2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
66 int push_one
, gfp_t gfp
);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
71 struct inet_connection_sock
*icsk
= inet_csk(sk
);
72 struct tcp_sock
*tp
= tcp_sk(sk
);
73 unsigned int prior_packets
= tp
->packets_out
;
75 tcp_advance_send_head(sk
, skb
);
76 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
78 tp
->packets_out
+= tcp_skb_pcount(skb
);
79 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
80 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
84 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
94 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
96 const struct tcp_sock
*tp
= tcp_sk(sk
);
98 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
101 return tcp_wnd_end(tp
);
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
118 static __u16
tcp_advertise_mss(struct sock
*sk
)
120 struct tcp_sock
*tp
= tcp_sk(sk
);
121 const struct dst_entry
*dst
= __sk_dst_get(sk
);
122 int mss
= tp
->advmss
;
125 unsigned int metric
= dst_metric_advmss(dst
);
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
139 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
141 struct tcp_sock
*tp
= tcp_sk(sk
);
142 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
143 u32 cwnd
= tp
->snd_cwnd
;
145 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
147 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
148 restart_cwnd
= min(restart_cwnd
, cwnd
);
150 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
152 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
153 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
154 tp
->snd_cwnd_used
= 0;
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock
*tp
,
161 struct inet_connection_sock
*icsk
= inet_csk(sk
);
162 const u32 now
= tcp_time_stamp
;
164 if (tcp_packets_in_flight(tp
) == 0)
165 tcp_ca_event(sk
, CA_EVENT_TX_START
);
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
172 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
173 icsk
->icsk_ack
.pingpong
= 1;
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
179 tcp_dec_quickack_mode(sk
, pkts
);
180 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
184 u32
tcp_default_init_rwnd(u32 mss
)
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
191 u32 init_rwnd
= TCP_INIT_CWND
* 2;
194 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
205 void tcp_select_initial_window(int __space
, __u32 mss
,
206 __u32
*rcv_wnd
, __u32
*window_clamp
,
207 int wscale_ok
, __u8
*rcv_wscale
,
210 unsigned int space
= (__space
< 0 ? 0 : __space
);
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp
== 0)
214 (*window_clamp
) = (65535 << 14);
215 space
= min(*window_clamp
, space
);
217 /* Quantize space offering to a multiple of mss if possible. */
219 space
= (space
/ mss
) * mss
;
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
229 if (sysctl_tcp_workaround_signed_windows
)
230 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
239 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
240 space
= min_t(u32
, space
, *window_clamp
);
241 while (space
> 65535 && (*rcv_wscale
) < 14) {
247 if (mss
> (1 << *rcv_wscale
)) {
248 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
249 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
250 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
256 EXPORT_SYMBOL(tcp_select_initial_window
);
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
263 static u16
tcp_select_window(struct sock
*sk
)
265 struct tcp_sock
*tp
= tcp_sk(sk
);
266 u32 old_win
= tp
->rcv_wnd
;
267 u32 cur_win
= tcp_receive_window(tp
);
268 u32 new_win
= __tcp_select_window(sk
);
270 /* Never shrink the offered window */
271 if (new_win
< cur_win
) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
277 * Relax Will Robinson.
280 NET_INC_STATS(sock_net(sk
),
281 LINUX_MIB_TCPWANTZEROWINDOWADV
);
282 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
284 tp
->rcv_wnd
= new_win
;
285 tp
->rcv_wup
= tp
->rcv_nxt
;
287 /* Make sure we do not exceed the maximum possible
290 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
291 new_win
= min(new_win
, MAX_TCP_WINDOW
);
293 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
295 /* RFC1323 scaling applied */
296 new_win
>>= tp
->rx_opt
.rcv_wscale
;
298 /* If we advertise zero window, disable fast path. */
302 NET_INC_STATS(sock_net(sk
),
303 LINUX_MIB_TCPTOZEROWINDOWADV
);
304 } else if (old_win
== 0) {
305 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
314 const struct tcp_sock
*tp
= tcp_sk(sk
);
316 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
317 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
318 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
319 else if (tcp_ca_needs_ecn(sk
))
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
326 struct tcp_sock
*tp
= tcp_sk(sk
);
327 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
328 tcp_ca_needs_ecn(sk
);
331 const struct dst_entry
*dst
= __sk_dst_get(sk
);
333 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
340 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
341 tp
->ecn_flags
= TCP_ECN_OK
;
342 if (tcp_ca_needs_ecn(sk
))
347 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
349 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
353 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
357 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
359 if (inet_rsk(req
)->ecn_ok
)
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
369 struct tcp_sock
*tp
= tcp_sk(sk
);
371 if (tp
->ecn_flags
& TCP_ECN_OK
) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb
->len
!= tcp_header_len
&&
374 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
376 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
377 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
378 tcp_hdr(skb
)->cwr
= 1;
379 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
381 } else if (!tcp_ca_needs_ecn(sk
)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk
);
385 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
386 tcp_hdr(skb
)->ece
= 1;
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
393 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
395 skb
->ip_summed
= CHECKSUM_PARTIAL
;
398 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
399 TCP_SKB_CB(skb
)->sacked
= 0;
401 tcp_skb_pcount_set(skb
, 1);
403 TCP_SKB_CB(skb
)->seq
= seq
;
404 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
406 TCP_SKB_CB(skb
)->end_seq
= seq
;
409 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
411 return tp
->snd_una
!= tp
->snd_up
;
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420 struct tcp_out_options
{
421 u16 options
; /* bit field of OPTION_* */
422 u16 mss
; /* 0 to disable */
423 u8 ws
; /* window scale, 0 to disable */
424 u8 num_sack_blocks
; /* number of SACK blocks to include */
425 u8 hash_size
; /* bytes in hash_location */
426 __u8
*hash_location
; /* temporary pointer, overloaded */
427 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
431 /* Write previously computed TCP options to the packet.
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
444 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
445 struct tcp_out_options
*opts
)
447 u16 options
= opts
->options
; /* mungable copy */
449 if (unlikely(OPTION_MD5
& options
)) {
450 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
451 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
452 /* overload cookie hash location */
453 opts
->hash_location
= (__u8
*)ptr
;
457 if (unlikely(opts
->mss
)) {
458 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
459 (TCPOLEN_MSS
<< 16) |
463 if (likely(OPTION_TS
& options
)) {
464 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
465 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
466 (TCPOLEN_SACK_PERM
<< 16) |
467 (TCPOPT_TIMESTAMP
<< 8) |
469 options
&= ~OPTION_SACK_ADVERTISE
;
471 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
473 (TCPOPT_TIMESTAMP
<< 8) |
476 *ptr
++ = htonl(opts
->tsval
);
477 *ptr
++ = htonl(opts
->tsecr
);
480 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
481 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
483 (TCPOPT_SACK_PERM
<< 8) |
487 if (unlikely(OPTION_WSCALE
& options
)) {
488 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
489 (TCPOPT_WINDOW
<< 16) |
490 (TCPOLEN_WINDOW
<< 8) |
494 if (unlikely(opts
->num_sack_blocks
)) {
495 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
496 tp
->duplicate_sack
: tp
->selective_acks
;
499 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
502 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
503 TCPOLEN_SACK_PERBLOCK
)));
505 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
507 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
508 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
511 tp
->rx_opt
.dsack
= 0;
514 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
515 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
517 u32 len
; /* Fast Open option length */
520 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
521 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
522 TCPOPT_FASTOPEN_MAGIC
);
523 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
525 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
526 *p
++ = TCPOPT_FASTOPEN
;
530 memcpy(p
, foc
->val
, foc
->len
);
531 if ((len
& 3) == 2) {
532 p
[foc
->len
] = TCPOPT_NOP
;
533 p
[foc
->len
+ 1] = TCPOPT_NOP
;
535 ptr
+= (len
+ 3) >> 2;
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
542 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
543 struct tcp_out_options
*opts
,
544 struct tcp_md5sig_key
**md5
)
546 struct tcp_sock
*tp
= tcp_sk(sk
);
547 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
548 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
553 opts
->options
|= OPTION_MD5
;
554 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
569 opts
->mss
= tcp_advertise_mss(sk
);
570 remaining
-= TCPOLEN_MSS_ALIGNED
;
572 if (likely(sysctl_tcp_timestamps
&& !*md5
)) {
573 opts
->options
|= OPTION_TS
;
574 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
575 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
576 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
578 if (likely(sysctl_tcp_window_scaling
)) {
579 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
580 opts
->options
|= OPTION_WSCALE
;
581 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
583 if (likely(sysctl_tcp_sack
)) {
584 opts
->options
|= OPTION_SACK_ADVERTISE
;
585 if (unlikely(!(OPTION_TS
& opts
->options
)))
586 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
589 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
590 u32 need
= fastopen
->cookie
.len
;
592 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
593 TCPOLEN_FASTOPEN_BASE
;
594 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
595 if (remaining
>= need
) {
596 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
597 opts
->fastopen_cookie
= &fastopen
->cookie
;
599 tp
->syn_fastopen
= 1;
600 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
604 return MAX_TCP_OPTION_SPACE
- remaining
;
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock
*req
,
609 unsigned int mss
, struct sk_buff
*skb
,
610 struct tcp_out_options
*opts
,
611 const struct tcp_md5sig_key
*md5
,
612 struct tcp_fastopen_cookie
*foc
)
614 struct inet_request_sock
*ireq
= inet_rsk(req
);
615 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
617 #ifdef CONFIG_TCP_MD5SIG
619 opts
->options
|= OPTION_MD5
;
620 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
627 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
631 /* We always send an MSS option. */
633 remaining
-= TCPOLEN_MSS_ALIGNED
;
635 if (likely(ireq
->wscale_ok
)) {
636 opts
->ws
= ireq
->rcv_wscale
;
637 opts
->options
|= OPTION_WSCALE
;
638 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
640 if (likely(ireq
->tstamp_ok
)) {
641 opts
->options
|= OPTION_TS
;
642 opts
->tsval
= tcp_skb_timestamp(skb
);
643 opts
->tsecr
= req
->ts_recent
;
644 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
646 if (likely(ireq
->sack_ok
)) {
647 opts
->options
|= OPTION_SACK_ADVERTISE
;
648 if (unlikely(!ireq
->tstamp_ok
))
649 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
651 if (foc
!= NULL
&& foc
->len
>= 0) {
654 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
655 TCPOLEN_FASTOPEN_BASE
;
656 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
657 if (remaining
>= need
) {
658 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
659 opts
->fastopen_cookie
= foc
;
664 return MAX_TCP_OPTION_SPACE
- remaining
;
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
670 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
671 struct tcp_out_options
*opts
,
672 struct tcp_md5sig_key
**md5
)
674 struct tcp_sock
*tp
= tcp_sk(sk
);
675 unsigned int size
= 0;
676 unsigned int eff_sacks
;
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
682 if (unlikely(*md5
)) {
683 opts
->options
|= OPTION_MD5
;
684 size
+= TCPOLEN_MD5SIG_ALIGNED
;
690 if (likely(tp
->rx_opt
.tstamp_ok
)) {
691 opts
->options
|= OPTION_TS
;
692 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
693 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
694 size
+= TCPOLEN_TSTAMP_ALIGNED
;
697 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
698 if (unlikely(eff_sacks
)) {
699 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
700 opts
->num_sack_blocks
=
701 min_t(unsigned int, eff_sacks
,
702 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
703 TCPOLEN_SACK_PERBLOCK
);
704 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
705 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
712 /* TCP SMALL QUEUES (TSQ)
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
727 struct tasklet_struct tasklet
;
728 struct list_head head
; /* queue of tcp sockets */
730 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
732 static void tcp_tsq_handler(struct sock
*sk
)
734 if ((1 << sk
->sk_state
) &
735 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
736 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
))
737 tcp_write_xmit(sk
, tcp_current_mss(sk
), tcp_sk(sk
)->nonagle
,
741 * One tasklet per cpu tries to send more skbs.
