1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
28 static const struct bpf_verifier_ops
* const bpf_verifier_ops
[] = {
29 #define BPF_PROG_TYPE(_id, _name) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #include <linux/bpf_types.h>
37 /* bpf_check() is a static code analyzer that walks eBPF program
38 * instruction by instruction and updates register/stack state.
39 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 * The first pass is depth-first-search to check that the program is a DAG.
42 * It rejects the following programs:
43 * - larger than BPF_MAXINSNS insns
44 * - if loop is present (detected via back-edge)
45 * - unreachable insns exist (shouldn't be a forest. program = one function)
46 * - out of bounds or malformed jumps
47 * The second pass is all possible path descent from the 1st insn.
48 * Since it's analyzing all pathes through the program, the length of the
49 * analysis is limited to 64k insn, which may be hit even if total number of
50 * insn is less then 4K, but there are too many branches that change stack/regs.
51 * Number of 'branches to be analyzed' is limited to 1k
53 * On entry to each instruction, each register has a type, and the instruction
54 * changes the types of the registers depending on instruction semantics.
55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * All registers are 64-bit.
59 * R0 - return register
60 * R1-R5 argument passing registers
61 * R6-R9 callee saved registers
62 * R10 - frame pointer read-only
64 * At the start of BPF program the register R1 contains a pointer to bpf_context
65 * and has type PTR_TO_CTX.
67 * Verifier tracks arithmetic operations on pointers in case:
68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70 * 1st insn copies R10 (which has FRAME_PTR) type into R1
71 * and 2nd arithmetic instruction is pattern matched to recognize
72 * that it wants to construct a pointer to some element within stack.
73 * So after 2nd insn, the register R1 has type PTR_TO_STACK
74 * (and -20 constant is saved for further stack bounds checking).
75 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 * Most of the time the registers have SCALAR_VALUE type, which
78 * means the register has some value, but it's not a valid pointer.
79 * (like pointer plus pointer becomes SCALAR_VALUE type)
81 * When verifier sees load or store instructions the type of base register
82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
83 * types recognized by check_mem_access() function.
85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86 * and the range of [ptr, ptr + map's value_size) is accessible.
88 * registers used to pass values to function calls are checked against
89 * function argument constraints.
91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92 * It means that the register type passed to this function must be
93 * PTR_TO_STACK and it will be used inside the function as
94 * 'pointer to map element key'
96 * For example the argument constraints for bpf_map_lookup_elem():
97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98 * .arg1_type = ARG_CONST_MAP_PTR,
99 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 * ret_type says that this function returns 'pointer to map elem value or null'
102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103 * 2nd argument should be a pointer to stack, which will be used inside
104 * the helper function as a pointer to map element key.
106 * On the kernel side the helper function looks like:
107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110 * void *key = (void *) (unsigned long) r2;
113 * here kernel can access 'key' and 'map' pointers safely, knowing that
114 * [key, key + map->key_size) bytes are valid and were initialized on
115 * the stack of eBPF program.
118 * Corresponding eBPF program may look like:
119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123 * here verifier looks at prototype of map_lookup_elem() and sees:
124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129 * and were initialized prior to this call.
130 * If it's ok, then verifier allows this BPF_CALL insn and looks at
131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133 * returns ether pointer to map value or NULL.
135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136 * insn, the register holding that pointer in the true branch changes state to
137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138 * branch. See check_cond_jmp_op().
140 * After the call R0 is set to return type of the function and registers R1-R5
141 * are set to NOT_INIT to indicate that they are no longer readable.
144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
145 struct bpf_verifier_stack_elem
{
146 /* verifer state is 'st'
147 * before processing instruction 'insn_idx'
148 * and after processing instruction 'prev_insn_idx'
150 struct bpf_verifier_state st
;
153 struct bpf_verifier_stack_elem
*next
;
156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
157 #define BPF_COMPLEXITY_LIMIT_STACK 1024
159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 struct bpf_call_arg_meta
{
162 struct bpf_map
*map_ptr
;
169 static DEFINE_MUTEX(bpf_verifier_lock
);
171 /* log_level controls verbosity level of eBPF verifier.
172 * bpf_verifier_log_write() is used to dump the verification trace to the log,
173 * so the user can figure out what's wrong with the program
175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env
*env
,
176 const char *fmt
, ...)
178 struct bpf_verifer_log
*log
= &env
->log
;
182 if (!log
->level
|| !log
->ubuf
|| bpf_verifier_log_full(log
))
186 n
= vscnprintf(log
->kbuf
, BPF_VERIFIER_TMP_LOG_SIZE
, fmt
, args
);
189 WARN_ONCE(n
>= BPF_VERIFIER_TMP_LOG_SIZE
- 1,
190 "verifier log line truncated - local buffer too short\n");
192 n
= min(log
->len_total
- log
->len_used
- 1, n
);
195 if (!copy_to_user(log
->ubuf
+ log
->len_used
, log
->kbuf
, n
+ 1))
200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write
);
201 /* Historically bpf_verifier_log_write was called verbose, but the name was too
202 * generic for symbol export. The function was renamed, but not the calls in
203 * the verifier to avoid complicating backports. Hence the alias below.
205 static __printf(2, 3) void verbose(struct bpf_verifier_env
*env
,
206 const char *fmt
, ...)
207 __attribute__((alias("bpf_verifier_log_write")));
209 static bool type_is_pkt_pointer(enum bpf_reg_type type
)
211 return type
== PTR_TO_PACKET
||
212 type
== PTR_TO_PACKET_META
;
215 /* string representation of 'enum bpf_reg_type' */
216 static const char * const reg_type_str
[] = {
218 [SCALAR_VALUE
] = "inv",
219 [PTR_TO_CTX
] = "ctx",
220 [CONST_PTR_TO_MAP
] = "map_ptr",
221 [PTR_TO_MAP_VALUE
] = "map_value",
222 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
223 [PTR_TO_STACK
] = "fp",
224 [PTR_TO_PACKET
] = "pkt",
225 [PTR_TO_PACKET_META
] = "pkt_meta",
226 [PTR_TO_PACKET_END
] = "pkt_end",
229 static void print_liveness(struct bpf_verifier_env
*env
,
230 enum bpf_reg_liveness live
)
232 if (live
& (REG_LIVE_READ
| REG_LIVE_WRITTEN
))
234 if (live
& REG_LIVE_READ
)
236 if (live
& REG_LIVE_WRITTEN
)
240 static struct bpf_func_state
*func(struct bpf_verifier_env
*env
,
241 const struct bpf_reg_state
*reg
)
243 struct bpf_verifier_state
*cur
= env
->cur_state
;
245 return cur
->frame
[reg
->frameno
];
248 static void print_verifier_state(struct bpf_verifier_env
*env
,
249 const struct bpf_func_state
*state
)
251 const struct bpf_reg_state
*reg
;
256 verbose(env
, " frame%d:", state
->frameno
);
257 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
258 reg
= &state
->regs
[i
];
262 verbose(env
, " R%d", i
);
263 print_liveness(env
, reg
->live
);
264 verbose(env
, "=%s", reg_type_str
[t
]);
265 if ((t
== SCALAR_VALUE
|| t
== PTR_TO_STACK
) &&
266 tnum_is_const(reg
->var_off
)) {
267 /* reg->off should be 0 for SCALAR_VALUE */
268 verbose(env
, "%lld", reg
->var_off
.value
+ reg
->off
);
269 if (t
== PTR_TO_STACK
)
270 verbose(env
, ",call_%d", func(env
, reg
)->callsite
);
272 verbose(env
, "(id=%d", reg
->id
);
273 if (t
!= SCALAR_VALUE
)
274 verbose(env
, ",off=%d", reg
->off
);
275 if (type_is_pkt_pointer(t
))
276 verbose(env
, ",r=%d", reg
->range
);
277 else if (t
== CONST_PTR_TO_MAP
||
278 t
== PTR_TO_MAP_VALUE
||
279 t
== PTR_TO_MAP_VALUE_OR_NULL
)
280 verbose(env
, ",ks=%d,vs=%d",
281 reg
->map_ptr
->key_size
,
282 reg
->map_ptr
->value_size
);
283 if (tnum_is_const(reg
->var_off
)) {
284 /* Typically an immediate SCALAR_VALUE, but
285 * could be a pointer whose offset is too big
288 verbose(env
, ",imm=%llx", reg
->var_off
.value
);
290 if (reg
->smin_value
!= reg
->umin_value
&&
291 reg
->smin_value
!= S64_MIN
)
292 verbose(env
, ",smin_value=%lld",
293 (long long)reg
->smin_value
);
294 if (reg
->smax_value
!= reg
->umax_value
&&
295 reg
->smax_value
!= S64_MAX
)
296 verbose(env
, ",smax_value=%lld",
297 (long long)reg
->smax_value
);
298 if (reg
->umin_value
!= 0)
299 verbose(env
, ",umin_value=%llu",
300 (unsigned long long)reg
->umin_value
);
301 if (reg
->umax_value
!= U64_MAX
)
302 verbose(env
, ",umax_value=%llu",
303 (unsigned long long)reg
->umax_value
);
304 if (!tnum_is_unknown(reg
->var_off
)) {
307 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
308 verbose(env
, ",var_off=%s", tn_buf
);
314 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
315 if (state
->stack
[i
].slot_type
[0] == STACK_SPILL
) {
316 verbose(env
, " fp%d",
317 (-i
- 1) * BPF_REG_SIZE
);
318 print_liveness(env
, state
->stack
[i
].spilled_ptr
.live
);
320 reg_type_str
[state
->stack
[i
].spilled_ptr
.type
]);
322 if (state
->stack
[i
].slot_type
[0] == STACK_ZERO
)
323 verbose(env
, " fp%d=0", (-i
- 1) * BPF_REG_SIZE
);
328 static int copy_stack_state(struct bpf_func_state
*dst
,
329 const struct bpf_func_state
*src
)
333 if (WARN_ON_ONCE(dst
->allocated_stack
< src
->allocated_stack
)) {
334 /* internal bug, make state invalid to reject the program */
335 memset(dst
, 0, sizeof(*dst
));
338 memcpy(dst
->stack
, src
->stack
,
339 sizeof(*src
->stack
) * (src
->allocated_stack
/ BPF_REG_SIZE
));
343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
344 * make it consume minimal amount of memory. check_stack_write() access from
345 * the program calls into realloc_func_state() to grow the stack size.
346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
347 * which this function copies over. It points to previous bpf_verifier_state
348 * which is never reallocated
350 static int realloc_func_state(struct bpf_func_state
*state
, int size
,
353 u32 old_size
= state
->allocated_stack
;
354 struct bpf_stack_state
*new_stack
;
355 int slot
= size
/ BPF_REG_SIZE
;
357 if (size
<= old_size
|| !size
) {
360 state
->allocated_stack
= slot
* BPF_REG_SIZE
;
361 if (!size
&& old_size
) {
367 new_stack
= kmalloc_array(slot
, sizeof(struct bpf_stack_state
),
373 memcpy(new_stack
, state
->stack
,
374 sizeof(*new_stack
) * (old_size
/ BPF_REG_SIZE
));
375 memset(new_stack
+ old_size
/ BPF_REG_SIZE
, 0,
376 sizeof(*new_stack
) * (size
- old_size
) / BPF_REG_SIZE
);
378 state
->allocated_stack
= slot
* BPF_REG_SIZE
;
380 state
->stack
= new_stack
;
384 static void free_func_state(struct bpf_func_state
*state
)
392 static void free_verifier_state(struct bpf_verifier_state
*state
,
397 for (i
= 0; i
<= state
->curframe
; i
++) {
398 free_func_state(state
->frame
[i
]);
399 state
->frame
[i
] = NULL
;
405 /* copy verifier state from src to dst growing dst stack space
406 * when necessary to accommodate larger src stack
408 static int copy_func_state(struct bpf_func_state
*dst
,
409 const struct bpf_func_state
*src
)
413 err
= realloc_func_state(dst
, src
->allocated_stack
, false);
416 memcpy(dst
, src
, offsetof(struct bpf_func_state
, allocated_stack
));
417 return copy_stack_state(dst
, src
);
420 static int copy_verifier_state(struct bpf_verifier_state
*dst_state
,
421 const struct bpf_verifier_state
*src
)
423 struct bpf_func_state
*dst
;
426 /* if dst has more stack frames then src frame, free them */
427 for (i
= src
->curframe
+ 1; i
<= dst_state
->curframe
; i
++) {
428 free_func_state(dst_state
->frame
[i
]);
429 dst_state
->frame
[i
] = NULL
;
431 dst_state
->curframe
= src
->curframe
;
432 dst_state
->parent
= src
->parent
;
433 for (i
= 0; i
<= src
->curframe
; i
++) {
434 dst
= dst_state
->frame
[i
];
436 dst
= kzalloc(sizeof(*dst
), GFP_KERNEL
);
439 dst_state
->frame
[i
] = dst
;
441 err
= copy_func_state(dst
, src
->frame
[i
]);
448 static int pop_stack(struct bpf_verifier_env
*env
, int *prev_insn_idx
,
451 struct bpf_verifier_state
*cur
= env
->cur_state
;
452 struct bpf_verifier_stack_elem
*elem
, *head
= env
->head
;
455 if (env
->head
== NULL
)
459 err
= copy_verifier_state(cur
, &head
->st
);
464 *insn_idx
= head
->insn_idx
;
466 *prev_insn_idx
= head
->prev_insn_idx
;
468 free_verifier_state(&head
->st
, false);
475 static struct bpf_verifier_state
*push_stack(struct bpf_verifier_env
*env
,
476 int insn_idx
, int prev_insn_idx
)
478 struct bpf_verifier_state
*cur
= env
->cur_state
;
479 struct bpf_verifier_stack_elem
*elem
;
482 elem
= kzalloc(sizeof(struct bpf_verifier_stack_elem
), GFP_KERNEL
);
486 elem
->insn_idx
= insn_idx
;
487 elem
->prev_insn_idx
= prev_insn_idx
;
488 elem
->next
= env
->head
;
491 err
= copy_verifier_state(&elem
->st
, cur
);
494 if (env
->stack_size
> BPF_COMPLEXITY_LIMIT_STACK
) {
495 verbose(env
, "BPF program is too complex\n");
500 free_verifier_state(env
->cur_state
, true);
501 env
->cur_state
= NULL
;
502 /* pop all elements and return */
503 while (!pop_stack(env
, NULL
, NULL
));
507 #define CALLER_SAVED_REGS 6
508 static const int caller_saved
[CALLER_SAVED_REGS
] = {
509 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
511 #define CALLEE_SAVED_REGS 5
512 static const int callee_saved
[CALLEE_SAVED_REGS
] = {
513 BPF_REG_6
, BPF_REG_7
, BPF_REG_8
, BPF_REG_9
516 static void __mark_reg_not_init(struct bpf_reg_state
*reg
);
518 /* Mark the unknown part of a register (variable offset or scalar value) as
519 * known to have the value @imm.
521 static void __mark_reg_known(struct bpf_reg_state
*reg
, u64 imm
)
524 reg
->var_off
= tnum_const(imm
);
525 reg
->smin_value
= (s64
)imm
;
526 reg
->smax_value
= (s64
)imm
;
527 reg
->umin_value
= imm
;
528 reg
->umax_value
= imm
;
531 /* Mark the 'variable offset' part of a register as zero. This should be
532 * used only on registers holding a pointer type.
534 static void __mark_reg_known_zero(struct bpf_reg_state
*reg
)
536 __mark_reg_known(reg
, 0);
539 static void __mark_reg_const_zero(struct bpf_reg_state
*reg
)
541 __mark_reg_known(reg
, 0);
543 reg
->type
= SCALAR_VALUE
;
546 static void mark_reg_known_zero(struct bpf_verifier_env
*env
,
547 struct bpf_reg_state
*regs
, u32 regno
)
549 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
550 verbose(env
, "mark_reg_known_zero(regs, %u)\n", regno
);
551 /* Something bad happened, let's kill all regs */
552 for (regno
= 0; regno
< MAX_BPF_REG
; regno
++)
553 __mark_reg_not_init(regs
+ regno
);
556 __mark_reg_known_zero(regs
+ regno
);
559 static bool reg_is_pkt_pointer(const struct bpf_reg_state
*reg
)
561 return type_is_pkt_pointer(reg
->type
);
564 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state
*reg
)
566 return reg_is_pkt_pointer(reg
) ||
567 reg
->type
== PTR_TO_PACKET_END
;
570 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
571 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state
*reg
,
572 enum bpf_reg_type which
)
574 /* The register can already have a range from prior markings.
575 * This is fine as long as it hasn't been advanced from its
578 return reg
->type
== which
&&
581 tnum_equals_const(reg
->var_off
, 0);
584 /* Attempts to improve min/max values based on var_off information */
585 static void __update_reg_bounds(struct bpf_reg_state
*reg
)
587 /* min signed is max(sign bit) | min(other bits) */
588 reg
->smin_value
= max_t(s64
, reg
->smin_value
,
589 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MIN
));
590 /* max signed is min(sign bit) | max(other bits) */
591 reg
->smax_value
= min_t(s64
, reg
->smax_value
,
592 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MAX
));
593 reg
->umin_value
= max(reg
->umin_value
, reg
->var_off
.value
);
594 reg
->umax_value
= min(reg
->umax_value
,
595 reg
->var_off
.value
| reg
->var_off
.mask
);
598 /* Uses signed min/max values to inform unsigned, and vice-versa */
599 static void __reg_deduce_bounds(struct bpf_reg_state
*reg
)
601 /* Learn sign from signed bounds.
602 * If we cannot cross the sign boundary, then signed and unsigned bounds
603 * are the same, so combine. This works even in the negative case, e.g.
604 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
606 if (reg
->smin_value
>= 0 || reg
->smax_value
< 0) {
607 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
609 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
613 /* Learn sign from unsigned bounds. Signed bounds cross the sign
614 * boundary, so we must be careful.
616 if ((s64
)reg
->umax_value
>= 0) {
617 /* Positive. We can't learn anything from the smin, but smax
618 * is positive, hence safe.
620 reg
->smin_value
= reg
->umin_value
;
621 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
623 } else if ((s64
)reg
->umin_value
< 0) {
624 /* Negative. We can't learn anything from the smax, but smin
625 * is negative, hence safe.
