2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
25 #ifdef CONFIG_SATA_DWC_VDEBUG
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
43 /* These two are defined in "libata.h" */
47 #define DRV_NAME "sata-dwc"
48 #define DRV_VERSION "1.3"
50 /* SATA DMA driver Globals */
51 #define DMA_NUM_CHANS 1
52 #define DMA_NUM_CHAN_REGS 8
54 /* SATA DMA Register definitions */
55 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
58 u32 low
; /* Low bits 0-31 */
59 u32 high
; /* High bits 32-63 */
62 /* DMA Per Channel registers */
63 struct dma_chan_regs
{
64 struct dmareg sar
; /* Source Address */
65 struct dmareg dar
; /* Destination address */
66 struct dmareg llp
; /* Linked List Pointer */
67 struct dmareg ctl
; /* Control */
68 struct dmareg sstat
; /* Source Status not implemented in core */
69 struct dmareg dstat
; /* Destination Status not implemented in core*/
70 struct dmareg sstatar
; /* Source Status Address not impl in core */
71 struct dmareg dstatar
; /* Destination Status Address not implemente */
72 struct dmareg cfg
; /* Config */
73 struct dmareg sgr
; /* Source Gather */
74 struct dmareg dsr
; /* Destination Scatter */
77 /* Generic Interrupt Registers */
78 struct dma_interrupt_regs
{
79 struct dmareg tfr
; /* Transfer Interrupt */
80 struct dmareg block
; /* Block Interrupt */
81 struct dmareg srctran
; /* Source Transfer Interrupt */
82 struct dmareg dsttran
; /* Dest Transfer Interrupt */
83 struct dmareg error
; /* Error */
87 struct dma_chan_regs chan_regs
[DMA_NUM_CHAN_REGS
];
88 struct dma_interrupt_regs interrupt_raw
; /* Raw Interrupt */
89 struct dma_interrupt_regs interrupt_status
; /* Interrupt Status */
90 struct dma_interrupt_regs interrupt_mask
; /* Interrupt Mask */
91 struct dma_interrupt_regs interrupt_clear
; /* Interrupt Clear */
92 struct dmareg statusInt
; /* Interrupt combined*/
93 struct dmareg rq_srcreg
; /* Src Trans Req */
94 struct dmareg rq_dstreg
; /* Dst Trans Req */
95 struct dmareg rq_sgl_srcreg
; /* Sngl Src Trans Req*/
96 struct dmareg rq_sgl_dstreg
; /* Sngl Dst Trans Req*/
97 struct dmareg rq_lst_srcreg
; /* Last Src Trans Req*/
98 struct dmareg rq_lst_dstreg
; /* Last Dst Trans Req*/
99 struct dmareg dma_cfg
; /* DMA Config */
100 struct dmareg dma_chan_en
; /* DMA Channel Enable*/
101 struct dmareg dma_id
; /* DMA ID */
102 struct dmareg dma_test
; /* DMA Test */
103 struct dmareg res1
; /* reserved */
104 struct dmareg res2
; /* reserved */
107 * Param 6 = dma_param[0], Param 5 = dma_param[1],
108 * Param 4 = dma_param[2] ...
