Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / net / bluetooth / hci_conn.c
blobbf9f8a801a2e998bfe69bb5ca4daef061fbf83b1
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI connection handling. */
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
91 params->explicit_connect = false;
93 list_del_init(&params->action);
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(&params->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(&params->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
111 hci_update_background_scan(hdev);
114 static void hci_conn_cleanup(struct hci_conn *conn)
116 struct hci_dev *hdev = conn->hdev;
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
121 hci_chan_list_flush(conn);
123 hci_conn_hash_del(hdev, conn);
125 if (hdev->notify)
126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
128 hci_conn_del_sysfs(conn);
130 debugfs_remove_recursive(conn->debugfs);
132 hci_dev_put(hdev);
134 hci_conn_put(conn);
137 static void le_scan_cleanup(struct work_struct *work)
139 struct hci_conn *conn = container_of(work, struct hci_conn,
140 le_scan_cleanup);
141 struct hci_dev *hdev = conn->hdev;
142 struct hci_conn *c = NULL;
144 BT_DBG("%s hcon %p", hdev->name, conn);
146 hci_dev_lock(hdev);
148 /* Check that the hci_conn is still around */
149 rcu_read_lock();
150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
151 if (c == conn)
152 break;
154 rcu_read_unlock();
156 if (c == conn) {
157 hci_connect_le_scan_cleanup(conn);
158 hci_conn_cleanup(conn);
161 hci_dev_unlock(hdev);
162 hci_dev_put(hdev);
163 hci_conn_put(conn);
166 static void hci_connect_le_scan_remove(struct hci_conn *conn)
168 BT_DBG("%s hcon %p", conn->hdev->name, conn);
170 /* We can't call hci_conn_del/hci_conn_cleanup here since that
171 * could deadlock with another hci_conn_del() call that's holding
172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
173 * Instead, grab temporary extra references to the hci_dev and
174 * hci_conn and perform the necessary cleanup in a separate work
175 * callback.
178 hci_dev_hold(conn->hdev);
179 hci_conn_get(conn);
181 /* Even though we hold a reference to the hdev, many other
182 * things might get cleaned up meanwhile, including the hdev's
183 * own workqueue, so we can't use that for scheduling.
185 schedule_work(&conn->le_scan_cleanup);
188 static void hci_acl_create_connection(struct hci_conn *conn)
190 struct hci_dev *hdev = conn->hdev;
191 struct inquiry_entry *ie;
192 struct hci_cp_create_conn cp;
194 BT_DBG("hcon %p", conn);
196 conn->state = BT_CONNECT;
197 conn->out = true;
198 conn->role = HCI_ROLE_MASTER;
200 conn->attempt++;
202 conn->link_policy = hdev->link_policy;
204 memset(&cp, 0, sizeof(cp));
205 bacpy(&cp.bdaddr, &conn->dst);
206 cp.pscan_rep_mode = 0x02;
208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
209 if (ie) {
210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
211 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
212 cp.pscan_mode = ie->data.pscan_mode;
213 cp.clock_offset = ie->data.clock_offset |
214 cpu_to_le16(0x8000);
217 memcpy(conn->dev_class, ie->data.dev_class, 3);
218 if (ie->data.ssp_mode > 0)
219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
222 cp.pkt_type = cpu_to_le16(conn->pkt_type);
223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
224 cp.role_switch = 0x01;
225 else
226 cp.role_switch = 0x00;
228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
231 int hci_disconnect(struct hci_conn *conn, __u8 reason)
233 BT_DBG("hcon %p", conn);
235 /* When we are master of an established connection and it enters
236 * the disconnect timeout, then go ahead and try to read the
237 * current clock offset. Processing of the result is done
238 * within the event handling and hci_clock_offset_evt function.
