Linux 4.16-rc3
[cris-mirror.git] / kernel / bpf / verifier.c
blob5fb69a85d9675dcf8a077d20f5314ee78949e884
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
26 #include "disasm.h"
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
37 /* bpf_check() is a static code analyzer that walks eBPF program
38 * instruction by instruction and updates register/stack state.
39 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 * The first pass is depth-first-search to check that the program is a DAG.
42 * It rejects the following programs:
43 * - larger than BPF_MAXINSNS insns
44 * - if loop is present (detected via back-edge)
45 * - unreachable insns exist (shouldn't be a forest. program = one function)
46 * - out of bounds or malformed jumps
47 * The second pass is all possible path descent from the 1st insn.
48 * Since it's analyzing all pathes through the program, the length of the
49 * analysis is limited to 64k insn, which may be hit even if total number of
50 * insn is less then 4K, but there are too many branches that change stack/regs.
51 * Number of 'branches to be analyzed' is limited to 1k
53 * On entry to each instruction, each register has a type, and the instruction
54 * changes the types of the registers depending on instruction semantics.
55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
56 * copied to R1.
58 * All registers are 64-bit.
59 * R0 - return register
60 * R1-R5 argument passing registers
61 * R6-R9 callee saved registers
62 * R10 - frame pointer read-only
64 * At the start of BPF program the register R1 contains a pointer to bpf_context
65 * and has type PTR_TO_CTX.
67 * Verifier tracks arithmetic operations on pointers in case:
68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70 * 1st insn copies R10 (which has FRAME_PTR) type into R1
71 * and 2nd arithmetic instruction is pattern matched to recognize
72 * that it wants to construct a pointer to some element within stack.
73 * So after 2nd insn, the register R1 has type PTR_TO_STACK
74 * (and -20 constant is saved for further stack bounds checking).
75 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 * Most of the time the registers have SCALAR_VALUE type, which
78 * means the register has some value, but it's not a valid pointer.
79 * (like pointer plus pointer becomes SCALAR_VALUE type)
81 * When verifier sees load or store instructions the type of base register
82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
83 * types recognized by check_mem_access() function.
85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86 * and the range of [ptr, ptr + map's value_size) is accessible.
88 * registers used to pass values to function calls are checked against
89 * function argument constraints.
91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92 * It means that the register type passed to this function must be
93 * PTR_TO_STACK and it will be used inside the function as
94 * 'pointer to map element key'
96 * For example the argument constraints for bpf_map_lookup_elem():
97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98 * .arg1_type = ARG_CONST_MAP_PTR,
99 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 * ret_type says that this function returns 'pointer to map elem value or null'
102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103 * 2nd argument should be a pointer to stack, which will be used inside
104 * the helper function as a pointer to map element key.
106 * On the kernel side the helper function looks like:
107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110 * void *key = (void *) (unsigned long) r2;
111 * void *value;
113 * here kernel can access 'key' and 'map' pointers safely, knowing that
114 * [key, key + map->key_size) bytes are valid and were initialized on
115 * the stack of eBPF program.
118 * Corresponding eBPF program may look like:
119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123 * here verifier looks at prototype of map_lookup_elem() and sees:
124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129 * and were initialized prior to this call.
130 * If it's ok, then verifier allows this BPF_CALL insn and looks at
131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133 * returns ether pointer to map value or NULL.
135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136 * insn, the register holding that pointer in the true branch changes state to
137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138 * branch. See check_cond_jmp_op().
140 * After the call R0 is set to return type of the function and registers R1-R5
141 * are set to NOT_INIT to indicate that they are no longer readable.
144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
145 struct bpf_verifier_stack_elem {
146 /* verifer state is 'st'
147 * before processing instruction 'insn_idx'
148 * and after processing instruction 'prev_insn_idx'
150 struct bpf_verifier_state st;
151 int insn_idx;
152 int prev_insn_idx;
153 struct bpf_verifier_stack_elem *next;
156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
157 #define BPF_COMPLEXITY_LIMIT_STACK 1024
159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 struct bpf_call_arg_meta {
162 struct bpf_map *map_ptr;
163 bool raw_mode;
164 bool pkt_access;
165 int regno;
166 int access_size;
169 static DEFINE_MUTEX(bpf_verifier_lock);
171 /* log_level controls verbosity level of eBPF verifier.
172 * bpf_verifier_log_write() is used to dump the verification trace to the log,
173 * so the user can figure out what's wrong with the program
175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
176 const char *fmt, ...)
178 struct bpf_verifer_log *log = &env->log;
179 unsigned int n;
180 va_list args;
182 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
183 return;
185 va_start(args, fmt);
186 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
187 va_end(args);
189 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
190 "verifier log line truncated - local buffer too short\n");
192 n = min(log->len_total - log->len_used - 1, n);
193 log->kbuf[n] = '\0';
195 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
196 log->len_used += n;
197 else
198 log->ubuf = NULL;
200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
201 /* Historically bpf_verifier_log_write was called verbose, but the name was too
202 * generic for symbol export. The function was renamed, but not the calls in
203 * the verifier to avoid complicating backports. Hence the alias below.
205 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
206 const char *fmt, ...)
207 __attribute__((alias("bpf_verifier_log_write")));
209 static bool type_is_pkt_pointer(enum bpf_reg_type type)
211 return type == PTR_TO_PACKET ||
212 type == PTR_TO_PACKET_META;
215 /* string representation of 'enum bpf_reg_type' */
216 static const char * const reg_type_str[] = {
217 [NOT_INIT] = "?",
218 [SCALAR_VALUE] = "inv",
219 [PTR_TO_CTX] = "ctx",
220 [CONST_PTR_TO_MAP] = "map_ptr",
221 [PTR_TO_MAP_VALUE] = "map_value",
222 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
223 [PTR_TO_STACK] = "fp",
224 [PTR_TO_PACKET] = "pkt",
225 [PTR_TO_PACKET_META] = "pkt_meta",
226 [PTR_TO_PACKET_END] = "pkt_end",
229 static void print_liveness(struct bpf_verifier_env *env,
230 enum bpf_reg_liveness live)
232 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
233 verbose(env, "_");
234 if (live & REG_LIVE_READ)
235 verbose(env, "r");
236 if (live & REG_LIVE_WRITTEN)
237 verbose(env, "w");
240 static struct bpf_func_state *func(struct bpf_verifier_env *env,
241 const struct bpf_reg_state *reg)
243 struct bpf_verifier_state *cur = env->cur_state;
245 return cur->frame[reg->frameno];
248 static void print_verifier_state(struct bpf_verifier_env *env,
249 const struct bpf_func_state *state)
251 const struct bpf_reg_state *reg;
252 enum bpf_reg_type t;
253 int i;
255 if (state->frameno)
256 verbose(env, " frame%d:", state->frameno);
257 for (i = 0; i < MAX_BPF_REG; i++) {
258 reg = &state->regs[i];
259 t = reg->type;
260 if (t == NOT_INIT)
261 continue;
262 verbose(env, " R%d", i);
263 print_liveness(env, reg->live);
264 verbose(env, "=%s", reg_type_str[t]);
265 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
266 tnum_is_const(reg->var_off)) {
267 /* reg->off should be 0 for SCALAR_VALUE */
268 verbose(env, "%lld", reg->var_off.value + reg->off);
269 if (t == PTR_TO_STACK)
270 verbose(env, ",call_%d", func(env, reg)->callsite);
271 } else {
272 verbose(env, "(id=%d", reg->id);
273 if (t != SCALAR_VALUE)
274 verbose(env, ",off=%d", reg->off);
275 if (type_is_pkt_pointer(t))
276 verbose(env, ",r=%d", reg->range);
277 else if (t == CONST_PTR_TO_MAP ||
278 t == PTR_TO_MAP_VALUE ||
279 t == PTR_TO_MAP_VALUE_OR_NULL)
280 verbose(env, ",ks=%d,vs=%d",
281 reg->map_ptr->key_size,
282 reg->map_ptr->value_size);
283 if (tnum_is_const(reg->var_off)) {
284 /* Typically an immediate SCALAR_VALUE, but
285 * could be a pointer whose offset is too big
286 * for reg->off
288 verbose(env, ",imm=%llx", reg->var_off.value);
289 } else {
290 if (reg->smin_value != reg->umin_value &&
291 reg->smin_value != S64_MIN)
292 verbose(env, ",smin_value=%lld",
293 (long long)reg->smin_value);
294 if (reg->smax_value != reg->umax_value &&
295 reg->smax_value != S64_MAX)
296 verbose(env, ",smax_value=%lld",
297 (long long)reg->smax_value);
298 if (reg->umin_value != 0)
299 verbose(env, ",umin_value=%llu",
300 (unsigned long long)reg->umin_value);
301 if (reg->umax_value != U64_MAX)
302 verbose(env, ",umax_value=%llu",
303 (unsigned long long)reg->umax_value);
304 if (!tnum_is_unknown(reg->var_off)) {
305 char tn_buf[48];
307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
308 verbose(env, ",var_off=%s", tn_buf);
311 verbose(env, ")");
314 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
315 if (state->stack[i].slot_type[0] == STACK_SPILL) {
316 verbose(env, " fp%d",
317 (-i - 1) * BPF_REG_SIZE);
318 print_liveness(env, state->stack[i].spilled_ptr.live);
319 verbose(env, "=%s",
320 reg_type_str[state->stack[i].spilled_ptr.type]);
322 if (state->stack[i].slot_type[0] == STACK_ZERO)
323 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
325 verbose(env, "\n");
328 static int copy_stack_state(struct bpf_func_state *dst,
329 const struct bpf_func_state *src)
331 if (!src->stack)
332 return 0;
333 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
334 /* internal bug, make state invalid to reject the program */
335 memset(dst, 0, sizeof(*dst));
336 return -EFAULT;
338 memcpy(dst->stack, src->stack,
339 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
340 return 0;
343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
344 * make it consume minimal amount of memory. check_stack_write() access from
345 * the program calls into realloc_func_state() to grow the stack size.
346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
347 * which this function copies over. It points to previous bpf_verifier_state
348 * which is never reallocated
350 static int realloc_func_state(struct bpf_func_state *state, int size,
351 bool copy_old)
353 u32 old_size = state->allocated_stack;
354 struct bpf_stack_state *new_stack;
355 int slot = size / BPF_REG_SIZE;
357 if (size <= old_size || !size) {
358 if (copy_old)
359 return 0;
360 state->allocated_stack = slot * BPF_REG_SIZE;
361 if (!size && old_size) {
362 kfree(state->stack);
363 state->stack = NULL;
365 return 0;
367 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
368 GFP_KERNEL);
369 if (!new_stack)
370 return -ENOMEM;
371 if (copy_old) {
372 if (state->stack)
373 memcpy(new_stack, state->stack,
374 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
375 memset(new_stack + old_size / BPF_REG_SIZE, 0,
376 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
378 state->allocated_stack = slot * BPF_REG_SIZE;
379 kfree(state->stack);
380 state->stack = new_stack;
381 return 0;
384 static void free_func_state(struct bpf_func_state *state)
386 if (!state)
387 return;
388 kfree(state->stack);
389 kfree(state);
392 static void free_verifier_state(struct bpf_verifier_state *state,
393 bool free_self)
395 int i;
397 for (i = 0; i <= state->curframe; i++) {
398 free_func_state(state->frame[i]);
399 state->frame[i] = NULL;
401 if (free_self)
402 kfree(state);
405 /* copy verifier state from src to dst growing dst stack space
406 * when necessary to accommodate larger src stack
408 static int copy_func_state(struct bpf_func_state *dst,
409 const struct bpf_func_state *src)
411 int err;
413 err = realloc_func_state(dst, src->allocated_stack, false);
414 if (err)
415 return err;
416 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
417 return copy_stack_state(dst, src);
420 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
421 const struct bpf_verifier_state *src)
423 struct bpf_func_state *dst;
424 int i, err;
426 /* if dst has more stack frames then src frame, free them */
427 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
428 free_func_state(dst_state->frame[i]);
429 dst_state->frame[i] = NULL;
431 dst_state->curframe = src->curframe;
432 dst_state->parent = src->parent;
433 for (i = 0; i <= src->curframe; i++) {
434 dst = dst_state->frame[i];
435 if (!dst) {
436 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
437 if (!dst)
438 return -ENOMEM;
439 dst_state->frame[i] = dst;
441 err = copy_func_state(dst, src->frame[i]);
442 if (err)
443 return err;
445 return 0;
448 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
449 int *insn_idx)
451 struct bpf_verifier_state *cur = env->cur_state;
452 struct bpf_verifier_stack_elem *elem, *head = env->head;
453 int err;
455 if (env->head == NULL)
456 return -ENOENT;
458 if (cur) {
459 err = copy_verifier_state(cur, &head->st);
460 if (err)
461 return err;
463 if (insn_idx)
464 *insn_idx = head->insn_idx;
465 if (prev_insn_idx)
466 *prev_insn_idx = head->prev_insn_idx;
467 elem = head->next;
468 free_verifier_state(&head->st, false);
469 kfree(head);
470 env->head = elem;
471 env->stack_size--;
472 return 0;
475 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
476 int insn_idx, int prev_insn_idx)
478 struct bpf_verifier_state *cur = env->cur_state;
479 struct bpf_verifier_stack_elem *elem;
480 int err;
482 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
483 if (!elem)
484 goto err;
486 elem->insn_idx = insn_idx;
487 elem->prev_insn_idx = prev_insn_idx;
488 elem->next = env->head;
489 env->head = elem;
490 env->stack_size++;
491 err = copy_verifier_state(&elem->st, cur);
492 if (err)
493 goto err;
494 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
495 verbose(env, "BPF program is too complex\n");
496 goto err;
498 return &elem->st;
499 err:
500 free_verifier_state(env->cur_state, true);
501 env->cur_state = NULL;
502 /* pop all elements and return */
503 while (!pop_stack(env, NULL, NULL));
504 return NULL;
507 #define CALLER_SAVED_REGS 6
508 static const int caller_saved[CALLER_SAVED_REGS] = {
509 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
511 #define CALLEE_SAVED_REGS 5
512 static const int callee_saved[CALLEE_SAVED_REGS] = {
513 BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9
516 static void __mark_reg_not_init(struct bpf_reg_state *reg);
518 /* Mark the unknown part of a register (variable offset or scalar value) as
519 * known to have the value @imm.
521 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
523 reg->id = 0;
524 reg->var_off = tnum_const(imm);
525 reg->smin_value = (s64)imm;
526 reg->smax_value = (s64)imm;
527 reg->umin_value = imm;
528 reg->umax_value = imm;
531 /* Mark the 'variable offset' part of a register as zero. This should be
532 * used only on registers holding a pointer type.
534 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
536 __mark_reg_known(reg, 0);
539 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
541 __mark_reg_known(reg, 0);
542 reg->off = 0;
543 reg->type = SCALAR_VALUE;
546 static void mark_reg_known_zero(struct bpf_verifier_env *env,
547 struct bpf_reg_state *regs, u32 regno)
549 if (WARN_ON(regno >= MAX_BPF_REG)) {
550 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
551 /* Something bad happened, let's kill all regs */
552 for (regno = 0; regno < MAX_BPF_REG; regno++)
553 __mark_reg_not_init(regs + regno);
554 return;
556 __mark_reg_known_zero(regs + regno);
559 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
561 return type_is_pkt_pointer(reg->type);
564 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
566 return reg_is_pkt_pointer(reg) ||
567 reg->type == PTR_TO_PACKET_END;
570 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
571 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
572 enum bpf_reg_type which)
574 /* The register can already have a range from prior markings.
575 * This is fine as long as it hasn't been advanced from its
576 * origin.
578 return reg->type == which &&
579 reg->id == 0 &&
580 reg->off == 0 &&
581 tnum_equals_const(reg->var_off, 0);
584 /* Attempts to improve min/max values based on var_off information */
585 static void __update_reg_bounds(struct bpf_reg_state *reg)
587 /* min signed is max(sign bit) | min(other bits) */
588 reg->smin_value = max_t(s64, reg->smin_value,
589 reg->var_off.value | (reg->var_off.mask & S64_MIN));
590 /* max signed is min(sign bit) | max(other bits) */
591 reg->smax_value = min_t(s64, reg->smax_value,
592 reg->var_off.value | (reg->var_off.mask & S64_MAX));
593 reg->umin_value = max(reg->umin_value, reg->var_off.value);
594 reg->umax_value = min(reg->umax_value,
595 reg->var_off.value | reg->var_off.mask);
598 /* Uses signed min/max values to inform unsigned, and vice-versa */
599 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
601 /* Learn sign from signed bounds.
602 * If we cannot cross the sign boundary, then signed and unsigned bounds
603 * are the same, so combine. This works even in the negative case, e.g.
604 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
606 if (reg->smin_value >= 0 || reg->smax_value < 0) {
607 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
608 reg->umin_value);
609 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
610 reg->umax_value);
611 return;
613 /* Learn sign from unsigned bounds. Signed bounds cross the sign
614 * boundary, so we must be careful.
616 if ((s64)reg->umax_value >= 0) {
617 /* Positive. We can't learn anything from the smin, but smax
618 * is positive, hence safe.
620 reg->smin_value = reg->umin_value;
621 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
622 reg->umax_value);
623 } else if ((s64)reg->umin_value < 0) {
624 /* Negative. We can't learn anything from the smax, but smin
625 * is negative, hence safe.