627 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
629 reg
->smax_value
= reg
->umax_value
;
633 /* Attempts to improve var_off based on unsigned min/max information */
634 static void __reg_bound_offset(struct bpf_reg_state
*reg
)
636 reg
->var_off
= tnum_intersect(reg
->var_off
,
637 tnum_range(reg
->umin_value
,
641 /* Reset the min/max bounds of a register */
642 static void __mark_reg_unbounded(struct bpf_reg_state
*reg
)
644 reg
->smin_value
= S64_MIN
;
645 reg
->smax_value
= S64_MAX
;
647 reg
->umax_value
= U64_MAX
;
650 /* Mark a register as having a completely unknown (scalar) value. */
651 static void __mark_reg_unknown(struct bpf_reg_state
*reg
)
653 reg
->type
= SCALAR_VALUE
;
656 reg
->var_off
= tnum_unknown
;
658 __mark_reg_unbounded(reg
);
661 static void mark_reg_unknown(struct bpf_verifier_env
*env
,
662 struct bpf_reg_state
*regs
, u32 regno
)
664 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
665 verbose(env
, "mark_reg_unknown(regs, %u)\n", regno
);
666 /* Something bad happened, let's kill all regs except FP */
667 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
668 __mark_reg_not_init(regs
+ regno
);
671 __mark_reg_unknown(regs
+ regno
);
674 static void __mark_reg_not_init(struct bpf_reg_state
*reg
)
676 __mark_reg_unknown(reg
);
677 reg
->type
= NOT_INIT
;
680 static void mark_reg_not_init(struct bpf_verifier_env
*env
,
681 struct bpf_reg_state
*regs
, u32 regno
)
683 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
684 verbose(env
, "mark_reg_not_init(regs, %u)\n", regno
);
685 /* Something bad happened, let's kill all regs except FP */
686 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
687 __mark_reg_not_init(regs
+ regno
);
690 __mark_reg_not_init(regs
+ regno
);
693 static void init_reg_state(struct bpf_verifier_env
*env
,
694 struct bpf_func_state
*state
)
696 struct bpf_reg_state
*regs
= state
->regs
;
699 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
700 mark_reg_not_init(env
, regs
, i
);
701 regs
[i
].live
= REG_LIVE_NONE
;
705 regs
[BPF_REG_FP
].type
= PTR_TO_STACK
;
706 mark_reg_known_zero(env
, regs
, BPF_REG_FP
);
707 regs
[BPF_REG_FP
].frameno
= state
->frameno
;
709 /* 1st arg to a function */
710 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
711 mark_reg_known_zero(env
, regs
, BPF_REG_1
);
714 #define BPF_MAIN_FUNC (-1)
715 static void init_func_state(struct bpf_verifier_env
*env
,
716 struct bpf_func_state
*state
,
717 int callsite
, int frameno
, int subprogno
)
719 state
->callsite
= callsite
;
720 state
->frameno
= frameno
;
721 state
->subprogno
= subprogno
;
722 init_reg_state(env
, state
);
726 SRC_OP
, /* register is used as source operand */
727 DST_OP
, /* register is used as destination operand */
728 DST_OP_NO_MARK
/* same as above, check only, don't mark */
731 static int cmp_subprogs(const void *a
, const void *b
)
733 return *(int *)a
- *(int *)b
;
736 static int find_subprog(struct bpf_verifier_env
*env
, int off
)
740 p
= bsearch(&off
, env
->subprog_starts
, env
->subprog_cnt
,
741 sizeof(env
->subprog_starts
[0]), cmp_subprogs
);
744 return p
- env
->subprog_starts
;
748 static int add_subprog(struct bpf_verifier_env
*env
, int off
)
750 int insn_cnt
= env
->prog
->len
;
753 if (off
>= insn_cnt
|| off
< 0) {
754 verbose(env
, "call to invalid destination\n");
757 ret
= find_subprog(env
, off
);
760 if (env
->subprog_cnt
>= BPF_MAX_SUBPROGS
) {
761 verbose(env
, "too many subprograms\n");
764 env
->subprog_starts
[env
->subprog_cnt
++] = off
;
765 sort(env
->subprog_starts
, env
->subprog_cnt
,
766 sizeof(env
->subprog_starts
[0]), cmp_subprogs
, NULL
);
770 static int check_subprogs(struct bpf_verifier_env
*env
)
772 int i
, ret
, subprog_start
, subprog_end
, off
, cur_subprog
= 0;
773 struct bpf_insn
*insn
= env
->prog
->insnsi
;
774 int insn_cnt
= env
->prog
->len
;
776 /* determine subprog starts. The end is one before the next starts */
777 for (i
= 0; i
< insn_cnt
; i
++) {
778 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
780 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
782 if (!env
->allow_ptr_leaks
) {
783 verbose(env
, "function calls to other bpf functions are allowed for root only\n");
786 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
787 verbose(env
, "function calls in offloaded programs are not supported yet\n");
790 ret
= add_subprog(env
, i
+ insn
[i
].imm
+ 1);
795 if (env
->log
.level
> 1)
796 for (i
= 0; i
< env
->subprog_cnt
; i
++)
797 verbose(env
, "func#%d @%d\n", i
, env
->subprog_starts
[i
]);
799 /* now check that all jumps are within the same subprog */
801 if (env
->subprog_cnt
== cur_subprog
)
802 subprog_end
= insn_cnt
;
804 subprog_end
= env
->subprog_starts
[cur_subprog
++];
805 for (i
= 0; i
< insn_cnt
; i
++) {
806 u8 code
= insn
[i
].code
;
808 if (BPF_CLASS(code
) != BPF_JMP
)
810 if (BPF_OP(code
) == BPF_EXIT
|| BPF_OP(code
) == BPF_CALL
)
812 off
= i
+ insn
[i
].off
+ 1;
813 if (off
< subprog_start
|| off
>= subprog_end
) {
814 verbose(env
, "jump out of range from insn %d to %d\n", i
, off
);
818 if (i
== subprog_end
- 1) {
819 /* to avoid fall-through from one subprog into another
820 * the last insn of the subprog should be either exit
821 * or unconditional jump back
823 if (code
!= (BPF_JMP
| BPF_EXIT
) &&
824 code
!= (BPF_JMP
| BPF_JA
)) {
825 verbose(env
, "last insn is not an exit or jmp\n");
828 subprog_start
= subprog_end
;
829 if (env
->subprog_cnt
== cur_subprog
)
830 subprog_end
= insn_cnt
;
832 subprog_end
= env
->subprog_starts
[cur_subprog
++];
839 struct bpf_verifier_state
*skip_callee(struct bpf_verifier_env
*env
,
840 const struct bpf_verifier_state
*state
,
841 struct bpf_verifier_state
*parent
,
844 struct bpf_verifier_state
*tmp
= NULL
;
846 /* 'parent' could be a state of caller and
847 * 'state' could be a state of callee. In such case
848 * parent->curframe < state->curframe
849 * and it's ok for r1 - r5 registers
851 * 'parent' could be a callee's state after it bpf_exit-ed.
852 * In such case parent->curframe > state->curframe
853 * and it's ok for r0 only
855 if (parent
->curframe
== state
->curframe
||
856 (parent
->curframe
< state
->curframe
&&
857 regno
>= BPF_REG_1
&& regno
<= BPF_REG_5
) ||
858 (parent
->curframe
> state
->curframe
&&
862 if (parent
->curframe
> state
->curframe
&&
863 regno
>= BPF_REG_6
) {
864 /* for callee saved regs we have to skip the whole chain
865 * of states that belong to callee and mark as LIVE_READ
866 * the registers before the call
869 while (tmp
&& tmp
->curframe
!= state
->curframe
) {
880 verbose(env
, "verifier bug regno %d tmp %p\n", regno
, tmp
);
881 verbose(env
, "regno %d parent frame %d current frame %d\n",
882 regno
, parent
->curframe
, state
->curframe
);
886 static int mark_reg_read(struct bpf_verifier_env
*env
,
887 const struct bpf_verifier_state
*state
,
888 struct bpf_verifier_state
*parent
,
891 bool writes
= parent
== state
->parent
; /* Observe write marks */
893 if (regno
== BPF_REG_FP
)
894 /* We don't need to worry about FP liveness because it's read-only */
898 /* if read wasn't screened by an earlier write ... */
899 if (writes
&& state
->frame
[state
->curframe
]->regs
[regno
].live
& REG_LIVE_WRITTEN
)
901 parent
= skip_callee(env
, state
, parent
, regno
);
904 /* ... then we depend on parent's value */
905 parent
->frame
[parent
->curframe
]->regs
[regno
].live
|= REG_LIVE_READ
;
907 parent
= state
->parent
;
913 static int check_reg_arg(struct bpf_verifier_env
*env
, u32 regno
,
916 struct bpf_verifier_state
*vstate
= env
->cur_state
;
917 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
918 struct bpf_reg_state
*regs
= state
->regs
;
920 if (regno
>= MAX_BPF_REG
) {
921 verbose(env
, "R%d is invalid\n", regno
);
926 /* check whether register used as source operand can be read */
927 if (regs
[regno
].type
== NOT_INIT
) {
928 verbose(env
, "R%d !read_ok\n", regno
);
931 return mark_reg_read(env
, vstate
, vstate
->parent
, regno
);
933 /* check whether register used as dest operand can be written to */
934 if (regno
== BPF_REG_FP
) {
935 verbose(env
, "frame pointer is read only\n");
938 regs
[regno
].live
|= REG_LIVE_WRITTEN
;
940 mark_reg_unknown(env
, regs
, regno
);
945 static bool is_spillable_regtype(enum bpf_reg_type type
)
948 case PTR_TO_MAP_VALUE
:
949 case PTR_TO_MAP_VALUE_OR_NULL
:
953 case PTR_TO_PACKET_META
:
954 case PTR_TO_PACKET_END
:
955 case CONST_PTR_TO_MAP
:
962 /* Does this register contain a constant zero? */
963 static bool register_is_null(struct bpf_reg_state
*reg
)
965 return reg
->type
== SCALAR_VALUE
&& tnum_equals_const(reg
->var_off
, 0);
968 /* check_stack_read/write functions track spill/fill of registers,
969 * stack boundary and alignment are checked in check_mem_access()
971 static int check_stack_write(struct bpf_verifier_env
*env
,
972 struct bpf_func_state
*state
, /* func where register points to */
973 int off
, int size
, int value_regno
)
975 struct bpf_func_state
*cur
; /* state of the current function */
976 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
, err
;
977 enum bpf_reg_type type
;
979 err
= realloc_func_state(state
, round_up(slot
+ 1, BPF_REG_SIZE
),
983 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
984 * so it's aligned access and [off, off + size) are within stack limits
986 if (!env
->allow_ptr_leaks
&&
987 state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
988 size
!= BPF_REG_SIZE
) {
989 verbose(env
, "attempt to corrupt spilled pointer on stack\n");
993 cur
= env
->cur_state
->frame
[env
->cur_state
->curframe
];
994 if (value_regno
>= 0 &&
995 is_spillable_regtype((type
= cur
->regs
[value_regno
].type
))) {
997 /* register containing pointer is being spilled into stack */
998 if (size
!= BPF_REG_SIZE
) {
999 verbose(env
, "invalid size of register spill\n");
1003 if (state
!= cur
&& type
== PTR_TO_STACK
) {
1004 verbose(env
, "cannot spill pointers to stack into stack frame of the caller\n");
1008 /* save register state */
1009 state
->stack
[spi
].spilled_ptr
= cur
->regs
[value_regno
];
1010 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1012 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
1013 state
->stack
[spi
].slot_type
[i
] = STACK_SPILL
;
1015 u8 type
= STACK_MISC
;
1017 /* regular write of data into stack */
1018 state
->stack
[spi
].spilled_ptr
= (struct bpf_reg_state
) {};
1020 /* only mark the slot as written if all 8 bytes were written
1021 * otherwise read propagation may incorrectly stop too soon
1022 * when stack slots are partially written.
1023 * This heuristic means that read propagation will be
1024 * conservative, since it will add reg_live_read marks
1025 * to stack slots all the way to first state when programs
1026 * writes+reads less than 8 bytes
1028 if (size
== BPF_REG_SIZE
)
1029 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1031 /* when we zero initialize stack slots mark them as such */
1032 if (value_regno
>= 0 &&
1033 register_is_null(&cur
->regs
[value_regno
]))
1036 for (i
= 0; i
< size
; i
++)
1037 state
->stack
[spi
].slot_type
[(slot
- i
) % BPF_REG_SIZE
] =
1043 /* registers of every function are unique and mark_reg_read() propagates
1044 * the liveness in the following cases:
1045 * - from callee into caller for R1 - R5 that were used as arguments
1046 * - from caller into callee for R0 that used as result of the call
1047 * - from caller to the same caller skipping states of the callee for R6 - R9,
1048 * since R6 - R9 are callee saved by implicit function prologue and
1049 * caller's R6 != callee's R6, so when we propagate liveness up to
1050 * parent states we need to skip callee states for R6 - R9.
1052 * stack slot marking is different, since stacks of caller and callee are
1053 * accessible in both (since caller can pass a pointer to caller's stack to
1054 * callee which can pass it to another function), hence mark_stack_slot_read()
1055 * has to propagate the stack liveness to all parent states at given frame number.
1065 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1066 * to mark liveness at the f1's frame and not f2's frame.
1067 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1068 * to propagate liveness to f2 states at f1's frame level and further into
1069 * f1 states at f1's frame level until write into that stack slot
1071 static void mark_stack_slot_read(struct bpf_verifier_env
*env
,
1072 const struct bpf_verifier_state
*state
,
1073 struct bpf_verifier_state
*parent
,
1074 int slot
, int frameno
)
1076 bool writes
= parent
== state
->parent
; /* Observe write marks */
1079 if (parent
->frame
[frameno
]->allocated_stack
<= slot
* BPF_REG_SIZE
)
1080 /* since LIVE_WRITTEN mark is only done for full 8-byte
1081 * write the read marks are conservative and parent
1082 * state may not even have the stack allocated. In such case
1083 * end the propagation, since the loop reached beginning
1087 /* if read wasn't screened by an earlier write ... */
1088 if (writes
&& state
->frame
[frameno
]->stack
[slot
].spilled_ptr
.live
& REG_LIVE_WRITTEN
)
1090 /* ... then we depend on parent's value */
1091 parent
->frame
[frameno
]->stack
[slot
].spilled_ptr
.live
|= REG_LIVE_READ
;
1093 parent
= state
->parent
;
1098 static int check_stack_read(struct bpf_verifier_env
*env
,
1099 struct bpf_func_state
*reg_state
/* func where register points to */,
1100 int off
, int size
, int value_regno
)
1102 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1103 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1104 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
;
1107 if (reg_state
->allocated_stack
<= slot
) {
1108 verbose(env
, "invalid read from stack off %d+0 size %d\n",
1112 stype
= reg_state
->stack
[spi
].slot_type
;
1114 if (stype
[0] == STACK_SPILL
) {
1115 if (size
!= BPF_REG_SIZE
) {
1116 verbose(env
, "invalid size of register spill\n");
1119 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
1120 if (stype
[(slot
- i
) % BPF_REG_SIZE
] != STACK_SPILL
) {
1121 verbose(env
, "corrupted spill memory\n");
1126 if (value_regno
>= 0) {
1127 /* restore register state from stack */
1128 state
->regs
[value_regno
] = reg_state
->stack
[spi
].spilled_ptr
;
1129 /* mark reg as written since spilled pointer state likely
1130 * has its liveness marks cleared by is_state_visited()
1131 * which resets stack/reg liveness for state transitions
1133 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1135 mark_stack_slot_read(env
, vstate
, vstate
->parent
, spi
,
1136 reg_state
->frameno
);
1141 for (i
= 0; i
< size
; i
++) {
1142 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_MISC
)
1144 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_ZERO
) {
1148 verbose(env
, "invalid read from stack off %d+%d size %d\n",
1152 mark_stack_slot_read(env
, vstate
, vstate
->parent
, spi
,
1153 reg_state
->frameno
);
1154 if (value_regno
>= 0) {
1155 if (zeros
== size
) {
1156 /* any size read into register is zero extended,
1157 * so the whole register == const_zero
1159 __mark_reg_const_zero(&state
->regs
[value_regno
]);
1161 /* have read misc data from the stack */
1162 mark_reg_unknown(env
, state
->regs
, value_regno
);
1164 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1170 /* check read/write into map element returned by bpf_map_lookup_elem() */
1171 static int __check_map_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1172 int size
, bool zero_size_allowed
)
1174 struct bpf_reg_state
*regs
= cur_regs(env
);
1175 struct bpf_map
*map
= regs
[regno
].map_ptr
;
1177 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1178 off
+ size
> map
->value_size
) {
1179 verbose(env
, "invalid access to map value, value_size=%d off=%d size=%d\n",
1180 map
->value_size
, off
, size
);
1186 /* check read/write into a map element with possible variable offset */
1187 static int check_map_access(struct bpf_verifier_env
*env
, u32 regno
,
1188 int off
, int size
, bool zero_size_allowed
)
1190 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1191 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1192 struct bpf_reg_state
*reg
= &state
->regs
[regno
];
1195 /* We may have adjusted the register to this map value, so we
1196 * need to try adding each of min_value and max_value to off
1197 * to make sure our theoretical access will be safe.
1200 print_verifier_state(env
, state
);
1201 /* The minimum value is only important with signed
1202 * comparisons where we can't assume the floor of a
1203 * value is 0. If we are using signed variables for our
1204 * index'es we need to make sure that whatever we use
1205 * will have a set floor within our range.
1207 if (reg
->smin_value
< 0) {
1208 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1212 err
= __check_map_access(env
, regno
, reg
->smin_value
+ off
, size
,
1215 verbose(env
, "R%d min value is outside of the array range\n",
1220 /* If we haven't set a max value then we need to bail since we can't be
1221 * sure we won't do bad things.
1222 * If reg->umax_value + off could overflow, treat that as unbounded too.
1224 if (reg
->umax_value
>= BPF_MAX_VAR_OFF
) {
1225 verbose(env
, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1229 err
= __check_map_access(env
, regno
, reg
->umax_value
+ off
, size
,
1232 verbose(env
, "R%d max value is outside of the array range\n",
1237 #define MAX_PACKET_OFF 0xffff
1239 static bool may_access_direct_pkt_data(struct bpf_verifier_env
*env
,
1240 const struct bpf_call_arg_meta
*meta
,
1241 enum bpf_access_type t
)
1243 switch (env
->prog
->type
) {
1244 case BPF_PROG_TYPE_LWT_IN
:
1245 case BPF_PROG_TYPE_LWT_OUT
:
1246 /* dst_input() and dst_output() can't write for now */
1250 case BPF_PROG_TYPE_SCHED_CLS
:
1251 case BPF_PROG_TYPE_SCHED_ACT
:
1252 case BPF_PROG_TYPE_XDP
:
1253 case BPF_PROG_TYPE_LWT_XMIT
:
1254 case BPF_PROG_TYPE_SK_SKB
:
1256 return meta
->pkt_access
;
1258 env
->seen_direct_write
= true;
1265 static int __check_packet_access(struct bpf_verifier_env
*env
, u32 regno
,
1266 int off
, int size
, bool zero_size_allowed
)
1268 struct bpf_reg_state
*regs
= cur_regs(env
);
1269 struct bpf_reg_state
*reg
= ®s
[regno
];
1271 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1272 (u64
)off
+ size
> reg
->range
) {
1273 verbose(env
, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1274 off
, size
, regno
, reg
->id
, reg
->off
, reg
->range
);
1280 static int check_packet_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1281 int size
, bool zero_size_allowed
)
1283 struct bpf_reg_state
*regs
= cur_regs(env
);
1284 struct bpf_reg_state
*reg
= ®s
[regno
];
1287 /* We may have added a variable offset to the packet pointer; but any
1288 * reg->range we have comes after that. We are only checking the fixed
1292 /* We don't allow negative numbers, because we aren't tracking enough
1293 * detail to prove they're safe.
1295 if (reg
->smin_value
< 0) {
1296 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1300 err
= __check_packet_access(env
, regno
, off
, size
, zero_size_allowed
);
1302 verbose(env
, "R%d offset is outside of the packet\n", regno
);
1308 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1309 static int check_ctx_access(struct bpf_verifier_env
*env
, int insn_idx
, int off
, int size
,
1310 enum bpf_access_type t
, enum bpf_reg_type
*reg_type
)
1312 struct bpf_insn_access_aux info
= {
1313 .reg_type
= *reg_type
,
1316 if (env
->ops
->is_valid_access
&&
1317 env
->ops
->is_valid_access(off
, size
, t
, &info
)) {
1318 /* A non zero info.ctx_field_size indicates that this field is a
1319 * candidate for later verifier transformation to load the whole
1320 * field and then apply a mask when accessed with a narrower
1321 * access than actual ctx access size. A zero info.ctx_field_size
1322 * will only allow for whole field access and rejects any other
1323 * type of narrower access.
1325 *reg_type
= info
.reg_type
;
1327 env
->insn_aux_data
[insn_idx
].ctx_field_size
= info
.ctx_field_size
;
1328 /* remember the offset of last byte accessed in ctx */
1329 if (env
->prog
->aux
->max_ctx_offset
< off
+ size
)
1330 env
->prog
->aux
->max_ctx_offset
= off
+ size
;
1334 verbose(env
, "invalid bpf_context access off=%d size=%d\n", off
, size
);
1338 static bool __is_pointer_value(bool allow_ptr_leaks
,
1339 const struct bpf_reg_state
*reg
)
1341 if (allow_ptr_leaks
)
1344 return reg
->type
!= SCALAR_VALUE
;
1347 static bool is_pointer_value(struct bpf_verifier_env
*env
, int regno
)
1349 return __is_pointer_value(env
->allow_ptr_leaks
, cur_regs(env
) + regno
);
1352 static bool is_ctx_reg(struct bpf_verifier_env
*env
, int regno
)
1354 const struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1356 return reg
->type
== PTR_TO_CTX
;
1359 static int check_pkt_ptr_alignment(struct bpf_verifier_env
*env
,
1360 const struct bpf_reg_state
*reg
,
1361 int off
, int size
, bool strict
)
1363 struct tnum reg_off
;
1366 /* Byte size accesses are always allowed. */
1367 if (!strict
|| size
== 1)
1370 /* For platforms that do not have a Kconfig enabling
1371 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1372 * NET_IP_ALIGN is universally set to '2'. And on platforms
1373 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1374 * to this code only in strict mode where we want to emulate
1375 * the NET_IP_ALIGN==2 checking. Therefore use an
1376 * unconditional IP align value of '2'.
1380 reg_off
= tnum_add(reg
->var_off
, tnum_const(ip_align
+ reg
->off
+ off
));
1381 if (!tnum_is_aligned(reg_off
, size
)) {
1384 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1386 "misaligned packet access off %d+%s+%d+%d size %d\n",
1387 ip_align
, tn_buf
, reg
->off
, off
, size
);
1394 static int check_generic_ptr_alignment(struct bpf_verifier_env
*env
,
1395 const struct bpf_reg_state
*reg
,
1396 const char *pointer_desc
,
1397 int off
, int size
, bool strict
)
1399 struct tnum reg_off
;
1401 /* Byte size accesses are always allowed. */
1402 if (!strict
|| size
== 1)
1405 reg_off
= tnum_add(reg
->var_off
, tnum_const(reg
->off
+ off
));
1406 if (!tnum_is_aligned(reg_off
, size
)) {
1409 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1410 verbose(env
, "misaligned %saccess off %s+%d+%d size %d\n",
1411 pointer_desc
, tn_buf
, reg
->off
, off
, size
);
1418 static int check_ptr_alignment(struct bpf_verifier_env
*env
,
1419 const struct bpf_reg_state
*reg
,
1422 bool strict
= env
->strict_alignment
;
1423 const char *pointer_desc
= "";
1425 switch (reg
->type
) {
1427 case PTR_TO_PACKET_META
:
1428 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1429 * right in front, treat it the very same way.