240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
242 struct hci_dev *hdev = conn->hdev;
243 struct hci_cp_read_clock_offset clkoff_cp;
245 clkoff_cp.handle = cpu_to_le16(conn->handle);
246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
247 &clkoff_cp);
250 return hci_abort_conn(conn, reason);
253 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
255 struct hci_dev *hdev = conn->hdev;
256 struct hci_cp_add_sco cp;
258 BT_DBG("hcon %p", conn);
260 conn->state = BT_CONNECT;
261 conn->out = true;
263 conn->attempt++;
265 cp.handle = cpu_to_le16(handle);
266 cp.pkt_type = cpu_to_le16(conn->pkt_type);
268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
273 struct hci_dev *hdev = conn->hdev;
274 struct hci_cp_setup_sync_conn cp;
275 const struct sco_param *param;
277 BT_DBG("hcon %p", conn);
279 conn->state = BT_CONNECT;
280 conn->out = true;
282 conn->attempt++;
284 cp.handle = cpu_to_le16(handle);
286 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
287 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
288 cp.voice_setting = cpu_to_le16(conn->setting);
290 switch (conn->setting & SCO_AIRMODE_MASK) {
291 case SCO_AIRMODE_TRANSP:
292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
293 return false;
294 param = &esco_param_msbc[conn->attempt - 1];
295 break;
296 case SCO_AIRMODE_CVSD:
297 if (lmp_esco_capable(conn->link)) {
298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
299 return false;
300 param = &esco_param_cvsd[conn->attempt - 1];
301 } else {
302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
303 return false;
304 param = &sco_param_cvsd[conn->attempt - 1];
306 break;
307 default:
308 return false;
311 cp.retrans_effort = param->retrans_effort;
312 cp.pkt_type = __cpu_to_le16(param->pkt_type);
313 cp.max_latency = __cpu_to_le16(param->max_latency);
315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
316 return false;
318 return true;
321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
322 u16 to_multiplier)
324 struct hci_dev *hdev = conn->hdev;
325 struct hci_conn_params *params;
326 struct hci_cp_le_conn_update cp;
328 hci_dev_lock(hdev);
330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
331 if (params) {
332 params->conn_min_interval = min;
333 params->conn_max_interval = max;
334 params->conn_latency = latency;
335 params->supervision_timeout = to_multiplier;
338 hci_dev_unlock(hdev);
340 memset(&cp, 0, sizeof(cp));
341 cp.handle = cpu_to_le16(conn->handle);
342 cp.conn_interval_min = cpu_to_le16(min);
343 cp.conn_interval_max = cpu_to_le16(max);
344 cp.conn_latency = cpu_to_le16(latency);
345 cp.supervision_timeout = cpu_to_le16(to_multiplier);
346 cp.min_ce_len = cpu_to_le16(0x0000);
347 cp.max_ce_len = cpu_to_le16(0x0000);
349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
351 if (params)
352 return 0x01;
354 return 0x00;
357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
358 __u8 ltk[16], __u8 key_size)
360 struct hci_dev *hdev = conn->hdev;
361 struct hci_cp_le_start_enc cp;
363 BT_DBG("hcon %p", conn);
365 memset(&cp, 0, sizeof(cp));
367 cp.handle = cpu_to_le16(conn->handle);
368 cp.rand = rand;
369 cp.ediv = ediv;
370 memcpy(cp.ltk, ltk, key_size);
372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
375 /* Device _must_ be locked */
376 void hci_sco_setup(struct hci_conn *conn, __u8 status)
378 struct hci_conn *sco = conn->link;
380 if (!sco)
381 return;
383 BT_DBG("hcon %p", conn);
385 if (!status) {
386 if (lmp_esco_capable(conn->hdev))
387 hci_setup_sync(sco, conn->handle);
388 else
389 hci_add_sco(sco, conn->handle);
390 } else {
391 hci_connect_cfm(sco, status);
392 hci_conn_del(sco);
396 static void hci_conn_timeout(struct work_struct *work)
398 struct hci_conn *conn = container_of(work, struct hci_conn,
399 disc_work.work);
400 int refcnt = atomic_read(&conn->refcnt);
402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
404 WARN_ON(refcnt < 0);
406 /* FIXME: It was observed that in pairing failed scenario, refcnt
407 * drops below 0. Probably this is because l2cap_conn_del calls
408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
409 * dropped. After that loop hci_chan_del is called which also drops
410 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
411 * otherwise drop it.
413 if (refcnt > 0)
414 return;
416 /* LE connections in scanning state need special handling */
417 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
418 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
419 hci_connect_le_scan_remove(conn);
420 return;
423 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
426 /* Enter sniff mode */
427 static void hci_conn_idle(struct work_struct *work)
429 struct hci_conn *conn = container_of(work, struct hci_conn,
430 idle_work.work);
431 struct hci_dev *hdev = conn->hdev;
433 BT_DBG("hcon %p mode %d", conn, conn->mode);
435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
436 return;
438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
439 return;
441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
442 struct hci_cp_sniff_subrate cp;
443 cp.handle = cpu_to_le16(conn->handle);
444 cp.max_latency = cpu_to_le16(0);
445 cp.min_remote_timeout = cpu_to_le16(0);
446 cp.min_local_timeout = cpu_to_le16(0);
447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
451 struct hci_cp_sniff_mode cp;
452 cp.handle = cpu_to_le16(conn->handle);
453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
455 cp.attempt = cpu_to_le16(4);
456 cp.timeout = cpu_to_le16(1);
457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
461 static void hci_conn_auto_accept(struct work_struct *work)
463 struct hci_conn *conn = container_of(work, struct hci_conn,
464 auto_accept_work.work);
466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
467 &conn->dst);
470 static void le_conn_timeout(struct work_struct *work)
472 struct hci_conn *conn = container_of(work, struct hci_conn,
473 le_conn_timeout.work);
474 struct hci_dev *hdev = conn->hdev;
476 BT_DBG("");
478 /* We could end up here due to having done directed advertising,
479 * so clean up the state if necessary. This should however only
480 * happen with broken hardware or if low duty cycle was used
481 * (which doesn't have a timeout of its own).