742 * We run in tasklet context but need to disable irqs when
743 * transferring tsq->head because tcp_wfree() might
744 * interrupt us (non NAPI drivers)
746 static void tcp_tasklet_func(unsigned long data
)
748 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
751 struct list_head
*q
, *n
;
755 local_irq_save(flags
);
756 list_splice_init(&tsq
->head
, &list
);
757 local_irq_restore(flags
);
759 list_for_each_safe(q
, n
, &list
) {
760 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
761 list_del(&tp
->tsq_node
);
763 sk
= (struct sock
*)tp
;
766 if (!sock_owned_by_user(sk
)) {
769 /* defer the work to tcp_release_cb() */
770 set_bit(TCP_TSQ_DEFERRED
, &tp
->tsq_flags
);
774 clear_bit(TSQ_QUEUED
, &tp
->tsq_flags
);
779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
780 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
781 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
782 (1UL << TCP_MTU_REDUCED_DEFERRED))
784 * tcp_release_cb - tcp release_sock() callback
787 * called from release_sock() to perform protocol dependent
788 * actions before socket release.
790 void tcp_release_cb(struct sock
*sk
)
792 struct tcp_sock
*tp
= tcp_sk(sk
);
793 unsigned long flags
, nflags
;
795 /* perform an atomic operation only if at least one flag is set */
797 flags
= tp
->tsq_flags
;
798 if (!(flags
& TCP_DEFERRED_ALL
))
800 nflags
= flags
& ~TCP_DEFERRED_ALL
;
801 } while (cmpxchg(&tp
->tsq_flags
, flags
, nflags
) != flags
);
803 if (flags
& (1UL << TCP_TSQ_DEFERRED
))
806 /* Here begins the tricky part :
807 * We are called from release_sock() with :
809 * 2) sk_lock.slock spinlock held
810 * 3) socket owned by us (sk->sk_lock.owned == 1)
812 * But following code is meant to be called from BH handlers,
813 * so we should keep BH disabled, but early release socket ownership
815 sock_release_ownership(sk
);
817 if (flags
& (1UL << TCP_WRITE_TIMER_DEFERRED
)) {
818 tcp_write_timer_handler(sk
);
821 if (flags
& (1UL << TCP_DELACK_TIMER_DEFERRED
)) {
822 tcp_delack_timer_handler(sk
);
825 if (flags
& (1UL << TCP_MTU_REDUCED_DEFERRED
)) {
826 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
830 EXPORT_SYMBOL(tcp_release_cb
);
832 void __init
tcp_tasklet_init(void)
836 for_each_possible_cpu(i
) {
837 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
839 INIT_LIST_HEAD(&tsq
->head
);
840 tasklet_init(&tsq
->tasklet
,
847 * Write buffer destructor automatically called from kfree_skb.
848 * We can't xmit new skbs from this context, as we might already
851 void tcp_wfree(struct sk_buff
*skb
)
853 struct sock
*sk
= skb
->sk
;
854 struct tcp_sock
*tp
= tcp_sk(sk
);
857 /* Keep one reference on sk_wmem_alloc.
858 * Will be released by sk_free() from here or tcp_tasklet_func()
860 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
862 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
863 * Wait until our queues (qdisc + devices) are drained.
865 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
866 * - chance for incoming ACK (processed by another cpu maybe)
867 * to migrate this flow (skb->ooo_okay will be eventually set)
869 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
872 if (test_and_clear_bit(TSQ_THROTTLED
, &tp
->tsq_flags
) &&
873 !test_and_set_bit(TSQ_QUEUED
, &tp
->tsq_flags
)) {
875 struct tsq_tasklet
*tsq
;
877 /* queue this socket to tasklet queue */
878 local_irq_save(flags
);
879 tsq
= this_cpu_ptr(&tsq_tasklet
);
880 list_add(&tp
->tsq_node
, &tsq
->head
);
881 tasklet_schedule(&tsq
->tasklet
);
882 local_irq_restore(flags
);
889 /* This routine actually transmits TCP packets queued in by
890 * tcp_do_sendmsg(). This is used by both the initial
891 * transmission and possible later retransmissions.
892 * All SKB's seen here are completely headerless. It is our
893 * job to build the TCP header, and pass the packet down to
894 * IP so it can do the same plus pass the packet off to the
897 * We are working here with either a clone of the original
898 * SKB, or a fresh unique copy made by the retransmit engine.
900 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
903 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
904 struct inet_sock
*inet
;
906 struct tcp_skb_cb
*tcb
;
907 struct tcp_out_options opts
;
908 unsigned int tcp_options_size
, tcp_header_size
;
909 struct tcp_md5sig_key
*md5
;
913 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
916 skb_mstamp_get(&skb
->skb_mstamp
);
918 if (unlikely(skb_cloned(skb
)))
919 skb
= pskb_copy(skb
, gfp_mask
);
921 skb
= skb_clone(skb
, gfp_mask
);
928 tcb
= TCP_SKB_CB(skb
);
929 memset(&opts
, 0, sizeof(opts
));
931 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
932 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
934 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
936 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
938 /* if no packet is in qdisc/device queue, then allow XPS to select
939 * another queue. We can be called from tcp_tsq_handler()
940 * which holds one reference to sk_wmem_alloc.
942 * TODO: Ideally, in-flight pure ACK packets should not matter here.
943 * One way to get this would be to set skb->truesize = 2 on them.
945 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
947 skb_push(skb
, tcp_header_size
);
948 skb_reset_transport_header(skb
);
952 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? sock_wfree
: tcp_wfree
;
953 skb_set_hash_from_sk(skb
, sk
);
954 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
956 /* Build TCP header and checksum it. */
958 th
->source
= inet
->inet_sport
;
959 th
->dest
= inet
->inet_dport
;
960 th
->seq
= htonl(tcb
->seq
);
961 th
->ack_seq
= htonl(tp
->rcv_nxt
);
962 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
965 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
966 /* RFC1323: The window in SYN & SYN/ACK segments
969 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
971 th
->window
= htons(tcp_select_window(sk
));
976 /* The urg_mode check is necessary during a below snd_una win probe */
977 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
978 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
979 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
981 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
982 th
->urg_ptr
= htons(0xFFFF);
987 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
988 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
989 if (likely((tcb
->tcp_flags
& TCPHDR_SYN
) == 0))
990 tcp_ecn_send(sk
, skb
, tcp_header_size
);
992 #ifdef CONFIG_TCP_MD5SIG
993 /* Calculate the MD5 hash, as we have all we need now */
995 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
996 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1001 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1003 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1004 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1006 if (skb
->len
!= tcp_header_size
) {
1007 tcp_event_data_sent(tp
, sk
);
1008 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1011 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1012 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1013 tcp_skb_pcount(skb
));
1015 tp
->segs_out
+= tcp_skb_pcount(skb
);
1016 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1017 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1018 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1020 /* Our usage of tstamp should remain private */
1021 skb
->tstamp
.tv64
= 0;
1023 /* Cleanup our debris for IP stacks */
1024 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1025 sizeof(struct inet6_skb_parm
)));
1027 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1029 if (likely(err
<= 0))
1034 return net_xmit_eval(err
);
1037 /* This routine just queues the buffer for sending.
1039 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1040 * otherwise socket can stall.
1042 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1044 struct tcp_sock
*tp
= tcp_sk(sk
);
1046 /* Advance write_seq and place onto the write_queue. */
1047 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1048 __skb_header_release(skb
);
1049 tcp_add_write_queue_tail(sk
, skb
);
1050 sk
->sk_wmem_queued
+= skb
->truesize
;
1051 sk_mem_charge(sk
, skb
->truesize
);
1054 /* Initialize TSO segments for a packet. */
1055 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1057 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1058 /* Avoid the costly divide in the normal
1061 tcp_skb_pcount_set(skb
, 1);
1062 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1064 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1065 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1069 /* When a modification to fackets out becomes necessary, we need to check
1070 * skb is counted to fackets_out or not.
