2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
26 #include <asm/uaccess.h>
28 #define SECTOR_SHIFT 9
29 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
30 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
34 * the pages containing the block device's contents. A brd page's ->index is
35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
36 * with, the kernel's pagecache or buffer cache (which sit above our block
42 struct request_queue
*brd_queue
;
43 struct gendisk
*brd_disk
;
44 struct list_head brd_list
;
47 * Backing store of pages and lock to protect it. This is the contents
48 * of the block device.
51 struct radix_tree_root brd_pages
;
55 * Look up and return a brd's page for a given sector.
57 static DEFINE_MUTEX(brd_mutex
);
58 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
64 * The page lifetime is protected by the fact that we have opened the
65 * device node -- brd pages will never be deleted under us, so we
66 * don't need any further locking or refcounting.
68 * This is strictly true for the radix-tree nodes as well (ie. we
69 * don't actually need the rcu_read_lock()), however that is not a
70 * documented feature of the radix-tree API so it is better to be
71 * safe here (we don't have total exclusion from radix tree updates
72 * here, only deletes).
75 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
76 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
79 BUG_ON(page
&& page
->index
!= idx
);
85 * Look up and return a brd's page for a given sector.
86 * If one does not exist, allocate an empty page, and insert that. Then
89 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
95 page
= brd_lookup_page(brd
, sector
);
100 * Must use NOIO because we don't want to recurse back into the
101 * block or filesystem layers from page reclaim.
103 * Cannot support DAX and highmem, because our ->direct_access
104 * routine for DAX must return memory that is always addressable.
105 * If DAX was reworked to use pfns and kmap throughout, this
106 * restriction might be able to be lifted.
108 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
109 #ifndef CONFIG_BLK_DEV_RAM_DAX
110 gfp_flags
|= __GFP_HIGHMEM
;
112 page
= alloc_page(gfp_flags
);
116 if (radix_tree_preload(GFP_NOIO
)) {
121 spin_lock(&brd
->brd_lock
);
122 idx
= sector
>> PAGE_SECTORS_SHIFT
;
124 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
126 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
128 BUG_ON(page
->index
!= idx
);
130 spin_unlock(&brd
->brd_lock
);
132 radix_tree_preload_end();
137 static void brd_free_page(struct brd_device
*brd
, sector_t sector
)
142 spin_lock(&brd
->brd_lock
);
143 idx
= sector
>> PAGE_SECTORS_SHIFT
;
144 page
= radix_tree_delete(&brd
->brd_pages
, idx
);
145 spin_unlock(&brd
->brd_lock
);
150 static void brd_zero_page(struct brd_device
*brd
, sector_t sector
)
154 page
= brd_lookup_page(brd
, sector
);
156 clear_highpage(page
);
160 * Free all backing store pages and radix tree. This must only be called when
161 * there are no other users of the device.
163 #define FREE_BATCH 16
164 static void brd_free_pages(struct brd_device
*brd
)
166 unsigned long pos
= 0;
167 struct page
*pages
[FREE_BATCH
];
173 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
174 (void **)pages
, pos
, FREE_BATCH
);
176 for (i
= 0; i
< nr_pages
; i
++) {
179 BUG_ON(pages
[i
]->index
< pos
);
180 pos
= pages
[i
]->index
;
181 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
182 BUG_ON(!ret
|| ret
!= pages
[i
]);
183 __free_page(pages
[i
]);
189 * This assumes radix_tree_gang_lookup always returns as
190 * many pages as possible. If the radix-tree code changes,
191 * so will this have to.
193 } while (nr_pages
== FREE_BATCH
);
197 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
199 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
201 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
204 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
205 if (!brd_insert_page(brd
, sector
))
208 sector
+= copy
>> SECTOR_SHIFT
;
209 if (!brd_insert_page(brd
, sector
))
215 static void discard_from_brd(struct brd_device
*brd
,
216 sector_t sector
, size_t n
)
218 while (n
>= PAGE_SIZE
) {
220 * Don't want to actually discard pages here because
221 * re-allocating the pages can result in writeback
222 * deadlocks under heavy load.
225 brd_free_page(brd
, sector
);
227 brd_zero_page(brd
, sector
);
228 sector
+= PAGE_SIZE
>> SECTOR_SHIFT
;
234 * Copy n bytes from src to the brd starting at sector. Does not sleep.