483 if (conn->role == HCI_ROLE_SLAVE) {
484 u8 enable = 0x00;
485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
486 &enable);
487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
488 return;
491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
495 u8 role)
497 struct hci_conn *conn;
499 BT_DBG("%s dst %pMR", hdev->name, dst);
501 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
502 if (!conn)
503 return NULL;
505 bacpy(&conn->dst, dst);
506 bacpy(&conn->src, &hdev->bdaddr);
507 conn->hdev = hdev;
508 conn->type = type;
509 conn->role = role;
510 conn->mode = HCI_CM_ACTIVE;
511 conn->state = BT_OPEN;
512 conn->auth_type = HCI_AT_GENERAL_BONDING;
513 conn->io_capability = hdev->io_capability;
514 conn->remote_auth = 0xff;
515 conn->key_type = 0xff;
516 conn->rssi = HCI_RSSI_INVALID;
517 conn->tx_power = HCI_TX_POWER_INVALID;
518 conn->max_tx_power = HCI_TX_POWER_INVALID;
520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
521 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
523 if (conn->role == HCI_ROLE_MASTER)
524 conn->out = true;
526 switch (type) {
527 case ACL_LINK:
528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
529 break;
530 case LE_LINK:
531 /* conn->src should reflect the local identity address */
532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
533 break;
534 case SCO_LINK:
535 if (lmp_esco_capable(hdev))
536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
537 (hdev->esco_type & EDR_ESCO_MASK);
538 else
539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
540 break;
541 case ESCO_LINK:
542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
543 break;
546 skb_queue_head_init(&conn->data_q);
548 INIT_LIST_HEAD(&conn->chan_list);
550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
556 atomic_set(&conn->refcnt, 0);
558 hci_dev_hold(hdev);
560 hci_conn_hash_add(hdev, conn);
561 if (hdev->notify)
562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
564 hci_conn_init_sysfs(conn);
566 return conn;
569 int hci_conn_del(struct hci_conn *conn)
571 struct hci_dev *hdev = conn->hdev;
573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
575 cancel_delayed_work_sync(&conn->disc_work);
576 cancel_delayed_work_sync(&conn->auto_accept_work);
577 cancel_delayed_work_sync(&conn->idle_work);
579 if (conn->type == ACL_LINK) {
580 struct hci_conn *sco = conn->link;
581 if (sco)
582 sco->link = NULL;
584 /* Unacked frames */
585 hdev->acl_cnt += conn->sent;
586 } else if (conn->type == LE_LINK) {
587 cancel_delayed_work(&conn->le_conn_timeout);
589 if (hdev->le_pkts)
590 hdev->le_cnt += conn->sent;
591 else
592 hdev->acl_cnt += conn->sent;
593 } else {
594 struct hci_conn *acl = conn->link;
595 if (acl) {
596 acl->link = NULL;
597 hci_conn_drop(acl);
601 if (conn->amp_mgr)
602 amp_mgr_put(conn->amp_mgr);
604 skb_queue_purge(&conn->data_q);
606 /* Remove the connection from the list and cleanup its remaining
607 * state. This is a separate function since for some cases like
608 * BT_CONNECT_SCAN we *only* want the cleanup part without the
609 * rest of hci_conn_del.