1072 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1075 struct tcp_sock
*tp
= tcp_sk(sk
);
1077 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1080 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1081 tp
->fackets_out
-= decr
;
1084 /* Pcount in the middle of the write queue got changed, we need to do various
1085 * tweaks to fix counters
1087 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1089 struct tcp_sock
*tp
= tcp_sk(sk
);
1091 tp
->packets_out
-= decr
;
1093 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1094 tp
->sacked_out
-= decr
;
1095 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1096 tp
->retrans_out
-= decr
;
1097 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1098 tp
->lost_out
-= decr
;
1100 /* Reno case is special. Sigh... */
1101 if (tcp_is_reno(tp
) && decr
> 0)
1102 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1104 tcp_adjust_fackets_out(sk
, skb
, decr
);
1106 if (tp
->lost_skb_hint
&&
1107 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1108 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1109 tp
->lost_cnt_hint
-= decr
;
1111 tcp_verify_left_out(tp
);
1114 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1116 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1118 if (unlikely(shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
) &&
1119 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1120 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1121 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1123 shinfo
->tx_flags
&= ~tsflags
;
1124 shinfo2
->tx_flags
|= tsflags
;
1125 swap(shinfo
->tskey
, shinfo2
->tskey
);
1129 /* Function to create two new TCP segments. Shrinks the given segment
1130 * to the specified size and appends a new segment with the rest of the
1131 * packet to the list. This won't be called frequently, I hope.
1132 * Remember, these are still headerless SKBs at this point.
1134 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1135 unsigned int mss_now
, gfp_t gfp
)
1137 struct tcp_sock
*tp
= tcp_sk(sk
);
1138 struct sk_buff
*buff
;
1139 int nsize
, old_factor
;
1143 if (WARN_ON(len
> skb
->len
))
1146 nsize
= skb_headlen(skb
) - len
;
1150 if (skb_unclone(skb
, gfp
))
1153 /* Get a new skb... force flag on. */
1154 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1156 return -ENOMEM
; /* We'll just try again later. */
1158 sk
->sk_wmem_queued
+= buff
->truesize
;
1159 sk_mem_charge(sk
, buff
->truesize
);
1160 nlen
= skb
->len
- len
- nsize
;
1161 buff
->truesize
+= nlen
;
1162 skb
->truesize
-= nlen
;
1164 /* Correct the sequence numbers. */
1165 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1166 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1167 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1169 /* PSH and FIN should only be set in the second packet. */
1170 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1171 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1172 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1173 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1175 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1176 /* Copy and checksum data tail into the new buffer. */
1177 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1178 skb_put(buff
, nsize
),
1183 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1185 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1186 skb_split(skb
, buff
, len
);
1189 buff
->ip_summed
= skb
->ip_summed
;
1191 buff
->tstamp
= skb
->tstamp
;
1192 tcp_fragment_tstamp(skb
, buff
);
1194 old_factor
= tcp_skb_pcount(skb
);
1196 /* Fix up tso_factor for both original and new SKB. */
1197 tcp_set_skb_tso_segs(skb
, mss_now
);
1198 tcp_set_skb_tso_segs(buff
, mss_now
);
1200 /* If this packet has been sent out already, we must
1201 * adjust the various packet counters.
1203 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1204 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1205 tcp_skb_pcount(buff
);
1208 tcp_adjust_pcount(sk
, skb
, diff
);
1211 /* Link BUFF into the send queue. */
1212 __skb_header_release(buff
);
1213 tcp_insert_write_queue_after(skb
, buff
, sk
);
1218 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1219 * eventually). The difference is that pulled data not copied, but
1220 * immediately discarded.
1222 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
1224 struct skb_shared_info
*shinfo
;
1227 eat
= min_t(int, len
, skb_headlen(skb
));
1229 __skb_pull(skb
, eat
);
1236 shinfo
= skb_shinfo(skb
);
1237 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1238 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1241 skb_frag_unref(skb
, i
);
1244 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1246 shinfo
->frags
[k
].page_offset
+= eat
;
1247 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1253 shinfo
->nr_frags
= k
;
1255 skb_reset_tail_pointer(skb
);
1256 skb
->data_len
-= len
;
1257 skb
->len
= skb
->data_len
;
1260 /* Remove acked data from a packet in the transmit queue. */
1261 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1263 if (skb_unclone(skb
, GFP_ATOMIC
))
1266 __pskb_trim_head(skb
, len
);
1268 TCP_SKB_CB(skb
)->seq
+= len
;
1269 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1271 skb
->truesize
-= len
;
1272 sk
->sk_wmem_queued
-= len
;
1273 sk_mem_uncharge(sk
, len
);
1274 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1276 /* Any change of skb->len requires recalculation of tso factor. */
1277 if (tcp_skb_pcount(skb
) > 1)
1278 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1283 /* Calculate MSS not accounting any TCP options. */
1284 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1286 const struct tcp_sock
*tp
= tcp_sk(sk
);
1287 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1290 /* Calculate base mss without TCP options:
1291 It is MMS_S - sizeof(tcphdr) of rfc1122
1293 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1295 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1296 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1297 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1299 if (dst
&& dst_allfrag(dst
))
1300 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1303 /* Clamp it (mss_clamp does not include tcp options) */
1304 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1305 mss_now
= tp
->rx_opt
.mss_clamp
;
1307 /* Now subtract optional transport overhead */
1308 mss_now
-= icsk
->icsk_ext_hdr_len
;
1310 /* Then reserve room for full set of TCP options and 8 bytes of data */
1316 /* Calculate MSS. Not accounting for SACKs here. */
1317 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1319 /* Subtract TCP options size, not including SACKs */
1320 return __tcp_mtu_to_mss(sk
, pmtu
) -
1321 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1324 /* Inverse of above */
1325 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1327 const struct tcp_sock
*tp
= tcp_sk(sk
);
1328 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1332 tp
->tcp_header_len
+
1333 icsk
->icsk_ext_hdr_len
+
1334 icsk
->icsk_af_ops
->net_header_len
;
1336 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1337 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1338 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1340 if (dst
&& dst_allfrag(dst
))
1341 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1346 /* MTU probing init per socket */
1347 void tcp_mtup_init(struct sock
*sk
)
1349 struct tcp_sock
*tp
= tcp_sk(sk
);
1350 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1351 struct net
*net
= sock_net(sk
);
1353 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1354 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1355 icsk
->icsk_af_ops
->net_header_len
;
1356 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1357 icsk
->icsk_mtup
.probe_size
= 0;
1358 if (icsk
->icsk_mtup
.enabled
)
1359 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1361 EXPORT_SYMBOL(tcp_mtup_init
);
1363 /* This function synchronize snd mss to current pmtu/exthdr set.
1365 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1366 for TCP options, but includes only bare TCP header.
1368 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1369 It is minimum of user_mss and mss received with SYN.
1370 It also does not include TCP options.
1372 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1374 tp->mss_cache is current effective sending mss, including
1375 all tcp options except for SACKs. It is evaluated,
1376 taking into account current pmtu, but never exceeds
1377 tp->rx_opt.mss_clamp.
1379 NOTE1. rfc1122 clearly states that advertised MSS
1380 DOES NOT include either tcp or ip options.
1382 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1383 are READ ONLY outside this function. --ANK (980731)
1385 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1387 struct tcp_sock
*tp
= tcp_sk(sk
);
1388 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1391 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1392 icsk
->icsk_mtup
.search_high
= pmtu
;
1394 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1395 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1397 /* And store cached results */
1398 icsk
->icsk_pmtu_cookie
= pmtu
;
1399 if (icsk
->icsk_mtup
.enabled
)
1400 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1401 tp
->mss_cache
= mss_now
;
1405 EXPORT_SYMBOL(tcp_sync_mss
);
1407 /* Compute the current effective MSS, taking SACKs and IP options,
1408 * and even PMTU discovery events into account.
1410 unsigned int tcp_current_mss(struct sock
*sk
)
1412 const struct tcp_sock
*tp
= tcp_sk(sk
);
1413 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1415 unsigned int header_len
;
1416 struct tcp_out_options opts
;
1417 struct tcp_md5sig_key
*md5
;
1419 mss_now
= tp
->mss_cache
;
1422 u32 mtu
= dst_mtu(dst
);
1423 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1424 mss_now
= tcp_sync_mss(sk
, mtu
);
1427 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1428 sizeof(struct tcphdr
);
1429 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1430 * some common options. If this is an odd packet (because we have SACK
1431 * blocks etc) then our calculated header_len will be different, and
1432 * we have to adjust mss_now correspondingly */
1433 if (header_len
!= tp
->tcp_header_len
) {
1434 int delta
= (int) header_len
- tp
->tcp_header_len
;
1441 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1442 * As additional protections, we do not touch cwnd in retransmission phases,
1443 * and if application hit its sndbuf limit recently.
1445 static void tcp_cwnd_application_limited(struct sock
*sk
)
1447 struct tcp_sock
*tp
= tcp_sk(sk
);
1449 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1450 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1451 /* Limited by application or receiver window. */
1452 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1453 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1454 if (win_used
< tp
->snd_cwnd
) {
1455 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1456 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1458 tp
->snd_cwnd_used
= 0;
1460 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1463 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1465 struct tcp_sock
*tp
= tcp_sk(sk
);
1467 /* Track the maximum number of outstanding packets in each
1468 * window, and remember whether we were cwnd-limited then.