1431 return check_pkt_ptr_alignment(env
, reg
, off
, size
, strict
);
1432 case PTR_TO_MAP_VALUE
:
1433 pointer_desc
= "value ";
1436 pointer_desc
= "context ";
1439 pointer_desc
= "stack ";
1440 /* The stack spill tracking logic in check_stack_write()
1441 * and check_stack_read() relies on stack accesses being
1449 return check_generic_ptr_alignment(env
, reg
, pointer_desc
, off
, size
,
1453 static int update_stack_depth(struct bpf_verifier_env
*env
,
1454 const struct bpf_func_state
*func
,
1457 u16 stack
= env
->subprog_stack_depth
[func
->subprogno
];
1462 /* update known max for given subprogram */
1463 env
->subprog_stack_depth
[func
->subprogno
] = -off
;
1467 /* starting from main bpf function walk all instructions of the function
1468 * and recursively walk all callees that given function can call.
1469 * Ignore jump and exit insns.
1470 * Since recursion is prevented by check_cfg() this algorithm
1471 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1473 static int check_max_stack_depth(struct bpf_verifier_env
*env
)
1475 int depth
= 0, frame
= 0, subprog
= 0, i
= 0, subprog_end
;
1476 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1477 int insn_cnt
= env
->prog
->len
;
1478 int ret_insn
[MAX_CALL_FRAMES
];
1479 int ret_prog
[MAX_CALL_FRAMES
];
1482 /* round up to 32-bytes, since this is granularity
1483 * of interpreter stack size
1485 depth
+= round_up(max_t(u32
, env
->subprog_stack_depth
[subprog
], 1), 32);
1486 if (depth
> MAX_BPF_STACK
) {
1487 verbose(env
, "combined stack size of %d calls is %d. Too large\n",
1492 if (env
->subprog_cnt
== subprog
)
1493 subprog_end
= insn_cnt
;
1495 subprog_end
= env
->subprog_starts
[subprog
];
1496 for (; i
< subprog_end
; i
++) {
1497 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
1499 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
1501 /* remember insn and function to return to */
1502 ret_insn
[frame
] = i
+ 1;
1503 ret_prog
[frame
] = subprog
;
1505 /* find the callee */
1506 i
= i
+ insn
[i
].imm
+ 1;
1507 subprog
= find_subprog(env
, i
);
1509 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1515 if (frame
>= MAX_CALL_FRAMES
) {
1516 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1521 /* end of for() loop means the last insn of the 'subprog'
1522 * was reached. Doesn't matter whether it was JA or EXIT
1526 depth
-= round_up(max_t(u32
, env
->subprog_stack_depth
[subprog
], 1), 32);
1528 i
= ret_insn
[frame
];
1529 subprog
= ret_prog
[frame
];
1533 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1534 static int get_callee_stack_depth(struct bpf_verifier_env
*env
,
1535 const struct bpf_insn
*insn
, int idx
)
1537 int start
= idx
+ insn
->imm
+ 1, subprog
;
1539 subprog
= find_subprog(env
, start
);
1541 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1546 return env
->subprog_stack_depth
[subprog
];
1550 /* truncate register to smaller size (in bytes)
1551 * must be called with size < BPF_REG_SIZE
1553 static void coerce_reg_to_size(struct bpf_reg_state
*reg
, int size
)
1557 /* clear high bits in bit representation */
1558 reg
->var_off
= tnum_cast(reg
->var_off
, size
);
1560 /* fix arithmetic bounds */
1561 mask
= ((u64
)1 << (size
* 8)) - 1;
1562 if ((reg
->umin_value
& ~mask
) == (reg
->umax_value
& ~mask
)) {
1563 reg
->umin_value
&= mask
;
1564 reg
->umax_value
&= mask
;
1566 reg
->umin_value
= 0;
1567 reg
->umax_value
= mask
;
1569 reg
->smin_value
= reg
->umin_value
;
1570 reg
->smax_value
= reg
->umax_value
;
1573 /* check whether memory at (regno + off) is accessible for t = (read | write)
1574 * if t==write, value_regno is a register which value is stored into memory
1575 * if t==read, value_regno is a register which will receive the value from memory
1576 * if t==write && value_regno==-1, some unknown value is stored into memory
1577 * if t==read && value_regno==-1, don't care what we read from memory
1579 static int check_mem_access(struct bpf_verifier_env
*env
, int insn_idx
, u32 regno
, int off
,
1580 int bpf_size
, enum bpf_access_type t
,
1583 struct bpf_reg_state
*regs
= cur_regs(env
);
1584 struct bpf_reg_state
*reg
= regs
+ regno
;
1585 struct bpf_func_state
*state
;
1588 size
= bpf_size_to_bytes(bpf_size
);
1592 /* alignment checks will add in reg->off themselves */
1593 err
= check_ptr_alignment(env
, reg
, off
, size
);
1597 /* for access checks, reg->off is just part of off */
1600 if (reg
->type
== PTR_TO_MAP_VALUE
) {
1601 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1602 is_pointer_value(env
, value_regno
)) {
1603 verbose(env
, "R%d leaks addr into map\n", value_regno
);
1607 err
= check_map_access(env
, regno
, off
, size
, false);
1608 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
1609 mark_reg_unknown(env
, regs
, value_regno
);
1611 } else if (reg
->type
== PTR_TO_CTX
) {
1612 enum bpf_reg_type reg_type
= SCALAR_VALUE
;
1614 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1615 is_pointer_value(env
, value_regno
)) {
1616 verbose(env
, "R%d leaks addr into ctx\n", value_regno
);
1619 /* ctx accesses must be at a fixed offset, so that we can
1620 * determine what type of data were returned.
1624 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1625 regno
, reg
->off
, off
- reg
->off
);
1628 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
1631 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1633 "variable ctx access var_off=%s off=%d size=%d",
1637 err
= check_ctx_access(env
, insn_idx
, off
, size
, t
, ®_type
);
1638 if (!err
&& t
== BPF_READ
&& value_regno
>= 0) {
1639 /* ctx access returns either a scalar, or a
1640 * PTR_TO_PACKET[_META,_END]. In the latter
1641 * case, we know the offset is zero.
1643 if (reg_type
== SCALAR_VALUE
)
1644 mark_reg_unknown(env
, regs
, value_regno
);
1646 mark_reg_known_zero(env
, regs
,
1648 regs
[value_regno
].id
= 0;
1649 regs
[value_regno
].off
= 0;
1650 regs
[value_regno
].range
= 0;
1651 regs
[value_regno
].type
= reg_type
;
1654 } else if (reg
->type
== PTR_TO_STACK
) {
1655 /* stack accesses must be at a fixed offset, so that we can
1656 * determine what type of data were returned.
1657 * See check_stack_read().
1659 if (!tnum_is_const(reg
->var_off
)) {
1662 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1663 verbose(env
, "variable stack access var_off=%s off=%d size=%d",
1667 off
+= reg
->var_off
.value
;
1668 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
1669 verbose(env
, "invalid stack off=%d size=%d\n", off
,
1674 state
= func(env
, reg
);
1675 err
= update_stack_depth(env
, state
, off
);
1680 err
= check_stack_write(env
, state
, off
, size
,
1683 err
= check_stack_read(env
, state
, off
, size
,
1685 } else if (reg_is_pkt_pointer(reg
)) {
1686 if (t
== BPF_WRITE
&& !may_access_direct_pkt_data(env
, NULL
, t
)) {
1687 verbose(env
, "cannot write into packet\n");
1690 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1691 is_pointer_value(env
, value_regno
)) {
1692 verbose(env
, "R%d leaks addr into packet\n",
1696 err
= check_packet_access(env
, regno
, off
, size
, false);
1697 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
1698 mark_reg_unknown(env
, regs
, value_regno
);
1700 verbose(env
, "R%d invalid mem access '%s'\n", regno
,
1701 reg_type_str
[reg
->type
]);
1705 if (!err
&& size
< BPF_REG_SIZE
&& value_regno
>= 0 && t
== BPF_READ
&&
1706 regs
[value_regno
].type
== SCALAR_VALUE
) {
1707 /* b/h/w load zero-extends, mark upper bits as known 0 */
1708 coerce_reg_to_size(®s
[value_regno
], size
);
1713 static int check_xadd(struct bpf_verifier_env
*env
, int insn_idx
, struct bpf_insn
*insn
)
1717 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
1719 verbose(env
, "BPF_XADD uses reserved fields\n");
1723 /* check src1 operand */
1724 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
1728 /* check src2 operand */
1729 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
1733 if (is_pointer_value(env
, insn
->src_reg
)) {
1734 verbose(env
, "R%d leaks addr into mem\n", insn
->src_reg
);
1738 if (is_ctx_reg(env
, insn
->dst_reg
)) {
1739 verbose(env
, "BPF_XADD stores into R%d context is not allowed\n",
1744 /* check whether atomic_add can read the memory */
1745 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
1746 BPF_SIZE(insn
->code
), BPF_READ
, -1);
1750 /* check whether atomic_add can write into the same memory */
1751 return check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
1752 BPF_SIZE(insn
->code
), BPF_WRITE
, -1);
1755 /* when register 'regno' is passed into function that will read 'access_size'
1756 * bytes from that pointer, make sure that it's within stack boundary
1757 * and all elements of stack are initialized.
1758 * Unlike most pointer bounds-checking functions, this one doesn't take an
1759 * 'off' argument, so it has to add in reg->off itself.
1761 static int check_stack_boundary(struct bpf_verifier_env
*env
, int regno
,
1762 int access_size
, bool zero_size_allowed
,
1763 struct bpf_call_arg_meta
*meta
)
1765 struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1766 struct bpf_func_state
*state
= func(env
, reg
);
1767 int off
, i
, slot
, spi
;
1769 if (reg
->type
!= PTR_TO_STACK
) {
1770 /* Allow zero-byte read from NULL, regardless of pointer type */
1771 if (zero_size_allowed
&& access_size
== 0 &&
1772 register_is_null(reg
))
1775 verbose(env
, "R%d type=%s expected=%s\n", regno
,
1776 reg_type_str
[reg
->type
],
1777 reg_type_str
[PTR_TO_STACK
]);
1781 /* Only allow fixed-offset stack reads */
1782 if (!tnum_is_const(reg
->var_off
)) {
1785 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1786 verbose(env
, "invalid variable stack read R%d var_off=%s\n",
1790 off
= reg
->off
+ reg
->var_off
.value
;
1791 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
1792 access_size
< 0 || (access_size
== 0 && !zero_size_allowed
)) {
1793 verbose(env
, "invalid stack type R%d off=%d access_size=%d\n",
1794 regno
, off
, access_size
);
1798 if (meta
&& meta
->raw_mode
) {
1799 meta
->access_size
= access_size
;
1800 meta
->regno
= regno
;
1804 for (i
= 0; i
< access_size
; i
++) {
1807 slot
= -(off
+ i
) - 1;
1808 spi
= slot
/ BPF_REG_SIZE
;
1809 if (state
->allocated_stack
<= slot
)
1811 stype
= &state
->stack
[spi
].slot_type
[slot
% BPF_REG_SIZE
];
1812 if (*stype
== STACK_MISC
)
1814 if (*stype
== STACK_ZERO
) {
1815 /* helper can write anything into the stack */
1816 *stype
= STACK_MISC
;
1820 verbose(env
, "invalid indirect read from stack off %d+%d size %d\n",
1821 off
, i
, access_size
);
1824 /* reading any byte out of 8-byte 'spill_slot' will cause
1825 * the whole slot to be marked as 'read'
1827 mark_stack_slot_read(env
, env
->cur_state
, env
->cur_state
->parent
,
1828 spi
, state
->frameno
);
1830 return update_stack_depth(env
, state
, off
);
1833 static int check_helper_mem_access(struct bpf_verifier_env
*env
, int regno
,
1834 int access_size
, bool zero_size_allowed
,
1835 struct bpf_call_arg_meta
*meta
)
1837 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
1839 switch (reg
->type
) {
1841 case PTR_TO_PACKET_META
:
1842 return check_packet_access(env
, regno
, reg
->off
, access_size
,
1844 case PTR_TO_MAP_VALUE
:
1845 return check_map_access(env
, regno
, reg
->off
, access_size
,
1847 default: /* scalar_value|ptr_to_stack or invalid ptr */
1848 return check_stack_boundary(env
, regno
, access_size
,
1849 zero_size_allowed
, meta
);
1853 static bool arg_type_is_mem_ptr(enum bpf_arg_type type
)
1855 return type
== ARG_PTR_TO_MEM
||
1856 type
== ARG_PTR_TO_MEM_OR_NULL
||
1857 type
== ARG_PTR_TO_UNINIT_MEM
;
1860 static bool arg_type_is_mem_size(enum bpf_arg_type type
)
1862 return type
== ARG_CONST_SIZE
||
1863 type
== ARG_CONST_SIZE_OR_ZERO
;
1866 static int check_func_arg(struct bpf_verifier_env
*env
, u32 regno
,
1867 enum bpf_arg_type arg_type
,
1868 struct bpf_call_arg_meta
*meta
)
1870 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
1871 enum bpf_reg_type expected_type
, type
= reg
->type
;
1874 if (arg_type
== ARG_DONTCARE
)
1877 err
= check_reg_arg(env
, regno
, SRC_OP
);
1881 if (arg_type
== ARG_ANYTHING
) {
1882 if (is_pointer_value(env
, regno
)) {
1883 verbose(env
, "R%d leaks addr into helper function\n",
1890 if (type_is_pkt_pointer(type
) &&
1891 !may_access_direct_pkt_data(env
, meta
, BPF_READ
)) {
1892 verbose(env
, "helper access to the packet is not allowed\n");
1896 if (arg_type
== ARG_PTR_TO_MAP_KEY
||
1897 arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1898 expected_type
= PTR_TO_STACK
;
1899 if (!type_is_pkt_pointer(type
) &&
1900 type
!= expected_type
)
1902 } else if (arg_type
== ARG_CONST_SIZE
||
1903 arg_type
== ARG_CONST_SIZE_OR_ZERO
) {
1904 expected_type
= SCALAR_VALUE
;
1905 if (type
!= expected_type
)
1907 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
1908 expected_type
= CONST_PTR_TO_MAP
;
1909 if (type
!= expected_type
)
1911 } else if (arg_type
== ARG_PTR_TO_CTX
) {
1912 expected_type
= PTR_TO_CTX
;
1913 if (type
!= expected_type
)
1915 } else if (arg_type_is_mem_ptr(arg_type
)) {
1916 expected_type
= PTR_TO_STACK
;
1917 /* One exception here. In case function allows for NULL to be
1918 * passed in as argument, it's a SCALAR_VALUE type. Final test
1919 * happens during stack boundary checking.
1921 if (register_is_null(reg
) &&
1922 arg_type
== ARG_PTR_TO_MEM_OR_NULL
)
1923 /* final test in check_stack_boundary() */;
1924 else if (!type_is_pkt_pointer(type
) &&
1925 type
!= PTR_TO_MAP_VALUE
&&
1926 type
!= expected_type
)
1928 meta
->raw_mode
= arg_type
== ARG_PTR_TO_UNINIT_MEM
;
1930 verbose(env
, "unsupported arg_type %d\n", arg_type
);
1934 if (arg_type
== ARG_CONST_MAP_PTR
) {
1935 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1936 meta
->map_ptr
= reg
->map_ptr
;
1937 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
1938 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1939 * check that [key, key + map->key_size) are within
1940 * stack limits and initialized
1942 if (!meta
->map_ptr
) {
1943 /* in function declaration map_ptr must come before
1944 * map_key, so that it's verified and known before
1945 * we have to check map_key here. Otherwise it means
1946 * that kernel subsystem misconfigured verifier
1948 verbose(env
, "invalid map_ptr to access map->key\n");
1951 if (type_is_pkt_pointer(type
))
1952 err
= check_packet_access(env
, regno
, reg
->off
,
1953 meta
->map_ptr
->key_size
,
1956 err
= check_stack_boundary(env
, regno
,
1957 meta
->map_ptr
->key_size
,
1959 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1960 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1961 * check [value, value + map->value_size) validity
1963 if (!meta
->map_ptr
) {
1964 /* kernel subsystem misconfigured verifier */
1965 verbose(env
, "invalid map_ptr to access map->value\n");
1968 if (type_is_pkt_pointer(type
))
1969 err
= check_packet_access(env
, regno
, reg
->off
,
1970 meta
->map_ptr
->value_size
,
1973 err
= check_stack_boundary(env
, regno
,
1974 meta
->map_ptr
->value_size
,
1976 } else if (arg_type_is_mem_size(arg_type
)) {
1977 bool zero_size_allowed
= (arg_type
== ARG_CONST_SIZE_OR_ZERO
);
1979 /* The register is SCALAR_VALUE; the access check
1980 * happens using its boundaries.
1982 if (!tnum_is_const(reg
->var_off
))
1983 /* For unprivileged variable accesses, disable raw
1984 * mode so that the program is required to
1985 * initialize all the memory that the helper could
1986 * just partially fill up.
1990 if (reg
->smin_value
< 0) {
1991 verbose(env
, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1996 if (reg
->umin_value
== 0) {
1997 err
= check_helper_mem_access(env
, regno
- 1, 0,
2004 if (reg
->umax_value
>= BPF_MAX_VAR_SIZ
) {
2005 verbose(env
, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2009 err
= check_helper_mem_access(env
, regno
- 1,
2011 zero_size_allowed
, meta
);
2016 verbose(env
, "R%d type=%s expected=%s\n", regno
,
2017 reg_type_str
[type
], reg_type_str
[expected_type
]);
2021 static int check_map_func_compatibility(struct bpf_verifier_env
*env
,
2022 struct bpf_map
*map
, int func_id
)
2027 /* We need a two way check, first is from map perspective ... */
2028 switch (map
->map_type
) {
2029 case BPF_MAP_TYPE_PROG_ARRAY
:
2030 if (func_id
!= BPF_FUNC_tail_call
)
2033 case BPF_MAP_TYPE_PERF_EVENT_ARRAY
:
2034 if (func_id
!= BPF_FUNC_perf_event_read
&&
2035 func_id
!= BPF_FUNC_perf_event_output
&&
2036 func_id
!= BPF_FUNC_perf_event_read_value
)
2039 case BPF_MAP_TYPE_STACK_TRACE
:
2040 if (func_id
!= BPF_FUNC_get_stackid
)
2043 case BPF_MAP_TYPE_CGROUP_ARRAY
:
2044 if (func_id
!= BPF_FUNC_skb_under_cgroup
&&
2045 func_id
!= BPF_FUNC_current_task_under_cgroup
)
2048 /* devmap returns a pointer to a live net_device ifindex that we cannot
2049 * allow to be modified from bpf side. So do not allow lookup elements
2052 case BPF_MAP_TYPE_DEVMAP
:
2053 if (func_id
!= BPF_FUNC_redirect_map
)
2056 /* Restrict bpf side of cpumap, open when use-cases appear */
2057 case BPF_MAP_TYPE_CPUMAP
:
2058 if (func_id
!= BPF_FUNC_redirect_map
)
2061 case BPF_MAP_TYPE_ARRAY_OF_MAPS
:
2062 case BPF_MAP_TYPE_HASH_OF_MAPS
:
2063 if (func_id
!= BPF_FUNC_map_lookup_elem
)
2066 case BPF_MAP_TYPE_SOCKMAP
:
2067 if (func_id
!= BPF_FUNC_sk_redirect_map
&&
2068 func_id
!= BPF_FUNC_sock_map_update
&&
2069 func_id
!= BPF_FUNC_map_delete_elem
)
2076 /* ... and second from the function itself. */
2078 case BPF_FUNC_tail_call
:
2079 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
2081 if (env
->subprog_cnt
) {
2082 verbose(env
, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2086 case BPF_FUNC_perf_event_read
:
2087 case BPF_FUNC_perf_event_output
:
2088 case BPF_FUNC_perf_event_read_value
:
2089 if (map
->map_type
!= BPF_MAP_TYPE_PERF_EVENT_ARRAY
)
2092 case BPF_FUNC_get_stackid
:
2093 if (map
->map_type
!= BPF_MAP_TYPE_STACK_TRACE
)
2096 case BPF_FUNC_current_task_under_cgroup
:
2097 case BPF_FUNC_skb_under_cgroup
:
2098 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_ARRAY
)
2101 case BPF_FUNC_redirect_map
:
2102 if (map
->map_type
!= BPF_MAP_TYPE_DEVMAP
&&
2103 map
->map_type
!= BPF_MAP_TYPE_CPUMAP
)
2106 case BPF_FUNC_sk_redirect_map
:
2107 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
2110 case BPF_FUNC_sock_map_update
:
2111 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
2120 verbose(env
, "cannot pass map_type %d into func %s#%d\n",
2121 map
->map_type
, func_id_name(func_id
), func_id
);
2125 static bool check_raw_mode_ok(const struct bpf_func_proto
*fn
)
2129 if (fn
->arg1_type
== ARG_PTR_TO_UNINIT_MEM
)
2131 if (fn
->arg2_type
== ARG_PTR_TO_UNINIT_MEM
)
2133 if (fn
->arg3_type
== ARG_PTR_TO_UNINIT_MEM
)
2135 if (fn
->arg4_type
== ARG_PTR_TO_UNINIT_MEM
)
2137 if (fn
->arg5_type
== ARG_PTR_TO_UNINIT_MEM
)
2140 /* We only support one arg being in raw mode at the moment,
2141 * which is sufficient for the helper functions we have
2147 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr
,
2148 enum bpf_arg_type arg_next
)
2150 return (arg_type_is_mem_ptr(arg_curr
) &&
2151 !arg_type_is_mem_size(arg_next
)) ||
2152 (!arg_type_is_mem_ptr(arg_curr
) &&
2153 arg_type_is_mem_size(arg_next
));
2156 static bool check_arg_pair_ok(const struct bpf_func_proto
*fn
)
2158 /* bpf_xxx(..., buf, len) call will access 'len'
2159 * bytes from memory 'buf'. Both arg types need
2160 * to be paired, so make sure there's no buggy
2161 * helper function specification.