110 struct dmareg dma_params
[6];
113 /* Data structure for linked list item */
115 u32 sar
; /* Source Address */
116 u32 dar
; /* Destination address */
117 u32 llp
; /* Linked List Pointer */
118 struct dmareg ctl
; /* Control */
119 struct dmareg dstat
; /* Destination Status */
123 SATA_DWC_DMAC_LLI_SZ
= (sizeof(struct lli
)),
124 SATA_DWC_DMAC_LLI_NUM
= 256,
125 SATA_DWC_DMAC_LLI_TBL_SZ
= (SATA_DWC_DMAC_LLI_SZ
* \
126 SATA_DWC_DMAC_LLI_NUM
),
127 SATA_DWC_DMAC_TWIDTH_BYTES
= 4,
128 SATA_DWC_DMAC_CTRL_TSIZE_MAX
= (0x00000800 * \
129 SATA_DWC_DMAC_TWIDTH_BYTES
),
132 /* DMA Register Operation Bits */
134 DMA_EN
= 0x00000001, /* Enable AHB DMA */
135 DMA_CTL_LLP_SRCEN
= 0x10000000, /* Blk chain enable Src */
136 DMA_CTL_LLP_DSTEN
= 0x08000000, /* Blk chain enable Dst */
139 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
140 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
142 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
143 ((0x000000001 << (ch)) << 8))
144 /* Disable channel */
145 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
146 /* Transfer Type & Flow Controller */
147 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
148 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
149 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
150 /* Src Burst Transaction Length */
151 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
152 /* Dst Burst Transaction Length */
153 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
154 /* Source Transfer Width */
155 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
156 /* Destination Transfer Width */
157 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
159 /* Assign HW handshaking interface (x) to destination / source peripheral */
160 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
161 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
162 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
163 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
166 * This define is used to set block chaining disabled in the control low
167 * register. It is already in little endian format so it can be &'d dirctly.
168 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
171 DMA_CTL_LLP_DISABLE_LE32
= 0xffffffe7,
172 DMA_CTL_TTFC_P2M_DMAC
= 0x00000002, /* Per to mem, DMAC cntr */
173 DMA_CTL_TTFC_M2P_PER
= 0x00000003, /* Mem to per, peripheral cntr */
174 DMA_CTL_SINC_INC
= 0x00000000, /* Source Address Increment */
175 DMA_CTL_SINC_DEC
= 0x00000200,
176 DMA_CTL_SINC_NOCHANGE
= 0x00000400,
177 DMA_CTL_DINC_INC
= 0x00000000, /* Destination Address Increment */
178 DMA_CTL_DINC_DEC
= 0x00000080,
179 DMA_CTL_DINC_NOCHANGE
= 0x00000100,
180 DMA_CTL_INT_EN
= 0x00000001, /* Interrupt Enable */
182 /* Channel Configuration Register high bits */
183 DMA_CFG_FCMOD_REQ
= 0x00000001, /* Flow Control - request based */
184 DMA_CFG_PROTCTL
= (0x00000003 << 2),/* Protection Control */
186 /* Channel Configuration Register low bits */
187 DMA_CFG_RELD_DST
= 0x80000000, /* Reload Dest / Src Addr */
188 DMA_CFG_RELD_SRC
= 0x40000000,
189 DMA_CFG_HS_SELSRC
= 0x00000800, /* Software handshake Src/ Dest */
190 DMA_CFG_HS_SELDST
= 0x00000400,
191 DMA_CFG_FIFOEMPTY
= (0x00000001 << 9), /* FIFO Empty bit */
193 /* Channel Linked List Pointer Register */
194 DMA_LLP_AHBMASTER1
= 0, /* List Master Select */
195 DMA_LLP_AHBMASTER2
= 1,
197 SATA_DWC_MAX_PORTS
= 1,
199 SATA_DWC_SCR_OFFSET
= 0x24,
200 SATA_DWC_REG_OFFSET
= 0x64,
203 /* DWC SATA Registers */