1470 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1471 tp
->packets_out
> tp
->max_packets_out
) {
1472 tp
->max_packets_out
= tp
->packets_out
;
1473 tp
->max_packets_seq
= tp
->snd_nxt
;
1474 tp
->is_cwnd_limited
= is_cwnd_limited
;
1477 if (tcp_is_cwnd_limited(sk
)) {
1478 /* Network is feed fully. */
1479 tp
->snd_cwnd_used
= 0;
1480 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1482 /* Network starves. */
1483 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1484 tp
->snd_cwnd_used
= tp
->packets_out
;
1486 if (sysctl_tcp_slow_start_after_idle
&&
1487 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1488 tcp_cwnd_application_limited(sk
);
1492 /* Minshall's variant of the Nagle send check. */
1493 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1495 return after(tp
->snd_sml
, tp
->snd_una
) &&
1496 !after(tp
->snd_sml
, tp
->snd_nxt
);
1499 /* Update snd_sml if this skb is under mss
1500 * Note that a TSO packet might end with a sub-mss segment
1501 * The test is really :
1502 * if ((skb->len % mss) != 0)
1503 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1504 * But we can avoid doing the divide again given we already have
1505 * skb_pcount = skb->len / mss_now
1507 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1508 const struct sk_buff
*skb
)
1510 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1511 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1514 /* Return false, if packet can be sent now without violation Nagle's rules:
1515 * 1. It is full sized. (provided by caller in %partial bool)
1516 * 2. Or it contains FIN. (already checked by caller)
1517 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1518 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1519 * With Minshall's modification: all sent small packets are ACKed.
1521 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1525 ((nonagle
& TCP_NAGLE_CORK
) ||
1526 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1529 /* Return how many segs we'd like on a TSO packet,
1530 * to send one TSO packet per ms
1532 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
)
1536 bytes
= min(sk
->sk_pacing_rate
>> 10,
1537 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1539 /* Goal is to send at least one packet per ms,
1540 * not one big TSO packet every 100 ms.
1541 * This preserves ACK clocking and is consistent
1542 * with tcp_tso_should_defer() heuristic.
1544 segs
= max_t(u32
, bytes
/ mss_now
, sysctl_tcp_min_tso_segs
);
1546 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1549 /* Returns the portion of skb which can be sent right away */
1550 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1551 const struct sk_buff
*skb
,
1552 unsigned int mss_now
,
1553 unsigned int max_segs
,
1556 const struct tcp_sock
*tp
= tcp_sk(sk
);
1557 u32 partial
, needed
, window
, max_len
;
1559 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1560 max_len
= mss_now
* max_segs
;
1562 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1565 needed
= min(skb
->len
, window
);
1567 if (max_len
<= needed
)
1570 partial
= needed
% mss_now
;
1571 /* If last segment is not a full MSS, check if Nagle rules allow us
1572 * to include this last segment in this skb.
1573 * Otherwise, we'll split the skb at last MSS boundary
1575 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1576 return needed
- partial
;
1581 /* Can at least one segment of SKB be sent right now, according to the
1582 * congestion window rules? If so, return how many segments are allowed.
1584 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1585 const struct sk_buff
*skb
)
1587 u32 in_flight
, cwnd
, halfcwnd
;
1589 /* Don't be strict about the congestion window for the final FIN. */
1590 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1591 tcp_skb_pcount(skb
) == 1)
1594 in_flight
= tcp_packets_in_flight(tp
);
1595 cwnd
= tp
->snd_cwnd
;
1596 if (in_flight
>= cwnd
)
1599 /* For better scheduling, ensure we have at least
1600 * 2 GSO packets in flight.
1602 halfcwnd
= max(cwnd
>> 1, 1U);
1603 return min(halfcwnd
, cwnd
- in_flight
);
1606 /* Initialize TSO state of a skb.
1607 * This must be invoked the first time we consider transmitting
1608 * SKB onto the wire.
1610 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1612 int tso_segs
= tcp_skb_pcount(skb
);
1614 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1615 tcp_set_skb_tso_segs(skb
, mss_now
);
1616 tso_segs
= tcp_skb_pcount(skb
);
1622 /* Return true if the Nagle test allows this packet to be
1625 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1626 unsigned int cur_mss
, int nonagle
)
1628 /* Nagle rule does not apply to frames, which sit in the middle of the
1629 * write_queue (they have no chances to get new data).
1631 * This is implemented in the callers, where they modify the 'nonagle'
1632 * argument based upon the location of SKB in the send queue.
1634 if (nonagle
& TCP_NAGLE_PUSH
)
1637 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1638 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1641 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1647 /* Does at least the first segment of SKB fit into the send window? */
1648 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1649 const struct sk_buff
*skb
,
1650 unsigned int cur_mss
)
1652 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1654 if (skb
->len
> cur_mss
)
1655 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1657 return !after(end_seq
, tcp_wnd_end(tp
));
1660 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now. If so, it returns the number of
1662 * packets allowed by the congestion window.
1664 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1665 unsigned int cur_mss
, int nonagle
)
1667 const struct tcp_sock
*tp
= tcp_sk(sk
);
1668 unsigned int cwnd_quota
;
1670 tcp_init_tso_segs(skb
, cur_mss
);
1672 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1675 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1676 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1682 /* Test if sending is allowed right now. */
1683 bool tcp_may_send_now(struct sock
*sk
)
1685 const struct tcp_sock
*tp
= tcp_sk(sk
);
1686 struct sk_buff
*skb
= tcp_send_head(sk
);
1689 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1690 (tcp_skb_is_last(sk
, skb
) ?
1691 tp
->nonagle
: TCP_NAGLE_PUSH
));
1694 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list. It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation. In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1701 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1702 unsigned int mss_now
, gfp_t gfp
)
1704 struct sk_buff
*buff
;
1705 int nlen
= skb
->len
- len
;
1708 /* All of a TSO frame must be composed of paged data. */
1709 if (skb
->len
!= skb
->data_len
)
1710 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1712 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1713 if (unlikely(!buff
))
1716 sk
->sk_wmem_queued
+= buff
->truesize
;
1717 sk_mem_charge(sk
, buff
->truesize
);
1718 buff
->truesize
+= nlen
;
1719 skb
->truesize
-= nlen
;
1721 /* Correct the sequence numbers. */
1722 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1723 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1724 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1726 /* PSH and FIN should only be set in the second packet. */
1727 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1728 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1729 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1731 /* This packet was never sent out yet, so no SACK bits. */
1732 TCP_SKB_CB(buff
)->sacked
= 0;
1734 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1735 skb_split(skb
, buff
, len
);
1736 tcp_fragment_tstamp(skb
, buff
);
1738 /* Fix up tso_factor for both original and new SKB. */
1739 tcp_set_skb_tso_segs(skb
, mss_now
);
1740 tcp_set_skb_tso_segs(buff
, mss_now
);
1742 /* Link BUFF into the send queue. */
1743 __skb_header_release(buff
);
1744 tcp_insert_write_queue_after(skb
, buff
, sk
);
1749 /* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1752 * This algorithm is from John Heffner.
1754 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1755 bool *is_cwnd_limited
, u32 max_segs
)
1757 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1758 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1759 struct tcp_sock
*tp
= tcp_sk(sk
);
1760 struct skb_mstamp now
;
1761 struct sk_buff
*head
;
1764 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1767 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1770 /* Avoid bursty behavior by allowing defer
1771 * only if the last write was recent.
1773 if ((s32
)(tcp_time_stamp
- tp
->lsndtime
) > 0)
1776 in_flight
= tcp_packets_in_flight(tp
);
1778 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1780 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1782 /* From in_flight test above, we know that cwnd > in_flight. */
1783 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1785 limit
= min(send_win
, cong_win
);
1787 /* If a full-sized TSO skb can be sent, do it. */
1788 if (limit
>= max_segs
* tp
->mss_cache
)
1791 /* Middle in queue won't get any more data, full sendable already? */
1792 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1795 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1797 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1799 /* If at least some fraction of a window is available,
1802 chunk
/= win_divisor
;
1806 /* Different approach, try not to defer past a single
1807 * ACK. Receiver should ACK every other full sized
1808 * frame, so if we have space for more than 3 frames
1811 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1815 head
= tcp_write_queue_head(sk
);
1816 skb_mstamp_get(&now
);
1817 age
= skb_mstamp_us_delta(&now
, &head
->skb_mstamp
);
1818 /* If next ACK is likely to come too late (half srtt), do not defer */
1819 if (age
< (tp
->srtt_us
>> 4))
1822 /* Ok, it looks like it is advisable to defer. */
1824 if (cong_win
< send_win
&& cong_win
<= skb
->len
)
1825 *is_cwnd_limited
= true;
1833 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
1835 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1836 struct tcp_sock
*tp
= tcp_sk(sk
);
1837 struct net
*net
= sock_net(sk
);
1841 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
1842 delta
= tcp_time_stamp
- icsk
->icsk_mtup
.probe_timestamp
;
1843 if (unlikely(delta
>= interval
* HZ
)) {
1844 int mss
= tcp_current_mss(sk
);
1846 /* Update current search range */
1847 icsk
->icsk_mtup
.probe_size
= 0;
1848 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
1849 sizeof(struct tcphdr
) +
1850 icsk
->icsk_af_ops
->net_header_len
;
1851 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
1853 /* Update probe time stamp */
1854 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1858 /* Create a new MTU probe if we are ready.
1859 * MTU probe is regularly attempting to increase the path MTU by
1860 * deliberately sending larger packets. This discovers routing
1861 * changes resulting in larger path MTUs.
1863 * Returns 0 if we should wait to probe (no cwnd available),
1864 * 1 if a probe was sent,
1867 static int tcp_mtu_probe(struct sock
*sk
)
1869 struct tcp_sock
*tp
= tcp_sk(sk
);
1870 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1871 struct sk_buff
*skb
, *nskb
, *next
;
1872 struct net
*net
= sock_net(sk
);
1880 /* Not currently probing/verifying,
1882 * have enough cwnd, and
1883 * not SACKing (the variable headers throw things off) */
1884 if (!icsk
->icsk_mtup
.enabled
||
1885 icsk
->icsk_mtup
.probe_size
||
1886 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1887 tp
->snd_cwnd
< 11 ||
1888 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1891 /* Use binary search for probe_size between tcp_mss_base,
1892 * and current mss_clamp. if (search_high - search_low)
1893 * smaller than a threshold, backoff from probing.