611 hci_conn_cleanup(conn);
613 return 0;
616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src)
618 int use_src = bacmp(src, BDADDR_ANY);
619 struct hci_dev *hdev = NULL, *d;
621 BT_DBG("%pMR -> %pMR", src, dst);
623 read_lock(&hci_dev_list_lock);
625 list_for_each_entry(d, &hci_dev_list, list) {
626 if (!test_bit(HCI_UP, &d->flags) ||
627 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
628 d->dev_type != HCI_BREDR)
629 continue;
631 /* Simple routing:
632 * No source address - find interface with bdaddr != dst
633 * Source address - find interface with bdaddr == src
636 if (use_src) {
637 if (!bacmp(&d->bdaddr, src)) {
638 hdev = d; break;
640 } else {
641 if (bacmp(&d->bdaddr, dst)) {
642 hdev = d; break;
647 if (hdev)
648 hdev = hci_dev_hold(hdev);
650 read_unlock(&hci_dev_list_lock);
651 return hdev;
653 EXPORT_SYMBOL(hci_get_route);
655 /* This function requires the caller holds hdev->lock */
656 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
658 struct hci_dev *hdev = conn->hdev;
659 struct hci_conn_params *params;
661 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
662 conn->dst_type);
663 if (params && params->conn) {
664 hci_conn_drop(params->conn);
665 hci_conn_put(params->conn);
666 params->conn = NULL;
669 conn->state = BT_CLOSED;
671 /* If the status indicates successful cancellation of
672 * the attempt (i.e. Unkown Connection Id) there's no point of
673 * notifying failure since we'll go back to keep trying to
674 * connect. The only exception is explicit connect requests
675 * where a timeout + cancel does indicate an actual failure.
677 if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
678 (params && params->explicit_connect))
679 mgmt_connect_failed(hdev, &conn->dst, conn->type,
680 conn->dst_type, status);
682 hci_connect_cfm(conn, status);
684 hci_conn_del(conn);
686 /* Since we may have temporarily stopped the background scanning in
687 * favor of connection establishment, we should restart it.
689 hci_update_background_scan(hdev);
691 /* Re-enable advertising in case this was a failed connection
692 * attempt as a peripheral.
694 hci_req_reenable_advertising(hdev);
697 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
699 struct hci_conn *conn;
701 hci_dev_lock(hdev);
703 conn = hci_lookup_le_connect(hdev);
705 if (!status) {
706 hci_connect_le_scan_cleanup(conn);
707 goto done;
710 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x",
711 status);
713 if (!conn)
714 goto done;
716 hci_le_conn_failed(conn, status);
718 done:
719 hci_dev_unlock(hdev);
722 static bool conn_use_rpa(struct hci_conn *conn)
724 struct hci_dev *hdev = conn->hdev;
726 return hci_dev_test_flag(hdev, HCI_PRIVACY);
729 static void hci_req_add_le_create_conn(struct hci_request *req,
730 struct hci_conn *conn)
732 struct hci_cp_le_create_conn cp;
733 struct hci_dev *hdev = conn->hdev;
734 u8 own_addr_type;
736 /* Update random address, but set require_privacy to false so
737 * that we never connect with an non-resolvable address.
739 if (hci_update_random_address(req, false, conn_use_rpa(conn),
740 &own_addr_type))
741 return;
743 memset(&cp, 0, sizeof(cp));
745 /* Set window to be the same value as the interval to enable
746 * continuous scanning.
748 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
749 cp.scan_window = cp.scan_interval;
751 bacpy(&cp.peer_addr, &conn->dst);
752 cp.peer_addr_type = conn->dst_type;
753 cp.own_address_type = own_addr_type;
754 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
755 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
756 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
757 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
758 cp.min_ce_len = cpu_to_le16(0x0000);
759 cp.max_ce_len = cpu_to_le16(0x0000);
761 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
763 conn->state = BT_CONNECT;
764 clear_bit(HCI_CONN_SCANNING, &conn->flags);
767 static void hci_req_directed_advertising(struct hci_request *req,
768 struct hci_conn *conn)
770 struct hci_dev *hdev = req->hdev;
771 struct hci_cp_le_set_adv_param cp;
772 u8 own_addr_type;
773 u8 enable;
775 /* Clear the HCI_LE_ADV bit temporarily so that the
776 * hci_update_random_address knows that it's safe to go ahead
777 * and write a new random address. The flag will be set back on
778 * as soon as the SET_ADV_ENABLE HCI command completes.
780 hci_dev_clear_flag(hdev, HCI_LE_ADV);
782 /* Set require_privacy to false so that the remote device has a
783 * chance of identifying us.
785 if (hci_update_random_address(req, false, conn_use_rpa(conn),
786 &own_addr_type) < 0)
787 return;
789 memset(&cp, 0, sizeof(cp));
790 cp.type = LE_ADV_DIRECT_IND;
791 cp.own_address_type = own_addr_type;
792 cp.direct_addr_type = conn->dst_type;
793 bacpy(&cp.direct_addr, &conn->dst);
794 cp.channel_map = hdev->le_adv_channel_map;
796 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
798 enable = 0x01;
799 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
801 conn->state = BT_CONNECT;
804 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
805 u8 dst_type, u8 sec_level, u16 conn_timeout,
806 u8 role)
808 struct hci_conn_params *params;
809 struct hci_conn *conn;
810 struct smp_irk *irk;
811 struct hci_request req;
812 int err;
814 /* Let's make sure that le is enabled.*/
815 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
816 if (lmp_le_capable(hdev))
817 return ERR_PTR(-ECONNREFUSED);
819 return ERR_PTR(-EOPNOTSUPP);
822 /* Since the controller supports only one LE connection attempt at a
823 * time, we return -EBUSY if there is any connection attempt running.