204 struct sata_dwc_regs
{
205 u32 fptagr
; /* 1st party DMA tag */
206 u32 fpbor
; /* 1st party DMA buffer offset */
207 u32 fptcr
; /* 1st party DMA Xfr count */
208 u32 dmacr
; /* DMA Control */
209 u32 dbtsr
; /* DMA Burst Transac size */
210 u32 intpr
; /* Interrupt Pending */
211 u32 intmr
; /* Interrupt Mask */
212 u32 errmr
; /* Error Mask */
213 u32 llcr
; /* Link Layer Control */
214 u32 phycr
; /* PHY Control */
215 u32 physr
; /* PHY Status */
216 u32 rxbistpd
; /* Recvd BIST pattern def register */
217 u32 rxbistpd1
; /* Recvd BIST data dword1 */
218 u32 rxbistpd2
; /* Recvd BIST pattern data dword2 */
219 u32 txbistpd
; /* Trans BIST pattern def register */
220 u32 txbistpd1
; /* Trans BIST data dword1 */
221 u32 txbistpd2
; /* Trans BIST data dword2 */
222 u32 bistcr
; /* BIST Control Register */
223 u32 bistfctr
; /* BIST FIS Count Register */
224 u32 bistsr
; /* BIST Status Register */
225 u32 bistdecr
; /* BIST Dword Error count register */
226 u32 res
[15]; /* Reserved locations */
227 u32 testr
; /* Test Register */
228 u32 versionr
; /* Version Register */
229 u32 idr
; /* ID Register */
230 u32 unimpl
[192]; /* Unimplemented */
231 u32 dmadr
[256]; /* FIFO Locations in DMA Mode */
235 SCR_SCONTROL_DET_ENABLE
= 0x00000001,
236 SCR_SSTATUS_DET_PRESENT
= 0x00000001,
237 SCR_SERROR_DIAG_X
= 0x04000000,
238 /* DWC SATA Register Operations */
239 SATA_DWC_TXFIFO_DEPTH
= 0x01FF,
240 SATA_DWC_RXFIFO_DEPTH
= 0x01FF,
241 SATA_DWC_DMACR_TMOD_TXCHEN
= 0x00000004,
242 SATA_DWC_DMACR_TXCHEN
= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN
),
243 SATA_DWC_DMACR_RXCHEN
= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN
),
244 SATA_DWC_DMACR_TXRXCH_CLEAR
= SATA_DWC_DMACR_TMOD_TXCHEN
,
245 SATA_DWC_INTPR_DMAT
= 0x00000001,
246 SATA_DWC_INTPR_NEWFP
= 0x00000002,
247 SATA_DWC_INTPR_PMABRT
= 0x00000004,
248 SATA_DWC_INTPR_ERR
= 0x00000008,
249 SATA_DWC_INTPR_NEWBIST
= 0x00000010,
250 SATA_DWC_INTPR_IPF
= 0x10000000,
251 SATA_DWC_INTMR_DMATM
= 0x00000001,
252 SATA_DWC_INTMR_NEWFPM
= 0x00000002,
253 SATA_DWC_INTMR_PMABRTM
= 0x00000004,
254 SATA_DWC_INTMR_ERRM
= 0x00000008,
255 SATA_DWC_INTMR_NEWBISTM
= 0x00000010,
256 SATA_DWC_LLCR_SCRAMEN
= 0x00000001,
257 SATA_DWC_LLCR_DESCRAMEN
= 0x00000002,
258 SATA_DWC_LLCR_RPDEN
= 0x00000004,
259 /* This is all error bits, zero's are reserved fields. */
260 SATA_DWC_SERROR_ERR_BITS
= 0x0FFF0F03
263 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
264 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
265 SATA_DWC_DMACR_TMOD_TXCHEN)
266 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
267 SATA_DWC_DMACR_TMOD_TXCHEN)
268 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
269 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
271 struct sata_dwc_device
{
272 struct device
*dev
; /* generic device struct */
273 struct ata_probe_ent
*pe
; /* ptr to probe-ent */
274 struct ata_host
*host
;
276 struct sata_dwc_regs
*sata_dwc_regs
; /* DW Synopsys SATA specific */
280 #define SATA_DWC_QCMD_MAX 32
282 struct sata_dwc_device_port
{
283 struct sata_dwc_device
*hsdev
;
284 int cmd_issued
[SATA_DWC_QCMD_MAX
];
285 struct lli
*llit
[SATA_DWC_QCMD_MAX
]; /* DMA LLI table */
286 dma_addr_t llit_dma
[SATA_DWC_QCMD_MAX
];
287 u32 dma_chan
[SATA_DWC_QCMD_MAX
];
288 int dma_pending
[SATA_DWC_QCMD_MAX
];
292 * Commonly used DWC SATA driver Macros
294 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
295 (host)->private_data)
296 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