1895 mss_now
= tcp_current_mss(sk
);
1896 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
1897 icsk
->icsk_mtup
.search_low
) >> 1);
1898 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1899 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
1900 /* When misfortune happens, we are reprobing actively,
1901 * and then reprobe timer has expired. We stick with current
1902 * probing process by not resetting search range to its orignal.
1904 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
1905 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
1906 /* Check whether enough time has elaplased for
1907 * another round of probing.
1909 tcp_mtu_check_reprobe(sk
);
1913 /* Have enough data in the send queue to probe? */
1914 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1917 if (tp
->snd_wnd
< size_needed
)
1919 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1922 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1923 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1924 if (!tcp_packets_in_flight(tp
))
1930 /* We're allowed to probe. Build it now. */
1931 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
1934 sk
->sk_wmem_queued
+= nskb
->truesize
;
1935 sk_mem_charge(sk
, nskb
->truesize
);
1937 skb
= tcp_send_head(sk
);
1939 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1940 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1941 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
1942 TCP_SKB_CB(nskb
)->sacked
= 0;
1944 nskb
->ip_summed
= skb
->ip_summed
;
1946 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1949 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1950 copy
= min_t(int, skb
->len
, probe_size
- len
);
1951 if (nskb
->ip_summed
)
1952 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1954 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1955 skb_put(nskb
, copy
),
1958 if (skb
->len
<= copy
) {
1959 /* We've eaten all the data from this skb.
1961 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1962 tcp_unlink_write_queue(skb
, sk
);
1963 sk_wmem_free_skb(sk
, skb
);
1965 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
1966 ~(TCPHDR_FIN
|TCPHDR_PSH
);
1967 if (!skb_shinfo(skb
)->nr_frags
) {
1968 skb_pull(skb
, copy
);
1969 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1970 skb
->csum
= csum_partial(skb
->data
,
1973 __pskb_trim_head(skb
, copy
);
1974 tcp_set_skb_tso_segs(skb
, mss_now
);
1976 TCP_SKB_CB(skb
)->seq
+= copy
;
1981 if (len
>= probe_size
)
1984 tcp_init_tso_segs(nskb
, nskb
->len
);
1986 /* We're ready to send. If this fails, the probe will
1987 * be resegmented into mss-sized pieces by tcp_write_xmit().
1989 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1990 /* Decrement cwnd here because we are sending
1991 * effectively two packets. */
1993 tcp_event_new_data_sent(sk
, nskb
);
1995 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1996 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1997 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2005 /* This routine writes packets to the network. It advances the
2006 * send_head. This happens as incoming acks open up the remote
2009 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2010 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2011 * account rare use of URG, this is not a big flaw.
2013 * Send at most one packet when push_one > 0. Temporarily ignore
2014 * cwnd limit to force at most one packet out when push_one == 2.
2016 * Returns true, if no segments are in flight and we have queued segments,
2017 * but cannot send anything now because of SWS or another problem.
2019 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2020 int push_one
, gfp_t gfp
)
2022 struct tcp_sock
*tp
= tcp_sk(sk
);
2023 struct sk_buff
*skb
;
2024 unsigned int tso_segs
, sent_pkts
;
2027 bool is_cwnd_limited
= false;
2033 /* Do MTU probing. */
2034 result
= tcp_mtu_probe(sk
);
2037 } else if (result
> 0) {
2042 max_segs
= tcp_tso_autosize(sk
, mss_now
);
2043 while ((skb
= tcp_send_head(sk
))) {
2046 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2049 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2050 /* "skb_mstamp" is used as a start point for the retransmit timer */
2051 skb_mstamp_get(&skb
->skb_mstamp
);
2052 goto repair
; /* Skip network transmission */
2055 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2058 /* Force out a loss probe pkt. */
2064 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
2067 if (tso_segs
== 1) {
2068 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2069 (tcp_skb_is_last(sk
, skb
) ?
2070 nonagle
: TCP_NAGLE_PUSH
))))
2074 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2080 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2081 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2087 if (skb
->len
> limit
&&
2088 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2091 /* TCP Small Queues :
2092 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2094 * - better RTT estimation and ACK scheduling
2097 * Alas, some drivers / subsystems require a fair amount
2098 * of queued bytes to ensure line rate.
2099 * One example is wifi aggregation (802.11 AMPDU)
2101 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2102 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2104 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2105 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
2106 /* It is possible TX completion already happened
2107 * before we set TSQ_THROTTLED, so we must
2108 * test again the condition.
2110 smp_mb__after_atomic();
2111 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2115 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2119 /* Advance the send_head. This one is sent out.
2120 * This call will increment packets_out.
2122 tcp_event_new_data_sent(sk
, skb
);
2124 tcp_minshall_update(tp
, mss_now
, skb
);
2125 sent_pkts
+= tcp_skb_pcount(skb
);
2131 if (likely(sent_pkts
)) {
2132 if (tcp_in_cwnd_reduction(sk
))
2133 tp
->prr_out
+= sent_pkts
;
2135 /* Send one loss probe per tail loss episode. */
2137 tcp_schedule_loss_probe(sk
);
2138 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2139 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2142 return !tp
->packets_out
&& tcp_send_head(sk
);
2145 bool tcp_schedule_loss_probe(struct sock
*sk
)
2147 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2148 struct tcp_sock
*tp
= tcp_sk(sk
);
2149 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2150 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2152 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
))
2154 /* No consecutive loss probes. */
2155 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2159 /* Don't do any loss probe on a Fast Open connection before 3WHS
2162 if (tp
->fastopen_rsk
)
2165 /* TLP is only scheduled when next timer event is RTO. */
2166 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2169 /* Schedule a loss probe in 2*RTT for SACK capable connections
2170 * in Open state, that are either limited by cwnd or application.
2172 if (sysctl_tcp_early_retrans
< 3 || !tp
->packets_out
||
2173 !tcp_is_sack(tp
) || inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2176 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2180 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2181 * for delayed ack when there's one outstanding packet. If no RTT
2182 * sample is available then probe after TCP_TIMEOUT_INIT.
2184 timeout
= rtt
<< 1 ? : TCP_TIMEOUT_INIT
;
2185 if (tp
->packets_out
== 1)
2186 timeout
= max_t(u32
, timeout
,
2187 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2188 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2190 /* If RTO is shorter, just schedule TLP in its place. */
2191 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2192 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2193 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2194 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2199 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2204 /* Thanks to skb fast clones, we can detect if a prior transmit of
2205 * a packet is still in a qdisc or driver queue.
2206 * In this case, there is very little point doing a retransmit !
2207 * Note: This is called from BH context only.
2209 static bool skb_still_in_host_queue(const struct sock
*sk
,
2210 const struct sk_buff
*skb
)
2212 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2213 NET_INC_STATS_BH(sock_net(sk
),
2214 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2220 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2221 * retransmit the last segment.
2223 void tcp_send_loss_probe(struct sock
*sk
)
2225 struct tcp_sock
*tp
= tcp_sk(sk
);
2226 struct sk_buff
*skb
;
2228 int mss
= tcp_current_mss(sk
);
2230 skb
= tcp_send_head(sk
);
2232 if (tcp_snd_wnd_test(tp
, skb
, mss
)) {
2233 pcount
= tp
->packets_out
;
2234 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2235 if (tp
->packets_out
> pcount
)
2239 skb
= tcp_write_queue_prev(sk
, skb
);
2241 skb
= tcp_write_queue_tail(sk
);
2244 /* At most one outstanding TLP retransmission. */
2245 if (tp
->tlp_high_seq
)
2248 /* Retransmit last segment. */
2252 if (skb_still_in_host_queue(sk
, skb
))
2255 pcount
= tcp_skb_pcount(skb
);
2256 if (WARN_ON(!pcount
))
2259 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2260 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2263 skb
= tcp_write_queue_next(sk
, skb
);
2266 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2269 if (__tcp_retransmit_skb(sk
, skb
))
2272 /* Record snd_nxt for loss detection. */
2273 tp
->tlp_high_seq
= tp
->snd_nxt
;
2276 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2277 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2278 inet_csk(sk
)->icsk_pending
= 0;
2283 /* Push out any pending frames which were held back due to
2284 * TCP_CORK or attempt at coalescing tiny packets.
2285 * The socket must be locked by the caller.
2287 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2290 /* If we are closed, the bytes will have to remain here.
2291 * In time closedown will finish, we empty the write queue and
2292 * all will be happy.
2294 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2297 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2298 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2299 tcp_check_probe_timer(sk
);
2302 /* Send _single_ skb sitting at the send head. This function requires
2303 * true push pending frames to setup probe timer etc.
2305 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2307 struct sk_buff
*skb
= tcp_send_head(sk
);
2309 BUG_ON(!skb
|| skb
->len
< mss_now
);
2311 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2314 /* This function returns the amount that we can raise the
2315 * usable window based on the following constraints
2317 * 1. The window can never be shrunk once it is offered (RFC 793)
2318 * 2. We limit memory per socket
2321 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2322 * RECV.NEXT + RCV.WIN fixed until:
2323 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2325 * i.e. don't raise the right edge of the window until you can raise
2326 * it at least MSS bytes.
2328 * Unfortunately, the recommended algorithm breaks header prediction,
2329 * since header prediction assumes th->window stays fixed.
2331 * Strictly speaking, keeping th->window fixed violates the receiver
2332 * side SWS prevention criteria. The problem is that under this rule
2333 * a stream of single byte packets will cause the right side of the
2334 * window to always advance by a single byte.
2336 * Of course, if the sender implements sender side SWS prevention
2337 * then this will not be a problem.
2339 * BSD seems to make the following compromise:
2341 * If the free space is less than the 1/4 of the maximum
2342 * space available and the free space is less than 1/2 mss,
2343 * then set the window to 0.
2344 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2345 * Otherwise, just prevent the window from shrinking
2346 * and from being larger than the largest representable value.