825 if (hci_lookup_le_connect(hdev))
826 return ERR_PTR(-EBUSY);
828 /* If there's already a connection object but it's not in
829 * scanning state it means it must already be established, in
830 * which case we can't do anything else except report a failure
831 * to connect.
833 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
834 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
835 return ERR_PTR(-EBUSY);
838 /* When given an identity address with existing identity
839 * resolving key, the connection needs to be established
840 * to a resolvable random address.
842 * Storing the resolvable random address is required here
843 * to handle connection failures. The address will later
844 * be resolved back into the original identity address
845 * from the connect request.
847 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
848 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
849 dst = &irk->rpa;
850 dst_type = ADDR_LE_DEV_RANDOM;
853 if (conn) {
854 bacpy(&conn->dst, dst);
855 } else {
856 conn = hci_conn_add(hdev, LE_LINK, dst, role);
857 if (!conn)
858 return ERR_PTR(-ENOMEM);
859 hci_conn_hold(conn);
860 conn->pending_sec_level = sec_level;
863 conn->dst_type = dst_type;
864 conn->sec_level = BT_SECURITY_LOW;
865 conn->conn_timeout = conn_timeout;
867 hci_req_init(&req, hdev);
869 /* Disable advertising if we're active. For master role
870 * connections most controllers will refuse to connect if
871 * advertising is enabled, and for slave role connections we
872 * anyway have to disable it in order to start directed
873 * advertising.
875 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
876 u8 enable = 0x00;
877 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
878 &enable);
881 /* If requested to connect as slave use directed advertising */
882 if (conn->role == HCI_ROLE_SLAVE) {
883 /* If we're active scanning most controllers are unable
884 * to initiate advertising. Simply reject the attempt.
886 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
887 hdev->le_scan_type == LE_SCAN_ACTIVE) {
888 skb_queue_purge(&req.cmd_q);
889 hci_conn_del(conn);
890 return ERR_PTR(-EBUSY);
893 hci_req_directed_advertising(&req, conn);
894 goto create_conn;
897 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
898 if (params) {
899 conn->le_conn_min_interval = params->conn_min_interval;
900 conn->le_conn_max_interval = params->conn_max_interval;
901 conn->le_conn_latency = params->conn_latency;
902 conn->le_supv_timeout = params->supervision_timeout;
903 } else {
904 conn->le_conn_min_interval = hdev->le_conn_min_interval;
905 conn->le_conn_max_interval = hdev->le_conn_max_interval;
906 conn->le_conn_latency = hdev->le_conn_latency;
907 conn->le_supv_timeout = hdev->le_supv_timeout;
910 /* If controller is scanning, we stop it since some controllers are
911 * not able to scan and connect at the same time. Also set the
912 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
913 * handler for scan disabling knows to set the correct discovery
914 * state.
916 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
917 hci_req_add_le_scan_disable(&req);
918 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
921 hci_req_add_le_create_conn(&req, conn);
923 create_conn:
924 err = hci_req_run(&req, create_le_conn_complete);
925 if (err) {
926 hci_conn_del(conn);
927 return ERR_PTR(err);
930 return conn;
933 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
935 struct hci_conn *conn;
937 conn = hci_conn_hash_lookup_le(hdev, addr, type);
938 if (!conn)
939 return false;
941 if (conn->state != BT_CONNECTED)
942 return false;
944 return true;
947 /* This function requires the caller holds hdev->lock */
948 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
949 bdaddr_t *addr, u8 addr_type)
951 struct hci_conn_params *params;
953 if (is_connected(hdev, addr, addr_type))
954 return -EISCONN;
956 params = hci_conn_params_lookup(hdev, addr, addr_type);
957 if (!params) {
958 params = hci_conn_params_add(hdev, addr, addr_type);
959 if (!params)
960 return -ENOMEM;
962 /* If we created new params, mark them to be deleted in
963 * hci_connect_le_scan_cleanup. It's different case than
964 * existing disabled params, those will stay after cleanup.