2163 if (arg_type_is_mem_size(fn
->arg1_type
) ||
2164 arg_type_is_mem_ptr(fn
->arg5_type
) ||
2165 check_args_pair_invalid(fn
->arg1_type
, fn
->arg2_type
) ||
2166 check_args_pair_invalid(fn
->arg2_type
, fn
->arg3_type
) ||
2167 check_args_pair_invalid(fn
->arg3_type
, fn
->arg4_type
) ||
2168 check_args_pair_invalid(fn
->arg4_type
, fn
->arg5_type
))
2174 static int check_func_proto(const struct bpf_func_proto
*fn
)
2176 return check_raw_mode_ok(fn
) &&
2177 check_arg_pair_ok(fn
) ? 0 : -EINVAL
;
2180 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2181 * are now invalid, so turn them into unknown SCALAR_VALUE.
2183 static void __clear_all_pkt_pointers(struct bpf_verifier_env
*env
,
2184 struct bpf_func_state
*state
)
2186 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
2189 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2190 if (reg_is_pkt_pointer_any(®s
[i
]))
2191 mark_reg_unknown(env
, regs
, i
);
2193 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
2194 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
2196 reg
= &state
->stack
[i
].spilled_ptr
;
2197 if (reg_is_pkt_pointer_any(reg
))
2198 __mark_reg_unknown(reg
);
2202 static void clear_all_pkt_pointers(struct bpf_verifier_env
*env
)
2204 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2207 for (i
= 0; i
<= vstate
->curframe
; i
++)
2208 __clear_all_pkt_pointers(env
, vstate
->frame
[i
]);
2211 static int check_func_call(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
,
2214 struct bpf_verifier_state
*state
= env
->cur_state
;
2215 struct bpf_func_state
*caller
, *callee
;
2216 int i
, subprog
, target_insn
;
2218 if (state
->curframe
+ 1 >= MAX_CALL_FRAMES
) {
2219 verbose(env
, "the call stack of %d frames is too deep\n",
2220 state
->curframe
+ 2);
2224 target_insn
= *insn_idx
+ insn
->imm
;
2225 subprog
= find_subprog(env
, target_insn
+ 1);
2227 verbose(env
, "verifier bug. No program starts at insn %d\n",
2232 caller
= state
->frame
[state
->curframe
];
2233 if (state
->frame
[state
->curframe
+ 1]) {
2234 verbose(env
, "verifier bug. Frame %d already allocated\n",
2235 state
->curframe
+ 1);
2239 callee
= kzalloc(sizeof(*callee
), GFP_KERNEL
);
2242 state
->frame
[state
->curframe
+ 1] = callee
;
2244 /* callee cannot access r0, r6 - r9 for reading and has to write
2245 * into its own stack before reading from it.
2246 * callee can read/write into caller's stack
2248 init_func_state(env
, callee
,
2249 /* remember the callsite, it will be used by bpf_exit */
2250 *insn_idx
/* callsite */,
2251 state
->curframe
+ 1 /* frameno within this callchain */,
2252 subprog
+ 1 /* subprog number within this prog */);
2254 /* copy r1 - r5 args that callee can access */
2255 for (i
= BPF_REG_1
; i
<= BPF_REG_5
; i
++)
2256 callee
->regs
[i
] = caller
->regs
[i
];
2258 /* after the call regsiters r0 - r5 were scratched */
2259 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2260 mark_reg_not_init(env
, caller
->regs
, caller_saved
[i
]);
2261 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
2264 /* only increment it after check_reg_arg() finished */
2267 /* and go analyze first insn of the callee */
2268 *insn_idx
= target_insn
;
2270 if (env
->log
.level
) {
2271 verbose(env
, "caller:\n");
2272 print_verifier_state(env
, caller
);
2273 verbose(env
, "callee:\n");
2274 print_verifier_state(env
, callee
);
2279 static int prepare_func_exit(struct bpf_verifier_env
*env
, int *insn_idx
)
2281 struct bpf_verifier_state
*state
= env
->cur_state
;
2282 struct bpf_func_state
*caller
, *callee
;
2283 struct bpf_reg_state
*r0
;
2285 callee
= state
->frame
[state
->curframe
];
2286 r0
= &callee
->regs
[BPF_REG_0
];
2287 if (r0
->type
== PTR_TO_STACK
) {
2288 /* technically it's ok to return caller's stack pointer
2289 * (or caller's caller's pointer) back to the caller,
2290 * since these pointers are valid. Only current stack
2291 * pointer will be invalid as soon as function exits,
2292 * but let's be conservative
2294 verbose(env
, "cannot return stack pointer to the caller\n");
2299 caller
= state
->frame
[state
->curframe
];
2300 /* return to the caller whatever r0 had in the callee */
2301 caller
->regs
[BPF_REG_0
] = *r0
;
2303 *insn_idx
= callee
->callsite
+ 1;
2304 if (env
->log
.level
) {
2305 verbose(env
, "returning from callee:\n");
2306 print_verifier_state(env
, callee
);
2307 verbose(env
, "to caller at %d:\n", *insn_idx
);
2308 print_verifier_state(env
, caller
);
2310 /* clear everything in the callee */
2311 free_func_state(callee
);
2312 state
->frame
[state
->curframe
+ 1] = NULL
;
2316 static int check_helper_call(struct bpf_verifier_env
*env
, int func_id
, int insn_idx
)
2318 const struct bpf_func_proto
*fn
= NULL
;
2319 struct bpf_reg_state
*regs
;
2320 struct bpf_call_arg_meta meta
;
2324 /* find function prototype */
2325 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
2326 verbose(env
, "invalid func %s#%d\n", func_id_name(func_id
),
2331 if (env
->ops
->get_func_proto
)
2332 fn
= env
->ops
->get_func_proto(func_id
);
2334 verbose(env
, "unknown func %s#%d\n", func_id_name(func_id
),
2339 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2340 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
2341 verbose(env
, "cannot call GPL only function from proprietary program\n");
2345 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2346 changes_data
= bpf_helper_changes_pkt_data(fn
->func
);
2347 if (changes_data
&& fn
->arg1_type
!= ARG_PTR_TO_CTX
) {
2348 verbose(env
, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2349 func_id_name(func_id
), func_id
);
2353 memset(&meta
, 0, sizeof(meta
));
2354 meta
.pkt_access
= fn
->pkt_access
;
2356 err
= check_func_proto(fn
);
2358 verbose(env
, "kernel subsystem misconfigured func %s#%d\n",
2359 func_id_name(func_id
), func_id
);
2364 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &meta
);
2367 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &meta
);
2370 if (func_id
== BPF_FUNC_tail_call
) {
2371 if (meta
.map_ptr
== NULL
) {
2372 verbose(env
, "verifier bug\n");
2375 env
->insn_aux_data
[insn_idx
].map_ptr
= meta
.map_ptr
;
2377 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &meta
);
2380 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &meta
);
2383 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &meta
);
2387 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2388 * is inferred from register state.
2390 for (i
= 0; i
< meta
.access_size
; i
++) {
2391 err
= check_mem_access(env
, insn_idx
, meta
.regno
, i
, BPF_B
, BPF_WRITE
, -1);
2396 regs
= cur_regs(env
);
2397 /* reset caller saved regs */
2398 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2399 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
2400 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
2403 /* update return register (already marked as written above) */
2404 if (fn
->ret_type
== RET_INTEGER
) {
2405 /* sets type to SCALAR_VALUE */
2406 mark_reg_unknown(env
, regs
, BPF_REG_0
);
2407 } else if (fn
->ret_type
== RET_VOID
) {
2408 regs
[BPF_REG_0
].type
= NOT_INIT
;
2409 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
) {
2410 struct bpf_insn_aux_data
*insn_aux
;
2412 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
2413 /* There is no offset yet applied, variable or fixed */
2414 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
2415 regs
[BPF_REG_0
].off
= 0;
2416 /* remember map_ptr, so that check_map_access()
2417 * can check 'value_size' boundary of memory access
2418 * to map element returned from bpf_map_lookup_elem()
2420 if (meta
.map_ptr
== NULL
) {
2422 "kernel subsystem misconfigured verifier\n");
2425 regs
[BPF_REG_0
].map_ptr
= meta
.map_ptr
;
2426 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
2427 insn_aux
= &env
->insn_aux_data
[insn_idx
];
2428 if (!insn_aux
->map_ptr
)
2429 insn_aux
->map_ptr
= meta
.map_ptr
;
2430 else if (insn_aux
->map_ptr
!= meta
.map_ptr
)
2431 insn_aux
->map_ptr
= BPF_MAP_PTR_POISON
;
2433 verbose(env
, "unknown return type %d of func %s#%d\n",
2434 fn
->ret_type
, func_id_name(func_id
), func_id
);
2438 err
= check_map_func_compatibility(env
, meta
.map_ptr
, func_id
);
2443 clear_all_pkt_pointers(env
);
2447 static bool signed_add_overflows(s64 a
, s64 b
)
2449 /* Do the add in u64, where overflow is well-defined */
2450 s64 res
= (s64
)((u64
)a
+ (u64
)b
);
2457 static bool signed_sub_overflows(s64 a
, s64 b
)
2459 /* Do the sub in u64, where overflow is well-defined */
2460 s64 res
= (s64
)((u64
)a
- (u64
)b
);
2467 static bool check_reg_sane_offset(struct bpf_verifier_env
*env
,
2468 const struct bpf_reg_state
*reg
,
2469 enum bpf_reg_type type
)
2471 bool known
= tnum_is_const(reg
->var_off
);
2472 s64 val
= reg
->var_off
.value
;
2473 s64 smin
= reg
->smin_value
;
2475 if (known
&& (val
>= BPF_MAX_VAR_OFF
|| val
<= -BPF_MAX_VAR_OFF
)) {
2476 verbose(env
, "math between %s pointer and %lld is not allowed\n",
2477 reg_type_str
[type
], val
);
2481 if (reg
->off
>= BPF_MAX_VAR_OFF
|| reg
->off
<= -BPF_MAX_VAR_OFF
) {
2482 verbose(env
, "%s pointer offset %d is not allowed\n",
2483 reg_type_str
[type
], reg
->off
);
2487 if (smin
== S64_MIN
) {
2488 verbose(env
, "math between %s pointer and register with unbounded min value is not allowed\n",
2489 reg_type_str
[type
]);
2493 if (smin
>= BPF_MAX_VAR_OFF
|| smin
<= -BPF_MAX_VAR_OFF
) {
2494 verbose(env
, "value %lld makes %s pointer be out of bounds\n",
2495 smin
, reg_type_str
[type
]);
2502 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2503 * Caller should also handle BPF_MOV case separately.
2504 * If we return -EACCES, caller may want to try again treating pointer as a
2505 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2507 static int adjust_ptr_min_max_vals(struct bpf_verifier_env
*env
,
2508 struct bpf_insn
*insn
,
2509 const struct bpf_reg_state
*ptr_reg
,
2510 const struct bpf_reg_state
*off_reg
)
2512 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2513 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2514 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
;
2515 bool known
= tnum_is_const(off_reg
->var_off
);
2516 s64 smin_val
= off_reg
->smin_value
, smax_val
= off_reg
->smax_value
,
2517 smin_ptr
= ptr_reg
->smin_value
, smax_ptr
= ptr_reg
->smax_value
;
2518 u64 umin_val
= off_reg
->umin_value
, umax_val
= off_reg
->umax_value
,
2519 umin_ptr
= ptr_reg
->umin_value
, umax_ptr
= ptr_reg
->umax_value
;
2520 u8 opcode
= BPF_OP(insn
->code
);
2521 u32 dst
= insn
->dst_reg
;
2523 dst_reg
= ®s
[dst
];
2525 if ((known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
2526 smin_val
> smax_val
|| umin_val
> umax_val
) {
2527 /* Taint dst register if offset had invalid bounds derived from
2528 * e.g. dead branches.
2530 __mark_reg_unknown(dst_reg
);
2534 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
2535 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2537 "R%d 32-bit pointer arithmetic prohibited\n",
2542 if (ptr_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
2543 verbose(env
, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2547 if (ptr_reg
->type
== CONST_PTR_TO_MAP
) {
2548 verbose(env
, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2552 if (ptr_reg
->type
== PTR_TO_PACKET_END
) {
2553 verbose(env
, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2558 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2559 * The id may be overwritten later if we create a new variable offset.
2561 dst_reg
->type
= ptr_reg
->type
;
2562 dst_reg
->id
= ptr_reg
->id
;
2564 if (!check_reg_sane_offset(env
, off_reg
, ptr_reg
->type
) ||
2565 !check_reg_sane_offset(env
, ptr_reg
, ptr_reg
->type
))
2570 /* We can take a fixed offset as long as it doesn't overflow
2571 * the s32 'off' field
2573 if (known
&& (ptr_reg
->off
+ smin_val
==
2574 (s64
)(s32
)(ptr_reg
->off
+ smin_val
))) {
2575 /* pointer += K. Accumulate it into fixed offset */
2576 dst_reg
->smin_value
= smin_ptr
;
2577 dst_reg
->smax_value
= smax_ptr
;
2578 dst_reg
->umin_value
= umin_ptr
;
2579 dst_reg
->umax_value
= umax_ptr
;
2580 dst_reg
->var_off
= ptr_reg
->var_off
;
2581 dst_reg
->off
= ptr_reg
->off
+ smin_val
;
2582 dst_reg
->range
= ptr_reg
->range
;
2585 /* A new variable offset is created. Note that off_reg->off
2586 * == 0, since it's a scalar.
2587 * dst_reg gets the pointer type and since some positive
2588 * integer value was added to the pointer, give it a new 'id'
2589 * if it's a PTR_TO_PACKET.
2590 * this creates a new 'base' pointer, off_reg (variable) gets
2591 * added into the variable offset, and we copy the fixed offset
2594 if (signed_add_overflows(smin_ptr
, smin_val
) ||
2595 signed_add_overflows(smax_ptr
, smax_val
)) {
2596 dst_reg
->smin_value
= S64_MIN
;
2597 dst_reg
->smax_value
= S64_MAX
;
2599 dst_reg
->smin_value
= smin_ptr
+ smin_val
;
2600 dst_reg
->smax_value
= smax_ptr
+ smax_val
;
2602 if (umin_ptr
+ umin_val
< umin_ptr
||
2603 umax_ptr
+ umax_val
< umax_ptr
) {
2604 dst_reg
->umin_value
= 0;
2605 dst_reg
->umax_value
= U64_MAX
;
2607 dst_reg
->umin_value
= umin_ptr
+ umin_val
;
2608 dst_reg
->umax_value
= umax_ptr
+ umax_val
;
2610 dst_reg
->var_off
= tnum_add(ptr_reg
->var_off
, off_reg
->var_off
);
2611 dst_reg
->off
= ptr_reg
->off
;
2612 if (reg_is_pkt_pointer(ptr_reg
)) {
2613 dst_reg
->id
= ++env
->id_gen
;
2614 /* something was added to pkt_ptr, set range to zero */
2619 if (dst_reg
== off_reg
) {
2620 /* scalar -= pointer. Creates an unknown scalar */
2621 verbose(env
, "R%d tried to subtract pointer from scalar\n",
2625 /* We don't allow subtraction from FP, because (according to
2626 * test_verifier.c test "invalid fp arithmetic", JITs might not
2627 * be able to deal with it.
2629 if (ptr_reg
->type
== PTR_TO_STACK
) {
2630 verbose(env
, "R%d subtraction from stack pointer prohibited\n",
2634 if (known
&& (ptr_reg
->off
- smin_val
==
2635 (s64
)(s32
)(ptr_reg
->off
- smin_val
))) {
2636 /* pointer -= K. Subtract it from fixed offset */
2637 dst_reg
->smin_value
= smin_ptr
;
2638 dst_reg
->smax_value
= smax_ptr
;
2639 dst_reg
->umin_value
= umin_ptr
;
2640 dst_reg
->umax_value
= umax_ptr
;
2641 dst_reg
->var_off
= ptr_reg
->var_off
;
2642 dst_reg
->id
= ptr_reg
->id
;
2643 dst_reg
->off
= ptr_reg
->off
- smin_val
;
2644 dst_reg
->range
= ptr_reg
->range
;
2647 /* A new variable offset is created. If the subtrahend is known
2648 * nonnegative, then any reg->range we had before is still good.
2650 if (signed_sub_overflows(smin_ptr
, smax_val
) ||
2651 signed_sub_overflows(smax_ptr
, smin_val
)) {
2652 /* Overflow possible, we know nothing */
2653 dst_reg
->smin_value
= S64_MIN
;
2654 dst_reg
->smax_value
= S64_MAX
;
2656 dst_reg
->smin_value
= smin_ptr
- smax_val
;
2657 dst_reg
->smax_value
= smax_ptr
- smin_val
;
2659 if (umin_ptr
< umax_val
) {
2660 /* Overflow possible, we know nothing */
2661 dst_reg
->umin_value
= 0;
2662 dst_reg
->umax_value
= U64_MAX
;
2664 /* Cannot overflow (as long as bounds are consistent) */
2665 dst_reg
->umin_value
= umin_ptr
- umax_val
;
2666 dst_reg
->umax_value
= umax_ptr
- umin_val
;
2668 dst_reg
->var_off
= tnum_sub(ptr_reg
->var_off
, off_reg
->var_off
);
2669 dst_reg
->off
= ptr_reg
->off
;
2670 if (reg_is_pkt_pointer(ptr_reg
)) {
2671 dst_reg
->id
= ++env
->id_gen
;
2672 /* something was added to pkt_ptr, set range to zero */
2680 /* bitwise ops on pointers are troublesome, prohibit. */
2681 verbose(env
, "R%d bitwise operator %s on pointer prohibited\n",
2682 dst
, bpf_alu_string
[opcode
>> 4]);
2685 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2686 verbose(env
, "R%d pointer arithmetic with %s operator prohibited\n",
2687 dst
, bpf_alu_string
[opcode
>> 4]);
2691 if (!check_reg_sane_offset(env
, dst_reg
, ptr_reg
->type
))
2694 __update_reg_bounds(dst_reg
);
2695 __reg_deduce_bounds(dst_reg
);
2696 __reg_bound_offset(dst_reg
);
2700 /* WARNING: This function does calculations on 64-bit values, but the actual
2701 * execution may occur on 32-bit values. Therefore, things like bitshifts
2702 * need extra checks in the 32-bit case.
2704 static int adjust_scalar_min_max_vals(struct bpf_verifier_env
*env
,
2705 struct bpf_insn
*insn
,
2706 struct bpf_reg_state
*dst_reg
,
2707 struct bpf_reg_state src_reg
)
2709 struct bpf_reg_state
*regs
= cur_regs(env
);
2710 u8 opcode
= BPF_OP(insn
->code
);
2711 bool src_known
, dst_known
;
2712 s64 smin_val
, smax_val
;
2713 u64 umin_val
, umax_val
;
2714 u64 insn_bitness
= (BPF_CLASS(insn
->code
) == BPF_ALU64
) ? 64 : 32;
2716 smin_val
= src_reg
.smin_value
;
2717 smax_val
= src_reg
.smax_value
;
2718 umin_val
= src_reg
.umin_value
;
2719 umax_val
= src_reg
.umax_value
;
2720 src_known
= tnum_is_const(src_reg
.var_off
);
2721 dst_known
= tnum_is_const(dst_reg
->var_off
);
2723 if ((src_known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
2724 smin_val
> smax_val
|| umin_val
> umax_val
) {
2725 /* Taint dst register if offset had invalid bounds derived from
2726 * e.g. dead branches.