2348 * This prevents incremental opening of the window in the regime
2349 * where TCP is limited by the speed of the reader side taking
2350 * data out of the TCP receive queue. It does nothing about
2351 * those cases where the window is constrained on the sender side
2352 * because the pipeline is full.
2354 * BSD also seems to "accidentally" limit itself to windows that are a
2355 * multiple of MSS, at least until the free space gets quite small.
2356 * This would appear to be a side effect of the mbuf implementation.
2357 * Combining these two algorithms results in the observed behavior
2358 * of having a fixed window size at almost all times.
2360 * Below we obtain similar behavior by forcing the offered window to
2361 * a multiple of the mss when it is feasible to do so.
2363 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2364 * Regular options like TIMESTAMP are taken into account.
2366 u32
__tcp_select_window(struct sock
*sk
)
2368 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2369 struct tcp_sock
*tp
= tcp_sk(sk
);
2370 /* MSS for the peer's data. Previous versions used mss_clamp
2371 * here. I don't know if the value based on our guesses
2372 * of peer's MSS is better for the performance. It's more correct
2373 * but may be worse for the performance because of rcv_mss
2374 * fluctuations. --SAW 1998/11/1
2376 int mss
= icsk
->icsk_ack
.rcv_mss
;
2377 int free_space
= tcp_space(sk
);
2378 int allowed_space
= tcp_full_space(sk
);
2379 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2382 if (mss
> full_space
)
2385 if (free_space
< (full_space
>> 1)) {
2386 icsk
->icsk_ack
.quick
= 0;
2388 if (tcp_under_memory_pressure(sk
))
2389 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2392 /* free_space might become our new window, make sure we don't
2393 * increase it due to wscale.
2395 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2397 /* if free space is less than mss estimate, or is below 1/16th
2398 * of the maximum allowed, try to move to zero-window, else
2399 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2400 * new incoming data is dropped due to memory limits.
2401 * With large window, mss test triggers way too late in order
2402 * to announce zero window in time before rmem limit kicks in.
2404 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2408 if (free_space
> tp
->rcv_ssthresh
)
2409 free_space
= tp
->rcv_ssthresh
;
2411 /* Don't do rounding if we are using window scaling, since the
2412 * scaled window will not line up with the MSS boundary anyway.
2414 window
= tp
->rcv_wnd
;
2415 if (tp
->rx_opt
.rcv_wscale
) {
2416 window
= free_space
;
2418 /* Advertise enough space so that it won't get scaled away.
2419 * Import case: prevent zero window announcement if
2420 * 1<<rcv_wscale > mss.
2422 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2423 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2424 << tp
->rx_opt
.rcv_wscale
);
2426 /* Get the largest window that is a nice multiple of mss.
2427 * Window clamp already applied above.
2428 * If our current window offering is within 1 mss of the
2429 * free space we just keep it. This prevents the divide
2430 * and multiply from happening most of the time.
2431 * We also don't do any window rounding when the free space
2434 if (window
<= free_space
- mss
|| window
> free_space
)
2435 window
= (free_space
/ mss
) * mss
;
2436 else if (mss
== full_space
&&
2437 free_space
> window
+ (full_space
>> 1))
2438 window
= free_space
;
2444 /* Collapses two adjacent SKB's during retransmission. */
2445 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2447 struct tcp_sock
*tp
= tcp_sk(sk
);
2448 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2449 int skb_size
, next_skb_size
;
2451 skb_size
= skb
->len
;
2452 next_skb_size
= next_skb
->len
;
2454 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2456 tcp_highest_sack_combine(sk
, next_skb
, skb
);
2458 tcp_unlink_write_queue(next_skb
, sk
);
2460 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
2463 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2464 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2466 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2467 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2469 /* Update sequence range on original skb. */
2470 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2472 /* Merge over control information. This moves PSH/FIN etc. over */
2473 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2475 /* All done, get rid of second SKB and account for it so
2476 * packet counting does not break.
2478 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2480 /* changed transmit queue under us so clear hints */
2481 tcp_clear_retrans_hints_partial(tp
);
2482 if (next_skb
== tp
->retransmit_skb_hint
)
2483 tp
->retransmit_skb_hint
= skb
;
2485 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2487 sk_wmem_free_skb(sk
, next_skb
);
2490 /* Check if coalescing SKBs is legal. */
2491 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2493 if (tcp_skb_pcount(skb
) > 1)
2495 /* TODO: SACK collapsing could be used to remove this condition */
2496 if (skb_shinfo(skb
)->nr_frags
!= 0)
2498 if (skb_cloned(skb
))
2500 if (skb
== tcp_send_head(sk
))
2502 /* Some heurestics for collapsing over SACK'd could be invented */
2503 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2509 /* Collapse packets in the retransmit queue to make to create
2510 * less packets on the wire. This is only done on retransmission.
2512 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2515 struct tcp_sock
*tp
= tcp_sk(sk
);
2516 struct sk_buff
*skb
= to
, *tmp
;
2519 if (!sysctl_tcp_retrans_collapse
)
2521 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2524 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2525 if (!tcp_can_collapse(sk
, skb
))
2537 /* Punt if not enough space exists in the first SKB for
2538 * the data in the second
2540 if (skb
->len
> skb_availroom(to
))
2543 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2546 tcp_collapse_retrans(sk
, to
);
2550 /* This retransmits one SKB. Policy decisions and retransmit queue
2551 * state updates are done by the caller. Returns non-zero if an
2552 * error occurred which prevented the send.
2554 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2556 struct tcp_sock
*tp
= tcp_sk(sk
);
2557 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2558 unsigned int cur_mss
;
2561 /* Inconslusive MTU probe */
2562 if (icsk
->icsk_mtup
.probe_size
) {
2563 icsk
->icsk_mtup
.probe_size
= 0;
2566 /* Do not sent more than we queued. 1/4 is reserved for possible
2567 * copying overhead: fragmentation, tunneling, mangling etc.
2569 if (atomic_read(&sk
->sk_wmem_alloc
) >
2570 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
2573 if (skb_still_in_host_queue(sk
, skb
))
2576 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2577 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2579 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2583 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2584 return -EHOSTUNREACH
; /* Routing failure or similar. */
2586 cur_mss
= tcp_current_mss(sk
);
2588 /* If receiver has shrunk his window, and skb is out of
2589 * new window, do not retransmit it. The exception is the
2590 * case, when window is shrunk to zero. In this case
2591 * our retransmit serves as a zero window probe.
2593 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2594 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2597 if (skb
->len
> cur_mss
) {
2598 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
, GFP_ATOMIC
))
2599 return -ENOMEM
; /* We'll try again later. */
2601 int oldpcount
= tcp_skb_pcount(skb
);
2603 if (unlikely(oldpcount
> 1)) {
2604 if (skb_unclone(skb
, GFP_ATOMIC
))
2606 tcp_init_tso_segs(skb
, cur_mss
);
2607 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
2611 /* RFC3168, section 6.1.1.1. ECN fallback */
2612 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2613 tcp_ecn_clear_syn(sk
, skb
);
2615 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2617 /* Make a copy, if the first transmission SKB clone we made
2618 * is still in somebody's hands, else make a clone.
2621 /* make sure skb->data is aligned on arches that require it
2622 * and check if ack-trimming & collapsing extended the headroom
2623 * beyond what csum_start can cover.
2625 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2626 skb_headroom(skb
) >= 0xFFFF)) {
2627 struct sk_buff
*nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
,
2629 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2632 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2636 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2637 /* Update global TCP statistics. */
2638 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
2639 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2640 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2641 tp
->total_retrans
++;
2646 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2648 struct tcp_sock
*tp
= tcp_sk(sk
);
2649 int err
= __tcp_retransmit_skb(sk
, skb
);
2652 #if FASTRETRANS_DEBUG > 0
2653 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2654 net_dbg_ratelimited("retrans_out leaked\n");
2657 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2658 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2660 /* Save stamp of the first retransmit. */
2661 if (!tp
->retrans_stamp
)
2662 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2664 } else if (err
!= -EBUSY
) {
2665 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2668 if (tp
->undo_retrans
< 0)
2669 tp
->undo_retrans
= 0;
2670 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2674 /* Check if we forward retransmits are possible in the current
2675 * window/congestion state.
2677 static bool tcp_can_forward_retransmit(struct sock
*sk
)
2679 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2680 const struct tcp_sock
*tp
= tcp_sk(sk
);
2682 /* Forward retransmissions are possible only during Recovery. */
2683 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2686 /* No forward retransmissions in Reno are possible. */
2687 if (tcp_is_reno(tp
))
2690 /* Yeah, we have to make difficult choice between forward transmission
2691 * and retransmission... Both ways have their merits...
2693 * For now we do not retransmit anything, while we have some new
2694 * segments to send. In the other cases, follow rule 3 for
2695 * NextSeg() specified in RFC3517.
2698 if (tcp_may_send_now(sk
))
2704 /* This gets called after a retransmit timeout, and the initially
2705 * retransmitted data is acknowledged. It tries to continue
2706 * resending the rest of the retransmit queue, until either
2707 * we've sent it all or the congestion window limit is reached.
2708 * If doing SACK, the first ACK which comes back for a timeout
2709 * based retransmit packet might feed us FACK information again.
2710 * If so, we use it to avoid unnecessarily retransmissions.
2712 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2714 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2715 struct tcp_sock
*tp
= tcp_sk(sk
);
2716 struct sk_buff
*skb
;
2717 struct sk_buff
*hole
= NULL
;
2720 int fwd_rexmitting
= 0;
2722 if (!tp
->packets_out
)
2726 tp
->retransmit_high
= tp
->snd_una
;
2728 if (tp
->retransmit_skb_hint
) {
2729 skb
= tp
->retransmit_skb_hint
;
2730 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2731 if (after(last_lost
, tp
->retransmit_high
))
2732 last_lost
= tp
->retransmit_high
;
2734 skb
= tcp_write_queue_head(sk
);
2735 last_lost
= tp
->snd_una
;
2738 tcp_for_write_queue_from(skb
, sk
) {
2739 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2741 if (skb
== tcp_send_head(sk
))
2743 /* we could do better than to assign each time */
2745 tp
->retransmit_skb_hint
= skb
;
2747 /* Assume this retransmit will generate
2748 * only one packet for congestion window
2749 * calculation purposes. This works because
2750 * tcp_retransmit_skb() will chop up the
2751 * packet to be MSS sized and all the
2752 * packet counting works out.
