Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / infiniband / hw / mlx5 / odp.c
blob34e79e709c67ba2757f004fb4d9974e34d393541
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
36 #include "mlx5_ib.h"
38 #define MAX_PREFETCH_LEN (4*1024*1024U)
40 /* Timeout in ms to wait for an active mmu notifier to complete when handling
41 * a pagefault. */
42 #define MMU_NOTIFIER_TIMEOUT 1000
44 struct workqueue_struct *mlx5_ib_page_fault_wq;
46 void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
47 unsigned long end)
49 struct mlx5_ib_mr *mr;
50 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1;
51 u64 idx = 0, blk_start_idx = 0;
52 int in_block = 0;
53 u64 addr;
55 if (!umem || !umem->odp_data) {
56 pr_err("invalidation called on NULL umem or non-ODP umem\n");
57 return;
60 mr = umem->odp_data->private;
62 if (!mr || !mr->ibmr.pd)
63 return;
65 start = max_t(u64, ib_umem_start(umem), start);
66 end = min_t(u64, ib_umem_end(umem), end);
69 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
70 * while we are doing the invalidation, no page fault will attempt to
71 * overwrite the same MTTs. Concurent invalidations might race us,
72 * but they will write 0s as well, so no difference in the end result.
75 for (addr = start; addr < end; addr += (u64)umem->page_size) {
76 idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
78 * Strive to write the MTTs in chunks, but avoid overwriting
79 * non-existing MTTs. The huristic here can be improved to
80 * estimate the cost of another UMR vs. the cost of bigger
81 * UMR.
83 if (umem->odp_data->dma_list[idx] &
84 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
85 if (!in_block) {
86 blk_start_idx = idx;
87 in_block = 1;
89 } else {
90 u64 umr_offset = idx & umr_block_mask;
92 if (in_block && umr_offset == 0) {
93 mlx5_ib_update_mtt(mr, blk_start_idx,
94 idx - blk_start_idx, 1);
95 in_block = 0;
99 if (in_block)
100 mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1,
104 * We are now sure that the device will not access the
105 * memory. We can safely unmap it, and mark it as dirty if
106 * needed.
109 ib_umem_odp_unmap_dma_pages(umem, start, end);
112 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
114 struct ib_odp_caps *caps = &dev->odp_caps;
116 memset(caps, 0, sizeof(*caps));
118 if (!MLX5_CAP_GEN(dev->mdev, pg))
119 return;
121 caps->general_caps = IB_ODP_SUPPORT;
123 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
124 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
126 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
127 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
129 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
130 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
132 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
133 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
135 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
136 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
138 return;
141 static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
142 u32 key)
144 u32 base_key = mlx5_base_mkey(key);
145 struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
146 struct mlx5_ib_mr *mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
148 if (!mmkey || mmkey->key != key || !mr->live)
149 return NULL;
151 return container_of(mmkey, struct mlx5_ib_mr, mmkey);
154 static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp,
155 struct mlx5_ib_pfault *pfault,
156 int error)
158 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
159 u32 qpn = qp->trans_qp.base.mqp.qpn;
160 int ret = mlx5_core_page_fault_resume(dev->mdev,
161 qpn,
162 pfault->mpfault.flags,
163 error);
164 if (ret)
165 pr_err("Failed to resolve the page fault on QP 0x%x\n", qpn);
169 * Handle a single data segment in a page-fault WQE.
171 * Returns number of pages retrieved on success. The caller will continue to
172 * the next data segment.
173 * Can return the following error codes:
174 * -EAGAIN to designate a temporary error. The caller will abort handling the
175 * page fault and resolve it.
176 * -EFAULT when there's an error mapping the requested pages. The caller will
177 * abort the page fault handling and possibly move the QP to an error state.
178 * On other errors the QP should also be closed with an error.
180 static int pagefault_single_data_segment(struct mlx5_ib_qp *qp,
181 struct mlx5_ib_pfault *pfault,
182 u32 key, u64 io_virt, size_t bcnt,
183 u32 *bytes_mapped)
185 struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device);
186 int srcu_key;
187 unsigned int current_seq;
188 u64 start_idx;
189 int npages = 0, ret = 0;
190 struct mlx5_ib_mr *mr;
191 u64 access_mask = ODP_READ_ALLOWED_BIT;
193 srcu_key = srcu_read_lock(&mib_dev->mr_srcu);
194 mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key);
196 * If we didn't find the MR, it means the MR was closed while we were
197 * handling the ODP event. In this case we return -EFAULT so that the
198 * QP will be closed.