236 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
237 sector_t sector
, size_t n
)
241 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
244 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
245 page
= brd_lookup_page(brd
, sector
);
248 dst
= kmap_atomic(page
);
249 memcpy(dst
+ offset
, src
, copy
);
254 sector
+= copy
>> SECTOR_SHIFT
;
256 page
= brd_lookup_page(brd
, sector
);
259 dst
= kmap_atomic(page
);
260 memcpy(dst
, src
, copy
);
266 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
268 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
269 sector_t sector
, size_t n
)
273 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
276 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
277 page
= brd_lookup_page(brd
, sector
);
279 src
= kmap_atomic(page
);
280 memcpy(dst
, src
+ offset
, copy
);
283 memset(dst
, 0, copy
);
287 sector
+= copy
>> SECTOR_SHIFT
;
289 page
= brd_lookup_page(brd
, sector
);
291 src
= kmap_atomic(page
);
292 memcpy(dst
, src
, copy
);
295 memset(dst
, 0, copy
);
300 * Process a single bvec of a bio.
302 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
303 unsigned int len
, unsigned int off
, int rw
,
310 err
= copy_to_brd_setup(brd
, sector
, len
);
315 mem
= kmap_atomic(page
);
317 copy_from_brd(mem
+ off
, brd
, sector
, len
);
318 flush_dcache_page(page
);
320 flush_dcache_page(page
);
321 copy_to_brd(brd
, mem
+ off
, sector
, len
);
329 static blk_qc_t
brd_make_request(struct request_queue
*q
, struct bio
*bio
)
331 struct block_device
*bdev
= bio
->bi_bdev
;
332 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
336 struct bvec_iter iter
;
338 sector
= bio
->bi_iter
.bi_sector
;
339 if (bio_end_sector(bio
) > get_capacity(bdev
->bd_disk
))
342 if (unlikely(bio
->bi_rw
& REQ_DISCARD
)) {
343 if (sector
& ((PAGE_SIZE
>> SECTOR_SHIFT
) - 1) ||
344 bio
->bi_iter
.bi_size
& ~PAGE_MASK
)
346 discard_from_brd(brd
, sector
, bio
->bi_iter
.bi_size
);
354 bio_for_each_segment(bvec
, bio
, iter
) {
355 unsigned int len
= bvec
.bv_len
;
358 err
= brd_do_bvec(brd
, bvec
.bv_page
, len
,
359 bvec
.bv_offset
, rw
, sector
);
362 sector
+= len
>> SECTOR_SHIFT
;
367 return BLK_QC_T_NONE
;
370 return BLK_QC_T_NONE
;
373 static int brd_rw_page(struct block_device
*bdev
, sector_t sector
,
374 struct page
*page
, int rw
)
376 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
377 int err
= brd_do_bvec(brd
, page
, PAGE_CACHE_SIZE
, 0, rw
, sector
);
378 page_endio(page
, rw
& WRITE
, err
);
382 #ifdef CONFIG_BLK_DEV_RAM_DAX
383 static long brd_direct_access(struct block_device
*bdev
, sector_t sector
,
384 void __pmem
**kaddr
, pfn_t
*pfn
)
386 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
391 page
= brd_insert_page(brd
, sector
);
394 *kaddr
= (void __pmem
*)page_address(page
);
395 *pfn
= page_to_pfn_t(page
);
400 #define brd_direct_access NULL
403 static int brd_ioctl(struct block_device
*bdev
, fmode_t mode
,
404 unsigned int cmd
, unsigned long arg
)
407 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
409 if (cmd
!= BLKFLSBUF
)
413 * ram device BLKFLSBUF has special semantics, we want to actually
414 * release and destroy the ramdisk data.
416 mutex_lock(&brd_mutex
);
417 mutex_lock(&bdev
->bd_mutex
);
419 if (bdev
->bd_openers
<= 1) {
421 * Kill the cache first, so it isn't written back to the
424 * Another thread might instantiate more buffercache here,
425 * but there is not much we can do to close that race.
431 mutex_unlock(&bdev
->bd_mutex
);
432 mutex_unlock(&brd_mutex
);
437 static const struct block_device_operations brd_fops
= {
438 .owner
= THIS_MODULE
,
439 .rw_page
= brd_rw_page
,
441 .direct_access
= brd_direct_access
,
445 * And now the modules code and kernel interface.