627 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
628 reg->umin_value);
629 reg->smax_value = reg->umax_value;
633 /* Attempts to improve var_off based on unsigned min/max information */
634 static void __reg_bound_offset(struct bpf_reg_state *reg)
636 reg->var_off = tnum_intersect(reg->var_off,
637 tnum_range(reg->umin_value,
638 reg->umax_value));
641 /* Reset the min/max bounds of a register */
642 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
644 reg->smin_value = S64_MIN;
645 reg->smax_value = S64_MAX;
646 reg->umin_value = 0;
647 reg->umax_value = U64_MAX;
650 /* Mark a register as having a completely unknown (scalar) value. */
651 static void __mark_reg_unknown(struct bpf_reg_state *reg)
653 reg->type = SCALAR_VALUE;
654 reg->id = 0;
655 reg->off = 0;
656 reg->var_off = tnum_unknown;
657 reg->frameno = 0;
658 __mark_reg_unbounded(reg);
661 static void mark_reg_unknown(struct bpf_verifier_env *env,
662 struct bpf_reg_state *regs, u32 regno)
664 if (WARN_ON(regno >= MAX_BPF_REG)) {
665 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
666 /* Something bad happened, let's kill all regs except FP */
667 for (regno = 0; regno < BPF_REG_FP; regno++)
668 __mark_reg_not_init(regs + regno);
669 return;
671 __mark_reg_unknown(regs + regno);
674 static void __mark_reg_not_init(struct bpf_reg_state *reg)
676 __mark_reg_unknown(reg);
677 reg->type = NOT_INIT;
680 static void mark_reg_not_init(struct bpf_verifier_env *env,
681 struct bpf_reg_state *regs, u32 regno)
683 if (WARN_ON(regno >= MAX_BPF_REG)) {
684 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
685 /* Something bad happened, let's kill all regs except FP */
686 for (regno = 0; regno < BPF_REG_FP; regno++)
687 __mark_reg_not_init(regs + regno);
688 return;
690 __mark_reg_not_init(regs + regno);
693 static void init_reg_state(struct bpf_verifier_env *env,
694 struct bpf_func_state *state)
696 struct bpf_reg_state *regs = state->regs;
697 int i;
699 for (i = 0; i < MAX_BPF_REG; i++) {
700 mark_reg_not_init(env, regs, i);
701 regs[i].live = REG_LIVE_NONE;
704 /* frame pointer */
705 regs[BPF_REG_FP].type = PTR_TO_STACK;
706 mark_reg_known_zero(env, regs, BPF_REG_FP);
707 regs[BPF_REG_FP].frameno = state->frameno;
709 /* 1st arg to a function */
710 regs[BPF_REG_1].type = PTR_TO_CTX;
711 mark_reg_known_zero(env, regs, BPF_REG_1);
714 #define BPF_MAIN_FUNC (-1)
715 static void init_func_state(struct bpf_verifier_env *env,
716 struct bpf_func_state *state,
717 int callsite, int frameno, int subprogno)
719 state->callsite = callsite;
720 state->frameno = frameno;
721 state->subprogno = subprogno;
722 init_reg_state(env, state);
725 enum reg_arg_type {
726 SRC_OP, /* register is used as source operand */
727 DST_OP, /* register is used as destination operand */
728 DST_OP_NO_MARK /* same as above, check only, don't mark */
731 static int cmp_subprogs(const void *a, const void *b)
733 return *(int *)a - *(int *)b;
736 static int find_subprog(struct bpf_verifier_env *env, int off)
738 u32 *p;
740 p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
741 sizeof(env->subprog_starts[0]), cmp_subprogs);
742 if (!p)
743 return -ENOENT;
744 return p - env->subprog_starts;
748 static int add_subprog(struct bpf_verifier_env *env, int off)
750 int insn_cnt = env->prog->len;
751 int ret;
753 if (off >= insn_cnt || off < 0) {
754 verbose(env, "call to invalid destination\n");
755 return -EINVAL;
757 ret = find_subprog(env, off);
758 if (ret >= 0)
759 return 0;
760 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
761 verbose(env, "too many subprograms\n");
762 return -E2BIG;
764 env->subprog_starts[env->subprog_cnt++] = off;
765 sort(env->subprog_starts, env->subprog_cnt,
766 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
767 return 0;
770 static int check_subprogs(struct bpf_verifier_env *env)
772 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
773 struct bpf_insn *insn = env->prog->insnsi;
774 int insn_cnt = env->prog->len;
776 /* determine subprog starts. The end is one before the next starts */
777 for (i = 0; i < insn_cnt; i++) {
778 if (insn[i].code != (BPF_JMP | BPF_CALL))
779 continue;
780 if (insn[i].src_reg != BPF_PSEUDO_CALL)
781 continue;
782 if (!env->allow_ptr_leaks) {
783 verbose(env, "function calls to other bpf functions are allowed for root only\n");
784 return -EPERM;
786 if (bpf_prog_is_dev_bound(env->prog->aux)) {
787 verbose(env, "function calls in offloaded programs are not supported yet\n");
788 return -EINVAL;
790 ret = add_subprog(env, i + insn[i].imm + 1);
791 if (ret < 0)
792 return ret;
795 if (env->log.level > 1)
796 for (i = 0; i < env->subprog_cnt; i++)
797 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);
799 /* now check that all jumps are within the same subprog */
800 subprog_start = 0;
801 if (env->subprog_cnt == cur_subprog)
802 subprog_end = insn_cnt;
803 else
804 subprog_end = env->subprog_starts[cur_subprog++];
805 for (i = 0; i < insn_cnt; i++) {
806 u8 code = insn[i].code;
808 if (BPF_CLASS(code) != BPF_JMP)
809 goto next;
810 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
811 goto next;
812 off = i + insn[i].off + 1;
813 if (off < subprog_start || off >= subprog_end) {
814 verbose(env, "jump out of range from insn %d to %d\n", i, off);
815 return -EINVAL;
817 next:
818 if (i == subprog_end - 1) {
819 /* to avoid fall-through from one subprog into another
820 * the last insn of the subprog should be either exit
821 * or unconditional jump back
823 if (code != (BPF_JMP | BPF_EXIT) &&
824 code != (BPF_JMP | BPF_JA)) {
825 verbose(env, "last insn is not an exit or jmp\n");
826 return -EINVAL;
828 subprog_start = subprog_end;
829 if (env->subprog_cnt == cur_subprog)
830 subprog_end = insn_cnt;
831 else
832 subprog_end = env->subprog_starts[cur_subprog++];
835 return 0;
838 static
839 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
840 const struct bpf_verifier_state *state,
841 struct bpf_verifier_state *parent,
842 u32 regno)
844 struct bpf_verifier_state *tmp = NULL;
846 /* 'parent' could be a state of caller and
847 * 'state' could be a state of callee. In such case
848 * parent->curframe < state->curframe
849 * and it's ok for r1 - r5 registers
851 * 'parent' could be a callee's state after it bpf_exit-ed.
852 * In such case parent->curframe > state->curframe
853 * and it's ok for r0 only
855 if (parent->curframe == state->curframe ||
856 (parent->curframe < state->curframe &&
857 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
858 (parent->curframe > state->curframe &&
859 regno == BPF_REG_0))
860 return parent;
862 if (parent->curframe > state->curframe &&
863 regno >= BPF_REG_6) {
864 /* for callee saved regs we have to skip the whole chain
865 * of states that belong to callee and mark as LIVE_READ
866 * the registers before the call
868 tmp = parent;
869 while (tmp && tmp->curframe != state->curframe) {
870 tmp = tmp->parent;
872 if (!tmp)
873 goto bug;
874 parent = tmp;
875 } else {
876 goto bug;
878 return parent;
879 bug:
880 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
881 verbose(env, "regno %d parent frame %d current frame %d\n",
882 regno, parent->curframe, state->curframe);
883 return NULL;
886 static int mark_reg_read(struct bpf_verifier_env *env,
887 const struct bpf_verifier_state *state,
888 struct bpf_verifier_state *parent,
889 u32 regno)
891 bool writes = parent == state->parent; /* Observe write marks */
893 if (regno == BPF_REG_FP)
894 /* We don't need to worry about FP liveness because it's read-only */
895 return 0;
897 while (parent) {
898 /* if read wasn't screened by an earlier write ... */
899 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
900 break;
901 parent = skip_callee(env, state, parent, regno);
902 if (!parent)
903 return -EFAULT;
904 /* ... then we depend on parent's value */
905 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
906 state = parent;
907 parent = state->parent;
908 writes = true;
910 return 0;
913 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
914 enum reg_arg_type t)
916 struct bpf_verifier_state *vstate = env->cur_state;
917 struct bpf_func_state *state = vstate->frame[vstate->curframe];
918 struct bpf_reg_state *regs = state->regs;
920 if (regno >= MAX_BPF_REG) {
921 verbose(env, "R%d is invalid\n", regno);
922 return -EINVAL;
925 if (t == SRC_OP) {
926 /* check whether register used as source operand can be read */
927 if (regs[regno].type == NOT_INIT) {
928 verbose(env, "R%d !read_ok\n", regno);
929 return -EACCES;
931 return mark_reg_read(env, vstate, vstate->parent, regno);
932 } else {
933 /* check whether register used as dest operand can be written to */
934 if (regno == BPF_REG_FP) {
935 verbose(env, "frame pointer is read only\n");
936 return -EACCES;
938 regs[regno].live |= REG_LIVE_WRITTEN;
939 if (t == DST_OP)
940 mark_reg_unknown(env, regs, regno);
942 return 0;
945 static bool is_spillable_regtype(enum bpf_reg_type type)
947 switch (type) {
948 case PTR_TO_MAP_VALUE:
949 case PTR_TO_MAP_VALUE_OR_NULL:
950 case PTR_TO_STACK:
951 case PTR_TO_CTX:
952 case PTR_TO_PACKET:
953 case PTR_TO_PACKET_META:
954 case PTR_TO_PACKET_END:
955 case CONST_PTR_TO_MAP:
956 return true;
957 default:
958 return false;
962 /* Does this register contain a constant zero? */
963 static bool register_is_null(struct bpf_reg_state *reg)
965 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
968 /* check_stack_read/write functions track spill/fill of registers,
969 * stack boundary and alignment are checked in check_mem_access()
971 static int check_stack_write(struct bpf_verifier_env *env,
972 struct bpf_func_state *state, /* func where register points to */
973 int off, int size, int value_regno)
975 struct bpf_func_state *cur; /* state of the current function */
976 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
977 enum bpf_reg_type type;
979 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
980 true);
981 if (err)
982 return err;
983 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
984 * so it's aligned access and [off, off + size) are within stack limits
986 if (!env->allow_ptr_leaks &&
987 state->stack[spi].slot_type[0] == STACK_SPILL &&
988 size != BPF_REG_SIZE) {
989 verbose(env, "attempt to corrupt spilled pointer on stack\n");
990 return -EACCES;
993 cur = env->cur_state->frame[env->cur_state->curframe];
994 if (value_regno >= 0 &&
995 is_spillable_regtype((type = cur->regs[value_regno].type))) {
997 /* register containing pointer is being spilled into stack */
998 if (size != BPF_REG_SIZE) {
999 verbose(env, "invalid size of register spill\n");
1000 return -EACCES;
1003 if (state != cur && type == PTR_TO_STACK) {
1004 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1005 return -EINVAL;
1008 /* save register state */
1009 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1010 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1012 for (i = 0; i < BPF_REG_SIZE; i++)
1013 state->stack[spi].slot_type[i] = STACK_SPILL;
1014 } else {
1015 u8 type = STACK_MISC;
1017 /* regular write of data into stack */
1018 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1020 /* only mark the slot as written if all 8 bytes were written
1021 * otherwise read propagation may incorrectly stop too soon
1022 * when stack slots are partially written.
1023 * This heuristic means that read propagation will be
1024 * conservative, since it will add reg_live_read marks
1025 * to stack slots all the way to first state when programs
1026 * writes+reads less than 8 bytes
1028 if (size == BPF_REG_SIZE)
1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1031 /* when we zero initialize stack slots mark them as such */
1032 if (value_regno >= 0 &&
1033 register_is_null(&cur->regs[value_regno]))
1034 type = STACK_ZERO;
1036 for (i = 0; i < size; i++)
1037 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1038 type;
1040 return 0;
1043 /* registers of every function are unique and mark_reg_read() propagates
1044 * the liveness in the following cases:
1045 * - from callee into caller for R1 - R5 that were used as arguments
1046 * - from caller into callee for R0 that used as result of the call
1047 * - from caller to the same caller skipping states of the callee for R6 - R9,
1048 * since R6 - R9 are callee saved by implicit function prologue and
1049 * caller's R6 != callee's R6, so when we propagate liveness up to
1050 * parent states we need to skip callee states for R6 - R9.
1052 * stack slot marking is different, since stacks of caller and callee are
1053 * accessible in both (since caller can pass a pointer to caller's stack to
1054 * callee which can pass it to another function), hence mark_stack_slot_read()
1055 * has to propagate the stack liveness to all parent states at given frame number.
1056 * Consider code:
1057 * f1() {
1058 * ptr = fp - 8;
1059 * *ptr = ctx;
1060 * call f2 {
1061 * .. = *ptr;
1063 * .. = *ptr;
1065 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1066 * to mark liveness at the f1's frame and not f2's frame.
1067 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1068 * to propagate liveness to f2 states at f1's frame level and further into
1069 * f1 states at f1's frame level until write into that stack slot
1071 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1072 const struct bpf_verifier_state *state,
1073 struct bpf_verifier_state *parent,
1074 int slot, int frameno)
1076 bool writes = parent == state->parent; /* Observe write marks */
1078 while (parent) {
1079 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1080 /* since LIVE_WRITTEN mark is only done for full 8-byte
1081 * write the read marks are conservative and parent
1082 * state may not even have the stack allocated. In such case
1083 * end the propagation, since the loop reached beginning
1084 * of the function
1086 break;
1087 /* if read wasn't screened by an earlier write ... */
1088 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1089 break;
1090 /* ... then we depend on parent's value */
1091 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1092 state = parent;
1093 parent = state->parent;
1094 writes = true;
1098 static int check_stack_read(struct bpf_verifier_env *env,
1099 struct bpf_func_state *reg_state /* func where register points to */,
1100 int off, int size, int value_regno)
1102 struct bpf_verifier_state *vstate = env->cur_state;
1103 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1104 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1105 u8 *stype;
1107 if (reg_state->allocated_stack <= slot) {
1108 verbose(env, "invalid read from stack off %d+0 size %d\n",
1109 off, size);
1110 return -EACCES;
1112 stype = reg_state->stack[spi].slot_type;
1114 if (stype[0] == STACK_SPILL) {
1115 if (size != BPF_REG_SIZE) {
1116 verbose(env, "invalid size of register spill\n");
1117 return -EACCES;
1119 for (i = 1; i < BPF_REG_SIZE; i++) {
1120 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1121 verbose(env, "corrupted spill memory\n");
1122 return -EACCES;
1126 if (value_regno >= 0) {
1127 /* restore register state from stack */
1128 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1129 /* mark reg as written since spilled pointer state likely
1130 * has its liveness marks cleared by is_state_visited()
1131 * which resets stack/reg liveness for state transitions
1133 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1135 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1136 reg_state->frameno);
1137 return 0;
1138 } else {
1139 int zeros = 0;
1141 for (i = 0; i < size; i++) {
1142 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1143 continue;
1144 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1145 zeros++;
1146 continue;
1148 verbose(env, "invalid read from stack off %d+%d size %d\n",
1149 off, i, size);
1150 return -EACCES;
1152 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1153 reg_state->frameno);
1154 if (value_regno >= 0) {
1155 if (zeros == size) {
1156 /* any size read into register is zero extended,
1157 * so the whole register == const_zero
1159 __mark_reg_const_zero(&state->regs[value_regno]);
1160 } else {
1161 /* have read misc data from the stack */
1162 mark_reg_unknown(env, state->regs, value_regno);
1164 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1166 return 0;
1170 /* check read/write into map element returned by bpf_map_lookup_elem() */
1171 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1172 int size, bool zero_size_allowed)
1174 struct bpf_reg_state *regs = cur_regs(env);
1175 struct bpf_map *map = regs[regno].map_ptr;
1177 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1178 off + size > map->value_size) {
1179 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1180 map->value_size, off, size);
1181 return -EACCES;
1183 return 0;
1186 /* check read/write into a map element with possible variable offset */
1187 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1188 int off, int size, bool zero_size_allowed)
1190 struct bpf_verifier_state *vstate = env->cur_state;
1191 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1192 struct bpf_reg_state *reg = &state->regs[regno];
1193 int err;
1195 /* We may have adjusted the register to this map value, so we
1196 * need to try adding each of min_value and max_value to off
1197 * to make sure our theoretical access will be safe.
1199 if (env->log.level)
1200 print_verifier_state(env, state);
1201 /* The minimum value is only important with signed
1202 * comparisons where we can't assume the floor of a
1203 * value is 0. If we are using signed variables for our
1204 * index'es we need to make sure that whatever we use
1205 * will have a set floor within our range.
1207 if (reg->smin_value < 0) {
1208 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1209 regno);
1210 return -EACCES;
1212 err = __check_map_access(env, regno, reg->smin_value + off, size,
1213 zero_size_allowed);
1214 if (err) {
1215 verbose(env, "R%d min value is outside of the array range\n",
1216 regno);
1217 return err;
1220 /* If we haven't set a max value then we need to bail since we can't be
1221 * sure we won't do bad things.
1222 * If reg->umax_value + off could overflow, treat that as unbounded too.
1224 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1225 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1226 regno);
1227 return -EACCES;
1229 err = __check_map_access(env, regno, reg->umax_value + off, size,
1230 zero_size_allowed);
1231 if (err)
1232 verbose(env, "R%d max value is outside of the array range\n",
1233 regno);
1234 return err;
1237 #define MAX_PACKET_OFF 0xffff
1239 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1240 const struct bpf_call_arg_meta *meta,
1241 enum bpf_access_type t)
1243 switch (env->prog->type) {
1244 case BPF_PROG_TYPE_LWT_IN:
1245 case BPF_PROG_TYPE_LWT_OUT:
1246 /* dst_input() and dst_output() can't write for now */
1247 if (t == BPF_WRITE)
1248 return false;
1249 /* fallthrough */
1250 case BPF_PROG_TYPE_SCHED_CLS:
1251 case BPF_PROG_TYPE_SCHED_ACT:
1252 case BPF_PROG_TYPE_XDP:
1253 case BPF_PROG_TYPE_LWT_XMIT:
1254 case BPF_PROG_TYPE_SK_SKB:
1255 if (meta)
1256 return meta->pkt_access;
1258 env->seen_direct_write = true;
1259 return true;
1260 default:
1261 return false;
1265 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1266 int off, int size, bool zero_size_allowed)
1268 struct bpf_reg_state *regs = cur_regs(env);
1269 struct bpf_reg_state *reg = &regs[regno];
1271 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1272 (u64)off + size > reg->range) {
1273 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1274 off, size, regno, reg->id, reg->off, reg->range);
1275 return -EACCES;
1277 return 0;
1280 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1281 int size, bool zero_size_allowed)
1283 struct bpf_reg_state *regs = cur_regs(env);
1284 struct bpf_reg_state *reg = &regs[regno];
1285 int err;
1287 /* We may have added a variable offset to the packet pointer; but any
1288 * reg->range we have comes after that. We are only checking the fixed
1289 * offset.
1292 /* We don't allow negative numbers, because we aren't tracking enough
1293 * detail to prove they're safe.
1295 if (reg->smin_value < 0) {
1296 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1297 regno);
1298 return -EACCES;
1300 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1301 if (err) {
1302 verbose(env, "R%d offset is outside of the packet\n", regno);
1303 return err;
1305 return err;
1308 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1309 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1310 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1312 struct bpf_insn_access_aux info = {
1313 .reg_type = *reg_type,
1316 if (env->ops->is_valid_access &&
1317 env->ops->is_valid_access(off, size, t, &info)) {
1318 /* A non zero info.ctx_field_size indicates that this field is a
1319 * candidate for later verifier transformation to load the whole
1320 * field and then apply a mask when accessed with a narrower
1321 * access than actual ctx access size. A zero info.ctx_field_size
1322 * will only allow for whole field access and rejects any other
1323 * type of narrower access.
1325 *reg_type = info.reg_type;
1327 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1328 /* remember the offset of last byte accessed in ctx */
1329 if (env->prog->aux->max_ctx_offset < off + size)
1330 env->prog->aux->max_ctx_offset = off + size;
1331 return 0;
1334 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1335 return -EACCES;
1338 static bool __is_pointer_value(bool allow_ptr_leaks,
1339 const struct bpf_reg_state *reg)
1341 if (allow_ptr_leaks)
1342 return false;
1344 return reg->type != SCALAR_VALUE;
1347 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1349 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1352 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1354 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1356 return reg->type == PTR_TO_CTX;
1359 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1360 const struct bpf_reg_state *reg,
1361 int off, int size, bool strict)
1363 struct tnum reg_off;
1364 int ip_align;
1366 /* Byte size accesses are always allowed. */
1367 if (!strict || size == 1)
1368 return 0;
1370 /* For platforms that do not have a Kconfig enabling
1371 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1372 * NET_IP_ALIGN is universally set to '2'. And on platforms
1373 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1374 * to this code only in strict mode where we want to emulate
1375 * the NET_IP_ALIGN==2 checking. Therefore use an
1376 * unconditional IP align value of '2'.
1378 ip_align = 2;
1380 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1381 if (!tnum_is_aligned(reg_off, size)) {
1382 char tn_buf[48];
1384 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1385 verbose(env,
1386 "misaligned packet access off %d+%s+%d+%d size %d\n",
1387 ip_align, tn_buf, reg->off, off, size);
1388 return -EACCES;
1391 return 0;
1394 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1395 const struct bpf_reg_state *reg,
1396 const char *pointer_desc,
1397 int off, int size, bool strict)
1399 struct tnum reg_off;
1401 /* Byte size accesses are always allowed. */
1402 if (!strict || size == 1)
1403 return 0;
1405 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1406 if (!tnum_is_aligned(reg_off, size)) {
1407 char tn_buf[48];
1409 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1410 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1411 pointer_desc, tn_buf, reg->off, off, size);
1412 return -EACCES;
1415 return 0;
1418 static int check_ptr_alignment(struct bpf_verifier_env *env,
1419 const struct bpf_reg_state *reg,
1420 int off, int size)
1422 bool strict = env->strict_alignment;
1423 const char *pointer_desc = "";
1425 switch (reg->type) {
1426 case PTR_TO_PACKET:
1427 case PTR_TO_PACKET_META:
1428 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1429 * right in front, treat it the very same way.
1431 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1432 case PTR_TO_MAP_VALUE:
1433 pointer_desc = "value ";
1434 break;
1435 case PTR_TO_CTX:
1436 pointer_desc = "context ";
1437 break;
1438 case PTR_TO_STACK:
1439 pointer_desc = "stack ";
1440 /* The stack spill tracking logic in check_stack_write()
1441 * and check_stack_read() relies on stack accesses being
1442 * aligned.
1444 strict = true;
1445 break;
1446 default:
1447 break;
1449 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1450 strict);
1453 static int update_stack_depth(struct bpf_verifier_env *env,
1454 const struct bpf_func_state *func,
1455 int off)
1457 u16 stack = env->subprog_stack_depth[func->subprogno];
1459 if (stack >= -off)
1460 return 0;
1462 /* update known max for given subprogram */
1463 env->subprog_stack_depth[func->subprogno] = -off;
1464 return 0;
1467 /* starting from main bpf function walk all instructions of the function
1468 * and recursively walk all callees that given function can call.
1469 * Ignore jump and exit insns.