200 if (!mr || !mr->ibmr.pd) {
201 pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
202 key);
203 ret = -EFAULT;
204 goto srcu_unlock;
206 if (!mr->umem->odp_data) {
207 pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
208 key);
209 if (bytes_mapped)
210 *bytes_mapped +=
211 (bcnt - pfault->mpfault.bytes_committed);
212 goto srcu_unlock;
214 if (mr->ibmr.pd != qp->ibqp.pd) {
215 pr_err("Page-fault with different PDs for QP and MR.\n");
216 ret = -EFAULT;
217 goto srcu_unlock;
220 current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq);
222 * Ensure the sequence number is valid for some time before we call
223 * gup.
225 smp_rmb();
228 * Avoid branches - this code will perform correctly
229 * in all iterations (in iteration 2 and above,
230 * bytes_committed == 0).
232 io_virt += pfault->mpfault.bytes_committed;
233 bcnt -= pfault->mpfault.bytes_committed;
235 start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
237 if (mr->umem->writable)
238 access_mask |= ODP_WRITE_ALLOWED_BIT;
239 npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt,
240 access_mask, current_seq);
241 if (npages < 0) {
242 ret = npages;
243 goto srcu_unlock;
246 if (npages > 0) {
247 mutex_lock(&mr->umem->odp_data->umem_mutex);
248 if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
250 * No need to check whether the MTTs really belong to
251 * this MR, since ib_umem_odp_map_dma_pages already
252 * checks this.
254 ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0);
255 } else {
256 ret = -EAGAIN;
258 mutex_unlock(&mr->umem->odp_data->umem_mutex);
259 if (ret < 0) {
260 if (ret != -EAGAIN)
261 pr_err("Failed to update mkey page tables\n");
262 goto srcu_unlock;
265 if (bytes_mapped) {
266 u32 new_mappings = npages * PAGE_SIZE -
267 (io_virt - round_down(io_virt, PAGE_SIZE));
268 *bytes_mapped += min_t(u32, new_mappings, bcnt);
272 srcu_unlock:
273 if (ret == -EAGAIN) {
274 if (!mr->umem->odp_data->dying) {
275 struct ib_umem_odp *odp_data = mr->umem->odp_data;
276 unsigned long timeout =
277 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
279 if (!wait_for_completion_timeout(
280 &odp_data->notifier_completion,
281 timeout)) {
282 pr_warn("timeout waiting for mmu notifier completion\n");
284 } else {
285 /* The MR is being killed, kill the QP as well. */
286 ret = -EFAULT;
289 srcu_read_unlock(&mib_dev->mr_srcu, srcu_key);
290 pfault->mpfault.bytes_committed = 0;
291 return ret ? ret : npages;
295 * Parse a series of data segments for page fault handling.
297 * @qp the QP on which the fault occurred.
298 * @pfault contains page fault information.
299 * @wqe points at the first data segment in the WQE.
300 * @wqe_end points after the end of the WQE.
301 * @bytes_mapped receives the number of bytes that the function was able to
302 * map. This allows the caller to decide intelligently whether
303 * enough memory was mapped to resolve the page fault
304 * successfully (e.g. enough for the next MTU, or the entire
305 * WQE).
306 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
307 * the committed bytes).
309 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
310 * negative error code.