2754 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2757 if (fwd_rexmitting
) {
2759 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2761 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2763 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2764 tp
->retransmit_high
= last_lost
;
2765 if (!tcp_can_forward_retransmit(sk
))
2767 /* Backtrack if necessary to non-L'ed skb */
2775 } else if (!(sacked
& TCPCB_LOST
)) {
2776 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2781 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2782 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2783 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2785 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2788 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2791 if (tcp_retransmit_skb(sk
, skb
))
2794 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2796 if (tcp_in_cwnd_reduction(sk
))
2797 tp
->prr_out
+= tcp_skb_pcount(skb
);
2799 if (skb
== tcp_write_queue_head(sk
))
2800 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2801 inet_csk(sk
)->icsk_rto
,
2806 /* We allow to exceed memory limits for FIN packets to expedite
2807 * connection tear down and (memory) recovery.
2808 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2809 * or even be forced to close flow without any FIN.
2810 * In general, we want to allow one skb per socket to avoid hangs
2811 * with edge trigger epoll()
2813 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
2817 if (size
<= sk
->sk_forward_alloc
)
2819 amt
= sk_mem_pages(size
);
2820 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2821 sk_memory_allocated_add(sk
, amt
);
2823 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2824 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
2827 /* Send a FIN. The caller locks the socket for us.
2828 * We should try to send a FIN packet really hard, but eventually give up.
2830 void tcp_send_fin(struct sock
*sk
)
2832 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
2833 struct tcp_sock
*tp
= tcp_sk(sk
);
2835 /* Optimization, tack on the FIN if we have one skb in write queue and
2836 * this skb was not yet sent, or we are under memory pressure.
2837 * Note: in the latter case, FIN packet will be sent after a timeout,
2838 * as TCP stack thinks it has already been transmitted.
2840 if (tskb
&& (tcp_send_head(sk
) || tcp_under_memory_pressure(sk
))) {
2842 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
2843 TCP_SKB_CB(tskb
)->end_seq
++;
2845 if (!tcp_send_head(sk
)) {
2846 /* This means tskb was already sent.
2847 * Pretend we included the FIN on previous transmit.
2848 * We need to set tp->snd_nxt to the value it would have
2849 * if FIN had been sent. This is because retransmit path
2850 * does not change tp->snd_nxt.
2856 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
2857 if (unlikely(!skb
)) {
2862 skb_reserve(skb
, MAX_TCP_HEADER
);
2863 sk_forced_mem_schedule(sk
, skb
->truesize
);
2864 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2865 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2866 TCPHDR_ACK
| TCPHDR_FIN
);
2867 tcp_queue_skb(sk
, skb
);
2869 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
2872 /* We get here when a process closes a file descriptor (either due to
2873 * an explicit close() or as a byproduct of exit()'ing) and there
2874 * was unread data in the receive queue. This behavior is recommended
2875 * by RFC 2525, section 2.17. -DaveM
2877 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2879 struct sk_buff
*skb
;
2881 /* NOTE: No TCP options attached and we never retransmit this. */
2882 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2884 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2888 /* Reserve space for headers and prepare control bits. */
2889 skb_reserve(skb
, MAX_TCP_HEADER
);
2890 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2891 TCPHDR_ACK
| TCPHDR_RST
);
2892 skb_mstamp_get(&skb
->skb_mstamp
);
2894 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2895 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2897 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2900 /* Send a crossed SYN-ACK during socket establishment.
2901 * WARNING: This routine must only be called when we have already sent
2902 * a SYN packet that crossed the incoming SYN that caused this routine
2903 * to get called. If this assumption fails then the initial rcv_wnd
2904 * and rcv_wscale values will not be correct.
2906 int tcp_send_synack(struct sock
*sk
)
2908 struct sk_buff
*skb
;
2910 skb
= tcp_write_queue_head(sk
);
2911 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2912 pr_debug("%s: wrong queue state\n", __func__
);
2915 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
2916 if (skb_cloned(skb
)) {
2917 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2920 tcp_unlink_write_queue(skb
, sk
);
2921 __skb_header_release(nskb
);
2922 __tcp_add_write_queue_head(sk
, nskb
);
2923 sk_wmem_free_skb(sk
, skb
);
2924 sk
->sk_wmem_queued
+= nskb
->truesize
;
2925 sk_mem_charge(sk
, nskb
->truesize
);
2929 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
2930 tcp_ecn_send_synack(sk
, skb
);
2932 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2936 * tcp_make_synack - Prepare a SYN-ACK.
2937 * sk: listener socket
2938 * dst: dst entry attached to the SYNACK
2939 * req: request_sock pointer
2941 * Allocate one skb and build a SYNACK packet.
2942 * @dst is consumed : Caller should not use it again.
2944 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
2945 struct request_sock
*req
,
2946 struct tcp_fastopen_cookie
*foc
,
2949 struct inet_request_sock
*ireq
= inet_rsk(req
);
2950 const struct tcp_sock
*tp
= tcp_sk(sk
);
2951 struct tcp_md5sig_key
*md5
= NULL
;
2952 struct tcp_out_options opts
;
2953 struct sk_buff
*skb
;
2954 int tcp_header_size
;
2959 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2960 if (unlikely(!skb
)) {
2964 /* Reserve space for headers. */
2965 skb_reserve(skb
, MAX_TCP_HEADER
);
2968 skb_set_owner_w(skb
, req_to_sk(req
));
2970 /* sk is a const pointer, because we want to express multiple
2971 * cpu might call us concurrently.
2972 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2974 skb_set_owner_w(skb
, (struct sock
*)sk
);
2976 skb_dst_set(skb
, dst
);
2978 mss
= dst_metric_advmss(dst
);
2979 user_mss
= READ_ONCE(tp
->rx_opt
.user_mss
);
2980 if (user_mss
&& user_mss
< mss
)
2983 memset(&opts
, 0, sizeof(opts
));
2984 #ifdef CONFIG_SYN_COOKIES
2985 if (unlikely(req
->cookie_ts
))
2986 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
2989 skb_mstamp_get(&skb
->skb_mstamp
);
2991 #ifdef CONFIG_TCP_MD5SIG
2993 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
2995 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
2996 tcp_header_size
= tcp_synack_options(req
, mss
, skb
, &opts
, md5
, foc
) +
2999 skb_push(skb
, tcp_header_size
);
3000 skb_reset_transport_header(skb
);
3003 memset(th
, 0, sizeof(struct tcphdr
));
3006 tcp_ecn_make_synack(req
, th
);
3007 th
->source
= htons(ireq
->ir_num
);
3008 th
->dest
= ireq
->ir_rmt_port
;
3009 /* Setting of flags are superfluous here for callers (and ECE is
3010 * not even correctly set)
3012 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
3013 TCPHDR_SYN
| TCPHDR_ACK
);
3015 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
3016 /* XXX data is queued and acked as is. No buffer/window check */
3017 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3019 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3020 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3021 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3022 th
->doff
= (tcp_header_size
>> 2);
3023 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_OUTSEGS
);
3025 #ifdef CONFIG_TCP_MD5SIG
3026 /* Okay, we have all we need - do the md5 hash if needed */
3028 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3029 md5
, req_to_sk(req
), skb
);
3033 /* Do not fool tcpdump (if any), clean our debris */
3034 skb
->tstamp
.tv64
= 0;
3037 EXPORT_SYMBOL(tcp_make_synack
);
3039 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3041 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3042 const struct tcp_congestion_ops
*ca
;
3043 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3045 if (ca_key
== TCP_CA_UNSPEC
)
3049 ca
= tcp_ca_find_key(ca_key
);
3050 if (likely(ca
&& try_module_get(ca
->owner
))) {
3051 module_put(icsk
->icsk_ca_ops
->owner
);
3052 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3053 icsk
->icsk_ca_ops
= ca
;
3058 /* Do all connect socket setups that can be done AF independent. */
3059 static void tcp_connect_init(struct sock
*sk
)
3061 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3062 struct tcp_sock
*tp
= tcp_sk(sk
);
3065 /* We'll fix this up when we get a response from the other end.
3066 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3068 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
3069 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
3071 #ifdef CONFIG_TCP_MD5SIG
3072 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3073 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3076 /* If user gave his TCP_MAXSEG, record it to clamp */
3077 if (tp
->rx_opt
.user_mss
)
3078 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3081 tcp_sync_mss(sk
, dst_mtu(dst
));
3083 tcp_ca_dst_init(sk
, dst
);
3085 if (!tp
->window_clamp
)
3086 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3087 tp
->advmss
= dst_metric_advmss(dst
);
3088 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
3089 tp
->advmss
= tp
->rx_opt
.user_mss
;
3091 tcp_initialize_rcv_mss(sk
);
3093 /* limit the window selection if the user enforce a smaller rx buffer */
3094 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3095 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3096 tp
->window_clamp
= tcp_full_space(sk
);
3098 tcp_select_initial_window(tcp_full_space(sk
),
3099 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3102 sysctl_tcp_window_scaling
,
3104 dst_metric(dst
, RTAX_INITRWND
));
3106 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3107 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3110 sock_reset_flag(sk
, SOCK_DONE
);
3113 tp
->snd_una
= tp
->write_seq
;
3114 tp
->snd_sml
= tp
->write_seq
;
3115 tp
->snd_up
= tp
->write_seq
;
3116 tp
->snd_nxt
= tp
->write_seq
;
3118 if (likely(!tp
->repair
))
3121 tp
->rcv_tstamp
= tcp_time_stamp
;
3122 tp
->rcv_wup
= tp
->rcv_nxt
;
3123 tp
->copied_seq
= tp
->rcv_nxt
;
3125 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3126 inet_csk(sk
)->icsk_retransmits
= 0;
3127 tcp_clear_retrans(tp
);
3130 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3132 struct tcp_sock
*tp
= tcp_sk(sk
);
3133 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3135 tcb
->end_seq
+= skb
->len
;
3136 __skb_header_release(skb
);
3137 __tcp_add_write_queue_tail(sk
, skb
);
3138 sk
->sk_wmem_queued
+= skb
->truesize
;
3139 sk_mem_charge(sk
, skb
->truesize
);
3140 tp
->write_seq
= tcb
->end_seq
;
3141 tp
->packets_out
+= tcp_skb_pcount(skb
);
3144 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3145 * queue a data-only packet after the regular SYN, such that regular SYNs
3146 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3147 * only the SYN sequence, the data are retransmitted in the first ACK.