1470 * Since recursion is prevented by check_cfg() this algorithm
1471 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1473 static int check_max_stack_depth(struct bpf_verifier_env *env)
1475 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
1476 struct bpf_insn *insn = env->prog->insnsi;
1477 int insn_cnt = env->prog->len;
1478 int ret_insn[MAX_CALL_FRAMES];
1479 int ret_prog[MAX_CALL_FRAMES];
1481 process_func:
1482 /* round up to 32-bytes, since this is granularity
1483 * of interpreter stack size
1485 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1486 if (depth > MAX_BPF_STACK) {
1487 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1488 frame + 1, depth);
1489 return -EACCES;
1491 continue_func:
1492 if (env->subprog_cnt == subprog)
1493 subprog_end = insn_cnt;
1494 else
1495 subprog_end = env->subprog_starts[subprog];
1496 for (; i < subprog_end; i++) {
1497 if (insn[i].code != (BPF_JMP | BPF_CALL))
1498 continue;
1499 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1500 continue;
1501 /* remember insn and function to return to */
1502 ret_insn[frame] = i + 1;
1503 ret_prog[frame] = subprog;
1505 /* find the callee */
1506 i = i + insn[i].imm + 1;
1507 subprog = find_subprog(env, i);
1508 if (subprog < 0) {
1509 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1511 return -EFAULT;
1513 subprog++;
1514 frame++;
1515 if (frame >= MAX_CALL_FRAMES) {
1516 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1517 return -EFAULT;
1519 goto process_func;
1521 /* end of for() loop means the last insn of the 'subprog'
1522 * was reached. Doesn't matter whether it was JA or EXIT
1524 if (frame == 0)
1525 return 0;
1526 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1527 frame--;
1528 i = ret_insn[frame];
1529 subprog = ret_prog[frame];
1530 goto continue_func;
1533 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1534 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1535 const struct bpf_insn *insn, int idx)
1537 int start = idx + insn->imm + 1, subprog;
1539 subprog = find_subprog(env, start);
1540 if (subprog < 0) {
1541 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1542 start);
1543 return -EFAULT;
1545 subprog++;
1546 return env->subprog_stack_depth[subprog];
1548 #endif
1550 /* truncate register to smaller size (in bytes)
1551 * must be called with size < BPF_REG_SIZE
1553 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1555 u64 mask;
1557 /* clear high bits in bit representation */
1558 reg->var_off = tnum_cast(reg->var_off, size);
1560 /* fix arithmetic bounds */
1561 mask = ((u64)1 << (size * 8)) - 1;
1562 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1563 reg->umin_value &= mask;
1564 reg->umax_value &= mask;
1565 } else {
1566 reg->umin_value = 0;
1567 reg->umax_value = mask;
1569 reg->smin_value = reg->umin_value;
1570 reg->smax_value = reg->umax_value;
1573 /* check whether memory at (regno + off) is accessible for t = (read | write)
1574 * if t==write, value_regno is a register which value is stored into memory
1575 * if t==read, value_regno is a register which will receive the value from memory
1576 * if t==write && value_regno==-1, some unknown value is stored into memory
1577 * if t==read && value_regno==-1, don't care what we read from memory
1579 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1580 int bpf_size, enum bpf_access_type t,
1581 int value_regno)
1583 struct bpf_reg_state *regs = cur_regs(env);
1584 struct bpf_reg_state *reg = regs + regno;
1585 struct bpf_func_state *state;
1586 int size, err = 0;
1588 size = bpf_size_to_bytes(bpf_size);
1589 if (size < 0)
1590 return size;
1592 /* alignment checks will add in reg->off themselves */
1593 err = check_ptr_alignment(env, reg, off, size);
1594 if (err)
1595 return err;
1597 /* for access checks, reg->off is just part of off */
1598 off += reg->off;
1600 if (reg->type == PTR_TO_MAP_VALUE) {
1601 if (t == BPF_WRITE && value_regno >= 0 &&
1602 is_pointer_value(env, value_regno)) {
1603 verbose(env, "R%d leaks addr into map\n", value_regno);
1604 return -EACCES;
1607 err = check_map_access(env, regno, off, size, false);
1608 if (!err && t == BPF_READ && value_regno >= 0)
1609 mark_reg_unknown(env, regs, value_regno);
1611 } else if (reg->type == PTR_TO_CTX) {
1612 enum bpf_reg_type reg_type = SCALAR_VALUE;
1614 if (t == BPF_WRITE && value_regno >= 0 &&
1615 is_pointer_value(env, value_regno)) {
1616 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1617 return -EACCES;
1619 /* ctx accesses must be at a fixed offset, so that we can
1620 * determine what type of data were returned.
1622 if (reg->off) {
1623 verbose(env,
1624 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1625 regno, reg->off, off - reg->off);
1626 return -EACCES;
1628 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1629 char tn_buf[48];
1631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1632 verbose(env,
1633 "variable ctx access var_off=%s off=%d size=%d",
1634 tn_buf, off, size);
1635 return -EACCES;
1637 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1638 if (!err && t == BPF_READ && value_regno >= 0) {
1639 /* ctx access returns either a scalar, or a
1640 * PTR_TO_PACKET[_META,_END]. In the latter
1641 * case, we know the offset is zero.
1643 if (reg_type == SCALAR_VALUE)
1644 mark_reg_unknown(env, regs, value_regno);
1645 else
1646 mark_reg_known_zero(env, regs,
1647 value_regno);
1648 regs[value_regno].id = 0;
1649 regs[value_regno].off = 0;
1650 regs[value_regno].range = 0;
1651 regs[value_regno].type = reg_type;
1654 } else if (reg->type == PTR_TO_STACK) {
1655 /* stack accesses must be at a fixed offset, so that we can
1656 * determine what type of data were returned.
1657 * See check_stack_read().
1659 if (!tnum_is_const(reg->var_off)) {
1660 char tn_buf[48];
1662 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1663 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1664 tn_buf, off, size);
1665 return -EACCES;
1667 off += reg->var_off.value;
1668 if (off >= 0 || off < -MAX_BPF_STACK) {
1669 verbose(env, "invalid stack off=%d size=%d\n", off,
1670 size);
1671 return -EACCES;
1674 state = func(env, reg);
1675 err = update_stack_depth(env, state, off);
1676 if (err)
1677 return err;
1679 if (t == BPF_WRITE)
1680 err = check_stack_write(env, state, off, size,
1681 value_regno);
1682 else
1683 err = check_stack_read(env, state, off, size,
1684 value_regno);
1685 } else if (reg_is_pkt_pointer(reg)) {
1686 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1687 verbose(env, "cannot write into packet\n");
1688 return -EACCES;
1690 if (t == BPF_WRITE && value_regno >= 0 &&
1691 is_pointer_value(env, value_regno)) {
1692 verbose(env, "R%d leaks addr into packet\n",
1693 value_regno);
1694 return -EACCES;
1696 err = check_packet_access(env, regno, off, size, false);
1697 if (!err && t == BPF_READ && value_regno >= 0)
1698 mark_reg_unknown(env, regs, value_regno);
1699 } else {
1700 verbose(env, "R%d invalid mem access '%s'\n", regno,
1701 reg_type_str[reg->type]);
1702 return -EACCES;
1705 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1706 regs[value_regno].type == SCALAR_VALUE) {
1707 /* b/h/w load zero-extends, mark upper bits as known 0 */
1708 coerce_reg_to_size(&regs[value_regno], size);
1710 return err;
1713 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1715 int err;
1717 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1718 insn->imm != 0) {
1719 verbose(env, "BPF_XADD uses reserved fields\n");
1720 return -EINVAL;
1723 /* check src1 operand */
1724 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1725 if (err)
1726 return err;
1728 /* check src2 operand */
1729 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1730 if (err)
1731 return err;
1733 if (is_pointer_value(env, insn->src_reg)) {
1734 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1735 return -EACCES;
1738 if (is_ctx_reg(env, insn->dst_reg)) {
1739 verbose(env, "BPF_XADD stores into R%d context is not allowed\n",
1740 insn->dst_reg);
1741 return -EACCES;
1744 /* check whether atomic_add can read the memory */
1745 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1746 BPF_SIZE(insn->code), BPF_READ, -1);
1747 if (err)
1748 return err;
1750 /* check whether atomic_add can write into the same memory */
1751 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1752 BPF_SIZE(insn->code), BPF_WRITE, -1);
1755 /* when register 'regno' is passed into function that will read 'access_size'
1756 * bytes from that pointer, make sure that it's within stack boundary
1757 * and all elements of stack are initialized.
1758 * Unlike most pointer bounds-checking functions, this one doesn't take an
1759 * 'off' argument, so it has to add in reg->off itself.
1761 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1762 int access_size, bool zero_size_allowed,
1763 struct bpf_call_arg_meta *meta)
1765 struct bpf_reg_state *reg = cur_regs(env) + regno;
1766 struct bpf_func_state *state = func(env, reg);
1767 int off, i, slot, spi;
1769 if (reg->type != PTR_TO_STACK) {
1770 /* Allow zero-byte read from NULL, regardless of pointer type */
1771 if (zero_size_allowed && access_size == 0 &&
1772 register_is_null(reg))
1773 return 0;
1775 verbose(env, "R%d type=%s expected=%s\n", regno,
1776 reg_type_str[reg->type],
1777 reg_type_str[PTR_TO_STACK]);
1778 return -EACCES;
1781 /* Only allow fixed-offset stack reads */
1782 if (!tnum_is_const(reg->var_off)) {
1783 char tn_buf[48];
1785 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1786 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1787 regno, tn_buf);
1788 return -EACCES;
1790 off = reg->off + reg->var_off.value;
1791 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1792 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1793 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1794 regno, off, access_size);
1795 return -EACCES;
1798 if (meta && meta->raw_mode) {
1799 meta->access_size = access_size;
1800 meta->regno = regno;
1801 return 0;
1804 for (i = 0; i < access_size; i++) {
1805 u8 *stype;
1807 slot = -(off + i) - 1;
1808 spi = slot / BPF_REG_SIZE;
1809 if (state->allocated_stack <= slot)
1810 goto err;
1811 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1812 if (*stype == STACK_MISC)
1813 goto mark;
1814 if (*stype == STACK_ZERO) {
1815 /* helper can write anything into the stack */
1816 *stype = STACK_MISC;
1817 goto mark;
1819 err:
1820 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1821 off, i, access_size);
1822 return -EACCES;
1823 mark:
1824 /* reading any byte out of 8-byte 'spill_slot' will cause
1825 * the whole slot to be marked as 'read'
1827 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1828 spi, state->frameno);
1830 return update_stack_depth(env, state, off);
1833 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1834 int access_size, bool zero_size_allowed,
1835 struct bpf_call_arg_meta *meta)
1837 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1839 switch (reg->type) {
1840 case PTR_TO_PACKET:
1841 case PTR_TO_PACKET_META:
1842 return check_packet_access(env, regno, reg->off, access_size,
1843 zero_size_allowed);
1844 case PTR_TO_MAP_VALUE:
1845 return check_map_access(env, regno, reg->off, access_size,
1846 zero_size_allowed);
1847 default: /* scalar_value|ptr_to_stack or invalid ptr */
1848 return check_stack_boundary(env, regno, access_size,
1849 zero_size_allowed, meta);
1853 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1855 return type == ARG_PTR_TO_MEM ||
1856 type == ARG_PTR_TO_MEM_OR_NULL ||
1857 type == ARG_PTR_TO_UNINIT_MEM;
1860 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1862 return type == ARG_CONST_SIZE ||
1863 type == ARG_CONST_SIZE_OR_ZERO;
1866 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1867 enum bpf_arg_type arg_type,
1868 struct bpf_call_arg_meta *meta)
1870 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1871 enum bpf_reg_type expected_type, type = reg->type;
1872 int err = 0;
1874 if (arg_type == ARG_DONTCARE)
1875 return 0;
1877 err = check_reg_arg(env, regno, SRC_OP);
1878 if (err)
1879 return err;
1881 if (arg_type == ARG_ANYTHING) {
1882 if (is_pointer_value(env, regno)) {
1883 verbose(env, "R%d leaks addr into helper function\n",
1884 regno);
1885 return -EACCES;
1887 return 0;
1890 if (type_is_pkt_pointer(type) &&
1891 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1892 verbose(env, "helper access to the packet is not allowed\n");
1893 return -EACCES;
1896 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1897 arg_type == ARG_PTR_TO_MAP_VALUE) {
1898 expected_type = PTR_TO_STACK;
1899 if (!type_is_pkt_pointer(type) &&
1900 type != expected_type)
1901 goto err_type;
1902 } else if (arg_type == ARG_CONST_SIZE ||
1903 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1904 expected_type = SCALAR_VALUE;
1905 if (type != expected_type)
1906 goto err_type;
1907 } else if (arg_type == ARG_CONST_MAP_PTR) {
1908 expected_type = CONST_PTR_TO_MAP;
1909 if (type != expected_type)
1910 goto err_type;
1911 } else if (arg_type == ARG_PTR_TO_CTX) {
1912 expected_type = PTR_TO_CTX;
1913 if (type != expected_type)
1914 goto err_type;
1915 } else if (arg_type_is_mem_ptr(arg_type)) {
1916 expected_type = PTR_TO_STACK;
1917 /* One exception here. In case function allows for NULL to be
1918 * passed in as argument, it's a SCALAR_VALUE type. Final test
1919 * happens during stack boundary checking.
1921 if (register_is_null(reg) &&
1922 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1923 /* final test in check_stack_boundary() */;
1924 else if (!type_is_pkt_pointer(type) &&
1925 type != PTR_TO_MAP_VALUE &&
1926 type != expected_type)
1927 goto err_type;
1928 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1929 } else {
1930 verbose(env, "unsupported arg_type %d\n", arg_type);
1931 return -EFAULT;
1934 if (arg_type == ARG_CONST_MAP_PTR) {
1935 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1936 meta->map_ptr = reg->map_ptr;
1937 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1938 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1939 * check that [key, key + map->key_size) are within
1940 * stack limits and initialized
1942 if (!meta->map_ptr) {
1943 /* in function declaration map_ptr must come before
1944 * map_key, so that it's verified and known before
1945 * we have to check map_key here. Otherwise it means
1946 * that kernel subsystem misconfigured verifier
1948 verbose(env, "invalid map_ptr to access map->key\n");
1949 return -EACCES;
1951 if (type_is_pkt_pointer(type))
1952 err = check_packet_access(env, regno, reg->off,
1953 meta->map_ptr->key_size,
1954 false);
1955 else
1956 err = check_stack_boundary(env, regno,
1957 meta->map_ptr->key_size,
1958 false, NULL);
1959 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1960 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1961 * check [value, value + map->value_size) validity
1963 if (!meta->map_ptr) {
1964 /* kernel subsystem misconfigured verifier */
1965 verbose(env, "invalid map_ptr to access map->value\n");
1966 return -EACCES;
1968 if (type_is_pkt_pointer(type))
1969 err = check_packet_access(env, regno, reg->off,
1970 meta->map_ptr->value_size,
1971 false);
1972 else
1973 err = check_stack_boundary(env, regno,
1974 meta->map_ptr->value_size,
1975 false, NULL);
1976 } else if (arg_type_is_mem_size(arg_type)) {
1977 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1979 /* The register is SCALAR_VALUE; the access check
1980 * happens using its boundaries.
1982 if (!tnum_is_const(reg->var_off))
1983 /* For unprivileged variable accesses, disable raw
1984 * mode so that the program is required to
1985 * initialize all the memory that the helper could
1986 * just partially fill up.
1988 meta = NULL;
1990 if (reg->smin_value < 0) {
1991 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1992 regno);
1993 return -EACCES;
1996 if (reg->umin_value == 0) {
1997 err = check_helper_mem_access(env, regno - 1, 0,
1998 zero_size_allowed,
1999 meta);
2000 if (err)
2001 return err;
2004 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2005 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2006 regno);
2007 return -EACCES;
2009 err = check_helper_mem_access(env, regno - 1,
2010 reg->umax_value,
2011 zero_size_allowed, meta);
2014 return err;
2015 err_type:
2016 verbose(env, "R%d type=%s expected=%s\n", regno,
2017 reg_type_str[type], reg_type_str[expected_type]);
2018 return -EACCES;
2021 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2022 struct bpf_map *map, int func_id)
2024 if (!map)
2025 return 0;
2027 /* We need a two way check, first is from map perspective ... */
2028 switch (map->map_type) {
2029 case BPF_MAP_TYPE_PROG_ARRAY:
2030 if (func_id != BPF_FUNC_tail_call)
2031 goto error;
2032 break;
2033 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2034 if (func_id != BPF_FUNC_perf_event_read &&
2035 func_id != BPF_FUNC_perf_event_output &&
2036 func_id != BPF_FUNC_perf_event_read_value)
2037 goto error;
2038 break;
2039 case BPF_MAP_TYPE_STACK_TRACE:
2040 if (func_id != BPF_FUNC_get_stackid)
2041 goto error;
2042 break;
2043 case BPF_MAP_TYPE_CGROUP_ARRAY:
2044 if (func_id != BPF_FUNC_skb_under_cgroup &&
2045 func_id != BPF_FUNC_current_task_under_cgroup)
2046 goto error;
2047 break;
2048 /* devmap returns a pointer to a live net_device ifindex that we cannot
2049 * allow to be modified from bpf side. So do not allow lookup elements
2050 * for now.
2052 case BPF_MAP_TYPE_DEVMAP:
2053 if (func_id != BPF_FUNC_redirect_map)
2054 goto error;
2055 break;
2056 /* Restrict bpf side of cpumap, open when use-cases appear */
2057 case BPF_MAP_TYPE_CPUMAP:
2058 if (func_id != BPF_FUNC_redirect_map)
2059 goto error;
2060 break;
2061 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2062 case BPF_MAP_TYPE_HASH_OF_MAPS:
2063 if (func_id != BPF_FUNC_map_lookup_elem)
2064 goto error;
2065 break;
2066 case BPF_MAP_TYPE_SOCKMAP:
2067 if (func_id != BPF_FUNC_sk_redirect_map &&
2068 func_id != BPF_FUNC_sock_map_update &&
2069 func_id != BPF_FUNC_map_delete_elem)
2070 goto error;
2071 break;
2072 default:
2073 break;
2076 /* ... and second from the function itself. */
2077 switch (func_id) {
2078 case BPF_FUNC_tail_call:
2079 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2080 goto error;
2081 if (env->subprog_cnt) {
2082 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2083 return -EINVAL;
2085 break;
2086 case BPF_FUNC_perf_event_read:
2087 case BPF_FUNC_perf_event_output:
2088 case BPF_FUNC_perf_event_read_value:
2089 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2090 goto error;
2091 break;
2092 case BPF_FUNC_get_stackid:
2093 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2094 goto error;
2095 break;
2096 case BPF_FUNC_current_task_under_cgroup:
2097 case BPF_FUNC_skb_under_cgroup:
2098 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2099 goto error;
2100 break;
2101 case BPF_FUNC_redirect_map:
2102 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2103 map->map_type != BPF_MAP_TYPE_CPUMAP)
2104 goto error;
2105 break;
2106 case BPF_FUNC_sk_redirect_map:
2107 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2108 goto error;
2109 break;
2110 case BPF_FUNC_sock_map_update:
2111 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2112 goto error;
2113 break;
2114 default:
2115 break;
2118 return 0;
2119 error:
2120 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2121 map->map_type, func_id_name(func_id), func_id);
2122 return -EINVAL;
2125 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2127 int count = 0;
2129 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2130 count++;
2131 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2132 count++;
2133 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2134 count++;
2135 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2136 count++;
2137 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2138 count++;
2140 /* We only support one arg being in raw mode at the moment,
2141 * which is sufficient for the helper functions we have
2142 * right now.
2144 return count <= 1;
2147 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2148 enum bpf_arg_type arg_next)
2150 return (arg_type_is_mem_ptr(arg_curr) &&
2151 !arg_type_is_mem_size(arg_next)) ||
2152 (!arg_type_is_mem_ptr(arg_curr) &&
2153 arg_type_is_mem_size(arg_next));
2156 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2158 /* bpf_xxx(..., buf, len) call will access 'len'
2159 * bytes from memory 'buf'. Both arg types need
2160 * to be paired, so make sure there's no buggy
2161 * helper function specification.
2163 if (arg_type_is_mem_size(fn->arg1_type) ||
2164 arg_type_is_mem_ptr(fn->arg5_type) ||
2165 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2166 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2167 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2168 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2169 return false;
2171 return true;
2174 static int check_func_proto(const struct bpf_func_proto *fn)
2176 return check_raw_mode_ok(fn) &&
2177 check_arg_pair_ok(fn) ? 0 : -EINVAL;
2180 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2181 * are now invalid, so turn them into unknown SCALAR_VALUE.