312 static int pagefault_data_segments(struct mlx5_ib_qp *qp,
313 struct mlx5_ib_pfault *pfault, void *wqe,
314 void *wqe_end, u32 *bytes_mapped,
315 u32 *total_wqe_bytes, int receive_queue)
317 int ret = 0, npages = 0;
318 u64 io_virt;
319 u32 key;
320 u32 byte_count;
321 size_t bcnt;
322 int inline_segment;
324 /* Skip SRQ next-WQE segment. */
325 if (receive_queue && qp->ibqp.srq)
326 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
328 if (bytes_mapped)
329 *bytes_mapped = 0;
330 if (total_wqe_bytes)
331 *total_wqe_bytes = 0;
333 while (wqe < wqe_end) {
334 struct mlx5_wqe_data_seg *dseg = wqe;
336 io_virt = be64_to_cpu(dseg->addr);
337 key = be32_to_cpu(dseg->lkey);
338 byte_count = be32_to_cpu(dseg->byte_count);
339 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
340 bcnt = byte_count & ~MLX5_INLINE_SEG;
342 if (inline_segment) {
343 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
344 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
345 16);
346 } else {
347 wqe += sizeof(*dseg);
350 /* receive WQE end of sg list. */
351 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
352 io_virt == 0)
353 break;
355 if (!inline_segment && total_wqe_bytes) {
356 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
357 pfault->mpfault.bytes_committed);
360 /* A zero length data segment designates a length of 2GB. */
361 if (bcnt == 0)
362 bcnt = 1U << 31;
364 if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) {
365 pfault->mpfault.bytes_committed -=
366 min_t(size_t, bcnt,
367 pfault->mpfault.bytes_committed);
368 continue;
371 ret = pagefault_single_data_segment(qp, pfault, key, io_virt,
372 bcnt, bytes_mapped);
373 if (ret < 0)
374 break;
375 npages += ret;
378 return ret < 0 ? ret : npages;
382 * Parse initiator WQE. Advances the wqe pointer to point at the
383 * scatter-gather list, and set wqe_end to the end of the WQE.
385 static int mlx5_ib_mr_initiator_pfault_handler(
386 struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
387 void **wqe, void **wqe_end, int wqe_length)
389 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
390 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
391 u16 wqe_index = pfault->mpfault.wqe.wqe_index;
392 unsigned ds, opcode;
393 #if defined(DEBUG)
394 u32 ctrl_wqe_index, ctrl_qpn;
395 #endif
396 u32 qpn = qp->trans_qp.base.mqp.qpn;
398 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
399 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
400 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
401 ds, wqe_length);
402 return -EFAULT;
405 if (ds == 0) {
406 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
407 wqe_index, qpn);
408 return -EFAULT;
411 #if defined(DEBUG)
412 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
413 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
414 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
415 if (wqe_index != ctrl_wqe_index) {
416 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
417 wqe_index, qpn,
418 ctrl_wqe_index);
419 return -EFAULT;
422 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
423 MLX5_WQE_CTRL_QPN_SHIFT;
424 if (qpn != ctrl_qpn) {
425 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
426 wqe_index, qpn,
427 ctrl_qpn);
428 return -EFAULT;
430 #endif /* DEBUG */
432 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
433 *wqe += sizeof(*ctrl);
435 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
436 MLX5_WQE_CTRL_OPCODE_MASK;
437 switch (qp->ibqp.qp_type) {
438 case IB_QPT_RC:
439 switch (opcode) {
440 case MLX5_OPCODE_SEND:
441 case MLX5_OPCODE_SEND_IMM:
442 case MLX5_OPCODE_SEND_INVAL:
443 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
444 IB_ODP_SUPPORT_SEND))
445 goto invalid_transport_or_opcode;
446 break;
447 case MLX5_OPCODE_RDMA_WRITE:
448 case MLX5_OPCODE_RDMA_WRITE_IMM:
449 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
450 IB_ODP_SUPPORT_WRITE))
451 goto invalid_transport_or_opcode;
452 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
453 break;
454 case MLX5_OPCODE_RDMA_READ:
455 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
456 IB_ODP_SUPPORT_READ))
457 goto invalid_transport_or_opcode;
458 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
459 break;
460 default:
461 goto invalid_transport_or_opcode;
463 break;
464 case IB_QPT_UD:
465 switch (opcode) {
466 case MLX5_OPCODE_SEND:
467 case MLX5_OPCODE_SEND_IMM:
468 if (!(dev->odp_caps.per_transport_caps.ud_odp_caps &
469 IB_ODP_SUPPORT_SEND))
470 goto invalid_transport_or_opcode;
471 *wqe += sizeof(struct mlx5_wqe_datagram_seg);
472 break;
473 default:
474 goto invalid_transport_or_opcode;
476 break;
477 default:
478 invalid_transport_or_opcode:
479 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n",
480 qp->ibqp.qp_type, opcode);
481 return -EFAULT;
484 return 0;
488 * Parse responder WQE. Advances the wqe pointer to point at the
489 * scatter-gather list, and set wqe_end to the end of the WQE.