966 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
969 /* We're trying to connect, so make sure params are at pend_le_conns */
970 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
971 params->auto_connect == HCI_AUTO_CONN_REPORT ||
972 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
973 list_del_init(&params->action);
974 list_add(&params->action, &hdev->pend_le_conns);
977 params->explicit_connect = true;
979 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
980 params->auto_connect);
982 return 0;
985 /* This function requires the caller holds hdev->lock */
986 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
987 u8 dst_type, u8 sec_level,
988 u16 conn_timeout)
990 struct hci_conn *conn;
992 /* Let's make sure that le is enabled.*/
993 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
994 if (lmp_le_capable(hdev))
995 return ERR_PTR(-ECONNREFUSED);
997 return ERR_PTR(-EOPNOTSUPP);
1000 /* Some devices send ATT messages as soon as the physical link is
1001 * established. To be able to handle these ATT messages, the user-
1002 * space first establishes the connection and then starts the pairing
1003 * process.
1005 * So if a hci_conn object already exists for the following connection
1006 * attempt, we simply update pending_sec_level and auth_type fields
1007 * and return the object found.
1009 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1010 if (conn) {
1011 if (conn->pending_sec_level < sec_level)
1012 conn->pending_sec_level = sec_level;
1013 goto done;
1016 BT_DBG("requesting refresh of dst_addr");
1018 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1019 if (!conn)
1020 return ERR_PTR(-ENOMEM);
1022 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0)
1023 return ERR_PTR(-EBUSY);
1025 conn->state = BT_CONNECT;
1026 set_bit(HCI_CONN_SCANNING, &conn->flags);
1027 conn->dst_type = dst_type;
1028 conn->sec_level = BT_SECURITY_LOW;
1029 conn->pending_sec_level = sec_level;
1030 conn->conn_timeout = conn_timeout;
1032 hci_update_background_scan(hdev);
1034 done:
1035 hci_conn_hold(conn);
1036 return conn;
1039 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1040 u8 sec_level, u8 auth_type)
1042 struct hci_conn *acl;
1044 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1045 if (lmp_bredr_capable(hdev))
1046 return ERR_PTR(-ECONNREFUSED);
1048 return ERR_PTR(-EOPNOTSUPP);
1051 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1052 if (!acl) {
1053 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1054 if (!acl)
1055 return ERR_PTR(-ENOMEM);
1058 hci_conn_hold(acl);
1060 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1061 acl->sec_level = BT_SECURITY_LOW;
1062 acl->pending_sec_level = sec_level;
1063 acl->auth_type = auth_type;
1064 hci_acl_create_connection(acl);
1067 return acl;
1070 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1071 __u16 setting)
1073 struct hci_conn *acl;
1074 struct hci_conn *sco;
1076 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
1077 if (IS_ERR(acl))
1078 return acl;
1080 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1081 if (!sco) {
1082 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1083 if (!sco) {
1084 hci_conn_drop(acl);
1085 return ERR_PTR(-ENOMEM);
1089 acl->link = sco;
1090 sco->link = acl;
1092 hci_conn_hold(sco);
1094 sco->setting = setting;
1096 if (acl->state == BT_CONNECTED &&
1097 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1098 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1099 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1101 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1102 /* defer SCO setup until mode change completed */
1103 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1104 return sco;
1107 hci_sco_setup(acl, 0x00);
1110 return sco;
1113 /* Check link security requirement */
1114 int hci_conn_check_link_mode(struct hci_conn *conn)
1116 BT_DBG("hcon %p", conn);
1118 /* In Secure Connections Only mode, it is required that Secure
1119 * Connections is used and the link is encrypted with AES-CCM
1120 * using a P-256 authenticated combination key.
1122 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1123 if (!hci_conn_sc_enabled(conn) ||
1124 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1125 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1126 return 0;
1129 if (hci_conn_ssp_enabled(conn) &&
1130 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1131 return 0;
1133 return 1;
1136 /* Authenticate remote device */
1137 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1139 BT_DBG("hcon %p", conn);
1141 if (conn->pending_sec_level > sec_level)
1142 sec_level = conn->pending_sec_level;
1144 if (sec_level > conn->sec_level)
1145 conn->pending_sec_level = sec_level;
1146 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1147 return 1;
1149 /* Make sure we preserve an existing MITM requirement*/
1150 auth_type |= (conn->auth_type & 0x01);
1152 conn->auth_type = auth_type;
1154 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1155 struct hci_cp_auth_requested cp;
1157 cp.handle = cpu_to_le16(conn->handle);
1158 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1159 sizeof(cp), &cp);
1161 /* If we're already encrypted set the REAUTH_PEND flag,
1162 * otherwise set the ENCRYPT_PEND.