297 (ap)->host->private_data)
298 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
300 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
301 (qc)->ap->host->private_data)
302 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
306 SATA_DWC_CMD_ISSUED_NOT
= 0,
307 SATA_DWC_CMD_ISSUED_PEND
= 1,
308 SATA_DWC_CMD_ISSUED_EXEC
= 2,
309 SATA_DWC_CMD_ISSUED_NODATA
= 3,
311 SATA_DWC_DMA_PENDING_NONE
= 0,
312 SATA_DWC_DMA_PENDING_TX
= 1,
313 SATA_DWC_DMA_PENDING_RX
= 2,
316 struct sata_dwc_host_priv
{
317 void __iomem
*scr_addr_sstatus
;
318 u32 sata_dwc_sactive_issued
;
319 u32 sata_dwc_sactive_queued
;
320 u32 dma_interrupt_count
;
321 struct ahb_dma_regs
*sata_dma_regs
;
322 struct device
*dwc_dev
;
325 struct sata_dwc_host_priv host_pvt
;
329 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd
*qc
, u8 tag
);
330 static int sata_dwc_qc_complete(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
332 static void sata_dwc_dma_xfer_complete(struct ata_port
*ap
, u32 check_status
);
333 static void sata_dwc_port_stop(struct ata_port
*ap
);
334 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port
*hsdevp
, u8 tag
);
335 static int dma_dwc_init(struct sata_dwc_device
*hsdev
, int irq
);
336 static void dma_dwc_exit(struct sata_dwc_device
*hsdev
);
337 static int dma_dwc_xfer_setup(struct scatterlist
*sg
, int num_elems
,
338 struct lli
*lli
, dma_addr_t dma_lli
,
339 void __iomem
*addr
, int dir
);
340 static void dma_dwc_xfer_start(int dma_ch
);
342 static const char *get_prot_descript(u8 protocol
)
344 switch ((enum ata_tf_protocols
)protocol
) {
345 case ATA_PROT_NODATA
:
346 return "ATA no data";
353 case ATAPI_PROT_NODATA
:
354 return "ATAPI no data";
364 static const char *get_dma_dir_descript(int dma_dir
)
366 switch ((enum dma_data_direction
)dma_dir
) {
367 case DMA_BIDIRECTIONAL
:
368 return "bidirectional";
371 case DMA_FROM_DEVICE
:
372 return "from device";
378 static void sata_dwc_tf_dump(struct ata_taskfile
*tf
)
380 dev_vdbg(host_pvt
.dwc_dev
, "taskfile cmd: 0x%02x protocol: %s flags:"
381 "0x%lx device: %x\n", tf
->command
,
382 get_prot_descript(tf
->protocol
), tf
->flags
, tf
->device
);
383 dev_vdbg(host_pvt
.dwc_dev
, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
384 "lbam: 0x%x lbah: 0x%x\n", tf
->feature
, tf
->nsect
, tf
->lbal
,
386 dev_vdbg(host_pvt
.dwc_dev
, "hob_feature: 0x%02x hob_nsect: 0x%x "
387 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
388 tf
->hob_feature
, tf
->hob_nsect
, tf
->hob_lbal
, tf
->hob_lbam
,
393 * Function: get_burst_length_encode
394 * arguments: datalength: length in bytes of data
395 * returns value to be programmed in register corresponding to data length
396 * This value is effectively the log(base 2) of the length
398 static int get_burst_length_encode(int datalength
)
400 int items
= datalength
>> 2; /* div by 4 to get lword count */
420 static void clear_chan_interrupts(int c
)
422 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.tfr
.low
),
424 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.block
.low
),
426 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.srctran
.low
),
428 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.dsttran
.low
),
430 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear
.error
.low
),
435 * Function: dma_request_channel
437 * returns channel number if available else -1
438 * This function assigns the next available DMA channel from the list to the
441 static int dma_request_channel(void)