2728 __mark_reg_unknown(dst_reg
);
2733 opcode
!= BPF_ADD
&& opcode
!= BPF_SUB
&& opcode
!= BPF_AND
) {
2734 __mark_reg_unknown(dst_reg
);
2740 if (signed_add_overflows(dst_reg
->smin_value
, smin_val
) ||
2741 signed_add_overflows(dst_reg
->smax_value
, smax_val
)) {
2742 dst_reg
->smin_value
= S64_MIN
;
2743 dst_reg
->smax_value
= S64_MAX
;
2745 dst_reg
->smin_value
+= smin_val
;
2746 dst_reg
->smax_value
+= smax_val
;
2748 if (dst_reg
->umin_value
+ umin_val
< umin_val
||
2749 dst_reg
->umax_value
+ umax_val
< umax_val
) {
2750 dst_reg
->umin_value
= 0;
2751 dst_reg
->umax_value
= U64_MAX
;
2753 dst_reg
->umin_value
+= umin_val
;
2754 dst_reg
->umax_value
+= umax_val
;
2756 dst_reg
->var_off
= tnum_add(dst_reg
->var_off
, src_reg
.var_off
);
2759 if (signed_sub_overflows(dst_reg
->smin_value
, smax_val
) ||
2760 signed_sub_overflows(dst_reg
->smax_value
, smin_val
)) {
2761 /* Overflow possible, we know nothing */
2762 dst_reg
->smin_value
= S64_MIN
;
2763 dst_reg
->smax_value
= S64_MAX
;
2765 dst_reg
->smin_value
-= smax_val
;
2766 dst_reg
->smax_value
-= smin_val
;
2768 if (dst_reg
->umin_value
< umax_val
) {
2769 /* Overflow possible, we know nothing */
2770 dst_reg
->umin_value
= 0;
2771 dst_reg
->umax_value
= U64_MAX
;
2773 /* Cannot overflow (as long as bounds are consistent) */
2774 dst_reg
->umin_value
-= umax_val
;
2775 dst_reg
->umax_value
-= umin_val
;
2777 dst_reg
->var_off
= tnum_sub(dst_reg
->var_off
, src_reg
.var_off
);
2780 dst_reg
->var_off
= tnum_mul(dst_reg
->var_off
, src_reg
.var_off
);
2781 if (smin_val
< 0 || dst_reg
->smin_value
< 0) {
2782 /* Ain't nobody got time to multiply that sign */
2783 __mark_reg_unbounded(dst_reg
);
2784 __update_reg_bounds(dst_reg
);
2787 /* Both values are positive, so we can work with unsigned and
2788 * copy the result to signed (unless it exceeds S64_MAX).
2790 if (umax_val
> U32_MAX
|| dst_reg
->umax_value
> U32_MAX
) {
2791 /* Potential overflow, we know nothing */
2792 __mark_reg_unbounded(dst_reg
);
2793 /* (except what we can learn from the var_off) */
2794 __update_reg_bounds(dst_reg
);
2797 dst_reg
->umin_value
*= umin_val
;
2798 dst_reg
->umax_value
*= umax_val
;
2799 if (dst_reg
->umax_value
> S64_MAX
) {
2800 /* Overflow possible, we know nothing */
2801 dst_reg
->smin_value
= S64_MIN
;
2802 dst_reg
->smax_value
= S64_MAX
;
2804 dst_reg
->smin_value
= dst_reg
->umin_value
;
2805 dst_reg
->smax_value
= dst_reg
->umax_value
;
2809 if (src_known
&& dst_known
) {
2810 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
&
2811 src_reg
.var_off
.value
);
2814 /* We get our minimum from the var_off, since that's inherently
2815 * bitwise. Our maximum is the minimum of the operands' maxima.
2817 dst_reg
->var_off
= tnum_and(dst_reg
->var_off
, src_reg
.var_off
);
2818 dst_reg
->umin_value
= dst_reg
->var_off
.value
;
2819 dst_reg
->umax_value
= min(dst_reg
->umax_value
, umax_val
);
2820 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
2821 /* Lose signed bounds when ANDing negative numbers,
2822 * ain't nobody got time for that.
2824 dst_reg
->smin_value
= S64_MIN
;
2825 dst_reg
->smax_value
= S64_MAX
;
2827 /* ANDing two positives gives a positive, so safe to
2828 * cast result into s64.
2830 dst_reg
->smin_value
= dst_reg
->umin_value
;
2831 dst_reg
->smax_value
= dst_reg
->umax_value
;
2833 /* We may learn something more from the var_off */
2834 __update_reg_bounds(dst_reg
);
2837 if (src_known
&& dst_known
) {
2838 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
|
2839 src_reg
.var_off
.value
);
2842 /* We get our maximum from the var_off, and our minimum is the
2843 * maximum of the operands' minima
2845 dst_reg
->var_off
= tnum_or(dst_reg
->var_off
, src_reg
.var_off
);
2846 dst_reg
->umin_value
= max(dst_reg
->umin_value
, umin_val
);
2847 dst_reg
->umax_value
= dst_reg
->var_off
.value
|
2848 dst_reg
->var_off
.mask
;
2849 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
2850 /* Lose signed bounds when ORing negative numbers,
2851 * ain't nobody got time for that.
2853 dst_reg
->smin_value
= S64_MIN
;
2854 dst_reg
->smax_value
= S64_MAX
;
2856 /* ORing two positives gives a positive, so safe to
2857 * cast result into s64.
2859 dst_reg
->smin_value
= dst_reg
->umin_value
;
2860 dst_reg
->smax_value
= dst_reg
->umax_value
;
2862 /* We may learn something more from the var_off */
2863 __update_reg_bounds(dst_reg
);
2866 if (umax_val
>= insn_bitness
) {
2867 /* Shifts greater than 31 or 63 are undefined.
2868 * This includes shifts by a negative number.
2870 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2873 /* We lose all sign bit information (except what we can pick
2876 dst_reg
->smin_value
= S64_MIN
;
2877 dst_reg
->smax_value
= S64_MAX
;
2878 /* If we might shift our top bit out, then we know nothing */
2879 if (dst_reg
->umax_value
> 1ULL << (63 - umax_val
)) {
2880 dst_reg
->umin_value
= 0;
2881 dst_reg
->umax_value
= U64_MAX
;
2883 dst_reg
->umin_value
<<= umin_val
;
2884 dst_reg
->umax_value
<<= umax_val
;
2887 dst_reg
->var_off
= tnum_lshift(dst_reg
->var_off
, umin_val
);
2889 dst_reg
->var_off
= tnum_lshift(tnum_unknown
, umin_val
);
2890 /* We may learn something more from the var_off */
2891 __update_reg_bounds(dst_reg
);
2894 if (umax_val
>= insn_bitness
) {
2895 /* Shifts greater than 31 or 63 are undefined.
2896 * This includes shifts by a negative number.
2898 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2901 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2902 * be negative, then either:
2903 * 1) src_reg might be zero, so the sign bit of the result is
2904 * unknown, so we lose our signed bounds
2905 * 2) it's known negative, thus the unsigned bounds capture the
2907 * 3) the signed bounds cross zero, so they tell us nothing
2909 * If the value in dst_reg is known nonnegative, then again the
2910 * unsigned bounts capture the signed bounds.
2911 * Thus, in all cases it suffices to blow away our signed bounds
2912 * and rely on inferring new ones from the unsigned bounds and
2913 * var_off of the result.
2915 dst_reg
->smin_value
= S64_MIN
;
2916 dst_reg
->smax_value
= S64_MAX
;
2918 dst_reg
->var_off
= tnum_rshift(dst_reg
->var_off
,
2921 dst_reg
->var_off
= tnum_rshift(tnum_unknown
, umin_val
);
2922 dst_reg
->umin_value
>>= umax_val
;
2923 dst_reg
->umax_value
>>= umin_val
;
2924 /* We may learn something more from the var_off */
2925 __update_reg_bounds(dst_reg
);
2928 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2932 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
2933 /* 32-bit ALU ops are (32,32)->32 */
2934 coerce_reg_to_size(dst_reg
, 4);
2935 coerce_reg_to_size(&src_reg
, 4);
2938 __reg_deduce_bounds(dst_reg
);
2939 __reg_bound_offset(dst_reg
);
2943 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2946 static int adjust_reg_min_max_vals(struct bpf_verifier_env
*env
,
2947 struct bpf_insn
*insn
)
2949 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2950 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2951 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
, *src_reg
;
2952 struct bpf_reg_state
*ptr_reg
= NULL
, off_reg
= {0};
2953 u8 opcode
= BPF_OP(insn
->code
);
2955 dst_reg
= ®s
[insn
->dst_reg
];
2957 if (dst_reg
->type
!= SCALAR_VALUE
)
2959 if (BPF_SRC(insn
->code
) == BPF_X
) {
2960 src_reg
= ®s
[insn
->src_reg
];
2961 if (src_reg
->type
!= SCALAR_VALUE
) {
2962 if (dst_reg
->type
!= SCALAR_VALUE
) {
2963 /* Combining two pointers by any ALU op yields
2964 * an arbitrary scalar. Disallow all math except
2965 * pointer subtraction
2967 if (opcode
== BPF_SUB
){
2968 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2971 verbose(env
, "R%d pointer %s pointer prohibited\n",
2973 bpf_alu_string
[opcode
>> 4]);
2976 /* scalar += pointer
2977 * This is legal, but we have to reverse our
2978 * src/dest handling in computing the range
2980 return adjust_ptr_min_max_vals(env
, insn
,
2983 } else if (ptr_reg
) {
2984 /* pointer += scalar */
2985 return adjust_ptr_min_max_vals(env
, insn
,
2989 /* Pretend the src is a reg with a known value, since we only
2990 * need to be able to read from this state.
2992 off_reg
.type
= SCALAR_VALUE
;
2993 __mark_reg_known(&off_reg
, insn
->imm
);
2995 if (ptr_reg
) /* pointer += K */
2996 return adjust_ptr_min_max_vals(env
, insn
,
3000 /* Got here implies adding two SCALAR_VALUEs */
3001 if (WARN_ON_ONCE(ptr_reg
)) {
3002 print_verifier_state(env
, state
);
3003 verbose(env
, "verifier internal error: unexpected ptr_reg\n");
3006 if (WARN_ON(!src_reg
)) {
3007 print_verifier_state(env
, state
);
3008 verbose(env
, "verifier internal error: no src_reg\n");
3011 return adjust_scalar_min_max_vals(env
, insn
, dst_reg
, *src_reg
);
3014 /* check validity of 32-bit and 64-bit arithmetic operations */
3015 static int check_alu_op(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3017 struct bpf_reg_state
*regs
= cur_regs(env
);
3018 u8 opcode
= BPF_OP(insn
->code
);
3021 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
3022 if (opcode
== BPF_NEG
) {
3023 if (BPF_SRC(insn
->code
) != 0 ||
3024 insn
->src_reg
!= BPF_REG_0
||
3025 insn
->off
!= 0 || insn
->imm
!= 0) {
3026 verbose(env
, "BPF_NEG uses reserved fields\n");
3030 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
3031 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64) ||
3032 BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3033 verbose(env
, "BPF_END uses reserved fields\n");
3038 /* check src operand */
3039 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3043 if (is_pointer_value(env
, insn
->dst_reg
)) {
3044 verbose(env
, "R%d pointer arithmetic prohibited\n",
3049 /* check dest operand */
3050 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3054 } else if (opcode
== BPF_MOV
) {
3056 if (BPF_SRC(insn
->code
) == BPF_X
) {
3057 if (insn
->imm
!= 0 || insn
->off
!= 0) {
3058 verbose(env
, "BPF_MOV uses reserved fields\n");
3062 /* check src operand */
3063 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3067 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
3068 verbose(env
, "BPF_MOV uses reserved fields\n");
3073 /* check dest operand */
3074 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3078 if (BPF_SRC(insn
->code
) == BPF_X
) {
3079 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3081 * copy register state to dest reg
3083 regs
[insn
->dst_reg
] = regs
[insn
->src_reg
];
3084 regs
[insn
->dst_reg
].live
|= REG_LIVE_WRITTEN
;
3087 if (is_pointer_value(env
, insn
->src_reg
)) {
3089 "R%d partial copy of pointer\n",
3093 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3094 coerce_reg_to_size(®s
[insn
->dst_reg
], 4);
3098 * remember the value we stored into this reg
3100 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
3101 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3102 __mark_reg_known(regs
+ insn
->dst_reg
,
3105 __mark_reg_known(regs
+ insn
->dst_reg
,
3110 } else if (opcode
> BPF_END
) {
3111 verbose(env
, "invalid BPF_ALU opcode %x\n", opcode
);
3114 } else { /* all other ALU ops: and, sub, xor, add, ... */
3116 if (BPF_SRC(insn
->code
) == BPF_X
) {
3117 if (insn
->imm
!= 0 || insn
->off
!= 0) {
3118 verbose(env
, "BPF_ALU uses reserved fields\n");
3121 /* check src1 operand */
3122 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3126 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
3127 verbose(env
, "BPF_ALU uses reserved fields\n");
3132 /* check src2 operand */
3133 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3137 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
3138 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
3139 verbose(env
, "div by zero\n");
3143 if (opcode
== BPF_ARSH
&& BPF_CLASS(insn
->code
) != BPF_ALU64
) {
3144 verbose(env
, "BPF_ARSH not supported for 32 bit ALU\n");
3148 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
3149 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
3150 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
3152 if (insn
->imm
< 0 || insn
->imm
>= size
) {
3153 verbose(env
, "invalid shift %d\n", insn
->imm
);
3158 /* check dest operand */
3159 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
3163 return adjust_reg_min_max_vals(env
, insn
);
3169 static void find_good_pkt_pointers(struct bpf_verifier_state
*vstate
,
3170 struct bpf_reg_state
*dst_reg
,
3171 enum bpf_reg_type type
,
3172 bool range_right_open
)
3174 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3175 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
3179 if (dst_reg
->off
< 0 ||
3180 (dst_reg
->off
== 0 && range_right_open
))
3181 /* This doesn't give us any range */
3184 if (dst_reg
->umax_value
> MAX_PACKET_OFF
||
3185 dst_reg
->umax_value
+ dst_reg
->off
> MAX_PACKET_OFF
)
3186 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3187 * than pkt_end, but that's because it's also less than pkt.
3191 new_range
= dst_reg
->off
;
3192 if (range_right_open
)
3195 /* Examples for register markings:
3197 * pkt_data in dst register:
3201 * if (r2 > pkt_end) goto <handle exception>
3206 * if (r2 < pkt_end) goto <access okay>
3207 * <handle exception>
3210 * r2 == dst_reg, pkt_end == src_reg
3211 * r2=pkt(id=n,off=8,r=0)
3212 * r3=pkt(id=n,off=0,r=0)
3214 * pkt_data in src register:
3218 * if (pkt_end >= r2) goto <access okay>
3219 * <handle exception>
3223 * if (pkt_end <= r2) goto <handle exception>
3227 * pkt_end == dst_reg, r2 == src_reg
3228 * r2=pkt(id=n,off=8,r=0)
3229 * r3=pkt(id=n,off=0,r=0)
3231 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3232 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3233 * and [r3, r3 + 8-1) respectively is safe to access depending on
3237 /* If our ids match, then we must have the same max_value. And we
3238 * don't care about the other reg's fixed offset, since if it's too big
3239 * the range won't allow anything.
3240 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3242 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3243 if (regs
[i
].type
== type
&& regs
[i
].id
== dst_reg
->id
)
3244 /* keep the maximum range already checked */
3245 regs
[i
].range
= max(regs
[i
].range
, new_range
);
3247 for (j
= 0; j
<= vstate
->curframe
; j
++) {
3248 state
= vstate
->frame
[j
];
3249 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
3250 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
3252 reg
= &state
->stack
[i
].spilled_ptr
;
3253 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
3254 reg
->range
= max(reg
->range
, new_range
);
3259 /* Adjusts the register min/max values in the case that the dst_reg is the
3260 * variable register that we are working on, and src_reg is a constant or we're
3261 * simply doing a BPF_K check.
3262 * In JEQ/JNE cases we also adjust the var_off values.
3264 static void reg_set_min_max(struct bpf_reg_state
*true_reg
,
3265 struct bpf_reg_state
*false_reg
, u64 val
,
3268 /* If the dst_reg is a pointer, we can't learn anything about its
3269 * variable offset from the compare (unless src_reg were a pointer into
3270 * the same object, but we don't bother with that.
3271 * Since false_reg and true_reg have the same type by construction, we
3272 * only need to check one of them for pointerness.
3274 if (__is_pointer_value(false, false_reg
))
3279 /* If this is false then we know nothing Jon Snow, but if it is
3280 * true then we know for sure.
3282 __mark_reg_known(true_reg
, val
);
3285 /* If this is true we know nothing Jon Snow, but if it is false
3286 * we know the value for sure;
3288 __mark_reg_known(false_reg
, val
);
3291 false_reg
->umax_value
= min(false_reg
->umax_value
, val
);
3292 true_reg
->umin_value
= max(true_reg
->umin_value
, val
+ 1);
3295 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
);
3296 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
+ 1);
3299 false_reg
->umin_value
= max(false_reg
->umin_value
, val
);
3300 true_reg
->umax_value
= min(true_reg
->umax_value
, val
- 1);
3303 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
);
3304 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
- 1);
3307 false_reg
->umax_value
= min(false_reg
->umax_value
, val
- 1);
3308 true_reg
->umin_value
= max(true_reg
->umin_value
, val
);
3311 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
- 1);
3312 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
);
3315 false_reg
->umin_value
= max(false_reg
->umin_value
, val
+ 1);
3316 true_reg
->umax_value
= min(true_reg
->umax_value
, val
);
3319 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
+ 1);
3320 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
);
3326 __reg_deduce_bounds(false_reg
);
3327 __reg_deduce_bounds(true_reg
);
3328 /* We might have learned some bits from the bounds. */
3329 __reg_bound_offset(false_reg
);
3330 __reg_bound_offset(true_reg
);
3331 /* Intersecting with the old var_off might have improved our bounds
3332 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3333 * then new var_off is (0; 0x7f...fc) which improves our umax.
3335 __update_reg_bounds(false_reg
);
3336 __update_reg_bounds(true_reg
);
3339 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3342 static void reg_set_min_max_inv(struct bpf_reg_state
*true_reg
,
3343 struct bpf_reg_state
*false_reg
, u64 val
,
3346 if (__is_pointer_value(false, false_reg
))
3351 /* If this is false then we know nothing Jon Snow, but if it is
3352 * true then we know for sure.
3354 __mark_reg_known(true_reg
, val
);
3357 /* If this is true we know nothing Jon Snow, but if it is false
3358 * we know the value for sure;
3360 __mark_reg_known(false_reg
, val
);
3363 true_reg
->umax_value
= min(true_reg
->umax_value
, val
- 1);
3364 false_reg
->umin_value
= max(false_reg
->umin_value
, val
);
3367 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
- 1);
3368 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
);
3371 true_reg
->umin_value
= max(true_reg
->umin_value
, val
+ 1);
3372 false_reg
->umax_value
= min(false_reg
->umax_value
, val
);
3375 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
+ 1);
3376 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
);
3379 true_reg
->umax_value
= min(true_reg
->umax_value
, val
);
3380 false_reg
->umin_value
= max(false_reg
->umin_value
, val
+ 1);
3383 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
);
3384 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
+ 1);
3387 true_reg
->umin_value
= max(true_reg
->umin_value
, val
);
3388 false_reg
->umax_value
= min(false_reg
->umax_value
, val
- 1);
3391 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
);
3392 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
- 1);
3398 __reg_deduce_bounds(false_reg
);
3399 __reg_deduce_bounds(true_reg
);
3400 /* We might have learned some bits from the bounds. */
3401 __reg_bound_offset(false_reg
);
3402 __reg_bound_offset(true_reg
);
3403 /* Intersecting with the old var_off might have improved our bounds
3404 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3405 * then new var_off is (0; 0x7f...fc) which improves our umax.
3407 __update_reg_bounds(false_reg
);
3408 __update_reg_bounds(true_reg
);
3411 /* Regs are known to be equal, so intersect their min/max/var_off */
3412 static void __reg_combine_min_max(struct bpf_reg_state
*src_reg
,
3413 struct bpf_reg_state
*dst_reg
)
3415 src_reg
->umin_value
= dst_reg
->umin_value
= max(src_reg
->umin_value
,
3416 dst_reg
->umin_value
);
3417 src_reg
->umax_value
= dst_reg
->umax_value
= min(src_reg
->umax_value
,
3418 dst_reg
->umax_value
);
3419 src_reg
->smin_value
= dst_reg
->smin_value
= max(src_reg
->smin_value
,
3420 dst_reg
->smin_value
);
3421 src_reg
->smax_value
= dst_reg
->smax_value
= min(src_reg
->smax_value
,
3422 dst_reg
->smax_value
);
3423 src_reg
->var_off
= dst_reg
->var_off
= tnum_intersect(src_reg
->var_off
,
3425 /* We might have learned new bounds from the var_off. */
3426 __update_reg_bounds(src_reg
);
3427 __update_reg_bounds(dst_reg
);
3428 /* We might have learned something about the sign bit. */
3429 __reg_deduce_bounds(src_reg
);
3430 __reg_deduce_bounds(dst_reg
);
3431 /* We might have learned some bits from the bounds. */
3432 __reg_bound_offset(src_reg
);
3433 __reg_bound_offset(dst_reg
);
3434 /* Intersecting with the old var_off might have improved our bounds
3435 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3436 * then new var_off is (0; 0x7f...fc) which improves our umax.