447 static int rd_nr
= CONFIG_BLK_DEV_RAM_COUNT
;
448 module_param(rd_nr
, int, S_IRUGO
);
449 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
451 int rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
452 module_param(rd_size
, int, S_IRUGO
);
453 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
455 static int max_part
= 1;
456 module_param(max_part
, int, S_IRUGO
);
457 MODULE_PARM_DESC(max_part
, "Num Minors to reserve between devices");
459 MODULE_LICENSE("GPL");
460 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
464 /* Legacy boot options - nonmodular */
465 static int __init
ramdisk_size(char *str
)
467 rd_size
= simple_strtol(str
, NULL
, 0);
470 __setup("ramdisk_size=", ramdisk_size
);
474 * The device scheme is derived from loop.c. Keep them in synch where possible
475 * (should share code eventually).
477 static LIST_HEAD(brd_devices
);
478 static DEFINE_MUTEX(brd_devices_mutex
);
480 static struct brd_device
*brd_alloc(int i
)
482 struct brd_device
*brd
;
483 struct gendisk
*disk
;
485 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
489 spin_lock_init(&brd
->brd_lock
);
490 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
492 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
496 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
497 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
498 blk_queue_bounce_limit(brd
->brd_queue
, BLK_BOUNCE_ANY
);
500 /* This is so fdisk will align partitions on 4k, because of
501 * direct_access API needing 4k alignment, returning a PFN
502 * (This is only a problem on very small devices <= 4M,
503 * otherwise fdisk will align on 1M. Regardless this call
506 blk_queue_physical_block_size(brd
->brd_queue
, PAGE_SIZE
);
508 brd
->brd_queue
->limits
.discard_granularity
= PAGE_SIZE
;
509 blk_queue_max_discard_sectors(brd
->brd_queue
, UINT_MAX
);
510 brd
->brd_queue
->limits
.discard_zeroes_data
= 1;
511 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, brd
->brd_queue
);
513 disk
= brd
->brd_disk
= alloc_disk(max_part
);
516 disk
->major
= RAMDISK_MAJOR
;
517 disk
->first_minor
= i
* max_part
;
518 disk
->fops
= &brd_fops
;
519 disk
->private_data
= brd
;
520 disk
->queue
= brd
->brd_queue
;
521 disk
->flags
= GENHD_FL_EXT_DEVT
;
522 sprintf(disk
->disk_name
, "ram%d", i
);
523 set_capacity(disk
, rd_size
* 2);
528 blk_cleanup_queue(brd
->brd_queue
);
535 static void brd_free(struct brd_device
*brd
)
537 put_disk(brd
->brd_disk
);
538 blk_cleanup_queue(brd
->brd_queue
);
543 static struct brd_device
*brd_init_one(int i
, bool *new)
545 struct brd_device
*brd
;
548 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
549 if (brd
->brd_number
== i
)
555 add_disk(brd
->brd_disk
);
556 list_add_tail(&brd
->brd_list
, &brd_devices
);
563 static void brd_del_one(struct brd_device
*brd
)
565 list_del(&brd
->brd_list
);
566 del_gendisk(brd
->brd_disk
);
570 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
572 struct brd_device
*brd
;
573 struct kobject
*kobj
;
576 mutex_lock(&brd_devices_mutex
);
577 brd
= brd_init_one(MINOR(dev
) / max_part
, &new);
578 kobj
= brd
? get_disk(brd
->brd_disk
) : NULL
;
579 mutex_unlock(&brd_devices_mutex
);
587 static int __init
brd_init(void)
589 struct brd_device
*brd
, *next
;
593 * brd module now has a feature to instantiate underlying device
594 * structure on-demand, provided that there is an access dev node.
596 * (1) if rd_nr is specified, create that many upfront. else
597 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
598 * (2) User can further extend brd devices by create dev node themselves
599 * and have kernel automatically instantiate actual device
600 * on-demand. Example:
601 * mknod /path/devnod_name b 1 X # 1 is the rd major
602 * fdisk -l /path/devnod_name
603 * If (X / max_part) was not already created it will be created
607 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
610 if (unlikely(!max_part
))
613 for (i
= 0; i
< rd_nr
; i
++) {
617 list_add_tail(&brd
->brd_list
, &brd_devices
);
620 /* point of no return */
622 list_for_each_entry(brd
, &brd_devices
, brd_list
)
623 add_disk(brd
->brd_disk
);
625 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
,
626 THIS_MODULE
, brd_probe
, NULL
, NULL
);
628 pr_info("brd: module loaded\n");
632 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
633 list_del(&brd
->brd_list
);
636 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
638 pr_info("brd: module NOT loaded !!!\n");
642 static void __exit
brd_exit(void)
644 struct brd_device
*brd
, *next
;
646 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
649 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
);
650 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
652 pr_info("brd: module unloaded\n");
655 module_init(brd_init
);
656 module_exit(brd_exit
);