491 static int mlx5_ib_mr_responder_pfault_handler(
492 struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
493 void **wqe, void **wqe_end, int wqe_length)
495 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
496 struct mlx5_ib_wq *wq = &qp->rq;
497 int wqe_size = 1 << wq->wqe_shift;
499 if (qp->ibqp.srq) {
500 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
501 return -EFAULT;
504 if (qp->wq_sig) {
505 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
506 return -EFAULT;
509 if (wqe_size > wqe_length) {
510 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
511 return -EFAULT;
514 switch (qp->ibqp.qp_type) {
515 case IB_QPT_RC:
516 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
517 IB_ODP_SUPPORT_RECV))
518 goto invalid_transport_or_opcode;
519 break;
520 default:
521 invalid_transport_or_opcode:
522 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
523 qp->ibqp.qp_type);
524 return -EFAULT;
527 *wqe_end = *wqe + wqe_size;
529 return 0;
532 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp,
533 struct mlx5_ib_pfault *pfault)
535 struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
536 int ret;
537 void *wqe, *wqe_end;
538 u32 bytes_mapped, total_wqe_bytes;
539 char *buffer = NULL;
540 int resume_with_error = 0;
541 u16 wqe_index = pfault->mpfault.wqe.wqe_index;
542 int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR;
543 u32 qpn = qp->trans_qp.base.mqp.qpn;
545 buffer = (char *)__get_free_page(GFP_KERNEL);
546 if (!buffer) {
547 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
548 resume_with_error = 1;
549 goto resolve_page_fault;
552 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
553 PAGE_SIZE, &qp->trans_qp.base);
554 if (ret < 0) {
555 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n",
556 -ret, wqe_index, qpn);
557 resume_with_error = 1;
558 goto resolve_page_fault;
561 wqe = buffer;
562 if (requestor)
563 ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe,
564 &wqe_end, ret);
565 else
566 ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe,
567 &wqe_end, ret);
568 if (ret < 0) {
569 resume_with_error = 1;
570 goto resolve_page_fault;
573 if (wqe >= wqe_end) {
574 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
575 resume_with_error = 1;
576 goto resolve_page_fault;
579 ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped,
580 &total_wqe_bytes, !requestor);
581 if (ret == -EAGAIN) {
582 goto resolve_page_fault;
583 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
584 mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n",
585 -ret);
586 resume_with_error = 1;
587 goto resolve_page_fault;
590 resolve_page_fault:
591 mlx5_ib_page_fault_resume(qp, pfault, resume_with_error);
592 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n",
593 qpn, resume_with_error,
594 pfault->mpfault.flags);
596 free_page((unsigned long)buffer);
599 static int pages_in_range(u64 address, u32 length)
601 return (ALIGN(address + length, PAGE_SIZE) -
602 (address & PAGE_MASK)) >> PAGE_SHIFT;
605 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp,
606 struct mlx5_ib_pfault *pfault)
608 struct mlx5_pagefault *mpfault = &pfault->mpfault;
609 u64 address;
610 u32 length;
611 u32 prefetch_len = mpfault->bytes_committed;
612 int prefetch_activated = 0;
613 u32 rkey = mpfault->rdma.r_key;
614 int ret;
616 /* The RDMA responder handler handles the page fault in two parts.