3148 * If cookie is not cached or other error occurs, falls back to send a
3149 * regular SYN with Fast Open cookie request option.
3151 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3153 struct tcp_sock
*tp
= tcp_sk(sk
);
3154 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3155 int syn_loss
= 0, space
, err
= 0;
3156 unsigned long last_syn_loss
= 0;
3157 struct sk_buff
*syn_data
;
3159 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3160 tcp_fastopen_cache_get(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
,
3161 &syn_loss
, &last_syn_loss
);
3162 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3164 time_before(jiffies
, last_syn_loss
+ (60*HZ
<< syn_loss
))) {
3165 fo
->cookie
.len
= -1;
3169 if (sysctl_tcp_fastopen
& TFO_CLIENT_NO_COOKIE
)
3170 fo
->cookie
.len
= -1;
3171 else if (fo
->cookie
.len
<= 0)
3174 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3175 * user-MSS. Reserve maximum option space for middleboxes that add
3176 * private TCP options. The cost is reduced data space in SYN :(
3178 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->rx_opt
.mss_clamp
)
3179 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3180 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3181 MAX_TCP_OPTION_SPACE
;
3183 space
= min_t(size_t, space
, fo
->size
);
3185 /* limit to order-0 allocations */
3186 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3188 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3191 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3192 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3194 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3195 &fo
->data
->msg_iter
);
3196 if (unlikely(!copied
)) {
3197 kfree_skb(syn_data
);
3200 if (copied
!= space
) {
3201 skb_trim(syn_data
, copied
);
3205 /* No more data pending in inet_wait_for_connect() */
3206 if (space
== fo
->size
)
3210 tcp_connect_queue_skb(sk
, syn_data
);
3212 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3214 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3216 /* Now full SYN+DATA was cloned and sent (or not),
3217 * remove the SYN from the original skb (syn_data)
3218 * we keep in write queue in case of a retransmit, as we
3219 * also have the SYN packet (with no data) in the same queue.
3221 TCP_SKB_CB(syn_data
)->seq
++;
3222 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3224 tp
->syn_data
= (fo
->copied
> 0);
3225 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3230 /* Send a regular SYN with Fast Open cookie request option */
3231 if (fo
->cookie
.len
> 0)
3233 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3235 tp
->syn_fastopen
= 0;
3237 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3241 /* Build a SYN and send it off. */
3242 int tcp_connect(struct sock
*sk
)
3244 struct tcp_sock
*tp
= tcp_sk(sk
);
3245 struct sk_buff
*buff
;
3248 tcp_connect_init(sk
);
3250 if (unlikely(tp
->repair
)) {
3251 tcp_finish_connect(sk
, NULL
);
3255 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3256 if (unlikely(!buff
))
3259 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3260 tp
->retrans_stamp
= tcp_time_stamp
;
3261 tcp_connect_queue_skb(sk
, buff
);
3262 tcp_ecn_send_syn(sk
, buff
);
3264 /* Send off SYN; include data in Fast Open. */
3265 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3266 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3267 if (err
== -ECONNREFUSED
)
3270 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3271 * in order to make this packet get counted in tcpOutSegs.
3273 tp
->snd_nxt
= tp
->write_seq
;
3274 tp
->pushed_seq
= tp
->write_seq
;
3275 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3277 /* Timer for repeating the SYN until an answer. */
3278 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3279 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3282 EXPORT_SYMBOL(tcp_connect
);
3284 /* Send out a delayed ack, the caller does the policy checking
3285 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3288 void tcp_send_delayed_ack(struct sock
*sk
)
3290 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3291 int ato
= icsk
->icsk_ack
.ato
;
3292 unsigned long timeout
;
3294 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3296 if (ato
> TCP_DELACK_MIN
) {
3297 const struct tcp_sock
*tp
= tcp_sk(sk
);
3298 int max_ato
= HZ
/ 2;
3300 if (icsk
->icsk_ack
.pingpong
||
3301 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3302 max_ato
= TCP_DELACK_MAX
;
3304 /* Slow path, intersegment interval is "high". */
3306 /* If some rtt estimate is known, use it to bound delayed ack.
3307 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3311 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3318 ato
= min(ato
, max_ato
);
3321 /* Stay within the limit we were given */
3322 timeout
= jiffies
+ ato
;
3324 /* Use new timeout only if there wasn't a older one earlier. */
3325 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3326 /* If delack timer was blocked or is about to expire,
3329 if (icsk
->icsk_ack
.blocked
||
3330 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3335 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3336 timeout
= icsk
->icsk_ack
.timeout
;
3338 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3339 icsk
->icsk_ack
.timeout
= timeout
;
3340 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3343 /* This routine sends an ack and also updates the window. */
3344 void tcp_send_ack(struct sock
*sk
)
3346 struct sk_buff
*buff
;
3348 /* If we have been reset, we may not send again. */
3349 if (sk
->sk_state
== TCP_CLOSE
)
3352 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3354 /* We are not putting this on the write queue, so
3355 * tcp_transmit_skb() will set the ownership to this
3358 buff
= alloc_skb(MAX_TCP_HEADER
,
3359 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3360 if (unlikely(!buff
)) {
3361 inet_csk_schedule_ack(sk
);
3362 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3363 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3364 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3368 /* Reserve space for headers and prepare control bits. */
3369 skb_reserve(buff
, MAX_TCP_HEADER
);
3370 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3372 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3374 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3375 * We also avoid tcp_wfree() overhead (cache line miss accessing
3376 * tp->tsq_flags) by using regular sock_wfree()
3378 skb_set_tcp_pure_ack(buff
);
3380 /* Send it off, this clears delayed acks for us. */
3381 skb_mstamp_get(&buff
->skb_mstamp
);
3382 tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0);
3384 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3386 /* This routine sends a packet with an out of date sequence
3387 * number. It assumes the other end will try to ack it.
3389 * Question: what should we make while urgent mode?
3390 * 4.4BSD forces sending single byte of data. We cannot send
3391 * out of window data, because we have SND.NXT==SND.MAX...
3393 * Current solution: to send TWO zero-length segments in urgent mode:
3394 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3395 * out-of-date with SND.UNA-1 to probe window.
3397 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3399 struct tcp_sock
*tp
= tcp_sk(sk
);
3400 struct sk_buff
*skb
;
3402 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3403 skb
= alloc_skb(MAX_TCP_HEADER
,
3404 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3408 /* Reserve space for headers and set control bits. */
3409 skb_reserve(skb
, MAX_TCP_HEADER
);
3410 /* Use a previous sequence. This should cause the other
3411 * end to send an ack. Don't queue or clone SKB, just
3414 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3415 skb_mstamp_get(&skb
->skb_mstamp
);
3416 NET_INC_STATS(sock_net(sk
), mib
);
3417 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3420 void tcp_send_window_probe(struct sock
*sk
)
3422 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3423 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3424 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3428 /* Initiate keepalive or window probe from timer. */
3429 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3431 struct tcp_sock
*tp
= tcp_sk(sk
);
3432 struct sk_buff
*skb
;
3434 if (sk
->sk_state
== TCP_CLOSE
)
3437 skb
= tcp_send_head(sk
);
3438 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3440 unsigned int mss
= tcp_current_mss(sk
);
3441 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3443 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3444 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3446 /* We are probing the opening of a window
3447 * but the window size is != 0
3448 * must have been a result SWS avoidance ( sender )
3450 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3452 seg_size
= min(seg_size
, mss
);
3453 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3454 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3456 } else if (!tcp_skb_pcount(skb
))
3457 tcp_set_skb_tso_segs(skb
, mss
);
3459 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3460 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3462 tcp_event_new_data_sent(sk
, skb
);
3465 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3466 tcp_xmit_probe_skb(sk
, 1, mib
);
3467 return tcp_xmit_probe_skb(sk
, 0, mib
);
3471 /* A window probe timeout has occurred. If window is not closed send
3472 * a partial packet else a zero probe.
3474 void tcp_send_probe0(struct sock
*sk
)
3476 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3477 struct tcp_sock
*tp
= tcp_sk(sk
);
3478 struct net
*net
= sock_net(sk
);
3479 unsigned long probe_max
;
3482 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3484 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3485 /* Cancel probe timer, if it is not required. */
3486 icsk
->icsk_probes_out
= 0;
3487 icsk
->icsk_backoff
= 0;
3492 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3493 icsk
->icsk_backoff
++;
3494 icsk
->icsk_probes_out
++;
3495 probe_max
= TCP_RTO_MAX
;
3497 /* If packet was not sent due to local congestion,
3498 * do not backoff and do not remember icsk_probes_out.
3499 * Let local senders to fight for local resources.
3501 * Use accumulated backoff yet.
3503 if (!icsk
->icsk_probes_out
)
3504 icsk
->icsk_probes_out
= 1;
3505 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3507 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3508 tcp_probe0_when(sk
, probe_max
),
3512 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3514 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3518 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3519 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, true);
3521 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3522 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3526 EXPORT_SYMBOL(tcp_rtx_synack
);