 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2642 if (jbd2_inode_cache == NULL) {
2643 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2644 kmem_cache_destroy(jbd2_handle_cache);
2645 return -ENOMEM;
2647 return 0;
2650 static void jbd2_journal_destroy_handle_cache(void)
2652 if (jbd2_handle_cache)
2653 kmem_cache_destroy(jbd2_handle_cache);
2654 if (jbd2_inode_cache)
2655 kmem_cache_destroy(jbd2_inode_cache);
2660 * Module startup and shutdown
2663 static int __init journal_init_caches(void)
2665 int ret;
2667 ret = jbd2_journal_init_revoke_caches();
2668 if (ret == 0)
2669 ret = jbd2_journal_init_journal_head_cache();
2670 if (ret == 0)
2671 ret = jbd2_journal_init_handle_cache();
2672 if (ret == 0)
2673 ret = jbd2_journal_init_transaction_cache();
2674 return ret;
2677 static void jbd2_journal_destroy_caches(void)
2679 jbd2_journal_destroy_revoke_caches();
2680 jbd2_journal_destroy_journal_head_cache();
2681 jbd2_journal_destroy_handle_cache();
2682 jbd2_journal_destroy_transaction_cache();
2683 jbd2_journal_destroy_slabs();
2686 static int __init journal_init(void)
2688 int ret;
2690 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2692 ret = journal_init_caches();
2693 if (ret == 0) {
2694 jbd2_create_jbd_stats_proc_entry();
2695 } else {
2696 jbd2_journal_destroy_caches();
2698 return ret;
2701 static void __exit journal_exit(void)
2703 #ifdef CONFIG_JBD2_DEBUG
2704 int n = atomic_read(&nr_journal_heads);
2705 if (n)
2706 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2707 #endif
2708 jbd2_remove_jbd_stats_proc_entry();
2709 jbd2_journal_destroy_caches();
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init);
2714 module_exit(journal_exit);