2183 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2184 struct bpf_func_state *state)
2186 struct bpf_reg_state *regs = state->regs, *reg;
2187 int i;
2189 for (i = 0; i < MAX_BPF_REG; i++)
2190 if (reg_is_pkt_pointer_any(&regs[i]))
2191 mark_reg_unknown(env, regs, i);
2193 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2194 if (state->stack[i].slot_type[0] != STACK_SPILL)
2195 continue;
2196 reg = &state->stack[i].spilled_ptr;
2197 if (reg_is_pkt_pointer_any(reg))
2198 __mark_reg_unknown(reg);
2202 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2204 struct bpf_verifier_state *vstate = env->cur_state;
2205 int i;
2207 for (i = 0; i <= vstate->curframe; i++)
2208 __clear_all_pkt_pointers(env, vstate->frame[i]);
2211 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2212 int *insn_idx)
2214 struct bpf_verifier_state *state = env->cur_state;
2215 struct bpf_func_state *caller, *callee;
2216 int i, subprog, target_insn;
2218 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2219 verbose(env, "the call stack of %d frames is too deep\n",
2220 state->curframe + 2);
2221 return -E2BIG;
2224 target_insn = *insn_idx + insn->imm;
2225 subprog = find_subprog(env, target_insn + 1);
2226 if (subprog < 0) {
2227 verbose(env, "verifier bug. No program starts at insn %d\n",
2228 target_insn + 1);
2229 return -EFAULT;
2232 caller = state->frame[state->curframe];
2233 if (state->frame[state->curframe + 1]) {
2234 verbose(env, "verifier bug. Frame %d already allocated\n",
2235 state->curframe + 1);
2236 return -EFAULT;
2239 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2240 if (!callee)
2241 return -ENOMEM;
2242 state->frame[state->curframe + 1] = callee;
2244 /* callee cannot access r0, r6 - r9 for reading and has to write
2245 * into its own stack before reading from it.
2246 * callee can read/write into caller's stack
2248 init_func_state(env, callee,
2249 /* remember the callsite, it will be used by bpf_exit */
2250 *insn_idx /* callsite */,
2251 state->curframe + 1 /* frameno within this callchain */,
2252 subprog + 1 /* subprog number within this prog */);
2254 /* copy r1 - r5 args that callee can access */
2255 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2256 callee->regs[i] = caller->regs[i];
2258 /* after the call regsiters r0 - r5 were scratched */
2259 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2260 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2261 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2264 /* only increment it after check_reg_arg() finished */
2265 state->curframe++;
2267 /* and go analyze first insn of the callee */
2268 *insn_idx = target_insn;
2270 if (env->log.level) {
2271 verbose(env, "caller:\n");
2272 print_verifier_state(env, caller);
2273 verbose(env, "callee:\n");
2274 print_verifier_state(env, callee);
2276 return 0;
2279 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2281 struct bpf_verifier_state *state = env->cur_state;
2282 struct bpf_func_state *caller, *callee;
2283 struct bpf_reg_state *r0;
2285 callee = state->frame[state->curframe];
2286 r0 = &callee->regs[BPF_REG_0];
2287 if (r0->type == PTR_TO_STACK) {
2288 /* technically it's ok to return caller's stack pointer
2289 * (or caller's caller's pointer) back to the caller,
2290 * since these pointers are valid. Only current stack
2291 * pointer will be invalid as soon as function exits,
2292 * but let's be conservative
2294 verbose(env, "cannot return stack pointer to the caller\n");
2295 return -EINVAL;
2298 state->curframe--;
2299 caller = state->frame[state->curframe];
2300 /* return to the caller whatever r0 had in the callee */
2301 caller->regs[BPF_REG_0] = *r0;
2303 *insn_idx = callee->callsite + 1;
2304 if (env->log.level) {
2305 verbose(env, "returning from callee:\n");
2306 print_verifier_state(env, callee);
2307 verbose(env, "to caller at %d:\n", *insn_idx);
2308 print_verifier_state(env, caller);
2310 /* clear everything in the callee */
2311 free_func_state(callee);
2312 state->frame[state->curframe + 1] = NULL;
2313 return 0;
2316 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2318 const struct bpf_func_proto *fn = NULL;
2319 struct bpf_reg_state *regs;
2320 struct bpf_call_arg_meta meta;
2321 bool changes_data;
2322 int i, err;
2324 /* find function prototype */
2325 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2326 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2327 func_id);
2328 return -EINVAL;
2331 if (env->ops->get_func_proto)
2332 fn = env->ops->get_func_proto(func_id);
2333 if (!fn) {
2334 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2335 func_id);
2336 return -EINVAL;
2339 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2340 if (!env->prog->gpl_compatible && fn->gpl_only) {
2341 verbose(env, "cannot call GPL only function from proprietary program\n");
2342 return -EINVAL;
2345 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2346 changes_data = bpf_helper_changes_pkt_data(fn->func);
2347 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2348 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2349 func_id_name(func_id), func_id);
2350 return -EINVAL;
2353 memset(&meta, 0, sizeof(meta));
2354 meta.pkt_access = fn->pkt_access;
2356 err = check_func_proto(fn);
2357 if (err) {
2358 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2359 func_id_name(func_id), func_id);
2360 return err;
2363 /* check args */
2364 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2365 if (err)
2366 return err;
2367 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2368 if (err)
2369 return err;
2370 if (func_id == BPF_FUNC_tail_call) {
2371 if (meta.map_ptr == NULL) {
2372 verbose(env, "verifier bug\n");
2373 return -EINVAL;
2375 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2377 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2378 if (err)
2379 return err;
2380 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2381 if (err)
2382 return err;
2383 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2384 if (err)
2385 return err;
2387 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2388 * is inferred from register state.
2390 for (i = 0; i < meta.access_size; i++) {
2391 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
2392 if (err)
2393 return err;
2396 regs = cur_regs(env);
2397 /* reset caller saved regs */
2398 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2399 mark_reg_not_init(env, regs, caller_saved[i]);
2400 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2403 /* update return register (already marked as written above) */
2404 if (fn->ret_type == RET_INTEGER) {
2405 /* sets type to SCALAR_VALUE */
2406 mark_reg_unknown(env, regs, BPF_REG_0);
2407 } else if (fn->ret_type == RET_VOID) {
2408 regs[BPF_REG_0].type = NOT_INIT;
2409 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2410 struct bpf_insn_aux_data *insn_aux;
2412 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2413 /* There is no offset yet applied, variable or fixed */
2414 mark_reg_known_zero(env, regs, BPF_REG_0);
2415 regs[BPF_REG_0].off = 0;
2416 /* remember map_ptr, so that check_map_access()
2417 * can check 'value_size' boundary of memory access
2418 * to map element returned from bpf_map_lookup_elem()
2420 if (meta.map_ptr == NULL) {
2421 verbose(env,
2422 "kernel subsystem misconfigured verifier\n");
2423 return -EINVAL;
2425 regs[BPF_REG_0].map_ptr = meta.map_ptr;
2426 regs[BPF_REG_0].id = ++env->id_gen;
2427 insn_aux = &env->insn_aux_data[insn_idx];
2428 if (!insn_aux->map_ptr)
2429 insn_aux->map_ptr = meta.map_ptr;
2430 else if (insn_aux->map_ptr != meta.map_ptr)
2431 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2432 } else {
2433 verbose(env, "unknown return type %d of func %s#%d\n",
2434 fn->ret_type, func_id_name(func_id), func_id);
2435 return -EINVAL;
2438 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2439 if (err)
2440 return err;
2442 if (changes_data)
2443 clear_all_pkt_pointers(env);
2444 return 0;
2447 static bool signed_add_overflows(s64 a, s64 b)
2449 /* Do the add in u64, where overflow is well-defined */
2450 s64 res = (s64)((u64)a + (u64)b);
2452 if (b < 0)
2453 return res > a;
2454 return res < a;
2457 static bool signed_sub_overflows(s64 a, s64 b)
2459 /* Do the sub in u64, where overflow is well-defined */
2460 s64 res = (s64)((u64)a - (u64)b);
2462 if (b < 0)
2463 return res < a;
2464 return res > a;
2467 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2468 const struct bpf_reg_state *reg,
2469 enum bpf_reg_type type)
2471 bool known = tnum_is_const(reg->var_off);
2472 s64 val = reg->var_off.value;
2473 s64 smin = reg->smin_value;
2475 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2476 verbose(env, "math between %s pointer and %lld is not allowed\n",
2477 reg_type_str[type], val);
2478 return false;
2481 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2482 verbose(env, "%s pointer offset %d is not allowed\n",
2483 reg_type_str[type], reg->off);
2484 return false;
2487 if (smin == S64_MIN) {
2488 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2489 reg_type_str[type]);
2490 return false;
2493 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2494 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2495 smin, reg_type_str[type]);
2496 return false;
2499 return true;
2502 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2503 * Caller should also handle BPF_MOV case separately.
2504 * If we return -EACCES, caller may want to try again treating pointer as a
2505 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2507 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2508 struct bpf_insn *insn,
2509 const struct bpf_reg_state *ptr_reg,
2510 const struct bpf_reg_state *off_reg)
2512 struct bpf_verifier_state *vstate = env->cur_state;
2513 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2514 struct bpf_reg_state *regs = state->regs, *dst_reg;
2515 bool known = tnum_is_const(off_reg->var_off);
2516 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2517 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2518 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2519 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2520 u8 opcode = BPF_OP(insn->code);
2521 u32 dst = insn->dst_reg;
2523 dst_reg = &regs[dst];
2525 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2526 smin_val > smax_val || umin_val > umax_val) {
2527 /* Taint dst register if offset had invalid bounds derived from
2528 * e.g. dead branches.
2530 __mark_reg_unknown(dst_reg);
2531 return 0;
2534 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2535 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2536 verbose(env,
2537 "R%d 32-bit pointer arithmetic prohibited\n",
2538 dst);
2539 return -EACCES;
2542 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2543 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2544 dst);
2545 return -EACCES;
2547 if (ptr_reg->type == CONST_PTR_TO_MAP) {
2548 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2549 dst);
2550 return -EACCES;
2552 if (ptr_reg->type == PTR_TO_PACKET_END) {
2553 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2554 dst);
2555 return -EACCES;
2558 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2559 * The id may be overwritten later if we create a new variable offset.
2561 dst_reg->type = ptr_reg->type;
2562 dst_reg->id = ptr_reg->id;
2564 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2565 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2566 return -EINVAL;
2568 switch (opcode) {
2569 case BPF_ADD:
2570 /* We can take a fixed offset as long as it doesn't overflow
2571 * the s32 'off' field
2573 if (known && (ptr_reg->off + smin_val ==
2574 (s64)(s32)(ptr_reg->off + smin_val))) {
2575 /* pointer += K. Accumulate it into fixed offset */
2576 dst_reg->smin_value = smin_ptr;
2577 dst_reg->smax_value = smax_ptr;
2578 dst_reg->umin_value = umin_ptr;
2579 dst_reg->umax_value = umax_ptr;
2580 dst_reg->var_off = ptr_reg->var_off;
2581 dst_reg->off = ptr_reg->off + smin_val;
2582 dst_reg->range = ptr_reg->range;
2583 break;
2585 /* A new variable offset is created. Note that off_reg->off
2586 * == 0, since it's a scalar.
2587 * dst_reg gets the pointer type and since some positive
2588 * integer value was added to the pointer, give it a new 'id'
2589 * if it's a PTR_TO_PACKET.
2590 * this creates a new 'base' pointer, off_reg (variable) gets
2591 * added into the variable offset, and we copy the fixed offset
2592 * from ptr_reg.
2594 if (signed_add_overflows(smin_ptr, smin_val) ||
2595 signed_add_overflows(smax_ptr, smax_val)) {
2596 dst_reg->smin_value = S64_MIN;
2597 dst_reg->smax_value = S64_MAX;
2598 } else {
2599 dst_reg->smin_value = smin_ptr + smin_val;
2600 dst_reg->smax_value = smax_ptr + smax_val;
2602 if (umin_ptr + umin_val < umin_ptr ||
2603 umax_ptr + umax_val < umax_ptr) {
2604 dst_reg->umin_value = 0;
2605 dst_reg->umax_value = U64_MAX;
2606 } else {
2607 dst_reg->umin_value = umin_ptr + umin_val;
2608 dst_reg->umax_value = umax_ptr + umax_val;
2610 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2611 dst_reg->off = ptr_reg->off;
2612 if (reg_is_pkt_pointer(ptr_reg)) {
2613 dst_reg->id = ++env->id_gen;
2614 /* something was added to pkt_ptr, set range to zero */
2615 dst_reg->range = 0;
2617 break;
2618 case BPF_SUB:
2619 if (dst_reg == off_reg) {
2620 /* scalar -= pointer. Creates an unknown scalar */
2621 verbose(env, "R%d tried to subtract pointer from scalar\n",
2622 dst);
2623 return -EACCES;
2625 /* We don't allow subtraction from FP, because (according to
2626 * test_verifier.c test "invalid fp arithmetic", JITs might not
2627 * be able to deal with it.
2629 if (ptr_reg->type == PTR_TO_STACK) {
2630 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2631 dst);
2632 return -EACCES;
2634 if (known && (ptr_reg->off - smin_val ==
2635 (s64)(s32)(ptr_reg->off - smin_val))) {
2636 /* pointer -= K. Subtract it from fixed offset */
2637 dst_reg->smin_value = smin_ptr;
2638 dst_reg->smax_value = smax_ptr;
2639 dst_reg->umin_value = umin_ptr;
2640 dst_reg->umax_value = umax_ptr;
2641 dst_reg->var_off = ptr_reg->var_off;
2642 dst_reg->id = ptr_reg->id;
2643 dst_reg->off = ptr_reg->off - smin_val;
2644 dst_reg->range = ptr_reg->range;
2645 break;
2647 /* A new variable offset is created. If the subtrahend is known
2648 * nonnegative, then any reg->range we had before is still good.
2650 if (signed_sub_overflows(smin_ptr, smax_val) ||
2651 signed_sub_overflows(smax_ptr, smin_val)) {
2652 /* Overflow possible, we know nothing */
2653 dst_reg->smin_value = S64_MIN;
2654 dst_reg->smax_value = S64_MAX;
2655 } else {
2656 dst_reg->smin_value = smin_ptr - smax_val;
2657 dst_reg->smax_value = smax_ptr - smin_val;
2659 if (umin_ptr < umax_val) {
2660 /* Overflow possible, we know nothing */
2661 dst_reg->umin_value = 0;
2662 dst_reg->umax_value = U64_MAX;
2663 } else {
2664 /* Cannot overflow (as long as bounds are consistent) */
2665 dst_reg->umin_value = umin_ptr - umax_val;
2666 dst_reg->umax_value = umax_ptr - umin_val;
2668 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2669 dst_reg->off = ptr_reg->off;
2670 if (reg_is_pkt_pointer(ptr_reg)) {
2671 dst_reg->id = ++env->id_gen;
2672 /* something was added to pkt_ptr, set range to zero */
2673 if (smin_val < 0)
2674 dst_reg->range = 0;
2676 break;
2677 case BPF_AND:
2678 case BPF_OR:
2679 case BPF_XOR:
2680 /* bitwise ops on pointers are troublesome, prohibit. */
2681 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2682 dst, bpf_alu_string[opcode >> 4]);
2683 return -EACCES;
2684 default:
2685 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2686 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2687 dst, bpf_alu_string[opcode >> 4]);
2688 return -EACCES;
2691 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2692 return -EINVAL;
2694 __update_reg_bounds(dst_reg);
2695 __reg_deduce_bounds(dst_reg);
2696 __reg_bound_offset(dst_reg);
2697 return 0;
2700 /* WARNING: This function does calculations on 64-bit values, but the actual
2701 * execution may occur on 32-bit values. Therefore, things like bitshifts
2702 * need extra checks in the 32-bit case.
2704 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2705 struct bpf_insn *insn,
2706 struct bpf_reg_state *dst_reg,
2707 struct bpf_reg_state src_reg)
2709 struct bpf_reg_state *regs = cur_regs(env);
2710 u8 opcode = BPF_OP(insn->code);
2711 bool src_known, dst_known;
2712 s64 smin_val, smax_val;
2713 u64 umin_val, umax_val;
2714 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2716 smin_val = src_reg.smin_value;
2717 smax_val = src_reg.smax_value;
2718 umin_val = src_reg.umin_value;
2719 umax_val = src_reg.umax_value;
2720 src_known = tnum_is_const(src_reg.var_off);
2721 dst_known = tnum_is_const(dst_reg->var_off);
2723 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2724 smin_val > smax_val || umin_val > umax_val) {
2725 /* Taint dst register if offset had invalid bounds derived from
2726 * e.g. dead branches.
2728 __mark_reg_unknown(dst_reg);
2729 return 0;
2732 if (!src_known &&
2733 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2734 __mark_reg_unknown(dst_reg);
2735 return 0;
2738 switch (opcode) {
2739 case BPF_ADD:
2740 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2741 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2742 dst_reg->smin_value = S64_MIN;
2743 dst_reg->smax_value = S64_MAX;
2744 } else {
2745 dst_reg->smin_value += smin_val;
2746 dst_reg->smax_value += smax_val;
2748 if (dst_reg->umin_value + umin_val < umin_val ||
2749 dst_reg->umax_value + umax_val < umax_val) {
2750 dst_reg->umin_value = 0;
2751 dst_reg->umax_value = U64_MAX;
2752 } else {
2753 dst_reg->umin_value += umin_val;
2754 dst_reg->umax_value += umax_val;
2756 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2757 break;
2758 case BPF_SUB:
2759 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2760 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2761 /* Overflow possible, we know nothing */
2762 dst_reg->smin_value = S64_MIN;
2763 dst_reg->smax_value = S64_MAX;
2764 } else {
2765 dst_reg->smin_value -= smax_val;
2766 dst_reg->smax_value -= smin_val;
2768 if (dst_reg->umin_value < umax_val) {
2769 /* Overflow possible, we know nothing */
2770 dst_reg->umin_value = 0;
2771 dst_reg->umax_value = U64_MAX;
2772 } else {
2773 /* Cannot overflow (as long as bounds are consistent) */
2774 dst_reg->umin_value -= umax_val;
2775 dst_reg->umax_value -= umin_val;
2777 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2778 break;
2779 case BPF_MUL:
2780 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2781 if (smin_val < 0 || dst_reg->smin_value < 0) {
2782 /* Ain't nobody got time to multiply that sign */
2783 __mark_reg_unbounded(dst_reg);
2784 __update_reg_bounds(dst_reg);
2785 break;
2787 /* Both values are positive, so we can work with unsigned and
2788 * copy the result to signed (unless it exceeds S64_MAX).
2790 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2791 /* Potential overflow, we know nothing */
2792 __mark_reg_unbounded(dst_reg);
2793 /* (except what we can learn from the var_off) */
2794 __update_reg_bounds(dst_reg);
2795 break;
2797 dst_reg->umin_value *= umin_val;
2798 dst_reg->umax_value *= umax_val;
2799 if (dst_reg->umax_value > S64_MAX) {
2800 /* Overflow possible, we know nothing */
2801 dst_reg->smin_value = S64_MIN;
2802 dst_reg->smax_value = S64_MAX;
2803 } else {
2804 dst_reg->smin_value = dst_reg->umin_value;
2805 dst_reg->smax_value = dst_reg->umax_value;
2807 break;
2808 case BPF_AND:
2809 if (src_known && dst_known) {
2810 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2811 src_reg.var_off.value);
2812 break;
2814 /* We get our minimum from the var_off, since that's inherently
2815 * bitwise. Our maximum is the minimum of the operands' maxima.
2817 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2818 dst_reg->umin_value = dst_reg->var_off.value;
2819 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2820 if (dst_reg->smin_value < 0 || smin_val < 0) {
2821 /* Lose signed bounds when ANDing negative numbers,
2822 * ain't nobody got time for that.
2824 dst_reg->smin_value = S64_MIN;
2825 dst_reg->smax_value = S64_MAX;
2826 } else {
2827 /* ANDing two positives gives a positive, so safe to
2828 * cast result into s64.
2830 dst_reg->smin_value = dst_reg->umin_value;
2831 dst_reg->smax_value = dst_reg->umax_value;
2833 /* We may learn something more from the var_off */
2834 __update_reg_bounds(dst_reg);
2835 break;
2836 case BPF_OR:
2837 if (src_known && dst_known) {
2838 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2839 src_reg.var_off.value);
2840 break;
2842 /* We get our maximum from the var_off, and our minimum is the
2843 * maximum of the operands' minima
2845 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2846 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2847 dst_reg->umax_value = dst_reg->var_off.value |
2848 dst_reg->var_off.mask;
2849 if (dst_reg->smin_value < 0 || smin_val < 0) {
2850 /* Lose signed bounds when ORing negative numbers,
2851 * ain't nobody got time for that.