1164 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1165 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1166 else
1167 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1170 return 0;
1173 /* Encrypt the the link */
1174 static void hci_conn_encrypt(struct hci_conn *conn)
1176 BT_DBG("hcon %p", conn);
1178 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1179 struct hci_cp_set_conn_encrypt cp;
1180 cp.handle = cpu_to_le16(conn->handle);
1181 cp.encrypt = 0x01;
1182 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1183 &cp);
1187 /* Enable security */
1188 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1189 bool initiator)
1191 BT_DBG("hcon %p", conn);
1193 if (conn->type == LE_LINK)
1194 return smp_conn_security(conn, sec_level);
1196 /* For sdp we don't need the link key. */
1197 if (sec_level == BT_SECURITY_SDP)
1198 return 1;
1200 /* For non 2.1 devices and low security level we don't need the link
1201 key. */
1202 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1203 return 1;
1205 /* For other security levels we need the link key. */
1206 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1207 goto auth;
1209 /* An authenticated FIPS approved combination key has sufficient
1210 * security for security level 4. */
1211 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1212 sec_level == BT_SECURITY_FIPS)
1213 goto encrypt;
1215 /* An authenticated combination key has sufficient security for
1216 security level 3. */
1217 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1218 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1219 sec_level == BT_SECURITY_HIGH)
1220 goto encrypt;
1222 /* An unauthenticated combination key has sufficient security for
1223 security level 1 and 2. */
1224 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1225 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1226 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1227 goto encrypt;
1229 /* A combination key has always sufficient security for the security
1230 levels 1 or 2. High security level requires the combination key
1231 is generated using maximum PIN code length (16).
1232 For pre 2.1 units. */
1233 if (conn->key_type == HCI_LK_COMBINATION &&
1234 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1235 conn->pin_length == 16))
1236 goto encrypt;
1238 auth:
1239 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1240 return 0;
1242 if (initiator)
1243 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1245 if (!hci_conn_auth(conn, sec_level, auth_type))
1246 return 0;
1248 encrypt:
1249 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1250 return 1;
1252 hci_conn_encrypt(conn);
1253 return 0;
1255 EXPORT_SYMBOL(hci_conn_security);
1257 /* Check secure link requirement */
1258 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1260 BT_DBG("hcon %p", conn);
1262 /* Accept if non-secure or higher security level is required */
1263 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1264 return 1;
1266 /* Accept if secure or higher security level is already present */
1267 if (conn->sec_level == BT_SECURITY_HIGH ||
1268 conn->sec_level == BT_SECURITY_FIPS)
1269 return 1;
1271 /* Reject not secure link */
1272 return 0;
1274 EXPORT_SYMBOL(hci_conn_check_secure);
1276 /* Switch role */
1277 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1279 BT_DBG("hcon %p", conn);
1281 if (role == conn->role)
1282 return 1;
1284 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1285 struct hci_cp_switch_role cp;
1286 bacpy(&cp.bdaddr, &conn->dst);
1287 cp.role = role;
1288 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1291 return 0;
1293 EXPORT_SYMBOL(hci_conn_switch_role);
1295 /* Enter active mode */
1296 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1298 struct hci_dev *hdev = conn->hdev;
1300 BT_DBG("hcon %p mode %d", conn, conn->mode);
1302 if (conn->mode != HCI_CM_SNIFF)
1303 goto timer;
1305 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1306 goto timer;
1308 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1309 struct hci_cp_exit_sniff_mode cp;
1310 cp.handle = cpu_to_le16(conn->handle);
1311 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1314 timer:
1315 if (hdev->idle_timeout > 0)
1316 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1317 msecs_to_jiffies(hdev->idle_timeout));
1320 /* Drop all connection on the device */
1321 void hci_conn_hash_flush(struct hci_dev *hdev)
1323 struct hci_conn_hash *h = &hdev->conn_hash;
1324 struct hci_conn *c, *n;
1326 BT_DBG("hdev %s", hdev->name);
1328 list_for_each_entry_safe(c, n, &h->list, list) {
1329 c->state = BT_CLOSED;
1331 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1332 hci_conn_del(c);
1336 /* Check pending connect attempts */
1337 void hci_conn_check_pending(struct hci_dev *hdev)