3438 __update_reg_bounds(src_reg
);
3439 __update_reg_bounds(dst_reg
);
3442 static void reg_combine_min_max(struct bpf_reg_state
*true_src
,
3443 struct bpf_reg_state
*true_dst
,
3444 struct bpf_reg_state
*false_src
,
3445 struct bpf_reg_state
*false_dst
,
3450 __reg_combine_min_max(true_src
, true_dst
);
3453 __reg_combine_min_max(false_src
, false_dst
);
3458 static void mark_map_reg(struct bpf_reg_state
*regs
, u32 regno
, u32 id
,
3461 struct bpf_reg_state
*reg
= ®s
[regno
];
3463 if (reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
&& reg
->id
== id
) {
3464 /* Old offset (both fixed and variable parts) should
3465 * have been known-zero, because we don't allow pointer
3466 * arithmetic on pointers that might be NULL.
3468 if (WARN_ON_ONCE(reg
->smin_value
|| reg
->smax_value
||
3469 !tnum_equals_const(reg
->var_off
, 0) ||
3471 __mark_reg_known_zero(reg
);
3475 reg
->type
= SCALAR_VALUE
;
3476 } else if (reg
->map_ptr
->inner_map_meta
) {
3477 reg
->type
= CONST_PTR_TO_MAP
;
3478 reg
->map_ptr
= reg
->map_ptr
->inner_map_meta
;
3480 reg
->type
= PTR_TO_MAP_VALUE
;
3482 /* We don't need id from this point onwards anymore, thus we
3483 * should better reset it, so that state pruning has chances
3490 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3491 * be folded together at some point.
3493 static void mark_map_regs(struct bpf_verifier_state
*vstate
, u32 regno
,
3496 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3497 struct bpf_reg_state
*regs
= state
->regs
;
3498 u32 id
= regs
[regno
].id
;
3501 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3502 mark_map_reg(regs
, i
, id
, is_null
);
3504 for (j
= 0; j
<= vstate
->curframe
; j
++) {
3505 state
= vstate
->frame
[j
];
3506 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
3507 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
3509 mark_map_reg(&state
->stack
[i
].spilled_ptr
, 0, id
, is_null
);
3514 static bool try_match_pkt_pointers(const struct bpf_insn
*insn
,
3515 struct bpf_reg_state
*dst_reg
,
3516 struct bpf_reg_state
*src_reg
,
3517 struct bpf_verifier_state
*this_branch
,
3518 struct bpf_verifier_state
*other_branch
)
3520 if (BPF_SRC(insn
->code
) != BPF_X
)
3523 switch (BPF_OP(insn
->code
)) {
3525 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3526 src_reg
->type
== PTR_TO_PACKET_END
) ||
3527 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3528 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3529 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3530 find_good_pkt_pointers(this_branch
, dst_reg
,
3531 dst_reg
->type
, false);
3532 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3533 src_reg
->type
== PTR_TO_PACKET
) ||
3534 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3535 src_reg
->type
== PTR_TO_PACKET_META
)) {
3536 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3537 find_good_pkt_pointers(other_branch
, src_reg
,
3538 src_reg
->type
, true);
3544 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3545 src_reg
->type
== PTR_TO_PACKET_END
) ||
3546 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3547 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3548 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3549 find_good_pkt_pointers(other_branch
, dst_reg
,
3550 dst_reg
->type
, true);
3551 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3552 src_reg
->type
== PTR_TO_PACKET
) ||
3553 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3554 src_reg
->type
== PTR_TO_PACKET_META
)) {
3555 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3556 find_good_pkt_pointers(this_branch
, src_reg
,
3557 src_reg
->type
, false);
3563 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3564 src_reg
->type
== PTR_TO_PACKET_END
) ||
3565 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3566 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3567 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3568 find_good_pkt_pointers(this_branch
, dst_reg
,
3569 dst_reg
->type
, true);
3570 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3571 src_reg
->type
== PTR_TO_PACKET
) ||
3572 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3573 src_reg
->type
== PTR_TO_PACKET_META
)) {
3574 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3575 find_good_pkt_pointers(other_branch
, src_reg
,
3576 src_reg
->type
, false);
3582 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3583 src_reg
->type
== PTR_TO_PACKET_END
) ||
3584 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3585 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3586 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3587 find_good_pkt_pointers(other_branch
, dst_reg
,
3588 dst_reg
->type
, false);
3589 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3590 src_reg
->type
== PTR_TO_PACKET
) ||
3591 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3592 src_reg
->type
== PTR_TO_PACKET_META
)) {
3593 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3594 find_good_pkt_pointers(this_branch
, src_reg
,
3595 src_reg
->type
, true);
3607 static int check_cond_jmp_op(struct bpf_verifier_env
*env
,
3608 struct bpf_insn
*insn
, int *insn_idx
)
3610 struct bpf_verifier_state
*this_branch
= env
->cur_state
;
3611 struct bpf_verifier_state
*other_branch
;
3612 struct bpf_reg_state
*regs
= this_branch
->frame
[this_branch
->curframe
]->regs
;
3613 struct bpf_reg_state
*dst_reg
, *other_branch_regs
;
3614 u8 opcode
= BPF_OP(insn
->code
);
3617 if (opcode
> BPF_JSLE
) {
3618 verbose(env
, "invalid BPF_JMP opcode %x\n", opcode
);
3622 if (BPF_SRC(insn
->code
) == BPF_X
) {
3623 if (insn
->imm
!= 0) {
3624 verbose(env
, "BPF_JMP uses reserved fields\n");
3628 /* check src1 operand */
3629 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3633 if (is_pointer_value(env
, insn
->src_reg
)) {
3634 verbose(env
, "R%d pointer comparison prohibited\n",
3639 if (insn
->src_reg
!= BPF_REG_0
) {
3640 verbose(env
, "BPF_JMP uses reserved fields\n");
3645 /* check src2 operand */
3646 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3650 dst_reg
= ®s
[insn
->dst_reg
];
3652 /* detect if R == 0 where R was initialized to zero earlier */
3653 if (BPF_SRC(insn
->code
) == BPF_K
&&
3654 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
3655 dst_reg
->type
== SCALAR_VALUE
&&
3656 tnum_is_const(dst_reg
->var_off
)) {
3657 if ((opcode
== BPF_JEQ
&& dst_reg
->var_off
.value
== insn
->imm
) ||
3658 (opcode
== BPF_JNE
&& dst_reg
->var_off
.value
!= insn
->imm
)) {
3659 /* if (imm == imm) goto pc+off;
3660 * only follow the goto, ignore fall-through
3662 *insn_idx
+= insn
->off
;
3665 /* if (imm != imm) goto pc+off;
3666 * only follow fall-through branch, since
3667 * that's where the program will go
3673 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
);
3676 other_branch_regs
= other_branch
->frame
[other_branch
->curframe
]->regs
;
3678 /* detect if we are comparing against a constant value so we can adjust
3679 * our min/max values for our dst register.
3680 * this is only legit if both are scalars (or pointers to the same
3681 * object, I suppose, but we don't support that right now), because
3682 * otherwise the different base pointers mean the offsets aren't
3685 if (BPF_SRC(insn
->code
) == BPF_X
) {
3686 if (dst_reg
->type
== SCALAR_VALUE
&&
3687 regs
[insn
->src_reg
].type
== SCALAR_VALUE
) {
3688 if (tnum_is_const(regs
[insn
->src_reg
].var_off
))
3689 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
3690 dst_reg
, regs
[insn
->src_reg
].var_off
.value
,
3692 else if (tnum_is_const(dst_reg
->var_off
))
3693 reg_set_min_max_inv(&other_branch_regs
[insn
->src_reg
],
3694 ®s
[insn
->src_reg
],
3695 dst_reg
->var_off
.value
, opcode
);
3696 else if (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
)
3697 /* Comparing for equality, we can combine knowledge */
3698 reg_combine_min_max(&other_branch_regs
[insn
->src_reg
],
3699 &other_branch_regs
[insn
->dst_reg
],
3700 ®s
[insn
->src_reg
],
3701 ®s
[insn
->dst_reg
], opcode
);
3703 } else if (dst_reg
->type
== SCALAR_VALUE
) {
3704 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
3705 dst_reg
, insn
->imm
, opcode
);
3708 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3709 if (BPF_SRC(insn
->code
) == BPF_K
&&
3710 insn
->imm
== 0 && (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
3711 dst_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
3712 /* Mark all identical map registers in each branch as either
3713 * safe or unknown depending R == 0 or R != 0 conditional.
3715 mark_map_regs(this_branch
, insn
->dst_reg
, opcode
== BPF_JNE
);
3716 mark_map_regs(other_branch
, insn
->dst_reg
, opcode
== BPF_JEQ
);
3717 } else if (!try_match_pkt_pointers(insn
, dst_reg
, ®s
[insn
->src_reg
],
3718 this_branch
, other_branch
) &&
3719 is_pointer_value(env
, insn
->dst_reg
)) {
3720 verbose(env
, "R%d pointer comparison prohibited\n",
3725 print_verifier_state(env
, this_branch
->frame
[this_branch
->curframe
]);
3729 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3730 static struct bpf_map
*ld_imm64_to_map_ptr(struct bpf_insn
*insn
)
3732 u64 imm64
= ((u64
) (u32
) insn
[0].imm
) | ((u64
) (u32
) insn
[1].imm
) << 32;
3734 return (struct bpf_map
*) (unsigned long) imm64
;
3737 /* verify BPF_LD_IMM64 instruction */
3738 static int check_ld_imm(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3740 struct bpf_reg_state
*regs
= cur_regs(env
);
3743 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
3744 verbose(env
, "invalid BPF_LD_IMM insn\n");
3747 if (insn
->off
!= 0) {
3748 verbose(env
, "BPF_LD_IMM64 uses reserved fields\n");
3752 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3756 if (insn
->src_reg
== 0) {
3757 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
3759 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
3760 __mark_reg_known(®s
[insn
->dst_reg
], imm
);
3764 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3765 BUG_ON(insn
->src_reg
!= BPF_PSEUDO_MAP_FD
);
3767 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
3768 regs
[insn
->dst_reg
].map_ptr
= ld_imm64_to_map_ptr(insn
);
3772 static bool may_access_skb(enum bpf_prog_type type
)
3775 case BPF_PROG_TYPE_SOCKET_FILTER
:
3776 case BPF_PROG_TYPE_SCHED_CLS
:
3777 case BPF_PROG_TYPE_SCHED_ACT
:
3784 /* verify safety of LD_ABS|LD_IND instructions:
3785 * - they can only appear in the programs where ctx == skb
3786 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3787 * preserve R6-R9, and store return value into R0
3790 * ctx == skb == R6 == CTX
3793 * SRC == any register
3794 * IMM == 32-bit immediate
3797 * R0 - 8/16/32-bit skb data converted to cpu endianness
3799 static int check_ld_abs(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3801 struct bpf_reg_state
*regs
= cur_regs(env
);
3802 u8 mode
= BPF_MODE(insn
->code
);
3805 if (!may_access_skb(env
->prog
->type
)) {
3806 verbose(env
, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3810 if (env
->subprog_cnt
) {
3811 /* when program has LD_ABS insn JITs and interpreter assume
3812 * that r1 == ctx == skb which is not the case for callees
3813 * that can have arbitrary arguments. It's problematic
3814 * for main prog as well since JITs would need to analyze
3815 * all functions in order to make proper register save/restore
3816 * decisions in the main prog. Hence disallow LD_ABS with calls
3818 verbose(env
, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3822 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
3823 BPF_SIZE(insn
->code
) == BPF_DW
||
3824 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
3825 verbose(env
, "BPF_LD_[ABS|IND] uses reserved fields\n");
3829 /* check whether implicit source operand (register R6) is readable */
3830 err
= check_reg_arg(env
, BPF_REG_6
, SRC_OP
);
3834 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
3836 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3840 if (mode
== BPF_IND
) {
3841 /* check explicit source operand */
3842 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3847 /* reset caller saved regs to unreadable */
3848 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
3849 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
3850 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
3853 /* mark destination R0 register as readable, since it contains
3854 * the value fetched from the packet.
3855 * Already marked as written above.
3857 mark_reg_unknown(env
, regs
, BPF_REG_0
);
3861 static int check_return_code(struct bpf_verifier_env
*env
)
3863 struct bpf_reg_state
*reg
;
3864 struct tnum range
= tnum_range(0, 1);
3866 switch (env
->prog
->type
) {
3867 case BPF_PROG_TYPE_CGROUP_SKB
:
3868 case BPF_PROG_TYPE_CGROUP_SOCK
:
3869 case BPF_PROG_TYPE_SOCK_OPS
:
3870 case BPF_PROG_TYPE_CGROUP_DEVICE
:
3876 reg
= cur_regs(env
) + BPF_REG_0
;
3877 if (reg
->type
!= SCALAR_VALUE
) {
3878 verbose(env
, "At program exit the register R0 is not a known value (%s)\n",
3879 reg_type_str
[reg
->type
]);
3883 if (!tnum_in(range
, reg
->var_off
)) {
3884 verbose(env
, "At program exit the register R0 ");
3885 if (!tnum_is_unknown(reg
->var_off
)) {
3888 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
3889 verbose(env
, "has value %s", tn_buf
);
3891 verbose(env
, "has unknown scalar value");
3893 verbose(env
, " should have been 0 or 1\n");
3899 /* non-recursive DFS pseudo code
3900 * 1 procedure DFS-iterative(G,v):
3901 * 2 label v as discovered
3902 * 3 let S be a stack
3904 * 5 while S is not empty
3906 * 7 if t is what we're looking for:
3908 * 9 for all edges e in G.adjacentEdges(t) do
3909 * 10 if edge e is already labelled
3910 * 11 continue with the next edge
3911 * 12 w <- G.adjacentVertex(t,e)
3912 * 13 if vertex w is not discovered and not explored
3913 * 14 label e as tree-edge
3914 * 15 label w as discovered
3917 * 18 else if vertex w is discovered
3918 * 19 label e as back-edge
3920 * 21 // vertex w is explored
3921 * 22 label e as forward- or cross-edge
3922 * 23 label t as explored
3927 * 0x11 - discovered and fall-through edge labelled
3928 * 0x12 - discovered and fall-through and branch edges labelled
3939 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3941 static int *insn_stack
; /* stack of insns to process */
3942 static int cur_stack
; /* current stack index */
3943 static int *insn_state
;
3945 /* t, w, e - match pseudo-code above:
3946 * t - index of current instruction
3947 * w - next instruction
3950 static int push_insn(int t
, int w
, int e
, struct bpf_verifier_env
*env
)
3952 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
3955 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
3958 if (w
< 0 || w
>= env
->prog
->len
) {
3959 verbose(env
, "jump out of range from insn %d to %d\n", t
, w
);
3964 /* mark branch target for state pruning */
3965 env
->explored_states
[w
] = STATE_LIST_MARK
;
3967 if (insn_state
[w
] == 0) {
3969 insn_state
[t
] = DISCOVERED
| e
;
3970 insn_state
[w
] = DISCOVERED
;
3971 if (cur_stack
>= env
->prog
->len
)
3973 insn_stack
[cur_stack
++] = w
;
3975 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
3976 verbose(env
, "back-edge from insn %d to %d\n", t
, w
);
3978 } else if (insn_state
[w
] == EXPLORED
) {
3979 /* forward- or cross-edge */
3980 insn_state
[t
] = DISCOVERED
| e
;
3982 verbose(env
, "insn state internal bug\n");
3988 /* non-recursive depth-first-search to detect loops in BPF program
3989 * loop == back-edge in directed graph
3991 static int check_cfg(struct bpf_verifier_env
*env
)
3993 struct bpf_insn
*insns
= env
->prog
->insnsi
;
3994 int insn_cnt
= env
->prog
->len
;
3998 ret
= check_subprogs(env
);
4002 insn_state
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
4006 insn_stack
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
4012 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
4013 insn_stack
[0] = 0; /* 0 is the first instruction */
4019 t
= insn_stack
[cur_stack
- 1];
4021 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
) {
4022 u8 opcode
= BPF_OP(insns
[t
].code
);
4024 if (opcode
== BPF_EXIT
) {
4026 } else if (opcode
== BPF_CALL
) {
4027 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4032 if (t
+ 1 < insn_cnt
)
4033 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
4034 if (insns
[t
].src_reg
== BPF_PSEUDO_CALL
) {
4035 env
->explored_states
[t
] = STATE_LIST_MARK
;
4036 ret
= push_insn(t
, t
+ insns
[t
].imm
+ 1, BRANCH
, env
);
4042 } else if (opcode
== BPF_JA
) {
4043 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
4047 /* unconditional jump with single edge */
4048 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
4054 /* tell verifier to check for equivalent states
4055 * after every call and jump
4057 if (t
+ 1 < insn_cnt
)
4058 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
4060 /* conditional jump with two edges */
4061 env
->explored_states
[t
] = STATE_LIST_MARK
;
4062 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4068 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
);
4075 /* all other non-branch instructions with single
4078 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4086 insn_state
[t
] = EXPLORED
;
4087 if (cur_stack
-- <= 0) {
4088 verbose(env
, "pop stack internal bug\n");
4095 for (i
= 0; i
< insn_cnt
; i
++) {
4096 if (insn_state
[i
] != EXPLORED
) {
4097 verbose(env
, "unreachable insn %d\n", i
);
4102 ret
= 0; /* cfg looks good */
4110 /* check %cur's range satisfies %old's */
4111 static bool range_within(struct bpf_reg_state
*old
,
4112 struct bpf_reg_state
*cur
)
4114 return old
->umin_value
<= cur
->umin_value
&&
4115 old
->umax_value
>= cur
->umax_value
&&
4116 old
->smin_value
<= cur
->smin_value
&&
4117 old
->smax_value
>= cur
->smax_value
;
4120 /* Maximum number of register states that can exist at once */
4121 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4127 /* If in the old state two registers had the same id, then they need to have
4128 * the same id in the new state as well. But that id could be different from
4129 * the old state, so we need to track the mapping from old to new ids.
4130 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4131 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4132 * regs with a different old id could still have new id 9, we don't care about
4134 * So we look through our idmap to see if this old id has been seen before. If
4135 * so, we require the new id to match; otherwise, we add the id pair to the map.
4137 static bool check_ids(u32 old_id
, u32 cur_id
, struct idpair
*idmap
)
4141 for (i
= 0; i
< ID_MAP_SIZE
; i
++) {
4142 if (!idmap
[i
].old
) {
4143 /* Reached an empty slot; haven't seen this id before */
4144 idmap
[i
].old
= old_id
;
4145 idmap
[i
].cur
= cur_id
;
4148 if (idmap
[i
].old
== old_id
)
4149 return idmap
[i
].cur
== cur_id
;
4151 /* We ran out of idmap slots, which should be impossible */
4156 /* Returns true if (rold safe implies rcur safe) */
4157 static bool regsafe(struct bpf_reg_state
*rold
, struct bpf_reg_state
*rcur
,
4158 struct idpair
*idmap
)
4162 if (!(rold
->live
& REG_LIVE_READ
))
4163 /* explored state didn't use this */
4166 equal
= memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, frameno
)) == 0;
4168 if (rold
->type
== PTR_TO_STACK
)
4169 /* two stack pointers are equal only if they're pointing to
4170 * the same stack frame, since fp-8 in foo != fp-8 in bar
4172 return equal
&& rold
->frameno
== rcur
->frameno
;
4177 if (rold
->type
== NOT_INIT
)
4178 /* explored state can't have used this */
4180 if (rcur
->type
== NOT_INIT
)
4182 switch (rold
->type
) {
4184 if (rcur
->type
== SCALAR_VALUE
) {
4185 /* new val must satisfy old val knowledge */
4186 return range_within(rold
, rcur
) &&
4187 tnum_in(rold
->var_off
, rcur
->var_off
);
4189 /* We're trying to use a pointer in place of a scalar.
4190 * Even if the scalar was unbounded, this could lead to
4191 * pointer leaks because scalars are allowed to leak
4192 * while pointers are not. We could make this safe in
4193 * special cases if root is calling us, but it's
4194 * probably not worth the hassle.
4198 case PTR_TO_MAP_VALUE
:
4199 /* If the new min/max/var_off satisfy the old ones and
4200 * everything else matches, we are OK.
4201 * We don't care about the 'id' value, because nothing
4202 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4204 return memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)) == 0 &&
4205 range_within(rold
, rcur
) &&
4206 tnum_in(rold
->var_off
, rcur
->var_off
);
4207 case PTR_TO_MAP_VALUE_OR_NULL
:
4208 /* a PTR_TO_MAP_VALUE could be safe to use as a
4209 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4210 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4211 * checked, doing so could have affected others with the same
4212 * id, and we can't check for that because we lost the id when
4213 * we converted to a PTR_TO_MAP_VALUE.
4215 if (rcur
->type
!= PTR_TO_MAP_VALUE_OR_NULL
)
4217 if (memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)))
4219 /* Check our ids match any regs they're supposed to */
4220 return check_ids(rold
->id
, rcur
->id
, idmap
);
4221 case PTR_TO_PACKET_META
:
4223 if (rcur
->type
!= rold
->type
)
4225 /* We must have at least as much range as the old ptr
4226 * did, so that any accesses which were safe before are
4227 * still safe. This is true even if old range < old off,
4228 * since someone could have accessed through (ptr - k), or
4229 * even done ptr -= k in a register, to get a safe access.