2853 dst_reg->smin_value = S64_MIN;
2854 dst_reg->smax_value = S64_MAX;
2855 } else {
2856 /* ORing two positives gives a positive, so safe to
2857 * cast result into s64.
2859 dst_reg->smin_value = dst_reg->umin_value;
2860 dst_reg->smax_value = dst_reg->umax_value;
2862 /* We may learn something more from the var_off */
2863 __update_reg_bounds(dst_reg);
2864 break;
2865 case BPF_LSH:
2866 if (umax_val >= insn_bitness) {
2867 /* Shifts greater than 31 or 63 are undefined.
2868 * This includes shifts by a negative number.
2870 mark_reg_unknown(env, regs, insn->dst_reg);
2871 break;
2873 /* We lose all sign bit information (except what we can pick
2874 * up from var_off)
2876 dst_reg->smin_value = S64_MIN;
2877 dst_reg->smax_value = S64_MAX;
2878 /* If we might shift our top bit out, then we know nothing */
2879 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2880 dst_reg->umin_value = 0;
2881 dst_reg->umax_value = U64_MAX;
2882 } else {
2883 dst_reg->umin_value <<= umin_val;
2884 dst_reg->umax_value <<= umax_val;
2886 if (src_known)
2887 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2888 else
2889 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2890 /* We may learn something more from the var_off */
2891 __update_reg_bounds(dst_reg);
2892 break;
2893 case BPF_RSH:
2894 if (umax_val >= insn_bitness) {
2895 /* Shifts greater than 31 or 63 are undefined.
2896 * This includes shifts by a negative number.
2898 mark_reg_unknown(env, regs, insn->dst_reg);
2899 break;
2901 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2902 * be negative, then either:
2903 * 1) src_reg might be zero, so the sign bit of the result is
2904 * unknown, so we lose our signed bounds
2905 * 2) it's known negative, thus the unsigned bounds capture the
2906 * signed bounds
2907 * 3) the signed bounds cross zero, so they tell us nothing
2908 * about the result
2909 * If the value in dst_reg is known nonnegative, then again the
2910 * unsigned bounts capture the signed bounds.
2911 * Thus, in all cases it suffices to blow away our signed bounds
2912 * and rely on inferring new ones from the unsigned bounds and
2913 * var_off of the result.
2915 dst_reg->smin_value = S64_MIN;
2916 dst_reg->smax_value = S64_MAX;
2917 if (src_known)
2918 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2919 umin_val);
2920 else
2921 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2922 dst_reg->umin_value >>= umax_val;
2923 dst_reg->umax_value >>= umin_val;
2924 /* We may learn something more from the var_off */
2925 __update_reg_bounds(dst_reg);
2926 break;
2927 default:
2928 mark_reg_unknown(env, regs, insn->dst_reg);
2929 break;
2932 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2933 /* 32-bit ALU ops are (32,32)->32 */
2934 coerce_reg_to_size(dst_reg, 4);
2935 coerce_reg_to_size(&src_reg, 4);
2938 __reg_deduce_bounds(dst_reg);
2939 __reg_bound_offset(dst_reg);
2940 return 0;
2943 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2944 * and var_off.
2946 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2947 struct bpf_insn *insn)
2949 struct bpf_verifier_state *vstate = env->cur_state;
2950 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2951 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2952 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2953 u8 opcode = BPF_OP(insn->code);
2955 dst_reg = &regs[insn->dst_reg];
2956 src_reg = NULL;
2957 if (dst_reg->type != SCALAR_VALUE)
2958 ptr_reg = dst_reg;
2959 if (BPF_SRC(insn->code) == BPF_X) {
2960 src_reg = &regs[insn->src_reg];
2961 if (src_reg->type != SCALAR_VALUE) {
2962 if (dst_reg->type != SCALAR_VALUE) {
2963 /* Combining two pointers by any ALU op yields
2964 * an arbitrary scalar. Disallow all math except
2965 * pointer subtraction
2967 if (opcode == BPF_SUB){
2968 mark_reg_unknown(env, regs, insn->dst_reg);
2969 return 0;
2971 verbose(env, "R%d pointer %s pointer prohibited\n",
2972 insn->dst_reg,
2973 bpf_alu_string[opcode >> 4]);
2974 return -EACCES;
2975 } else {
2976 /* scalar += pointer
2977 * This is legal, but we have to reverse our
2978 * src/dest handling in computing the range
2980 return adjust_ptr_min_max_vals(env, insn,
2981 src_reg, dst_reg);
2983 } else if (ptr_reg) {
2984 /* pointer += scalar */
2985 return adjust_ptr_min_max_vals(env, insn,
2986 dst_reg, src_reg);
2988 } else {
2989 /* Pretend the src is a reg with a known value, since we only
2990 * need to be able to read from this state.
2992 off_reg.type = SCALAR_VALUE;
2993 __mark_reg_known(&off_reg, insn->imm);
2994 src_reg = &off_reg;
2995 if (ptr_reg) /* pointer += K */
2996 return adjust_ptr_min_max_vals(env, insn,
2997 ptr_reg, src_reg);
3000 /* Got here implies adding two SCALAR_VALUEs */
3001 if (WARN_ON_ONCE(ptr_reg)) {
3002 print_verifier_state(env, state);
3003 verbose(env, "verifier internal error: unexpected ptr_reg\n");
3004 return -EINVAL;
3006 if (WARN_ON(!src_reg)) {
3007 print_verifier_state(env, state);
3008 verbose(env, "verifier internal error: no src_reg\n");
3009 return -EINVAL;
3011 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3014 /* check validity of 32-bit and 64-bit arithmetic operations */
3015 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3017 struct bpf_reg_state *regs = cur_regs(env);
3018 u8 opcode = BPF_OP(insn->code);
3019 int err;
3021 if (opcode == BPF_END || opcode == BPF_NEG) {
3022 if (opcode == BPF_NEG) {
3023 if (BPF_SRC(insn->code) != 0 ||
3024 insn->src_reg != BPF_REG_0 ||
3025 insn->off != 0 || insn->imm != 0) {
3026 verbose(env, "BPF_NEG uses reserved fields\n");
3027 return -EINVAL;
3029 } else {
3030 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3031 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3032 BPF_CLASS(insn->code) == BPF_ALU64) {
3033 verbose(env, "BPF_END uses reserved fields\n");
3034 return -EINVAL;
3038 /* check src operand */
3039 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3040 if (err)
3041 return err;
3043 if (is_pointer_value(env, insn->dst_reg)) {
3044 verbose(env, "R%d pointer arithmetic prohibited\n",
3045 insn->dst_reg);
3046 return -EACCES;
3049 /* check dest operand */
3050 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3051 if (err)
3052 return err;
3054 } else if (opcode == BPF_MOV) {
3056 if (BPF_SRC(insn->code) == BPF_X) {
3057 if (insn->imm != 0 || insn->off != 0) {
3058 verbose(env, "BPF_MOV uses reserved fields\n");
3059 return -EINVAL;
3062 /* check src operand */
3063 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3064 if (err)
3065 return err;
3066 } else {
3067 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3068 verbose(env, "BPF_MOV uses reserved fields\n");
3069 return -EINVAL;
3073 /* check dest operand */
3074 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3075 if (err)
3076 return err;
3078 if (BPF_SRC(insn->code) == BPF_X) {
3079 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3080 /* case: R1 = R2
3081 * copy register state to dest reg
3083 regs[insn->dst_reg] = regs[insn->src_reg];
3084 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3085 } else {
3086 /* R1 = (u32) R2 */
3087 if (is_pointer_value(env, insn->src_reg)) {
3088 verbose(env,
3089 "R%d partial copy of pointer\n",
3090 insn->src_reg);
3091 return -EACCES;
3093 mark_reg_unknown(env, regs, insn->dst_reg);
3094 coerce_reg_to_size(&regs[insn->dst_reg], 4);
3096 } else {
3097 /* case: R = imm
3098 * remember the value we stored into this reg
3100 regs[insn->dst_reg].type = SCALAR_VALUE;
3101 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3102 __mark_reg_known(regs + insn->dst_reg,
3103 insn->imm);
3104 } else {
3105 __mark_reg_known(regs + insn->dst_reg,
3106 (u32)insn->imm);
3110 } else if (opcode > BPF_END) {
3111 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3112 return -EINVAL;
3114 } else { /* all other ALU ops: and, sub, xor, add, ... */
3116 if (BPF_SRC(insn->code) == BPF_X) {
3117 if (insn->imm != 0 || insn->off != 0) {
3118 verbose(env, "BPF_ALU uses reserved fields\n");
3119 return -EINVAL;
3121 /* check src1 operand */
3122 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3123 if (err)
3124 return err;
3125 } else {
3126 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3127 verbose(env, "BPF_ALU uses reserved fields\n");
3128 return -EINVAL;
3132 /* check src2 operand */
3133 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3134 if (err)
3135 return err;
3137 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3138 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3139 verbose(env, "div by zero\n");
3140 return -EINVAL;
3143 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3144 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3145 return -EINVAL;
3148 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3149 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3150 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3152 if (insn->imm < 0 || insn->imm >= size) {
3153 verbose(env, "invalid shift %d\n", insn->imm);
3154 return -EINVAL;
3158 /* check dest operand */
3159 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3160 if (err)
3161 return err;
3163 return adjust_reg_min_max_vals(env, insn);
3166 return 0;
3169 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3170 struct bpf_reg_state *dst_reg,
3171 enum bpf_reg_type type,
3172 bool range_right_open)
3174 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3175 struct bpf_reg_state *regs = state->regs, *reg;
3176 u16 new_range;
3177 int i, j;
3179 if (dst_reg->off < 0 ||
3180 (dst_reg->off == 0 && range_right_open))
3181 /* This doesn't give us any range */
3182 return;
3184 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3185 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3186 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3187 * than pkt_end, but that's because it's also less than pkt.
3189 return;
3191 new_range = dst_reg->off;
3192 if (range_right_open)
3193 new_range--;
3195 /* Examples for register markings:
3197 * pkt_data in dst register:
3199 * r2 = r3;
3200 * r2 += 8;
3201 * if (r2 > pkt_end) goto <handle exception>
3202 * <access okay>
3204 * r2 = r3;
3205 * r2 += 8;
3206 * if (r2 < pkt_end) goto <access okay>
3207 * <handle exception>
3209 * Where:
3210 * r2 == dst_reg, pkt_end == src_reg
3211 * r2=pkt(id=n,off=8,r=0)
3212 * r3=pkt(id=n,off=0,r=0)
3214 * pkt_data in src register:
3216 * r2 = r3;
3217 * r2 += 8;
3218 * if (pkt_end >= r2) goto <access okay>
3219 * <handle exception>
3221 * r2 = r3;
3222 * r2 += 8;
3223 * if (pkt_end <= r2) goto <handle exception>
3224 * <access okay>
3226 * Where:
3227 * pkt_end == dst_reg, r2 == src_reg
3228 * r2=pkt(id=n,off=8,r=0)
3229 * r3=pkt(id=n,off=0,r=0)
3231 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3232 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3233 * and [r3, r3 + 8-1) respectively is safe to access depending on
3234 * the check.
3237 /* If our ids match, then we must have the same max_value. And we
3238 * don't care about the other reg's fixed offset, since if it's too big
3239 * the range won't allow anything.
3240 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3242 for (i = 0; i < MAX_BPF_REG; i++)
3243 if (regs[i].type == type && regs[i].id == dst_reg->id)
3244 /* keep the maximum range already checked */
3245 regs[i].range = max(regs[i].range, new_range);
3247 for (j = 0; j <= vstate->curframe; j++) {
3248 state = vstate->frame[j];
3249 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3250 if (state->stack[i].slot_type[0] != STACK_SPILL)
3251 continue;
3252 reg = &state->stack[i].spilled_ptr;
3253 if (reg->type == type && reg->id == dst_reg->id)
3254 reg->range = max(reg->range, new_range);
3259 /* Adjusts the register min/max values in the case that the dst_reg is the
3260 * variable register that we are working on, and src_reg is a constant or we're
3261 * simply doing a BPF_K check.
3262 * In JEQ/JNE cases we also adjust the var_off values.
3264 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3265 struct bpf_reg_state *false_reg, u64 val,
3266 u8 opcode)
3268 /* If the dst_reg is a pointer, we can't learn anything about its
3269 * variable offset from the compare (unless src_reg were a pointer into
3270 * the same object, but we don't bother with that.
3271 * Since false_reg and true_reg have the same type by construction, we
3272 * only need to check one of them for pointerness.
3274 if (__is_pointer_value(false, false_reg))
3275 return;
3277 switch (opcode) {
3278 case BPF_JEQ:
3279 /* If this is false then we know nothing Jon Snow, but if it is
3280 * true then we know for sure.
3282 __mark_reg_known(true_reg, val);
3283 break;
3284 case BPF_JNE:
3285 /* If this is true we know nothing Jon Snow, but if it is false
3286 * we know the value for sure;
3288 __mark_reg_known(false_reg, val);
3289 break;
3290 case BPF_JGT:
3291 false_reg->umax_value = min(false_reg->umax_value, val);
3292 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3293 break;
3294 case BPF_JSGT:
3295 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3296 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3297 break;
3298 case BPF_JLT:
3299 false_reg->umin_value = max(false_reg->umin_value, val);
3300 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3301 break;
3302 case BPF_JSLT:
3303 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3304 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3305 break;
3306 case BPF_JGE:
3307 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3308 true_reg->umin_value = max(true_reg->umin_value, val);
3309 break;
3310 case BPF_JSGE:
3311 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3312 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3313 break;
3314 case BPF_JLE:
3315 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3316 true_reg->umax_value = min(true_reg->umax_value, val);
3317 break;
3318 case BPF_JSLE:
3319 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3320 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3321 break;
3322 default:
3323 break;
3326 __reg_deduce_bounds(false_reg);
3327 __reg_deduce_bounds(true_reg);
3328 /* We might have learned some bits from the bounds. */
3329 __reg_bound_offset(false_reg);
3330 __reg_bound_offset(true_reg);
3331 /* Intersecting with the old var_off might have improved our bounds
3332 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3333 * then new var_off is (0; 0x7f...fc) which improves our umax.
3335 __update_reg_bounds(false_reg);
3336 __update_reg_bounds(true_reg);
3339 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3340 * the variable reg.
3342 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3343 struct bpf_reg_state *false_reg, u64 val,
3344 u8 opcode)
3346 if (__is_pointer_value(false, false_reg))
3347 return;
3349 switch (opcode) {
3350 case BPF_JEQ:
3351 /* If this is false then we know nothing Jon Snow, but if it is
3352 * true then we know for sure.
3354 __mark_reg_known(true_reg, val);
3355 break;
3356 case BPF_JNE:
3357 /* If this is true we know nothing Jon Snow, but if it is false
3358 * we know the value for sure;
3360 __mark_reg_known(false_reg, val);
3361 break;
3362 case BPF_JGT:
3363 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3364 false_reg->umin_value = max(false_reg->umin_value, val);
3365 break;
3366 case BPF_JSGT:
3367 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3368 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3369 break;
3370 case BPF_JLT:
3371 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3372 false_reg->umax_value = min(false_reg->umax_value, val);
3373 break;
3374 case BPF_JSLT:
3375 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3376 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3377 break;
3378 case BPF_JGE:
3379 true_reg->umax_value = min(true_reg->umax_value, val);
3380 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3381 break;
3382 case BPF_JSGE:
3383 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3384 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3385 break;
3386 case BPF_JLE:
3387 true_reg->umin_value = max(true_reg->umin_value, val);
3388 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3389 break;
3390 case BPF_JSLE:
3391 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3392 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3393 break;
3394 default:
3395 break;
3398 __reg_deduce_bounds(false_reg);
3399 __reg_deduce_bounds(true_reg);
3400 /* We might have learned some bits from the bounds. */
3401 __reg_bound_offset(false_reg);
3402 __reg_bound_offset(true_reg);
3403 /* Intersecting with the old var_off might have improved our bounds
3404 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3405 * then new var_off is (0; 0x7f...fc) which improves our umax.
3407 __update_reg_bounds(false_reg);
3408 __update_reg_bounds(true_reg);
3411 /* Regs are known to be equal, so intersect their min/max/var_off */
3412 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3413 struct bpf_reg_state *dst_reg)
3415 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3416 dst_reg->umin_value);
3417 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3418 dst_reg->umax_value);
3419 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3420 dst_reg->smin_value);
3421 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3422 dst_reg->smax_value);
3423 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3424 dst_reg->var_off);
3425 /* We might have learned new bounds from the var_off. */
3426 __update_reg_bounds(src_reg);
3427 __update_reg_bounds(dst_reg);
3428 /* We might have learned something about the sign bit. */
3429 __reg_deduce_bounds(src_reg);
3430 __reg_deduce_bounds(dst_reg);
3431 /* We might have learned some bits from the bounds. */
3432 __reg_bound_offset(src_reg);
3433 __reg_bound_offset(dst_reg);
3434 /* Intersecting with the old var_off might have improved our bounds
3435 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3436 * then new var_off is (0; 0x7f...fc) which improves our umax.
3438 __update_reg_bounds(src_reg);
3439 __update_reg_bounds(dst_reg);
3442 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3443 struct bpf_reg_state *true_dst,
3444 struct bpf_reg_state *false_src,
3445 struct bpf_reg_state *false_dst,
3446 u8 opcode)
3448 switch (opcode) {
3449 case BPF_JEQ:
3450 __reg_combine_min_max(true_src, true_dst);
3451 break;
3452 case BPF_JNE:
3453 __reg_combine_min_max(false_src, false_dst);
3454 break;
3458 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3459 bool is_null)
3461 struct bpf_reg_state *reg = &regs[regno];
3463 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3464 /* Old offset (both fixed and variable parts) should
3465 * have been known-zero, because we don't allow pointer
3466 * arithmetic on pointers that might be NULL.
3468 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3469 !tnum_equals_const(reg->var_off, 0) ||
3470 reg->off)) {
3471 __mark_reg_known_zero(reg);
3472 reg->off = 0;
3474 if (is_null) {
3475 reg->type = SCALAR_VALUE;
3476 } else if (reg->map_ptr->inner_map_meta) {
3477 reg->type = CONST_PTR_TO_MAP;
3478 reg->map_ptr = reg->map_ptr->inner_map_meta;
3479 } else {
3480 reg->type = PTR_TO_MAP_VALUE;
3482 /* We don't need id from this point onwards anymore, thus we
3483 * should better reset it, so that state pruning has chances
3484 * to take effect.
3486 reg->id = 0;
3490 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3491 * be folded together at some point.