1339 struct hci_conn *conn;
1341 BT_DBG("hdev %s", hdev->name);
1343 hci_dev_lock(hdev);
1345 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1346 if (conn)
1347 hci_acl_create_connection(conn);
1349 hci_dev_unlock(hdev);
1352 static u32 get_link_mode(struct hci_conn *conn)
1354 u32 link_mode = 0;
1356 if (conn->role == HCI_ROLE_MASTER)
1357 link_mode |= HCI_LM_MASTER;
1359 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1360 link_mode |= HCI_LM_ENCRYPT;
1362 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1363 link_mode |= HCI_LM_AUTH;
1365 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1366 link_mode |= HCI_LM_SECURE;
1368 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1369 link_mode |= HCI_LM_FIPS;
1371 return link_mode;
1374 int hci_get_conn_list(void __user *arg)
1376 struct hci_conn *c;
1377 struct hci_conn_list_req req, *cl;
1378 struct hci_conn_info *ci;
1379 struct hci_dev *hdev;
1380 int n = 0, size, err;
1382 if (copy_from_user(&req, arg, sizeof(req)))
1383 return -EFAULT;
1385 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1386 return -EINVAL;
1388 size = sizeof(req) + req.conn_num * sizeof(*ci);
1390 cl = kmalloc(size, GFP_KERNEL);
1391 if (!cl)
1392 return -ENOMEM;
1394 hdev = hci_dev_get(req.dev_id);
1395 if (!hdev) {
1396 kfree(cl);
1397 return -ENODEV;
1400 ci = cl->conn_info;
1402 hci_dev_lock(hdev);
1403 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1404 bacpy(&(ci + n)->bdaddr, &c->dst);
1405 (ci + n)->handle = c->handle;
1406 (ci + n)->type = c->type;
1407 (ci + n)->out = c->out;
1408 (ci + n)->state = c->state;
1409 (ci + n)->link_mode = get_link_mode(c);
1410 if (++n >= req.conn_num)
1411 break;
1413 hci_dev_unlock(hdev);
1415 cl->dev_id = hdev->id;
1416 cl->conn_num = n;
1417 size = sizeof(req) + n * sizeof(*ci);
1419 hci_dev_put(hdev);
1421 err = copy_to_user(arg, cl, size);
1422 kfree(cl);
1424 return err ? -EFAULT : 0;
1427 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1429 struct hci_conn_info_req req;
1430 struct hci_conn_info ci;
1431 struct hci_conn *conn;
1432 char __user *ptr = arg + sizeof(req);
1434 if (copy_from_user(&req, arg, sizeof(req)))
1435 return -EFAULT;
1437 hci_dev_lock(hdev);
1438 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1439 if (conn) {
1440 bacpy(&ci.bdaddr, &conn->dst);
1441 ci.handle = conn->handle;
1442 ci.type = conn->type;
1443 ci.out = conn->out;
1444 ci.state = conn->state;
1445 ci.link_mode = get_link_mode(conn);
1447 hci_dev_unlock(hdev);
1449 if (!conn)
1450 return -ENOENT;
1452 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1455 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1457 struct hci_auth_info_req req;
1458 struct hci_conn *conn;
1460 if (copy_from_user(&req, arg, sizeof(req)))
1461 return -EFAULT;
1463 hci_dev_lock(hdev);
1464 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1465 if (conn)
1466 req.type = conn->auth_type;
1467 hci_dev_unlock(hdev);
1469 if (!conn)
1470 return -ENOENT;
1472 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1475 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1477 struct hci_dev *hdev = conn->hdev;
1478 struct hci_chan *chan;
1480 BT_DBG("%s hcon %p", hdev->name, conn);
1482 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1483 BT_DBG("Refusing to create new hci_chan");
1484 return NULL;
1487 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1488 if (!chan)
1489 return NULL;
1491 chan->conn = hci_conn_get(conn);
1492 skb_queue_head_init(&chan->data_q);
1493 chan->state = BT_CONNECTED;
1495 list_add_rcu(&chan->list, &conn->chan_list);
1497 return chan;
1500 void hci_chan_del(struct hci_chan *chan)
1502 struct hci_conn *conn = chan->conn;
1503 struct hci_dev *hdev = conn->hdev;
1505 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1507 list_del_rcu(&chan->list);
1509 synchronize_rcu();
1511 /* Prevent new hci_chan's to be created for this hci_conn */
1512 set_bit(HCI_CONN_DROP, &conn->flags);
1514 hci_conn_put(conn);
1516 skb_queue_purge(&chan->data_q);
1517 kfree(chan);
1520 void hci_chan_list_flush(struct hci_conn *conn)
1522 struct hci_chan *chan, *n;
1524 BT_DBG("hcon %p", conn);
1526 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1527 hci_chan_del(chan);
1530 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1531 __u16 handle)
1533 struct hci_chan *hchan;
1535 list_for_each_entry(hchan, &hcon->chan_list, list) {
1536 if (hchan->handle == handle)
1537 return hchan;
1540 return NULL;
1543 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1545 struct hci_conn_hash *h = &hdev->conn_hash;
1546 struct hci_conn *hcon;
1547 struct hci_chan *hchan = NULL;
1549 rcu_read_lock();
1551 list_for_each_entry_rcu(hcon, &h->list, list) {
1552 hchan = __hci_chan_lookup_handle(hcon, handle);
1553 if (hchan)
1554 break;
1557 rcu_read_unlock();
1559 return hchan;