4231 if (rold
->range
> rcur
->range
)
4233 /* If the offsets don't match, we can't trust our alignment;
4234 * nor can we be sure that we won't fall out of range.
4236 if (rold
->off
!= rcur
->off
)
4238 /* id relations must be preserved */
4239 if (rold
->id
&& !check_ids(rold
->id
, rcur
->id
, idmap
))
4241 /* new val must satisfy old val knowledge */
4242 return range_within(rold
, rcur
) &&
4243 tnum_in(rold
->var_off
, rcur
->var_off
);
4245 case CONST_PTR_TO_MAP
:
4246 case PTR_TO_PACKET_END
:
4247 /* Only valid matches are exact, which memcmp() above
4248 * would have accepted
4251 /* Don't know what's going on, just say it's not safe */
4255 /* Shouldn't get here; if we do, say it's not safe */
4260 static bool stacksafe(struct bpf_func_state
*old
,
4261 struct bpf_func_state
*cur
,
4262 struct idpair
*idmap
)
4266 /* if explored stack has more populated slots than current stack
4267 * such stacks are not equivalent
4269 if (old
->allocated_stack
> cur
->allocated_stack
)
4272 /* walk slots of the explored stack and ignore any additional
4273 * slots in the current stack, since explored(safe) state
4276 for (i
= 0; i
< old
->allocated_stack
; i
++) {
4277 spi
= i
/ BPF_REG_SIZE
;
4279 if (!(old
->stack
[spi
].spilled_ptr
.live
& REG_LIVE_READ
))
4280 /* explored state didn't use this */
4283 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_INVALID
)
4285 /* if old state was safe with misc data in the stack
4286 * it will be safe with zero-initialized stack.
4287 * The opposite is not true
4289 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_MISC
&&
4290 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_ZERO
)
4292 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] !=
4293 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
])
4294 /* Ex: old explored (safe) state has STACK_SPILL in
4295 * this stack slot, but current has has STACK_MISC ->
4296 * this verifier states are not equivalent,
4297 * return false to continue verification of this path
4300 if (i
% BPF_REG_SIZE
)
4302 if (old
->stack
[spi
].slot_type
[0] != STACK_SPILL
)
4304 if (!regsafe(&old
->stack
[spi
].spilled_ptr
,
4305 &cur
->stack
[spi
].spilled_ptr
,
4307 /* when explored and current stack slot are both storing
4308 * spilled registers, check that stored pointers types
4309 * are the same as well.
4310 * Ex: explored safe path could have stored
4311 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4312 * but current path has stored:
4313 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4314 * such verifier states are not equivalent.
4315 * return false to continue verification of this path
4322 /* compare two verifier states
4324 * all states stored in state_list are known to be valid, since
4325 * verifier reached 'bpf_exit' instruction through them
4327 * this function is called when verifier exploring different branches of
4328 * execution popped from the state stack. If it sees an old state that has
4329 * more strict register state and more strict stack state then this execution
4330 * branch doesn't need to be explored further, since verifier already
4331 * concluded that more strict state leads to valid finish.
4333 * Therefore two states are equivalent if register state is more conservative
4334 * and explored stack state is more conservative than the current one.
4337 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4338 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4340 * In other words if current stack state (one being explored) has more
4341 * valid slots than old one that already passed validation, it means
4342 * the verifier can stop exploring and conclude that current state is valid too
4344 * Similarly with registers. If explored state has register type as invalid
4345 * whereas register type in current state is meaningful, it means that
4346 * the current state will reach 'bpf_exit' instruction safely
4348 static bool func_states_equal(struct bpf_func_state
*old
,
4349 struct bpf_func_state
*cur
)
4351 struct idpair
*idmap
;
4355 idmap
= kcalloc(ID_MAP_SIZE
, sizeof(struct idpair
), GFP_KERNEL
);
4356 /* If we failed to allocate the idmap, just say it's not safe */
4360 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
4361 if (!regsafe(&old
->regs
[i
], &cur
->regs
[i
], idmap
))
4365 if (!stacksafe(old
, cur
, idmap
))
4373 static bool states_equal(struct bpf_verifier_env
*env
,
4374 struct bpf_verifier_state
*old
,
4375 struct bpf_verifier_state
*cur
)
4379 if (old
->curframe
!= cur
->curframe
)
4382 /* for states to be equal callsites have to be the same
4383 * and all frame states need to be equivalent
4385 for (i
= 0; i
<= old
->curframe
; i
++) {
4386 if (old
->frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
4388 if (!func_states_equal(old
->frame
[i
], cur
->frame
[i
]))
4394 /* A write screens off any subsequent reads; but write marks come from the
4395 * straight-line code between a state and its parent. When we arrive at an
4396 * equivalent state (jump target or such) we didn't arrive by the straight-line
4397 * code, so read marks in the state must propagate to the parent regardless
4398 * of the state's write marks. That's what 'parent == state->parent' comparison
4399 * in mark_reg_read() and mark_stack_slot_read() is for.
4401 static int propagate_liveness(struct bpf_verifier_env
*env
,
4402 const struct bpf_verifier_state
*vstate
,
4403 struct bpf_verifier_state
*vparent
)
4405 int i
, frame
, err
= 0;
4406 struct bpf_func_state
*state
, *parent
;
4408 if (vparent
->curframe
!= vstate
->curframe
) {
4409 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4410 vparent
->curframe
, vstate
->curframe
);
4413 /* Propagate read liveness of registers... */
4414 BUILD_BUG_ON(BPF_REG_FP
+ 1 != MAX_BPF_REG
);
4415 /* We don't need to worry about FP liveness because it's read-only */
4416 for (i
= 0; i
< BPF_REG_FP
; i
++) {
4417 if (vparent
->frame
[vparent
->curframe
]->regs
[i
].live
& REG_LIVE_READ
)
4419 if (vstate
->frame
[vstate
->curframe
]->regs
[i
].live
& REG_LIVE_READ
) {
4420 err
= mark_reg_read(env
, vstate
, vparent
, i
);
4426 /* ... and stack slots */
4427 for (frame
= 0; frame
<= vstate
->curframe
; frame
++) {
4428 state
= vstate
->frame
[frame
];
4429 parent
= vparent
->frame
[frame
];
4430 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
&&
4431 i
< parent
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
4432 if (parent
->stack
[i
].spilled_ptr
.live
& REG_LIVE_READ
)
4434 if (state
->stack
[i
].spilled_ptr
.live
& REG_LIVE_READ
)
4435 mark_stack_slot_read(env
, vstate
, vparent
, i
, frame
);
4441 static int is_state_visited(struct bpf_verifier_env
*env
, int insn_idx
)
4443 struct bpf_verifier_state_list
*new_sl
;
4444 struct bpf_verifier_state_list
*sl
;
4445 struct bpf_verifier_state
*cur
= env
->cur_state
;
4448 sl
= env
->explored_states
[insn_idx
];
4450 /* this 'insn_idx' instruction wasn't marked, so we will not
4451 * be doing state search here
4455 while (sl
!= STATE_LIST_MARK
) {
4456 if (states_equal(env
, &sl
->state
, cur
)) {
4457 /* reached equivalent register/stack state,
4459 * Registers read by the continuation are read by us.
4460 * If we have any write marks in env->cur_state, they
4461 * will prevent corresponding reads in the continuation
4462 * from reaching our parent (an explored_state). Our
4463 * own state will get the read marks recorded, but
4464 * they'll be immediately forgotten as we're pruning
4465 * this state and will pop a new one.
4467 err
= propagate_liveness(env
, &sl
->state
, cur
);
4475 /* there were no equivalent states, remember current one.
4476 * technically the current state is not proven to be safe yet,
4477 * but it will either reach outer most bpf_exit (which means it's safe)
4478 * or it will be rejected. Since there are no loops, we won't be
4479 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4480 * again on the way to bpf_exit
4482 new_sl
= kzalloc(sizeof(struct bpf_verifier_state_list
), GFP_KERNEL
);
4486 /* add new state to the head of linked list */
4487 err
= copy_verifier_state(&new_sl
->state
, cur
);
4489 free_verifier_state(&new_sl
->state
, false);
4493 new_sl
->next
= env
->explored_states
[insn_idx
];
4494 env
->explored_states
[insn_idx
] = new_sl
;
4495 /* connect new state to parentage chain */
4496 cur
->parent
= &new_sl
->state
;
4497 /* clear write marks in current state: the writes we did are not writes
4498 * our child did, so they don't screen off its reads from us.
4499 * (There are no read marks in current state, because reads always mark
4500 * their parent and current state never has children yet. Only
4501 * explored_states can get read marks.)
4503 for (i
= 0; i
< BPF_REG_FP
; i
++)
4504 cur
->frame
[cur
->curframe
]->regs
[i
].live
= REG_LIVE_NONE
;
4506 /* all stack frames are accessible from callee, clear them all */
4507 for (j
= 0; j
<= cur
->curframe
; j
++) {
4508 struct bpf_func_state
*frame
= cur
->frame
[j
];
4510 for (i
= 0; i
< frame
->allocated_stack
/ BPF_REG_SIZE
; i
++)
4511 frame
->stack
[i
].spilled_ptr
.live
= REG_LIVE_NONE
;
4516 static int do_check(struct bpf_verifier_env
*env
)
4518 struct bpf_verifier_state
*state
;
4519 struct bpf_insn
*insns
= env
->prog
->insnsi
;
4520 struct bpf_reg_state
*regs
;
4521 int insn_cnt
= env
->prog
->len
, i
;
4522 int insn_idx
, prev_insn_idx
= 0;
4523 int insn_processed
= 0;
4524 bool do_print_state
= false;
4526 state
= kzalloc(sizeof(struct bpf_verifier_state
), GFP_KERNEL
);
4529 state
->curframe
= 0;
4530 state
->parent
= NULL
;
4531 state
->frame
[0] = kzalloc(sizeof(struct bpf_func_state
), GFP_KERNEL
);
4532 if (!state
->frame
[0]) {
4536 env
->cur_state
= state
;
4537 init_func_state(env
, state
->frame
[0],
4538 BPF_MAIN_FUNC
/* callsite */,
4540 0 /* subprogno, zero == main subprog */);
4543 struct bpf_insn
*insn
;
4547 if (insn_idx
>= insn_cnt
) {
4548 verbose(env
, "invalid insn idx %d insn_cnt %d\n",
4549 insn_idx
, insn_cnt
);
4553 insn
= &insns
[insn_idx
];
4554 class = BPF_CLASS(insn
->code
);
4556 if (++insn_processed
> BPF_COMPLEXITY_LIMIT_INSNS
) {
4558 "BPF program is too large. Processed %d insn\n",
4563 err
= is_state_visited(env
, insn_idx
);
4567 /* found equivalent state, can prune the search */
4568 if (env
->log
.level
) {
4570 verbose(env
, "\nfrom %d to %d: safe\n",
4571 prev_insn_idx
, insn_idx
);
4573 verbose(env
, "%d: safe\n", insn_idx
);
4575 goto process_bpf_exit
;
4581 if (env
->log
.level
> 1 || (env
->log
.level
&& do_print_state
)) {
4582 if (env
->log
.level
> 1)
4583 verbose(env
, "%d:", insn_idx
);
4585 verbose(env
, "\nfrom %d to %d:",
4586 prev_insn_idx
, insn_idx
);
4587 print_verifier_state(env
, state
->frame
[state
->curframe
]);
4588 do_print_state
= false;
4591 if (env
->log
.level
) {
4592 const struct bpf_insn_cbs cbs
= {
4593 .cb_print
= verbose
,
4596 verbose(env
, "%d: ", insn_idx
);
4597 print_bpf_insn(&cbs
, env
, insn
, env
->allow_ptr_leaks
);
4600 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
4601 err
= bpf_prog_offload_verify_insn(env
, insn_idx
,
4607 regs
= cur_regs(env
);
4608 env
->insn_aux_data
[insn_idx
].seen
= true;
4609 if (class == BPF_ALU
|| class == BPF_ALU64
) {
4610 err
= check_alu_op(env
, insn
);
4614 } else if (class == BPF_LDX
) {
4615 enum bpf_reg_type
*prev_src_type
, src_reg_type
;
4617 /* check for reserved fields is already done */
4619 /* check src operand */
4620 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4624 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
4628 src_reg_type
= regs
[insn
->src_reg
].type
;
4630 /* check that memory (src_reg + off) is readable,
4631 * the state of dst_reg will be updated by this func
4633 err
= check_mem_access(env
, insn_idx
, insn
->src_reg
, insn
->off
,
4634 BPF_SIZE(insn
->code
), BPF_READ
,
4639 prev_src_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
4641 if (*prev_src_type
== NOT_INIT
) {
4643 * dst_reg = *(u32 *)(src_reg + off)
4644 * save type to validate intersecting paths
4646 *prev_src_type
= src_reg_type
;
4648 } else if (src_reg_type
!= *prev_src_type
&&
4649 (src_reg_type
== PTR_TO_CTX
||
4650 *prev_src_type
== PTR_TO_CTX
)) {
4651 /* ABuser program is trying to use the same insn
4652 * dst_reg = *(u32*) (src_reg + off)
4653 * with different pointer types:
4654 * src_reg == ctx in one branch and
4655 * src_reg == stack|map in some other branch.
4658 verbose(env
, "same insn cannot be used with different pointers\n");
4662 } else if (class == BPF_STX
) {
4663 enum bpf_reg_type
*prev_dst_type
, dst_reg_type
;
4665 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
4666 err
= check_xadd(env
, insn_idx
, insn
);
4673 /* check src1 operand */
4674 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4677 /* check src2 operand */
4678 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4682 dst_reg_type
= regs
[insn
->dst_reg
].type
;
4684 /* check that memory (dst_reg + off) is writeable */
4685 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
4686 BPF_SIZE(insn
->code
), BPF_WRITE
,
4691 prev_dst_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
4693 if (*prev_dst_type
== NOT_INIT
) {
4694 *prev_dst_type
= dst_reg_type
;
4695 } else if (dst_reg_type
!= *prev_dst_type
&&
4696 (dst_reg_type
== PTR_TO_CTX
||
4697 *prev_dst_type
== PTR_TO_CTX
)) {
4698 verbose(env
, "same insn cannot be used with different pointers\n");
4702 } else if (class == BPF_ST
) {
4703 if (BPF_MODE(insn
->code
) != BPF_MEM
||
4704 insn
->src_reg
!= BPF_REG_0
) {
4705 verbose(env
, "BPF_ST uses reserved fields\n");
4708 /* check src operand */
4709 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4713 if (is_ctx_reg(env
, insn
->dst_reg
)) {
4714 verbose(env
, "BPF_ST stores into R%d context is not allowed\n",
4719 /* check that memory (dst_reg + off) is writeable */
4720 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
4721 BPF_SIZE(insn
->code
), BPF_WRITE
,
4726 } else if (class == BPF_JMP
) {
4727 u8 opcode
= BPF_OP(insn
->code
);
4729 if (opcode
== BPF_CALL
) {
4730 if (BPF_SRC(insn
->code
) != BPF_K
||
4732 (insn
->src_reg
!= BPF_REG_0
&&
4733 insn
->src_reg
!= BPF_PSEUDO_CALL
) ||
4734 insn
->dst_reg
!= BPF_REG_0
) {
4735 verbose(env
, "BPF_CALL uses reserved fields\n");
4739 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
4740 err
= check_func_call(env
, insn
, &insn_idx
);
4742 err
= check_helper_call(env
, insn
->imm
, insn_idx
);
4746 } else if (opcode
== BPF_JA
) {
4747 if (BPF_SRC(insn
->code
) != BPF_K
||
4749 insn
->src_reg
!= BPF_REG_0
||
4750 insn
->dst_reg
!= BPF_REG_0
) {
4751 verbose(env
, "BPF_JA uses reserved fields\n");
4755 insn_idx
+= insn
->off
+ 1;
4758 } else if (opcode
== BPF_EXIT
) {
4759 if (BPF_SRC(insn
->code
) != BPF_K
||
4761 insn
->src_reg
!= BPF_REG_0
||
4762 insn
->dst_reg
!= BPF_REG_0
) {
4763 verbose(env
, "BPF_EXIT uses reserved fields\n");
4767 if (state
->curframe
) {
4768 /* exit from nested function */
4769 prev_insn_idx
= insn_idx
;
4770 err
= prepare_func_exit(env
, &insn_idx
);
4773 do_print_state
= true;
4777 /* eBPF calling convetion is such that R0 is used
4778 * to return the value from eBPF program.
4779 * Make sure that it's readable at this time
4780 * of bpf_exit, which means that program wrote
4781 * something into it earlier
4783 err
= check_reg_arg(env
, BPF_REG_0
, SRC_OP
);
4787 if (is_pointer_value(env
, BPF_REG_0
)) {
4788 verbose(env
, "R0 leaks addr as return value\n");
4792 err
= check_return_code(env
);
4796 err
= pop_stack(env
, &prev_insn_idx
, &insn_idx
);
4802 do_print_state
= true;
4806 err
= check_cond_jmp_op(env
, insn
, &insn_idx
);
4810 } else if (class == BPF_LD
) {
4811 u8 mode
= BPF_MODE(insn
->code
);
4813 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
4814 err
= check_ld_abs(env
, insn
);
4818 } else if (mode
== BPF_IMM
) {
4819 err
= check_ld_imm(env
, insn
);
4824 env
->insn_aux_data
[insn_idx
].seen
= true;
4826 verbose(env
, "invalid BPF_LD mode\n");
4830 verbose(env
, "unknown insn class %d\n", class);
4837 verbose(env
, "processed %d insns (limit %d), stack depth ",
4838 insn_processed
, BPF_COMPLEXITY_LIMIT_INSNS
);
4839 for (i
= 0; i
< env
->subprog_cnt
+ 1; i
++) {
4840 u32 depth
= env
->subprog_stack_depth
[i
];
4842 verbose(env
, "%d", depth
);
4843 if (i
+ 1 < env
->subprog_cnt
+ 1)
4847 env
->prog
->aux
->stack_depth
= env
->subprog_stack_depth
[0];
4851 static int check_map_prealloc(struct bpf_map
*map
)
4853 return (map
->map_type
!= BPF_MAP_TYPE_HASH
&&
4854 map
->map_type
!= BPF_MAP_TYPE_PERCPU_HASH
&&
4855 map
->map_type
!= BPF_MAP_TYPE_HASH_OF_MAPS
) ||
4856 !(map
->map_flags
& BPF_F_NO_PREALLOC
);
4859 static int check_map_prog_compatibility(struct bpf_verifier_env
*env
,
4860 struct bpf_map
*map
,
4861 struct bpf_prog
*prog
)
4864 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4865 * preallocated hash maps, since doing memory allocation
4866 * in overflow_handler can crash depending on where nmi got
4869 if (prog
->type
== BPF_PROG_TYPE_PERF_EVENT
) {
4870 if (!check_map_prealloc(map
)) {
4871 verbose(env
, "perf_event programs can only use preallocated hash map\n");
4874 if (map
->inner_map_meta
&&
4875 !check_map_prealloc(map
->inner_map_meta
)) {
4876 verbose(env
, "perf_event programs can only use preallocated inner hash map\n");
4881 if ((bpf_prog_is_dev_bound(prog
->aux
) || bpf_map_is_dev_bound(map
)) &&
4882 !bpf_offload_dev_match(prog
, map
)) {
4883 verbose(env
, "offload device mismatch between prog and map\n");
4890 /* look for pseudo eBPF instructions that access map FDs and
4891 * replace them with actual map pointers
4893 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env
*env
)
4895 struct bpf_insn
*insn
= env
->prog
->insnsi
;
4896 int insn_cnt
= env
->prog
->len
;
4899 err
= bpf_prog_calc_tag(env
->prog
);
4903 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
4904 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
4905 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
4906 verbose(env
, "BPF_LDX uses reserved fields\n");
4910 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
4911 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
4912 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
4913 verbose(env
, "BPF_STX uses reserved fields\n");
4917 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
4918 struct bpf_map
*map
;
4921 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
4922 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
4924 verbose(env
, "invalid bpf_ld_imm64 insn\n");
4928 if (insn
->src_reg
== 0)
4929 /* valid generic load 64-bit imm */
4932 if (insn
->src_reg
!= BPF_PSEUDO_MAP_FD
) {
4934 "unrecognized bpf_ld_imm64 insn\n");
4938 f
= fdget(insn
->imm
);
4939 map
= __bpf_map_get(f
);
4941 verbose(env
, "fd %d is not pointing to valid bpf_map\n",
4943 return PTR_ERR(map
);
4946 err
= check_map_prog_compatibility(env
, map
, env
->prog
);
4952 /* store map pointer inside BPF_LD_IMM64 instruction */
4953 insn
[0].imm
= (u32
) (unsigned long) map
;
4954 insn
[1].imm
= ((u64
) (unsigned long) map
) >> 32;
4956 /* check whether we recorded this map already */
4957 for (j
= 0; j
< env
->used_map_cnt
; j
++)
4958 if (env
->used_maps
[j
] == map
) {
4963 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
4968 /* hold the map. If the program is rejected by verifier,
4969 * the map will be released by release_maps() or it
4970 * will be used by the valid program until it's unloaded
4971 * and all maps are released in free_bpf_prog_info()
4973 map
= bpf_map_inc(map
, false);
4976 return PTR_ERR(map
);
4978 env
->used_maps
[env
->used_map_cnt
++] = map
;
4987 /* Basic sanity check before we invest more work here. */
4988 if (!bpf_opcode_in_insntable(insn
->code
)) {
4989 verbose(env
, "unknown opcode %02x\n", insn
->code
);
4994 /* now all pseudo BPF_LD_IMM64 instructions load valid
4995 * 'struct bpf_map *' into a register instead of user map_fd.