3493 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3494 bool is_null)
3496 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3497 struct bpf_reg_state *regs = state->regs;
3498 u32 id = regs[regno].id;
3499 int i, j;
3501 for (i = 0; i < MAX_BPF_REG; i++)
3502 mark_map_reg(regs, i, id, is_null);
3504 for (j = 0; j <= vstate->curframe; j++) {
3505 state = vstate->frame[j];
3506 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3507 if (state->stack[i].slot_type[0] != STACK_SPILL)
3508 continue;
3509 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3514 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3515 struct bpf_reg_state *dst_reg,
3516 struct bpf_reg_state *src_reg,
3517 struct bpf_verifier_state *this_branch,
3518 struct bpf_verifier_state *other_branch)
3520 if (BPF_SRC(insn->code) != BPF_X)
3521 return false;
3523 switch (BPF_OP(insn->code)) {
3524 case BPF_JGT:
3525 if ((dst_reg->type == PTR_TO_PACKET &&
3526 src_reg->type == PTR_TO_PACKET_END) ||
3527 (dst_reg->type == PTR_TO_PACKET_META &&
3528 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3529 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3530 find_good_pkt_pointers(this_branch, dst_reg,
3531 dst_reg->type, false);
3532 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3533 src_reg->type == PTR_TO_PACKET) ||
3534 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3535 src_reg->type == PTR_TO_PACKET_META)) {
3536 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3537 find_good_pkt_pointers(other_branch, src_reg,
3538 src_reg->type, true);
3539 } else {
3540 return false;
3542 break;
3543 case BPF_JLT:
3544 if ((dst_reg->type == PTR_TO_PACKET &&
3545 src_reg->type == PTR_TO_PACKET_END) ||
3546 (dst_reg->type == PTR_TO_PACKET_META &&
3547 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3548 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3549 find_good_pkt_pointers(other_branch, dst_reg,
3550 dst_reg->type, true);
3551 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3552 src_reg->type == PTR_TO_PACKET) ||
3553 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3554 src_reg->type == PTR_TO_PACKET_META)) {
3555 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3556 find_good_pkt_pointers(this_branch, src_reg,
3557 src_reg->type, false);
3558 } else {
3559 return false;
3561 break;
3562 case BPF_JGE:
3563 if ((dst_reg->type == PTR_TO_PACKET &&
3564 src_reg->type == PTR_TO_PACKET_END) ||
3565 (dst_reg->type == PTR_TO_PACKET_META &&
3566 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3567 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3568 find_good_pkt_pointers(this_branch, dst_reg,
3569 dst_reg->type, true);
3570 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3571 src_reg->type == PTR_TO_PACKET) ||
3572 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3573 src_reg->type == PTR_TO_PACKET_META)) {
3574 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3575 find_good_pkt_pointers(other_branch, src_reg,
3576 src_reg->type, false);
3577 } else {
3578 return false;
3580 break;
3581 case BPF_JLE:
3582 if ((dst_reg->type == PTR_TO_PACKET &&
3583 src_reg->type == PTR_TO_PACKET_END) ||
3584 (dst_reg->type == PTR_TO_PACKET_META &&
3585 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3586 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3587 find_good_pkt_pointers(other_branch, dst_reg,
3588 dst_reg->type, false);
3589 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3590 src_reg->type == PTR_TO_PACKET) ||
3591 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3592 src_reg->type == PTR_TO_PACKET_META)) {
3593 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3594 find_good_pkt_pointers(this_branch, src_reg,
3595 src_reg->type, true);
3596 } else {
3597 return false;
3599 break;
3600 default:
3601 return false;
3604 return true;
3607 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3608 struct bpf_insn *insn, int *insn_idx)
3610 struct bpf_verifier_state *this_branch = env->cur_state;
3611 struct bpf_verifier_state *other_branch;
3612 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3613 struct bpf_reg_state *dst_reg, *other_branch_regs;
3614 u8 opcode = BPF_OP(insn->code);
3615 int err;
3617 if (opcode > BPF_JSLE) {
3618 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3619 return -EINVAL;
3622 if (BPF_SRC(insn->code) == BPF_X) {
3623 if (insn->imm != 0) {
3624 verbose(env, "BPF_JMP uses reserved fields\n");
3625 return -EINVAL;
3628 /* check src1 operand */
3629 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3630 if (err)
3631 return err;
3633 if (is_pointer_value(env, insn->src_reg)) {
3634 verbose(env, "R%d pointer comparison prohibited\n",
3635 insn->src_reg);
3636 return -EACCES;
3638 } else {
3639 if (insn->src_reg != BPF_REG_0) {
3640 verbose(env, "BPF_JMP uses reserved fields\n");
3641 return -EINVAL;
3645 /* check src2 operand */
3646 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3647 if (err)
3648 return err;
3650 dst_reg = &regs[insn->dst_reg];
3652 /* detect if R == 0 where R was initialized to zero earlier */
3653 if (BPF_SRC(insn->code) == BPF_K &&
3654 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3655 dst_reg->type == SCALAR_VALUE &&
3656 tnum_is_const(dst_reg->var_off)) {
3657 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3658 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3659 /* if (imm == imm) goto pc+off;
3660 * only follow the goto, ignore fall-through
3662 *insn_idx += insn->off;
3663 return 0;
3664 } else {
3665 /* if (imm != imm) goto pc+off;
3666 * only follow fall-through branch, since
3667 * that's where the program will go
3669 return 0;
3673 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3674 if (!other_branch)
3675 return -EFAULT;
3676 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3678 /* detect if we are comparing against a constant value so we can adjust
3679 * our min/max values for our dst register.
3680 * this is only legit if both are scalars (or pointers to the same
3681 * object, I suppose, but we don't support that right now), because
3682 * otherwise the different base pointers mean the offsets aren't
3683 * comparable.
3685 if (BPF_SRC(insn->code) == BPF_X) {
3686 if (dst_reg->type == SCALAR_VALUE &&
3687 regs[insn->src_reg].type == SCALAR_VALUE) {
3688 if (tnum_is_const(regs[insn->src_reg].var_off))
3689 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3690 dst_reg, regs[insn->src_reg].var_off.value,
3691 opcode);
3692 else if (tnum_is_const(dst_reg->var_off))
3693 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3694 &regs[insn->src_reg],
3695 dst_reg->var_off.value, opcode);
3696 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3697 /* Comparing for equality, we can combine knowledge */
3698 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3699 &other_branch_regs[insn->dst_reg],
3700 &regs[insn->src_reg],
3701 &regs[insn->dst_reg], opcode);
3703 } else if (dst_reg->type == SCALAR_VALUE) {
3704 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3705 dst_reg, insn->imm, opcode);
3708 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3709 if (BPF_SRC(insn->code) == BPF_K &&
3710 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3711 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3712 /* Mark all identical map registers in each branch as either
3713 * safe or unknown depending R == 0 or R != 0 conditional.
3715 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3716 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3717 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3718 this_branch, other_branch) &&
3719 is_pointer_value(env, insn->dst_reg)) {
3720 verbose(env, "R%d pointer comparison prohibited\n",
3721 insn->dst_reg);
3722 return -EACCES;
3724 if (env->log.level)
3725 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3726 return 0;
3729 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3730 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3732 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3734 return (struct bpf_map *) (unsigned long) imm64;
3737 /* verify BPF_LD_IMM64 instruction */
3738 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3740 struct bpf_reg_state *regs = cur_regs(env);
3741 int err;
3743 if (BPF_SIZE(insn->code) != BPF_DW) {
3744 verbose(env, "invalid BPF_LD_IMM insn\n");
3745 return -EINVAL;
3747 if (insn->off != 0) {
3748 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3749 return -EINVAL;
3752 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3753 if (err)
3754 return err;
3756 if (insn->src_reg == 0) {
3757 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3759 regs[insn->dst_reg].type = SCALAR_VALUE;
3760 __mark_reg_known(&regs[insn->dst_reg], imm);
3761 return 0;
3764 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3765 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3767 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3768 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3769 return 0;
3772 static bool may_access_skb(enum bpf_prog_type type)
3774 switch (type) {
3775 case BPF_PROG_TYPE_SOCKET_FILTER:
3776 case BPF_PROG_TYPE_SCHED_CLS:
3777 case BPF_PROG_TYPE_SCHED_ACT:
3778 return true;
3779 default:
3780 return false;
3784 /* verify safety of LD_ABS|LD_IND instructions:
3785 * - they can only appear in the programs where ctx == skb
3786 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3787 * preserve R6-R9, and store return value into R0
3789 * Implicit input:
3790 * ctx == skb == R6 == CTX
3792 * Explicit input:
3793 * SRC == any register
3794 * IMM == 32-bit immediate
3796 * Output:
3797 * R0 - 8/16/32-bit skb data converted to cpu endianness
3799 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3801 struct bpf_reg_state *regs = cur_regs(env);
3802 u8 mode = BPF_MODE(insn->code);
3803 int i, err;
3805 if (!may_access_skb(env->prog->type)) {
3806 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3807 return -EINVAL;
3810 if (env->subprog_cnt) {
3811 /* when program has LD_ABS insn JITs and interpreter assume
3812 * that r1 == ctx == skb which is not the case for callees
3813 * that can have arbitrary arguments. It's problematic
3814 * for main prog as well since JITs would need to analyze
3815 * all functions in order to make proper register save/restore
3816 * decisions in the main prog. Hence disallow LD_ABS with calls
3818 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3819 return -EINVAL;
3822 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3823 BPF_SIZE(insn->code) == BPF_DW ||
3824 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3825 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3826 return -EINVAL;
3829 /* check whether implicit source operand (register R6) is readable */
3830 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3831 if (err)
3832 return err;
3834 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3835 verbose(env,
3836 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3837 return -EINVAL;
3840 if (mode == BPF_IND) {
3841 /* check explicit source operand */
3842 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3843 if (err)
3844 return err;
3847 /* reset caller saved regs to unreadable */
3848 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3849 mark_reg_not_init(env, regs, caller_saved[i]);
3850 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3853 /* mark destination R0 register as readable, since it contains
3854 * the value fetched from the packet.
3855 * Already marked as written above.
3857 mark_reg_unknown(env, regs, BPF_REG_0);
3858 return 0;
3861 static int check_return_code(struct bpf_verifier_env *env)
3863 struct bpf_reg_state *reg;
3864 struct tnum range = tnum_range(0, 1);
3866 switch (env->prog->type) {
3867 case BPF_PROG_TYPE_CGROUP_SKB:
3868 case BPF_PROG_TYPE_CGROUP_SOCK:
3869 case BPF_PROG_TYPE_SOCK_OPS:
3870 case BPF_PROG_TYPE_CGROUP_DEVICE:
3871 break;
3872 default:
3873 return 0;
3876 reg = cur_regs(env) + BPF_REG_0;
3877 if (reg->type != SCALAR_VALUE) {
3878 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3879 reg_type_str[reg->type]);
3880 return -EINVAL;
3883 if (!tnum_in(range, reg->var_off)) {
3884 verbose(env, "At program exit the register R0 ");
3885 if (!tnum_is_unknown(reg->var_off)) {
3886 char tn_buf[48];
3888 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3889 verbose(env, "has value %s", tn_buf);
3890 } else {
3891 verbose(env, "has unknown scalar value");
3893 verbose(env, " should have been 0 or 1\n");
3894 return -EINVAL;
3896 return 0;
3899 /* non-recursive DFS pseudo code
3900 * 1 procedure DFS-iterative(G,v):
3901 * 2 label v as discovered
3902 * 3 let S be a stack
3903 * 4 S.push(v)
3904 * 5 while S is not empty
3905 * 6 t <- S.pop()
3906 * 7 if t is what we're looking for:
3907 * 8 return t
3908 * 9 for all edges e in G.adjacentEdges(t) do
3909 * 10 if edge e is already labelled
3910 * 11 continue with the next edge
3911 * 12 w <- G.adjacentVertex(t,e)
3912 * 13 if vertex w is not discovered and not explored
3913 * 14 label e as tree-edge
3914 * 15 label w as discovered
3915 * 16 S.push(w)
3916 * 17 continue at 5
3917 * 18 else if vertex w is discovered
3918 * 19 label e as back-edge
3919 * 20 else
3920 * 21 // vertex w is explored
3921 * 22 label e as forward- or cross-edge
3922 * 23 label t as explored
3923 * 24 S.pop()
3925 * convention:
3926 * 0x10 - discovered
3927 * 0x11 - discovered and fall-through edge labelled
3928 * 0x12 - discovered and fall-through and branch edges labelled
3929 * 0x20 - explored
3932 enum {
3933 DISCOVERED = 0x10,
3934 EXPLORED = 0x20,
3935 FALLTHROUGH = 1,
3936 BRANCH = 2,
3939 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3941 static int *insn_stack; /* stack of insns to process */
3942 static int cur_stack; /* current stack index */
3943 static int *insn_state;
3945 /* t, w, e - match pseudo-code above:
3946 * t - index of current instruction
3947 * w - next instruction
3948 * e - edge
3950 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3952 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3953 return 0;
3955 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3956 return 0;
3958 if (w < 0 || w >= env->prog->len) {
3959 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3960 return -EINVAL;
3963 if (e == BRANCH)
3964 /* mark branch target for state pruning */
3965 env->explored_states[w] = STATE_LIST_MARK;
3967 if (insn_state[w] == 0) {
3968 /* tree-edge */
3969 insn_state[t] = DISCOVERED | e;
3970 insn_state[w] = DISCOVERED;
3971 if (cur_stack >= env->prog->len)
3972 return -E2BIG;
3973 insn_stack[cur_stack++] = w;
3974 return 1;
3975 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3976 verbose(env, "back-edge from insn %d to %d\n", t, w);
3977 return -EINVAL;
3978 } else if (insn_state[w] == EXPLORED) {
3979 /* forward- or cross-edge */
3980 insn_state[t] = DISCOVERED | e;
3981 } else {
3982 verbose(env, "insn state internal bug\n");
3983 return -EFAULT;
3985 return 0;
3988 /* non-recursive depth-first-search to detect loops in BPF program
3989 * loop == back-edge in directed graph
3991 static int check_cfg(struct bpf_verifier_env *env)
3993 struct bpf_insn *insns = env->prog->insnsi;
3994 int insn_cnt = env->prog->len;
3995 int ret = 0;
3996 int i, t;
3998 ret = check_subprogs(env);
3999 if (ret < 0)
4000 return ret;
4002 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4003 if (!insn_state)
4004 return -ENOMEM;
4006 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4007 if (!insn_stack) {
4008 kfree(insn_state);
4009 return -ENOMEM;
4012 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4013 insn_stack[0] = 0; /* 0 is the first instruction */
4014 cur_stack = 1;
4016 peek_stack:
4017 if (cur_stack == 0)
4018 goto check_state;
4019 t = insn_stack[cur_stack - 1];
4021 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4022 u8 opcode = BPF_OP(insns[t].code);
4024 if (opcode == BPF_EXIT) {
4025 goto mark_explored;
4026 } else if (opcode == BPF_CALL) {
4027 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4028 if (ret == 1)
4029 goto peek_stack;
4030 else if (ret < 0)
4031 goto err_free;
4032 if (t + 1 < insn_cnt)
4033 env->explored_states[t + 1] = STATE_LIST_MARK;
4034 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4035 env->explored_states[t] = STATE_LIST_MARK;
4036 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4037 if (ret == 1)
4038 goto peek_stack;
4039 else if (ret < 0)
4040 goto err_free;
4042 } else if (opcode == BPF_JA) {
4043 if (BPF_SRC(insns[t].code) != BPF_K) {
4044 ret = -EINVAL;
4045 goto err_free;
4047 /* unconditional jump with single edge */
4048 ret = push_insn(t, t + insns[t].off + 1,
4049 FALLTHROUGH, env);
4050 if (ret == 1)
4051 goto peek_stack;
4052 else if (ret < 0)
4053 goto err_free;
4054 /* tell verifier to check for equivalent states
4055 * after every call and jump
4057 if (t + 1 < insn_cnt)
4058 env->explored_states[t + 1] = STATE_LIST_MARK;
4059 } else {
4060 /* conditional jump with two edges */
4061 env->explored_states[t] = STATE_LIST_MARK;
4062 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4063 if (ret == 1)
4064 goto peek_stack;
4065 else if (ret < 0)
4066 goto err_free;
4068 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4069 if (ret == 1)
4070 goto peek_stack;
4071 else if (ret < 0)
4072 goto err_free;
4074 } else {
4075 /* all other non-branch instructions with single
4076 * fall-through edge
4078 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4079 if (ret == 1)
4080 goto peek_stack;
4081 else if (ret < 0)
4082 goto err_free;
4085 mark_explored:
4086 insn_state[t] = EXPLORED;
4087 if (cur_stack-- <= 0) {
4088 verbose(env, "pop stack internal bug\n");
4089 ret = -EFAULT;
4090 goto err_free;
4092 goto peek_stack;
4094 check_state:
4095 for (i = 0; i < insn_cnt; i++) {
4096 if (insn_state[i] != EXPLORED) {
4097 verbose(env, "unreachable insn %d\n", i);
4098 ret = -EINVAL;
4099 goto err_free;
4102 ret = 0; /* cfg looks good */
4104 err_free:
4105 kfree(insn_state);
4106 kfree(insn_stack);
4107 return ret;
4110 /* check %cur's range satisfies %old's */
4111 static bool range_within(struct bpf_reg_state *old,
4112 struct bpf_reg_state *cur)
4114 return old->umin_value <= cur->umin_value &&
4115 old->umax_value >= cur->umax_value &&
4116 old->smin_value <= cur->smin_value &&
4117 old->smax_value >= cur->smax_value;
4120 /* Maximum number of register states that can exist at once */
4121 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4122 struct idpair {
4123 u32 old;
4124 u32 cur;
4127 /* If in the old state two registers had the same id, then they need to have
4128 * the same id in the new state as well. But that id could be different from
4129 * the old state, so we need to track the mapping from old to new ids.
4130 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4131 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4132 * regs with a different old id could still have new id 9, we don't care about
4133 * that.
4134 * So we look through our idmap to see if this old id has been seen before. If
4135 * so, we require the new id to match; otherwise, we add the id pair to the map.
4137 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4139 unsigned int i;
4141 for (i = 0; i < ID_MAP_SIZE; i++) {
4142 if (!idmap[i].old) {
4143 /* Reached an empty slot; haven't seen this id before */
4144 idmap[i].old = old_id;
4145 idmap[i].cur = cur_id;
4146 return true;
4148 if (idmap[i].old == old_id)
4149 return idmap[i].cur == cur_id;
4151 /* We ran out of idmap slots, which should be impossible */
4152 WARN_ON_ONCE(1);
4153 return false;
4156 /* Returns true if (rold safe implies rcur safe) */
4157 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4158 struct idpair *idmap)
4160 bool equal;
4162 if (!(rold->live & REG_LIVE_READ))
4163 /* explored state didn't use this */
4164 return true;
4166 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4168 if (rold->type == PTR_TO_STACK)
4169 /* two stack pointers are equal only if they're pointing to
4170 * the same stack frame, since fp-8 in foo != fp-8 in bar
4172 return equal && rold->frameno == rcur->frameno;
4174 if (equal)
4175 return true;
4177 if (rold->type == NOT_INIT)
4178 /* explored state can't have used this */
4179 return true;
4180 if (rcur->type == NOT_INIT)
4181 return false;
4182 switch (rold->type) {
4183 case SCALAR_VALUE:
4184 if (rcur->type == SCALAR_VALUE) {
4185 /* new val must satisfy old val knowledge */
4186 return range_within(rold, rcur) &&
4187 tnum_in(rold->var_off, rcur->var_off);
4188 } else {
4189 /* We're trying to use a pointer in place of a scalar.
4190 * Even if the scalar was unbounded, this could lead to
4191 * pointer leaks because scalars are allowed to leak
4192 * while pointers are not. We could make this safe in
4193 * special cases if root is calling us, but it's
4194 * probably not worth the hassle.
4196 return false;
4198 case PTR_TO_MAP_VALUE:
4199 /* If the new min/max/var_off satisfy the old ones and
4200 * everything else matches, we are OK.
4201 * We don't care about the 'id' value, because nothing
4202 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4204 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4205 range_within(rold, rcur) &&
4206 tnum_in(rold->var_off, rcur->var_off);
4207 case PTR_TO_MAP_VALUE_OR_NULL:
4208 /* a PTR_TO_MAP_VALUE could be safe to use as a
4209 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4210 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4211 * checked, doing so could have affected others with the same
4212 * id, and we can't check for that because we lost the id when
4213 * we converted to a PTR_TO_MAP_VALUE.
4215 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4216 return false;
4217 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4218 return false;
4219 /* Check our ids match any regs they're supposed to */
4220 return check_ids(rold->id, rcur->id, idmap);
4221 case PTR_TO_PACKET_META:
4222 case PTR_TO_PACKET:
4223 if (rcur->type != rold->type)
4224 return false;
4225 /* We must have at least as much range as the old ptr
4226 * did, so that any accesses which were safe before are
4227 * still safe. This is true even if old range < old off,
4228 * since someone could have accessed through (ptr - k), or
4229 * even done ptr -= k in a register, to get a safe access.
4231 if (rold->range > rcur->range)
4232 return false;
4233 /* If the offsets don't match, we can't trust our alignment;
4234 * nor can we be sure that we won't fall out of range.
4236 if (rold->off != rcur->off)
4237 return false;
4238 /* id relations must be preserved */
4239 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4240 return false;
4241 /* new val must satisfy old val knowledge */
4242 return range_within(rold, rcur) &&
4243 tnum_in(rold->var_off, rcur->var_off);
4244 case PTR_TO_CTX:
4245 case CONST_PTR_TO_MAP:
4246 case PTR_TO_PACKET_END:
4247 /* Only valid matches are exact, which memcmp() above
4248 * would have accepted
4250 default:
4251 /* Don't know what's going on, just say it's not safe */
4252 return false;
4255 /* Shouldn't get here; if we do, say it's not safe */
4256 WARN_ON_ONCE(1);
4257 return false;
4260 static bool stacksafe(struct bpf_func_state *old,
4261 struct bpf_func_state *cur,
4262 struct idpair *idmap)
4264 int i, spi;
4266 /* if explored stack has more populated slots than current stack
4267 * such stacks are not equivalent
4269 if (old->allocated_stack > cur->allocated_stack)
4270 return false;
4272 /* walk slots of the explored stack and ignore any additional
4273 * slots in the current stack, since explored(safe) state
4274 * didn't use them
4276 for (i = 0; i < old->allocated_stack; i++) {
4277 spi = i / BPF_REG_SIZE;
4279 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4280 /* explored state didn't use this */
4281 continue;
4283 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4284 continue;
4285 /* if old state was safe with misc data in the stack
4286 * it will be safe with zero-initialized stack.