617 * First it brings the necessary pages for the current packet
618 * (and uses the pfault context), and then (after resuming the QP)
619 * prefetches more pages. The second operation cannot use the pfault
620 * context and therefore uses the dummy_pfault context allocated on
621 * the stack */
622 struct mlx5_ib_pfault dummy_pfault = {};
624 dummy_pfault.mpfault.bytes_committed = 0;
626 mpfault->rdma.rdma_va += mpfault->bytes_committed;
627 mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed,
628 mpfault->rdma.rdma_op_len);
629 mpfault->bytes_committed = 0;
631 address = mpfault->rdma.rdma_va;
632 length = mpfault->rdma.rdma_op_len;
634 /* For some operations, the hardware cannot tell the exact message
635 * length, and in those cases it reports zero. Use prefetch
636 * logic. */
637 if (length == 0) {
638 prefetch_activated = 1;
639 length = mpfault->rdma.packet_size;
640 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
643 ret = pagefault_single_data_segment(qp, pfault, rkey, address, length,
644 NULL);
645 if (ret == -EAGAIN) {
646 /* We're racing with an invalidation, don't prefetch */
647 prefetch_activated = 0;
648 } else if (ret < 0 || pages_in_range(address, length) > ret) {
649 mlx5_ib_page_fault_resume(qp, pfault, 1);
650 return;
653 mlx5_ib_page_fault_resume(qp, pfault, 0);
655 /* At this point, there might be a new pagefault already arriving in
656 * the eq, switch to the dummy pagefault for the rest of the
657 * processing. We're still OK with the objects being alive as the
658 * work-queue is being fenced. */
660 if (prefetch_activated) {
661 ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey,
662 address,
663 prefetch_len,
664 NULL);
665 if (ret < 0) {
666 pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n",
667 ret, prefetch_activated,
668 qp->ibqp.qp_num, address, prefetch_len);
673 void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp,
674 struct mlx5_ib_pfault *pfault)
676 u8 event_subtype = pfault->mpfault.event_subtype;
678 switch (event_subtype) {
679 case MLX5_PFAULT_SUBTYPE_WQE:
680 mlx5_ib_mr_wqe_pfault_handler(qp, pfault);
681 break;
682 case MLX5_PFAULT_SUBTYPE_RDMA:
683 mlx5_ib_mr_rdma_pfault_handler(qp, pfault);
684 break;
685 default:
686 pr_warn("Invalid page fault event subtype: 0x%x\n",
687 event_subtype);
688 mlx5_ib_page_fault_resume(qp, pfault, 1);
689 break;
693 static void mlx5_ib_qp_pfault_action(struct work_struct *work)
695 struct mlx5_ib_pfault *pfault = container_of(work,
696 struct mlx5_ib_pfault,
697 work);
698 enum mlx5_ib_pagefault_context context =
699 mlx5_ib_get_pagefault_context(&pfault->mpfault);
700 struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp,
701 pagefaults[context]);
702 mlx5_ib_mr_pfault_handler(qp, pfault);
705 void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp)
707 unsigned long flags;
709 spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
710 qp->disable_page_faults = 1;
711 spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
714 * Note that at this point, we are guarenteed that no more
715 * work queue elements will be posted to the work queue with
716 * the QP we are closing.
718 flush_workqueue(mlx5_ib_page_fault_wq);
721 void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp)
723 unsigned long flags;
725 spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
726 qp->disable_page_faults = 0;
727 spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
730 static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp,
731 struct mlx5_pagefault *pfault)
734 * Note that we will only get one fault event per QP per context
735 * (responder/initiator, read/write), until we resolve the page fault
736 * with the mlx5_ib_page_fault_resume command. Since this function is
737 * called from within the work element, there is no risk of missing
738 * events.
740 struct mlx5_ib_qp *mibqp = to_mibqp(qp);
741 enum mlx5_ib_pagefault_context context =
742 mlx5_ib_get_pagefault_context(pfault);
743 struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context];
745 qp_pfault->mpfault = *pfault;
747 /* No need to stop interrupts here since we are in an interrupt */
748 spin_lock(&mibqp->disable_page_faults_lock);
749 if (!mibqp->disable_page_faults)
750 queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work);
751 spin_unlock(&mibqp->disable_page_faults_lock);
754 void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp)
756 int i;
758 qp->disable_page_faults = 1;
759 spin_lock_init(&qp->disable_page_faults_lock);
761 qp->trans_qp.base.mqp.pfault_handler = mlx5_ib_pfault_handler;
763 for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i)
764 INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action);
767 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev)
769 int ret;
771 ret = init_srcu_struct(&ibdev->mr_srcu);
772 if (ret)
773 return ret;
775 return 0;
778 void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev)
780 cleanup_srcu_struct(&ibdev->mr_srcu);
783 int __init mlx5_ib_odp_init(void)
785 mlx5_ib_page_fault_wq =
786 create_singlethread_workqueue("mlx5_ib_page_faults");
787 if (!mlx5_ib_page_fault_wq)
788 return -ENOMEM;
790 return 0;
793 void mlx5_ib_odp_cleanup(void)
795 destroy_workqueue(mlx5_ib_page_fault_wq);