4996 * These pointers will be used later by verifier to validate map access.
5001 /* drop refcnt of maps used by the rejected program */
5002 static void release_maps(struct bpf_verifier_env
*env
)
5006 for (i
= 0; i
< env
->used_map_cnt
; i
++)
5007 bpf_map_put(env
->used_maps
[i
]);
5010 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5011 static void convert_pseudo_ld_imm64(struct bpf_verifier_env
*env
)
5013 struct bpf_insn
*insn
= env
->prog
->insnsi
;
5014 int insn_cnt
= env
->prog
->len
;
5017 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
5018 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
5022 /* single env->prog->insni[off] instruction was replaced with the range
5023 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5024 * [0, off) and [off, end) to new locations, so the patched range stays zero
5026 static int adjust_insn_aux_data(struct bpf_verifier_env
*env
, u32 prog_len
,
5029 struct bpf_insn_aux_data
*new_data
, *old_data
= env
->insn_aux_data
;
5034 new_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) * prog_len
);
5037 memcpy(new_data
, old_data
, sizeof(struct bpf_insn_aux_data
) * off
);
5038 memcpy(new_data
+ off
+ cnt
- 1, old_data
+ off
,
5039 sizeof(struct bpf_insn_aux_data
) * (prog_len
- off
- cnt
+ 1));
5040 for (i
= off
; i
< off
+ cnt
- 1; i
++)
5041 new_data
[i
].seen
= true;
5042 env
->insn_aux_data
= new_data
;
5047 static void adjust_subprog_starts(struct bpf_verifier_env
*env
, u32 off
, u32 len
)
5053 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
5054 if (env
->subprog_starts
[i
] < off
)
5056 env
->subprog_starts
[i
] += len
- 1;
5060 static struct bpf_prog
*bpf_patch_insn_data(struct bpf_verifier_env
*env
, u32 off
,
5061 const struct bpf_insn
*patch
, u32 len
)
5063 struct bpf_prog
*new_prog
;
5065 new_prog
= bpf_patch_insn_single(env
->prog
, off
, patch
, len
);
5068 if (adjust_insn_aux_data(env
, new_prog
->len
, off
, len
))
5070 adjust_subprog_starts(env
, off
, len
);
5074 /* The verifier does more data flow analysis than llvm and will not
5075 * explore branches that are dead at run time. Malicious programs can
5076 * have dead code too. Therefore replace all dead at-run-time code
5079 * Just nops are not optimal, e.g. if they would sit at the end of the
5080 * program and through another bug we would manage to jump there, then
5081 * we'd execute beyond program memory otherwise. Returning exception
5082 * code also wouldn't work since we can have subprogs where the dead
5083 * code could be located.
5085 static void sanitize_dead_code(struct bpf_verifier_env
*env
)
5087 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
5088 struct bpf_insn trap
= BPF_JMP_IMM(BPF_JA
, 0, 0, -1);
5089 struct bpf_insn
*insn
= env
->prog
->insnsi
;
5090 const int insn_cnt
= env
->prog
->len
;
5093 for (i
= 0; i
< insn_cnt
; i
++) {
5094 if (aux_data
[i
].seen
)
5096 memcpy(insn
+ i
, &trap
, sizeof(trap
));
5100 /* convert load instructions that access fields of 'struct __sk_buff'
5101 * into sequence of instructions that access fields of 'struct sk_buff'
5103 static int convert_ctx_accesses(struct bpf_verifier_env
*env
)
5105 const struct bpf_verifier_ops
*ops
= env
->ops
;
5106 int i
, cnt
, size
, ctx_field_size
, delta
= 0;
5107 const int insn_cnt
= env
->prog
->len
;
5108 struct bpf_insn insn_buf
[16], *insn
;
5109 struct bpf_prog
*new_prog
;
5110 enum bpf_access_type type
;
5111 bool is_narrower_load
;
5114 if (ops
->gen_prologue
) {
5115 cnt
= ops
->gen_prologue(insn_buf
, env
->seen_direct_write
,
5117 if (cnt
>= ARRAY_SIZE(insn_buf
)) {
5118 verbose(env
, "bpf verifier is misconfigured\n");
5121 new_prog
= bpf_patch_insn_data(env
, 0, insn_buf
, cnt
);
5125 env
->prog
= new_prog
;
5130 if (!ops
->convert_ctx_access
)
5133 insn
= env
->prog
->insnsi
+ delta
;
5135 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5136 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_B
) ||
5137 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_H
) ||
5138 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
) ||
5139 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_DW
))
5141 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_B
) ||
5142 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_H
) ||
5143 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
) ||
5144 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_DW
))
5149 if (env
->insn_aux_data
[i
+ delta
].ptr_type
!= PTR_TO_CTX
)
5152 ctx_field_size
= env
->insn_aux_data
[i
+ delta
].ctx_field_size
;
5153 size
= BPF_LDST_BYTES(insn
);
5155 /* If the read access is a narrower load of the field,
5156 * convert to a 4/8-byte load, to minimum program type specific
5157 * convert_ctx_access changes. If conversion is successful,
5158 * we will apply proper mask to the result.
5160 is_narrower_load
= size
< ctx_field_size
;
5161 if (is_narrower_load
) {
5162 u32 off
= insn
->off
;
5165 if (type
== BPF_WRITE
) {
5166 verbose(env
, "bpf verifier narrow ctx access misconfigured\n");
5171 if (ctx_field_size
== 4)
5173 else if (ctx_field_size
== 8)
5176 insn
->off
= off
& ~(ctx_field_size
- 1);
5177 insn
->code
= BPF_LDX
| BPF_MEM
| size_code
;
5181 cnt
= ops
->convert_ctx_access(type
, insn
, insn_buf
, env
->prog
,
5183 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
) ||
5184 (ctx_field_size
&& !target_size
)) {
5185 verbose(env
, "bpf verifier is misconfigured\n");
5189 if (is_narrower_load
&& size
< target_size
) {
5190 if (ctx_field_size
<= 4)
5191 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_AND
, insn
->dst_reg
,
5192 (1 << size
* 8) - 1);
5194 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_AND
, insn
->dst_reg
,
5195 (1 << size
* 8) - 1);
5198 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5204 /* keep walking new program and skip insns we just inserted */
5205 env
->prog
= new_prog
;
5206 insn
= new_prog
->insnsi
+ i
+ delta
;
5212 static int jit_subprogs(struct bpf_verifier_env
*env
)
5214 struct bpf_prog
*prog
= env
->prog
, **func
, *tmp
;
5215 int i
, j
, subprog_start
, subprog_end
= 0, len
, subprog
;
5216 struct bpf_insn
*insn
;
5220 if (env
->subprog_cnt
== 0)
5223 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5224 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5225 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5227 subprog
= find_subprog(env
, i
+ insn
->imm
+ 1);
5229 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5233 /* temporarily remember subprog id inside insn instead of
5234 * aux_data, since next loop will split up all insns into funcs
5236 insn
->off
= subprog
+ 1;
5237 /* remember original imm in case JIT fails and fallback
5238 * to interpreter will be needed
5240 env
->insn_aux_data
[i
].call_imm
= insn
->imm
;
5241 /* point imm to __bpf_call_base+1 from JITs point of view */
5245 func
= kzalloc(sizeof(prog
) * (env
->subprog_cnt
+ 1), GFP_KERNEL
);
5249 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5250 subprog_start
= subprog_end
;
5251 if (env
->subprog_cnt
== i
)
5252 subprog_end
= prog
->len
;
5254 subprog_end
= env
->subprog_starts
[i
];
5256 len
= subprog_end
- subprog_start
;
5257 func
[i
] = bpf_prog_alloc(bpf_prog_size(len
), GFP_USER
);
5260 memcpy(func
[i
]->insnsi
, &prog
->insnsi
[subprog_start
],
5261 len
* sizeof(struct bpf_insn
));
5262 func
[i
]->type
= prog
->type
;
5264 if (bpf_prog_calc_tag(func
[i
]))
5266 func
[i
]->is_func
= 1;
5267 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5268 * Long term would need debug info to populate names
5270 func
[i
]->aux
->name
[0] = 'F';
5271 func
[i
]->aux
->stack_depth
= env
->subprog_stack_depth
[i
];
5272 func
[i
]->jit_requested
= 1;
5273 func
[i
] = bpf_int_jit_compile(func
[i
]);
5274 if (!func
[i
]->jited
) {
5280 /* at this point all bpf functions were successfully JITed
5281 * now populate all bpf_calls with correct addresses and
5282 * run last pass of JIT
5284 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5285 insn
= func
[i
]->insnsi
;
5286 for (j
= 0; j
< func
[i
]->len
; j
++, insn
++) {
5287 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5288 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5290 subprog
= insn
->off
;
5292 insn
->imm
= (u64 (*)(u64
, u64
, u64
, u64
, u64
))
5293 func
[subprog
]->bpf_func
-
5297 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5298 old_bpf_func
= func
[i
]->bpf_func
;
5299 tmp
= bpf_int_jit_compile(func
[i
]);
5300 if (tmp
!= func
[i
] || func
[i
]->bpf_func
!= old_bpf_func
) {
5301 verbose(env
, "JIT doesn't support bpf-to-bpf calls\n");
5308 /* finally lock prog and jit images for all functions and
5311 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5312 bpf_prog_lock_ro(func
[i
]);
5313 bpf_prog_kallsyms_add(func
[i
]);
5316 /* Last step: make now unused interpreter insns from main
5317 * prog consistent for later dump requests, so they can
5318 * later look the same as if they were interpreted only.
5320 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5323 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5324 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5326 insn
->off
= env
->insn_aux_data
[i
].call_imm
;
5327 subprog
= find_subprog(env
, i
+ insn
->off
+ 1);
5328 addr
= (unsigned long)func
[subprog
+ 1]->bpf_func
;
5330 insn
->imm
= (u64 (*)(u64
, u64
, u64
, u64
, u64
))
5331 addr
- __bpf_call_base
;
5335 prog
->bpf_func
= func
[0]->bpf_func
;
5336 prog
->aux
->func
= func
;
5337 prog
->aux
->func_cnt
= env
->subprog_cnt
+ 1;
5340 for (i
= 0; i
<= env
->subprog_cnt
; i
++)
5342 bpf_jit_free(func
[i
]);
5344 /* cleanup main prog to be interpreted */
5345 prog
->jit_requested
= 0;
5346 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5347 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5348 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5351 insn
->imm
= env
->insn_aux_data
[i
].call_imm
;
5356 static int fixup_call_args(struct bpf_verifier_env
*env
)
5358 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5359 struct bpf_prog
*prog
= env
->prog
;
5360 struct bpf_insn
*insn
= prog
->insnsi
;
5366 if (env
->prog
->jit_requested
) {
5367 err
= jit_subprogs(env
);
5371 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5372 for (i
= 0; i
< prog
->len
; i
++, insn
++) {
5373 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5374 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5376 depth
= get_callee_stack_depth(env
, insn
, i
);
5379 bpf_patch_call_args(insn
, depth
);
5386 /* fixup insn->imm field of bpf_call instructions
5387 * and inline eligible helpers as explicit sequence of BPF instructions
5389 * this function is called after eBPF program passed verification
5391 static int fixup_bpf_calls(struct bpf_verifier_env
*env
)
5393 struct bpf_prog
*prog
= env
->prog
;
5394 struct bpf_insn
*insn
= prog
->insnsi
;
5395 const struct bpf_func_proto
*fn
;
5396 const int insn_cnt
= prog
->len
;
5397 struct bpf_insn insn_buf
[16];
5398 struct bpf_prog
*new_prog
;
5399 struct bpf_map
*map_ptr
;
5400 int i
, cnt
, delta
= 0;
5402 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5403 if (insn
->code
== (BPF_ALU64
| BPF_MOD
| BPF_X
) ||
5404 insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
5405 insn
->code
== (BPF_ALU
| BPF_MOD
| BPF_X
) ||
5406 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
5407 bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
5408 struct bpf_insn mask_and_div
[] = {
5409 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
5411 BPF_JMP_IMM(BPF_JNE
, insn
->src_reg
, 0, 2),
5412 BPF_ALU32_REG(BPF_XOR
, insn
->dst_reg
, insn
->dst_reg
),
5413 BPF_JMP_IMM(BPF_JA
, 0, 0, 1),
5416 struct bpf_insn mask_and_mod
[] = {
5417 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
5418 /* Rx mod 0 -> Rx */
5419 BPF_JMP_IMM(BPF_JEQ
, insn
->src_reg
, 0, 1),
5422 struct bpf_insn
*patchlet
;
5424 if (insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
5425 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
5426 patchlet
= mask_and_div
+ (is64
? 1 : 0);
5427 cnt
= ARRAY_SIZE(mask_and_div
) - (is64
? 1 : 0);
5429 patchlet
= mask_and_mod
+ (is64
? 1 : 0);
5430 cnt
= ARRAY_SIZE(mask_and_mod
) - (is64
? 1 : 0);
5433 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patchlet
, cnt
);
5438 env
->prog
= prog
= new_prog
;
5439 insn
= new_prog
->insnsi
+ i
+ delta
;
5443 if (insn
->code
!= (BPF_JMP
| BPF_CALL
))
5445 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
5448 if (insn
->imm
== BPF_FUNC_get_route_realm
)
5449 prog
->dst_needed
= 1;
5450 if (insn
->imm
== BPF_FUNC_get_prandom_u32
)
5451 bpf_user_rnd_init_once();
5452 if (insn
->imm
== BPF_FUNC_override_return
)
5453 prog
->kprobe_override
= 1;
5454 if (insn
->imm
== BPF_FUNC_tail_call
) {
5455 /* If we tail call into other programs, we
5456 * cannot make any assumptions since they can
5457 * be replaced dynamically during runtime in
5458 * the program array.
5460 prog
->cb_access
= 1;
5461 env
->prog
->aux
->stack_depth
= MAX_BPF_STACK
;
5463 /* mark bpf_tail_call as different opcode to avoid
5464 * conditional branch in the interpeter for every normal
5465 * call and to prevent accidental JITing by JIT compiler
5466 * that doesn't support bpf_tail_call yet
5469 insn
->code
= BPF_JMP
| BPF_TAIL_CALL
;
5471 /* instead of changing every JIT dealing with tail_call
5472 * emit two extra insns:
5473 * if (index >= max_entries) goto out;
5474 * index &= array->index_mask;
5475 * to avoid out-of-bounds cpu speculation
5477 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
5478 if (map_ptr
== BPF_MAP_PTR_POISON
) {
5479 verbose(env
, "tail_call abusing map_ptr\n");
5482 if (!map_ptr
->unpriv_array
)
5484 insn_buf
[0] = BPF_JMP_IMM(BPF_JGE
, BPF_REG_3
,
5485 map_ptr
->max_entries
, 2);
5486 insn_buf
[1] = BPF_ALU32_IMM(BPF_AND
, BPF_REG_3
,
5487 container_of(map_ptr
,
5490 insn_buf
[2] = *insn
;
5492 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5497 env
->prog
= prog
= new_prog
;
5498 insn
= new_prog
->insnsi
+ i
+ delta
;
5502 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5503 * handlers are currently limited to 64 bit only.
5505 if (prog
->jit_requested
&& BITS_PER_LONG
== 64 &&
5506 insn
->imm
== BPF_FUNC_map_lookup_elem
) {
5507 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
5508 if (map_ptr
== BPF_MAP_PTR_POISON
||
5509 !map_ptr
->ops
->map_gen_lookup
)
5510 goto patch_call_imm
;
5512 cnt
= map_ptr
->ops
->map_gen_lookup(map_ptr
, insn_buf
);
5513 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
5514 verbose(env
, "bpf verifier is misconfigured\n");
5518 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
,
5525 /* keep walking new program and skip insns we just inserted */
5526 env
->prog
= prog
= new_prog
;
5527 insn
= new_prog
->insnsi
+ i
+ delta
;
5531 if (insn
->imm
== BPF_FUNC_redirect_map
) {
5532 /* Note, we cannot use prog directly as imm as subsequent
5533 * rewrites would still change the prog pointer. The only
5534 * stable address we can use is aux, which also works with
5535 * prog clones during blinding.
5537 u64 addr
= (unsigned long)prog
->aux
;
5538 struct bpf_insn r4_ld
[] = {
5539 BPF_LD_IMM64(BPF_REG_4
, addr
),
5542 cnt
= ARRAY_SIZE(r4_ld
);
5544 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, r4_ld
, cnt
);
5549 env
->prog
= prog
= new_prog
;
5550 insn
= new_prog
->insnsi
+ i
+ delta
;
5553 fn
= env
->ops
->get_func_proto(insn
->imm
);
5554 /* all functions that have prototype and verifier allowed
5555 * programs to call them, must be real in-kernel functions
5559 "kernel subsystem misconfigured func %s#%d\n",
5560 func_id_name(insn
->imm
), insn
->imm
);
5563 insn
->imm
= fn
->func
- __bpf_call_base
;
5569 static void free_states(struct bpf_verifier_env
*env
)
5571 struct bpf_verifier_state_list
*sl
, *sln
;
5574 if (!env
->explored_states
)
5577 for (i
= 0; i
< env
->prog
->len
; i
++) {
5578 sl
= env
->explored_states
[i
];
5581 while (sl
!= STATE_LIST_MARK
) {
5583 free_verifier_state(&sl
->state
, false);
5589 kfree(env
->explored_states
);
5592 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
)
5594 struct bpf_verifier_env
*env
;
5595 struct bpf_verifer_log
*log
;
5598 /* no program is valid */
5599 if (ARRAY_SIZE(bpf_verifier_ops
) == 0)
5602 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5603 * allocate/free it every time bpf_check() is called
5605 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
5610 env
->insn_aux_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) *
5613 if (!env
->insn_aux_data
)
5616 env
->ops
= bpf_verifier_ops
[env
->prog
->type
];
5618 /* grab the mutex to protect few globals used by verifier */
5619 mutex_lock(&bpf_verifier_lock
);
5621 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
5622 /* user requested verbose verifier output
5623 * and supplied buffer to store the verification trace
5625 log
->level
= attr
->log_level
;
5626 log
->ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
5627 log
->len_total
= attr
->log_size
;
5630 /* log attributes have to be sane */
5631 if (log
->len_total
< 128 || log
->len_total
> UINT_MAX
>> 8 ||
5632 !log
->level
|| !log
->ubuf
)
5636 env
->strict_alignment
= !!(attr
->prog_flags
& BPF_F_STRICT_ALIGNMENT
);
5637 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
))
5638 env
->strict_alignment
= true;
5640 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
5641 ret
= bpf_prog_offload_verifier_prep(env
);
5646 ret
= replace_map_fd_with_map_ptr(env
);
5648 goto skip_full_check
;
5650 env
->explored_states
= kcalloc(env
->prog
->len
,
5651 sizeof(struct bpf_verifier_state_list
*),
5654 if (!env
->explored_states
)
5655 goto skip_full_check
;
5657 env
->allow_ptr_leaks
= capable(CAP_SYS_ADMIN
);
5659 ret
= check_cfg(env
);
5661 goto skip_full_check
;
5663 ret
= do_check(env
);
5664 if (env
->cur_state
) {
5665 free_verifier_state(env
->cur_state
, true);
5666 env
->cur_state
= NULL
;
5670 while (!pop_stack(env
, NULL
, NULL
));
5674 sanitize_dead_code(env
);
5677 ret
= check_max_stack_depth(env
);
5680 /* program is valid, convert *(u32*)(ctx + off) accesses */
5681 ret
= convert_ctx_accesses(env
);
5684 ret
= fixup_bpf_calls(env
);
5687 ret
= fixup_call_args(env
);
5689 if (log
->level
&& bpf_verifier_log_full(log
))
5691 if (log
->level
&& !log
->ubuf
) {
5693 goto err_release_maps
;
5696 if (ret
== 0 && env
->used_map_cnt
) {
5697 /* if program passed verifier, update used_maps in bpf_prog_info */
5698 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
5699 sizeof(env
->used_maps
[0]),
5702 if (!env
->prog
->aux
->used_maps
) {
5704 goto err_release_maps
;
5707 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
5708 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
5709 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
5711 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5712 * bpf_ld_imm64 instructions
5714 convert_pseudo_ld_imm64(env
);
5718 if (!env
->prog
->aux
->used_maps
)
5719 /* if we didn't copy map pointers into bpf_prog_info, release
5720 * them now. Otherwise free_bpf_prog_info() will release them.
5725 mutex_unlock(&bpf_verifier_lock
);
5726 vfree(env
->insn_aux_data
);