4287 * The opposite is not true
4289 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4290 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4291 continue;
4292 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4293 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4294 /* Ex: old explored (safe) state has STACK_SPILL in
4295 * this stack slot, but current has has STACK_MISC ->
4296 * this verifier states are not equivalent,
4297 * return false to continue verification of this path
4299 return false;
4300 if (i % BPF_REG_SIZE)
4301 continue;
4302 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4303 continue;
4304 if (!regsafe(&old->stack[spi].spilled_ptr,
4305 &cur->stack[spi].spilled_ptr,
4306 idmap))
4307 /* when explored and current stack slot are both storing
4308 * spilled registers, check that stored pointers types
4309 * are the same as well.
4310 * Ex: explored safe path could have stored
4311 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4312 * but current path has stored:
4313 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4314 * such verifier states are not equivalent.
4315 * return false to continue verification of this path
4317 return false;
4319 return true;
4322 /* compare two verifier states
4324 * all states stored in state_list are known to be valid, since
4325 * verifier reached 'bpf_exit' instruction through them
4327 * this function is called when verifier exploring different branches of
4328 * execution popped from the state stack. If it sees an old state that has
4329 * more strict register state and more strict stack state then this execution
4330 * branch doesn't need to be explored further, since verifier already
4331 * concluded that more strict state leads to valid finish.
4333 * Therefore two states are equivalent if register state is more conservative
4334 * and explored stack state is more conservative than the current one.
4335 * Example:
4336 * explored current
4337 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4338 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4340 * In other words if current stack state (one being explored) has more
4341 * valid slots than old one that already passed validation, it means
4342 * the verifier can stop exploring and conclude that current state is valid too
4344 * Similarly with registers. If explored state has register type as invalid
4345 * whereas register type in current state is meaningful, it means that
4346 * the current state will reach 'bpf_exit' instruction safely
4348 static bool func_states_equal(struct bpf_func_state *old,
4349 struct bpf_func_state *cur)
4351 struct idpair *idmap;
4352 bool ret = false;
4353 int i;
4355 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4356 /* If we failed to allocate the idmap, just say it's not safe */
4357 if (!idmap)
4358 return false;
4360 for (i = 0; i < MAX_BPF_REG; i++) {
4361 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4362 goto out_free;
4365 if (!stacksafe(old, cur, idmap))
4366 goto out_free;
4367 ret = true;
4368 out_free:
4369 kfree(idmap);
4370 return ret;
4373 static bool states_equal(struct bpf_verifier_env *env,
4374 struct bpf_verifier_state *old,
4375 struct bpf_verifier_state *cur)
4377 int i;
4379 if (old->curframe != cur->curframe)
4380 return false;
4382 /* for states to be equal callsites have to be the same
4383 * and all frame states need to be equivalent
4385 for (i = 0; i <= old->curframe; i++) {
4386 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4387 return false;
4388 if (!func_states_equal(old->frame[i], cur->frame[i]))
4389 return false;
4391 return true;
4394 /* A write screens off any subsequent reads; but write marks come from the
4395 * straight-line code between a state and its parent. When we arrive at an
4396 * equivalent state (jump target or such) we didn't arrive by the straight-line
4397 * code, so read marks in the state must propagate to the parent regardless
4398 * of the state's write marks. That's what 'parent == state->parent' comparison
4399 * in mark_reg_read() and mark_stack_slot_read() is for.
4401 static int propagate_liveness(struct bpf_verifier_env *env,
4402 const struct bpf_verifier_state *vstate,
4403 struct bpf_verifier_state *vparent)
4405 int i, frame, err = 0;
4406 struct bpf_func_state *state, *parent;
4408 if (vparent->curframe != vstate->curframe) {
4409 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4410 vparent->curframe, vstate->curframe);
4411 return -EFAULT;
4413 /* Propagate read liveness of registers... */
4414 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4415 /* We don't need to worry about FP liveness because it's read-only */
4416 for (i = 0; i < BPF_REG_FP; i++) {
4417 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4418 continue;
4419 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4420 err = mark_reg_read(env, vstate, vparent, i);
4421 if (err)
4422 return err;
4426 /* ... and stack slots */
4427 for (frame = 0; frame <= vstate->curframe; frame++) {
4428 state = vstate->frame[frame];
4429 parent = vparent->frame[frame];
4430 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4431 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4432 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4433 continue;
4434 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4435 mark_stack_slot_read(env, vstate, vparent, i, frame);
4438 return err;
4441 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4443 struct bpf_verifier_state_list *new_sl;
4444 struct bpf_verifier_state_list *sl;
4445 struct bpf_verifier_state *cur = env->cur_state;
4446 int i, j, err;
4448 sl = env->explored_states[insn_idx];
4449 if (!sl)
4450 /* this 'insn_idx' instruction wasn't marked, so we will not
4451 * be doing state search here
4453 return 0;
4455 while (sl != STATE_LIST_MARK) {
4456 if (states_equal(env, &sl->state, cur)) {
4457 /* reached equivalent register/stack state,
4458 * prune the search.
4459 * Registers read by the continuation are read by us.
4460 * If we have any write marks in env->cur_state, they
4461 * will prevent corresponding reads in the continuation
4462 * from reaching our parent (an explored_state). Our
4463 * own state will get the read marks recorded, but
4464 * they'll be immediately forgotten as we're pruning
4465 * this state and will pop a new one.
4467 err = propagate_liveness(env, &sl->state, cur);
4468 if (err)
4469 return err;
4470 return 1;
4472 sl = sl->next;
4475 /* there were no equivalent states, remember current one.
4476 * technically the current state is not proven to be safe yet,
4477 * but it will either reach outer most bpf_exit (which means it's safe)
4478 * or it will be rejected. Since there are no loops, we won't be
4479 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4480 * again on the way to bpf_exit
4482 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4483 if (!new_sl)
4484 return -ENOMEM;
4486 /* add new state to the head of linked list */
4487 err = copy_verifier_state(&new_sl->state, cur);
4488 if (err) {
4489 free_verifier_state(&new_sl->state, false);
4490 kfree(new_sl);
4491 return err;
4493 new_sl->next = env->explored_states[insn_idx];
4494 env->explored_states[insn_idx] = new_sl;
4495 /* connect new state to parentage chain */
4496 cur->parent = &new_sl->state;
4497 /* clear write marks in current state: the writes we did are not writes
4498 * our child did, so they don't screen off its reads from us.
4499 * (There are no read marks in current state, because reads always mark
4500 * their parent and current state never has children yet. Only
4501 * explored_states can get read marks.)
4503 for (i = 0; i < BPF_REG_FP; i++)
4504 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4506 /* all stack frames are accessible from callee, clear them all */
4507 for (j = 0; j <= cur->curframe; j++) {
4508 struct bpf_func_state *frame = cur->frame[j];
4510 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4511 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4513 return 0;
4516 static int do_check(struct bpf_verifier_env *env)
4518 struct bpf_verifier_state *state;
4519 struct bpf_insn *insns = env->prog->insnsi;
4520 struct bpf_reg_state *regs;
4521 int insn_cnt = env->prog->len, i;
4522 int insn_idx, prev_insn_idx = 0;
4523 int insn_processed = 0;
4524 bool do_print_state = false;
4526 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4527 if (!state)
4528 return -ENOMEM;
4529 state->curframe = 0;
4530 state->parent = NULL;
4531 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4532 if (!state->frame[0]) {
4533 kfree(state);
4534 return -ENOMEM;
4536 env->cur_state = state;
4537 init_func_state(env, state->frame[0],
4538 BPF_MAIN_FUNC /* callsite */,
4539 0 /* frameno */,
4540 0 /* subprogno, zero == main subprog */);
4541 insn_idx = 0;
4542 for (;;) {
4543 struct bpf_insn *insn;
4544 u8 class;
4545 int err;
4547 if (insn_idx >= insn_cnt) {
4548 verbose(env, "invalid insn idx %d insn_cnt %d\n",
4549 insn_idx, insn_cnt);
4550 return -EFAULT;
4553 insn = &insns[insn_idx];
4554 class = BPF_CLASS(insn->code);
4556 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4557 verbose(env,
4558 "BPF program is too large. Processed %d insn\n",
4559 insn_processed);
4560 return -E2BIG;
4563 err = is_state_visited(env, insn_idx);
4564 if (err < 0)
4565 return err;
4566 if (err == 1) {
4567 /* found equivalent state, can prune the search */
4568 if (env->log.level) {
4569 if (do_print_state)
4570 verbose(env, "\nfrom %d to %d: safe\n",
4571 prev_insn_idx, insn_idx);
4572 else
4573 verbose(env, "%d: safe\n", insn_idx);
4575 goto process_bpf_exit;
4578 if (need_resched())
4579 cond_resched();
4581 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4582 if (env->log.level > 1)
4583 verbose(env, "%d:", insn_idx);
4584 else
4585 verbose(env, "\nfrom %d to %d:",
4586 prev_insn_idx, insn_idx);
4587 print_verifier_state(env, state->frame[state->curframe]);
4588 do_print_state = false;
4591 if (env->log.level) {
4592 const struct bpf_insn_cbs cbs = {
4593 .cb_print = verbose,
4596 verbose(env, "%d: ", insn_idx);
4597 print_bpf_insn(&cbs, env, insn, env->allow_ptr_leaks);
4600 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4601 err = bpf_prog_offload_verify_insn(env, insn_idx,
4602 prev_insn_idx);
4603 if (err)
4604 return err;
4607 regs = cur_regs(env);
4608 env->insn_aux_data[insn_idx].seen = true;
4609 if (class == BPF_ALU || class == BPF_ALU64) {
4610 err = check_alu_op(env, insn);
4611 if (err)
4612 return err;
4614 } else if (class == BPF_LDX) {
4615 enum bpf_reg_type *prev_src_type, src_reg_type;
4617 /* check for reserved fields is already done */
4619 /* check src operand */
4620 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4621 if (err)
4622 return err;
4624 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4625 if (err)
4626 return err;
4628 src_reg_type = regs[insn->src_reg].type;
4630 /* check that memory (src_reg + off) is readable,
4631 * the state of dst_reg will be updated by this func
4633 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4634 BPF_SIZE(insn->code), BPF_READ,
4635 insn->dst_reg);
4636 if (err)
4637 return err;
4639 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4641 if (*prev_src_type == NOT_INIT) {
4642 /* saw a valid insn
4643 * dst_reg = *(u32 *)(src_reg + off)
4644 * save type to validate intersecting paths
4646 *prev_src_type = src_reg_type;
4648 } else if (src_reg_type != *prev_src_type &&
4649 (src_reg_type == PTR_TO_CTX ||
4650 *prev_src_type == PTR_TO_CTX)) {
4651 /* ABuser program is trying to use the same insn
4652 * dst_reg = *(u32*) (src_reg + off)
4653 * with different pointer types:
4654 * src_reg == ctx in one branch and
4655 * src_reg == stack|map in some other branch.
4656 * Reject it.
4658 verbose(env, "same insn cannot be used with different pointers\n");
4659 return -EINVAL;
4662 } else if (class == BPF_STX) {
4663 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4665 if (BPF_MODE(insn->code) == BPF_XADD) {
4666 err = check_xadd(env, insn_idx, insn);
4667 if (err)
4668 return err;
4669 insn_idx++;
4670 continue;
4673 /* check src1 operand */
4674 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4675 if (err)
4676 return err;
4677 /* check src2 operand */
4678 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4679 if (err)
4680 return err;
4682 dst_reg_type = regs[insn->dst_reg].type;
4684 /* check that memory (dst_reg + off) is writeable */
4685 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4686 BPF_SIZE(insn->code), BPF_WRITE,
4687 insn->src_reg);
4688 if (err)
4689 return err;
4691 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4693 if (*prev_dst_type == NOT_INIT) {
4694 *prev_dst_type = dst_reg_type;
4695 } else if (dst_reg_type != *prev_dst_type &&
4696 (dst_reg_type == PTR_TO_CTX ||
4697 *prev_dst_type == PTR_TO_CTX)) {
4698 verbose(env, "same insn cannot be used with different pointers\n");
4699 return -EINVAL;
4702 } else if (class == BPF_ST) {
4703 if (BPF_MODE(insn->code) != BPF_MEM ||
4704 insn->src_reg != BPF_REG_0) {
4705 verbose(env, "BPF_ST uses reserved fields\n");
4706 return -EINVAL;
4708 /* check src operand */
4709 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4710 if (err)
4711 return err;
4713 if (is_ctx_reg(env, insn->dst_reg)) {
4714 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4715 insn->dst_reg);
4716 return -EACCES;
4719 /* check that memory (dst_reg + off) is writeable */
4720 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4721 BPF_SIZE(insn->code), BPF_WRITE,
4722 -1);
4723 if (err)
4724 return err;
4726 } else if (class == BPF_JMP) {
4727 u8 opcode = BPF_OP(insn->code);
4729 if (opcode == BPF_CALL) {
4730 if (BPF_SRC(insn->code) != BPF_K ||
4731 insn->off != 0 ||
4732 (insn->src_reg != BPF_REG_0 &&
4733 insn->src_reg != BPF_PSEUDO_CALL) ||
4734 insn->dst_reg != BPF_REG_0) {
4735 verbose(env, "BPF_CALL uses reserved fields\n");
4736 return -EINVAL;
4739 if (insn->src_reg == BPF_PSEUDO_CALL)
4740 err = check_func_call(env, insn, &insn_idx);
4741 else
4742 err = check_helper_call(env, insn->imm, insn_idx);
4743 if (err)
4744 return err;
4746 } else if (opcode == BPF_JA) {
4747 if (BPF_SRC(insn->code) != BPF_K ||
4748 insn->imm != 0 ||
4749 insn->src_reg != BPF_REG_0 ||
4750 insn->dst_reg != BPF_REG_0) {
4751 verbose(env, "BPF_JA uses reserved fields\n");
4752 return -EINVAL;
4755 insn_idx += insn->off + 1;
4756 continue;
4758 } else if (opcode == BPF_EXIT) {
4759 if (BPF_SRC(insn->code) != BPF_K ||
4760 insn->imm != 0 ||
4761 insn->src_reg != BPF_REG_0 ||
4762 insn->dst_reg != BPF_REG_0) {
4763 verbose(env, "BPF_EXIT uses reserved fields\n");
4764 return -EINVAL;
4767 if (state->curframe) {
4768 /* exit from nested function */
4769 prev_insn_idx = insn_idx;
4770 err = prepare_func_exit(env, &insn_idx);
4771 if (err)
4772 return err;
4773 do_print_state = true;
4774 continue;
4777 /* eBPF calling convetion is such that R0 is used
4778 * to return the value from eBPF program.
4779 * Make sure that it's readable at this time
4780 * of bpf_exit, which means that program wrote
4781 * something into it earlier
4783 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4784 if (err)
4785 return err;
4787 if (is_pointer_value(env, BPF_REG_0)) {
4788 verbose(env, "R0 leaks addr as return value\n");
4789 return -EACCES;
4792 err = check_return_code(env);
4793 if (err)
4794 return err;
4795 process_bpf_exit:
4796 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4797 if (err < 0) {
4798 if (err != -ENOENT)
4799 return err;
4800 break;
4801 } else {
4802 do_print_state = true;
4803 continue;
4805 } else {
4806 err = check_cond_jmp_op(env, insn, &insn_idx);
4807 if (err)
4808 return err;
4810 } else if (class == BPF_LD) {
4811 u8 mode = BPF_MODE(insn->code);
4813 if (mode == BPF_ABS || mode == BPF_IND) {
4814 err = check_ld_abs(env, insn);
4815 if (err)
4816 return err;
4818 } else if (mode == BPF_IMM) {
4819 err = check_ld_imm(env, insn);
4820 if (err)
4821 return err;
4823 insn_idx++;
4824 env->insn_aux_data[insn_idx].seen = true;
4825 } else {
4826 verbose(env, "invalid BPF_LD mode\n");
4827 return -EINVAL;
4829 } else {
4830 verbose(env, "unknown insn class %d\n", class);
4831 return -EINVAL;
4834 insn_idx++;
4837 verbose(env, "processed %d insns (limit %d), stack depth ",
4838 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4839 for (i = 0; i < env->subprog_cnt + 1; i++) {
4840 u32 depth = env->subprog_stack_depth[i];
4842 verbose(env, "%d", depth);
4843 if (i + 1 < env->subprog_cnt + 1)
4844 verbose(env, "+");
4846 verbose(env, "\n");
4847 env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4848 return 0;
4851 static int check_map_prealloc(struct bpf_map *map)
4853 return (map->map_type != BPF_MAP_TYPE_HASH &&
4854 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4855 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4856 !(map->map_flags & BPF_F_NO_PREALLOC);
4859 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4860 struct bpf_map *map,
4861 struct bpf_prog *prog)
4864 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4865 * preallocated hash maps, since doing memory allocation
4866 * in overflow_handler can crash depending on where nmi got
4867 * triggered.
4869 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4870 if (!check_map_prealloc(map)) {
4871 verbose(env, "perf_event programs can only use preallocated hash map\n");
4872 return -EINVAL;
4874 if (map->inner_map_meta &&
4875 !check_map_prealloc(map->inner_map_meta)) {
4876 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4877 return -EINVAL;
4881 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4882 !bpf_offload_dev_match(prog, map)) {
4883 verbose(env, "offload device mismatch between prog and map\n");
4884 return -EINVAL;
4887 return 0;
4890 /* look for pseudo eBPF instructions that access map FDs and
4891 * replace them with actual map pointers
4893 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4895 struct bpf_insn *insn = env->prog->insnsi;
4896 int insn_cnt = env->prog->len;
4897 int i, j, err;
4899 err = bpf_prog_calc_tag(env->prog);
4900 if (err)
4901 return err;
4903 for (i = 0; i < insn_cnt; i++, insn++) {
4904 if (BPF_CLASS(insn->code) == BPF_LDX &&
4905 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4906 verbose(env, "BPF_LDX uses reserved fields\n");
4907 return -EINVAL;
4910 if (BPF_CLASS(insn->code) == BPF_STX &&
4911 ((BPF_MODE(insn->code) != BPF_MEM &&
4912 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4913 verbose(env, "BPF_STX uses reserved fields\n");
4914 return -EINVAL;
4917 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4918 struct bpf_map *map;
4919 struct fd f;
4921 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4922 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4923 insn[1].off != 0) {
4924 verbose(env, "invalid bpf_ld_imm64 insn\n");
4925 return -EINVAL;
4928 if (insn->src_reg == 0)
4929 /* valid generic load 64-bit imm */
4930 goto next_insn;
4932 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4933 verbose(env,
4934 "unrecognized bpf_ld_imm64 insn\n");
4935 return -EINVAL;
4938 f = fdget(insn->imm);
4939 map = __bpf_map_get(f);
4940 if (IS_ERR(map)) {
4941 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4942 insn->imm);
4943 return PTR_ERR(map);
4946 err = check_map_prog_compatibility(env, map, env->prog);
4947 if (err) {
4948 fdput(f);
4949 return err;
4952 /* store map pointer inside BPF_LD_IMM64 instruction */
4953 insn[0].imm = (u32) (unsigned long) map;
4954 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4956 /* check whether we recorded this map already */
4957 for (j = 0; j < env->used_map_cnt; j++)
4958 if (env->used_maps[j] == map) {
4959 fdput(f);
4960 goto next_insn;
4963 if (env->used_map_cnt >= MAX_USED_MAPS) {
4964 fdput(f);
4965 return -E2BIG;
4968 /* hold the map. If the program is rejected by verifier,
4969 * the map will be released by release_maps() or it
4970 * will be used by the valid program until it's unloaded
4971 * and all maps are released in free_bpf_prog_info()
4973 map = bpf_map_inc(map, false);
4974 if (IS_ERR(map)) {
4975 fdput(f);
4976 return PTR_ERR(map);
4978 env->used_maps[env->used_map_cnt++] = map;
4980 fdput(f);
4981 next_insn:
4982 insn++;
4983 i++;
4984 continue;
4987 /* Basic sanity check before we invest more work here. */
4988 if (!bpf_opcode_in_insntable(insn->code)) {
4989 verbose(env, "unknown opcode %02x\n", insn->code);
4990 return -EINVAL;
4994 /* now all pseudo BPF_LD_IMM64 instructions load valid
4995 * 'struct bpf_map *' into a register instead of user map_fd.
4996 * These pointers will be used later by verifier to validate map access.
4998 return 0;
5001 /* drop refcnt of maps used by the rejected program */
5002 static void release_maps(struct bpf_verifier_env *env)
5004 int i;
5006 for (i = 0; i < env->used_map_cnt; i++)
5007 bpf_map_put(env->used_maps[i]);
5010 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5011 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5013 struct bpf_insn *insn = env->prog->insnsi;
5014 int insn_cnt = env->prog->len;
5015 int i;
5017 for (i = 0; i < insn_cnt; i++, insn++)
5018 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5019 insn->src_reg = 0;
5022 /* single env->prog->insni[off] instruction was replaced with the range
5023 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5024 * [0, off) and [off, end) to new locations, so the patched range stays zero
5026 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5027 u32 off, u32 cnt)
5029 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5030 int i;
5032 if (cnt == 1)
5033 return 0;
5034 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5035 if (!new_data)
5036 return -ENOMEM;
5037 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5038 memcpy(new_data + off + cnt - 1, old_data + off,
5039 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5040 for (i = off; i < off + cnt - 1; i++)
5041 new_data[i].seen = true;
5042 env->insn_aux_data = new_data;
5043 vfree(old_data);
5044 return 0;
5047 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5049 int i;
5051 if (len == 1)
5052 return;
5053 for (i = 0; i < env->subprog_cnt; i++) {
5054 if (env->subprog_starts[i] < off)
5055 continue;
5056 env->subprog_starts[i] += len - 1;
5060 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5061 const struct bpf_insn *patch, u32 len)
5063 struct bpf_prog *new_prog;
5065 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5066 if (!new_prog)
5067 return NULL;
5068 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5069 return NULL;
5070 adjust_subprog_starts(env, off, len);
5071 return new_prog;
5074 /* The verifier does more data flow analysis than llvm and will not
5075 * explore branches that are dead at run time. Malicious programs can
5076 * have dead code too. Therefore replace all dead at-run-time code
5077 * with 'ja -1'.
5079 * Just nops are not optimal, e.g. if they would sit at the end of the
5080 * program and through another bug we would manage to jump there, then
5081 * we'd execute beyond program memory otherwise. Returning exception
5082 * code also wouldn't work since we can have subprogs where the dead
5083 * code could be located.
5085 static void sanitize_dead_code(struct bpf_verifier_env *env)
5087 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5088 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5089 struct bpf_insn *insn = env->prog->insnsi;
5090 const int insn_cnt = env->prog->len;
5091 int i;
5093 for (i = 0; i < insn_cnt; i++) {
5094 if (aux_data[i].seen)
5095 continue;
5096 memcpy(insn + i, &trap, sizeof(trap));
5100 /* convert load instructions that access fields of 'struct __sk_buff'
5101 * into sequence of instructions that access fields of 'struct sk_buff'
5103 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5105 const struct bpf_verifier_ops *ops = env->ops;
5106 int i, cnt, size, ctx_field_size, delta = 0;
5107 const int insn_cnt = env->prog->len;
5108 struct bpf_insn insn_buf[16], *insn;
5109 struct bpf_prog *new_prog;
5110 enum bpf_access_type type;
5111 bool is_narrower_load;
5112 u32 target_size;
5114 if (ops->gen_prologue) {
5115 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5116 env->prog);
5117 if (cnt >= ARRAY_SIZE(insn_buf)) {
5118 verbose(env, "bpf verifier is misconfigured\n");
5119 return -EINVAL;
5120 } else if (cnt) {
5121 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5122 if (!new_prog)
5123 return -ENOMEM;
5125 env->prog = new_prog;
5126 delta += cnt - 1;
5130 if (!ops->convert_ctx_access)
5131 return 0;
5133 insn = env->prog->insnsi + delta;
5135 for (i = 0; i < insn_cnt; i++, insn++) {
5136 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5137 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5138 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5139 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5140 type = BPF_READ;
5141 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5142 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5143 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5144 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5145 type = BPF_WRITE;
5146 else
5147 continue;
5149 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5150 continue;
5152 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5153 size = BPF_LDST_BYTES(insn);
5155 /* If the read access is a narrower load of the field,
5156 * convert to a 4/8-byte load, to minimum program type specific
5157 * convert_ctx_access changes. If conversion is successful,
5158 * we will apply proper mask to the result.
5160 is_narrower_load = size < ctx_field_size;
5161 if (is_narrower_load) {
5162 u32 off = insn->off;
5163 u8 size_code;
5165 if (type == BPF_WRITE) {
5166 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5167 return -EINVAL;
5170 size_code = BPF_H;
5171 if (ctx_field_size == 4)
5172 size_code = BPF_W;
5173 else if (ctx_field_size == 8)
5174 size_code = BPF_DW;
5176 insn->off = off & ~(ctx_field_size - 1);
5177 insn->code = BPF_LDX | BPF_MEM | size_code;
5180 target_size = 0;
5181 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5182 &target_size);
5183 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5184 (ctx_field_size && !target_size)) {
5185 verbose(env, "bpf verifier is misconfigured\n");
5186 return -EINVAL;
5189 if (is_narrower_load && size < target_size) {
5190 if (ctx_field_size <= 4)
5191 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5192 (1 << size * 8) - 1);
5193 else
5194 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5195 (1 << size * 8) - 1);
5198 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5199 if (!new_prog)
5200 return -ENOMEM;
5202 delta += cnt - 1;
5204 /* keep walking new program and skip insns we just inserted */
5205 env->prog = new_prog;
5206 insn = new_prog->insnsi + i + delta;
5209 return 0;
5212 static int jit_subprogs(struct bpf_verifier_env *env)
5214 struct bpf_prog *prog = env->prog, **func, *tmp;
5215 int i, j, subprog_start, subprog_end = 0, len, subprog;
5216 struct bpf_insn *insn;
5217 void *old_bpf_func;
5218 int err = -ENOMEM;
5220 if (env->subprog_cnt == 0)
5221 return 0;
5223 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5224 if (insn->code != (BPF_JMP | BPF_CALL) ||
5225 insn->src_reg != BPF_PSEUDO_CALL)
5226 continue;
5227 subprog = find_subprog(env, i + insn->imm + 1);
5228 if (subprog < 0) {
5229 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5230 i + insn->imm + 1);
5231 return -EFAULT;
5233 /* temporarily remember subprog id inside insn instead of
5234 * aux_data, since next loop will split up all insns into funcs
5236 insn->off = subprog + 1;
5237 /* remember original imm in case JIT fails and fallback
5238 * to interpreter will be needed
5240 env->insn_aux_data[i].call_imm = insn->imm;
5241 /* point imm to __bpf_call_base+1 from JITs point of view */
5242 insn->imm = 1;
5245 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
5246 if (!func)
5247 return -ENOMEM;
5249 for (i = 0; i <= env->subprog_cnt; i++) {
5250 subprog_start = subprog_end;
5251 if (env->subprog_cnt == i)
5252 subprog_end = prog->len;
5253 else
5254 subprog_end = env->subprog_starts[i];
5256 len = subprog_end - subprog_start;
5257 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5258 if (!func[i])
5259 goto out_free;
5260 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5261 len * sizeof(struct bpf_insn));
5262 func[i]->type = prog->type;
5263 func[i]->len = len;
5264 if (bpf_prog_calc_tag(func[i]))
5265 goto out_free;
5266 func[i]->is_func = 1;
5267 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5268 * Long term would need debug info to populate names
5270 func[i]->aux->name[0] = 'F';
5271 func[i]->aux->stack_depth = env->subprog_stack_depth[i];
5272 func[i]->jit_requested = 1;
5273 func[i] = bpf_int_jit_compile(func[i]);
5274 if (!func[i]->jited) {
5275 err = -ENOTSUPP;
5276 goto out_free;
5278 cond_resched();
5280 /* at this point all bpf functions were successfully JITed
5281 * now populate all bpf_calls with correct addresses and
5282 * run last pass of JIT
5284 for (i = 0; i <= env->subprog_cnt; i++) {
5285 insn = func[i]->insnsi;
5286 for (j = 0; j < func[i]->len; j++, insn++) {
5287 if (insn->code != (BPF_JMP | BPF_CALL) ||
5288 insn->src_reg != BPF_PSEUDO_CALL)
5289 continue;
5290 subprog = insn->off;
5291 insn->off = 0;
5292 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5293 func[subprog]->bpf_func -
5294 __bpf_call_base;
5297 for (i = 0; i <= env->subprog_cnt; i++) {
5298 old_bpf_func = func[i]->bpf_func;
5299 tmp = bpf_int_jit_compile(func[i]);
5300 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5301 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5302 err = -EFAULT;
5303 goto out_free;
5305 cond_resched();
5308 /* finally lock prog and jit images for all functions and
5309 * populate kallsysm
5311 for (i = 0; i <= env->subprog_cnt; i++) {
5312 bpf_prog_lock_ro(func[i]);
5313 bpf_prog_kallsyms_add(func[i]);
5316 /* Last step: make now unused interpreter insns from main
5317 * prog consistent for later dump requests, so they can
5318 * later look the same as if they were interpreted only.
5320 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5321 unsigned long addr;
5323 if (insn->code != (BPF_JMP | BPF_CALL) ||
5324 insn->src_reg != BPF_PSEUDO_CALL)
5325 continue;
5326 insn->off = env->insn_aux_data[i].call_imm;
5327 subprog = find_subprog(env, i + insn->off + 1);
5328 addr = (unsigned long)func[subprog + 1]->bpf_func;
5329 addr &= PAGE_MASK;
5330 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5331 addr - __bpf_call_base;
5334 prog->jited = 1;
5335 prog->bpf_func = func[0]->bpf_func;
5336 prog->aux->func = func;
5337 prog->aux->func_cnt = env->subprog_cnt + 1;
5338 return 0;
5339 out_free:
5340 for (i = 0; i <= env->subprog_cnt; i++)
5341 if (func[i])
5342 bpf_jit_free(func[i]);
5343 kfree(func);
5344 /* cleanup main prog to be interpreted */
5345 prog->jit_requested = 0;
5346 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5347 if (insn->code != (BPF_JMP | BPF_CALL) ||
5348 insn->src_reg != BPF_PSEUDO_CALL)
5349 continue;
5350 insn->off = 0;
5351 insn->imm = env->insn_aux_data[i].call_imm;
5353 return err;
5356 static int fixup_call_args(struct bpf_verifier_env *env)
5358 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5359 struct bpf_prog *prog = env->prog;
5360 struct bpf_insn *insn = prog->insnsi;
5361 int i, depth;
5362 #endif
5363 int err;
5365 err = 0;
5366 if (env->prog->jit_requested) {
5367 err = jit_subprogs(env);
5368 if (err == 0)
5369 return 0;
5371 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5372 for (i = 0; i < prog->len; i++, insn++) {
5373 if (insn->code != (BPF_JMP | BPF_CALL) ||
5374 insn->src_reg != BPF_PSEUDO_CALL)
5375 continue;
5376 depth = get_callee_stack_depth(env, insn, i);
5377 if (depth < 0)
5378 return depth;
5379 bpf_patch_call_args(insn, depth);
5381 err = 0;
5382 #endif
5383 return err;
5386 /* fixup insn->imm field of bpf_call instructions
5387 * and inline eligible helpers as explicit sequence of BPF instructions
5389 * this function is called after eBPF program passed verification
5391 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5393 struct bpf_prog *prog = env->prog;
5394 struct bpf_insn *insn = prog->insnsi;
5395 const struct bpf_func_proto *fn;
5396 const int insn_cnt = prog->len;
5397 struct bpf_insn insn_buf[16];
5398 struct bpf_prog *new_prog;
5399 struct bpf_map *map_ptr;
5400 int i, cnt, delta = 0;
5402 for (i = 0; i < insn_cnt; i++, insn++) {
5403 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5404 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5405 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5406 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5407 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5408 struct bpf_insn mask_and_div[] = {
5409 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5410 /* Rx div 0 -> 0 */
5411 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5412 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5413 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5414 *insn,
5416 struct bpf_insn mask_and_mod[] = {
5417 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5418 /* Rx mod 0 -> Rx */
5419 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5420 *insn,
5422 struct bpf_insn *patchlet;
5424 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5425 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5426 patchlet = mask_and_div + (is64 ? 1 : 0);
5427 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5428 } else {
5429 patchlet = mask_and_mod + (is64 ? 1 : 0);
5430 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5433 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5434 if (!new_prog)
5435 return -ENOMEM;
5437 delta += cnt - 1;
5438 env->prog = prog = new_prog;
5439 insn = new_prog->insnsi + i + delta;
5440 continue;
5443 if (insn->code != (BPF_JMP | BPF_CALL))
5444 continue;
5445 if (insn->src_reg == BPF_PSEUDO_CALL)
5446 continue;
5448 if (insn->imm == BPF_FUNC_get_route_realm)
5449 prog->dst_needed = 1;
5450 if (insn->imm == BPF_FUNC_get_prandom_u32)
5451 bpf_user_rnd_init_once();
5452 if (insn->imm == BPF_FUNC_override_return)
5453 prog->kprobe_override = 1;
5454 if (insn->imm == BPF_FUNC_tail_call) {
5455 /* If we tail call into other programs, we
5456 * cannot make any assumptions since they can
5457 * be replaced dynamically during runtime in
5458 * the program array.
5460 prog->cb_access = 1;
5461 env->prog->aux->stack_depth = MAX_BPF_STACK;
5463 /* mark bpf_tail_call as different opcode to avoid
5464 * conditional branch in the interpeter for every normal
5465 * call and to prevent accidental JITing by JIT compiler
5466 * that doesn't support bpf_tail_call yet
5468 insn->imm = 0;
5469 insn->code = BPF_JMP | BPF_TAIL_CALL;
5471 /* instead of changing every JIT dealing with tail_call
5472 * emit two extra insns:
5473 * if (index >= max_entries) goto out;
5474 * index &= array->index_mask;
5475 * to avoid out-of-bounds cpu speculation
5477 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5478 if (map_ptr == BPF_MAP_PTR_POISON) {
5479 verbose(env, "tail_call abusing map_ptr\n");
5480 return -EINVAL;
5482 if (!map_ptr->unpriv_array)
5483 continue;
5484 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5485 map_ptr->max_entries, 2);
5486 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5487 container_of(map_ptr,
5488 struct bpf_array,
5489 map)->index_mask);
5490 insn_buf[2] = *insn;
5491 cnt = 3;
5492 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5493 if (!new_prog)
5494 return -ENOMEM;
5496 delta += cnt - 1;
5497 env->prog = prog = new_prog;
5498 insn = new_prog->insnsi + i + delta;
5499 continue;
5502 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5503 * handlers are currently limited to 64 bit only.
5505 if (prog->jit_requested && BITS_PER_LONG == 64 &&
5506 insn->imm == BPF_FUNC_map_lookup_elem) {
5507 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5508 if (map_ptr == BPF_MAP_PTR_POISON ||
5509 !map_ptr->ops->map_gen_lookup)
5510 goto patch_call_imm;
5512 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5513 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5514 verbose(env, "bpf verifier is misconfigured\n");
5515 return -EINVAL;
5518 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5519 cnt);
5520 if (!new_prog)
5521 return -ENOMEM;
5523 delta += cnt - 1;
5525 /* keep walking new program and skip insns we just inserted */
5526 env->prog = prog = new_prog;
5527 insn = new_prog->insnsi + i + delta;
5528 continue;
5531 if (insn->imm == BPF_FUNC_redirect_map) {
5532 /* Note, we cannot use prog directly as imm as subsequent
5533 * rewrites would still change the prog pointer. The only
5534 * stable address we can use is aux, which also works with
5535 * prog clones during blinding.
5537 u64 addr = (unsigned long)prog->aux;
5538 struct bpf_insn r4_ld[] = {
5539 BPF_LD_IMM64(BPF_REG_4, addr),
5540 *insn,
5542 cnt = ARRAY_SIZE(r4_ld);
5544 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5545 if (!new_prog)
5546 return -ENOMEM;
5548 delta += cnt - 1;
5549 env->prog = prog = new_prog;
5550 insn = new_prog->insnsi + i + delta;
5552 patch_call_imm:
5553 fn = env->ops->get_func_proto(insn->imm);
5554 /* all functions that have prototype and verifier allowed
5555 * programs to call them, must be real in-kernel functions
5557 if (!fn->func) {
5558 verbose(env,
5559 "kernel subsystem misconfigured func %s#%d\n",
5560 func_id_name(insn->imm), insn->imm);
5561 return -EFAULT;
5563 insn->imm = fn->func - __bpf_call_base;
5566 return 0;
5569 static void free_states(struct bpf_verifier_env *env)
5571 struct bpf_verifier_state_list *sl, *sln;
5572 int i;
5574 if (!env->explored_states)
5575 return;
5577 for (i = 0; i < env->prog->len; i++) {
5578 sl = env->explored_states[i];
5580 if (sl)
5581 while (sl != STATE_LIST_MARK) {
5582 sln = sl->next;
5583 free_verifier_state(&sl->state, false);
5584 kfree(sl);
5585 sl = sln;
5589 kfree(env->explored_states);
5592 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5594 struct bpf_verifier_env *env;
5595 struct bpf_verifer_log *log;
5596 int ret = -EINVAL;
5598 /* no program is valid */
5599 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5600 return -EINVAL;
5602 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5603 * allocate/free it every time bpf_check() is called
5605 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5606 if (!env)
5607 return -ENOMEM;
5608 log = &env->log;
5610 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5611 (*prog)->len);
5612 ret = -ENOMEM;
5613 if (!env->insn_aux_data)
5614 goto err_free_env;
5615 env->prog = *prog;
5616 env->ops = bpf_verifier_ops[env->prog->type];
5618 /* grab the mutex to protect few globals used by verifier */
5619 mutex_lock(&bpf_verifier_lock);
5621 if (attr->log_level || attr->log_buf || attr->log_size) {
5622 /* user requested verbose verifier output
5623 * and supplied buffer to store the verification trace
5625 log->level = attr->log_level;
5626 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5627 log->len_total = attr->log_size;
5629 ret = -EINVAL;
5630 /* log attributes have to be sane */
5631 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5632 !log->level || !log->ubuf)
5633 goto err_unlock;
5636 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5637 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5638 env->strict_alignment = true;
5640 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5641 ret = bpf_prog_offload_verifier_prep(env);
5642 if (ret)
5643 goto err_unlock;
5646 ret = replace_map_fd_with_map_ptr(env);
5647 if (ret < 0)
5648 goto skip_full_check;
5650 env->explored_states = kcalloc(env->prog->len,
5651 sizeof(struct bpf_verifier_state_list *),
5652 GFP_USER);
5653 ret = -ENOMEM;
5654 if (!env->explored_states)
5655 goto skip_full_check;
5657 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5659 ret = check_cfg(env);
5660 if (ret < 0)
5661 goto skip_full_check;
5663 ret = do_check(env);
5664 if (env->cur_state) {
5665 free_verifier_state(env->cur_state, true);
5666 env->cur_state = NULL;
5669 skip_full_check:
5670 while (!pop_stack(env, NULL, NULL));
5671 free_states(env);
5673 if (ret == 0)
5674 sanitize_dead_code(env);
5676 if (ret == 0)
5677 ret = check_max_stack_depth(env);
5679 if (ret == 0)
5680 /* program is valid, convert *(u32*)(ctx + off) accesses */
5681 ret = convert_ctx_accesses(env);
5683 if (ret == 0)
5684 ret = fixup_bpf_calls(env);
5686 if (ret == 0)
5687 ret = fixup_call_args(env);
5689 if (log->level && bpf_verifier_log_full(log))
5690 ret = -ENOSPC;
5691 if (log->level && !log->ubuf) {
5692 ret = -EFAULT;
5693 goto err_release_maps;
5696 if (ret == 0 && env->used_map_cnt) {
5697 /* if program passed verifier, update used_maps in bpf_prog_info */
5698 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5699 sizeof(env->used_maps[0]),
5700 GFP_KERNEL);
5702 if (!env->prog->aux->used_maps) {
5703 ret = -ENOMEM;
5704 goto err_release_maps;
5707 memcpy(env->prog->aux->used_maps, env->used_maps,
5708 sizeof(env->used_maps[0]) * env->used_map_cnt);
5709 env->prog->aux->used_map_cnt = env->used_map_cnt;
5711 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5712 * bpf_ld_imm64 instructions
5714 convert_pseudo_ld_imm64(env);
5717 err_release_maps:
5718 if (!env->prog->aux->used_maps)
5719 /* if we didn't copy map pointers into bpf_prog_info, release
5720 * them now. Otherwise free_bpf_prog_info() will release them.
5722 release_maps(env);
5723 *prog = env->prog;
5724 err_unlock:
5725 mutex_unlock(&bpf_verifier_lock);
5726 vfree(env->insn_aux_data);
5727 err_free_env:
5728 kfree(env);
5729 return ret;