443 /* Check if the channel is not currently in use */
444 if (!(in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)) &
445 DMA_CHANNEL(host_pvt
.dma_channel
)))
446 return host_pvt
.dma_channel
;
447 dev_err(host_pvt
.dwc_dev
, "%s Channel %d is currently in use\n",
448 __func__
, host_pvt
.dma_channel
);
453 * Function: dma_dwc_interrupt
454 * arguments: irq, dev_id, pt_regs
455 * returns channel number if available else -1
456 * Interrupt Handler for DW AHB SATA DMA
458 static irqreturn_t
dma_dwc_interrupt(int irq
, void *hsdev_instance
)
461 u32 tfr_reg
, err_reg
;
463 struct sata_dwc_device
*hsdev
=
464 (struct sata_dwc_device
*)hsdev_instance
;
465 struct ata_host
*host
= (struct ata_host
*)hsdev
->host
;
467 struct sata_dwc_device_port
*hsdevp
;
469 unsigned int port
= 0;
471 spin_lock_irqsave(&host
->lock
, flags
);
472 ap
= host
->ports
[port
];
473 hsdevp
= HSDEVP_FROM_AP(ap
);
474 tag
= ap
->link
.active_tag
;
476 tfr_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.tfr\
478 err_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.error\
481 dev_dbg(ap
->dev
, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
482 tfr_reg
, err_reg
, hsdevp
->dma_pending
[tag
], port
);
484 chan
= host_pvt
.dma_channel
;
486 /* Check for end-of-transfer interrupt. */
487 if (tfr_reg
& DMA_CHANNEL(chan
)) {
489 * Each DMA command produces 2 interrupts. Only
490 * complete the command after both interrupts have been
491 * seen. (See sata_dwc_isr())
493 host_pvt
.dma_interrupt_count
++;
494 sata_dwc_clear_dmacr(hsdevp
, tag
);
496 if (hsdevp
->dma_pending
[tag
] ==
497 SATA_DWC_DMA_PENDING_NONE
) {
498 dev_err(ap
->dev
, "DMA not pending eot=0x%08x "
499 "err=0x%08x tag=0x%02x pending=%d\n",
500 tfr_reg
, err_reg
, tag
,
501 hsdevp
->dma_pending
[tag
]);
504 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
505 sata_dwc_dma_xfer_complete(ap
, 1);
507 /* Clear the interrupt */
508 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear\
513 /* Check for error interrupt. */
514 if (err_reg
& DMA_CHANNEL(chan
)) {
515 /* TODO Need error handler ! */
516 dev_err(ap
->dev
, "error interrupt err_reg=0x%08x\n",
519 /* Clear the interrupt. */
520 out_le32(&(host_pvt
.sata_dma_regs
->interrupt_clear\
525 spin_unlock_irqrestore(&host
->lock
, flags
);
530 * Function: dma_request_interrupts
533 * This function registers ISR for a particular DMA channel interrupt
535 static int dma_request_interrupts(struct sata_dwc_device
*hsdev
, int irq
)
538 int chan
= host_pvt
.dma_channel
;
541 /* Unmask error interrupt */
542 out_le32(&(host_pvt
.sata_dma_regs
)->interrupt_mask
.error
.low
,
543 DMA_ENABLE_CHAN(chan
));
545 /* Unmask end-of-transfer interrupt */
546 out_le32(&(host_pvt
.sata_dma_regs
)->interrupt_mask
.tfr
.low
,
547 DMA_ENABLE_CHAN(chan
));
550 retval
= request_irq(irq
, dma_dwc_interrupt
, 0, "SATA DMA", hsdev
);
552 dev_err(host_pvt
.dwc_dev
, "%s: could not get IRQ %d\n",
557 /* Mark this interrupt as requested */
558 hsdev
->irq_dma
= irq
;
563 * Function: map_sg_to_lli
564 * The Synopsis driver has a comment proposing that better performance
565 * is possible by only enabling interrupts on the last item in the linked list.
566 * However, it seems that could be a problem if an error happened on one of the
567 * first items. The transfer would halt, but no error interrupt would occur.
568 * Currently this function sets interrupts enabled for each linked list item:
571 static int map_sg_to_lli(struct scatterlist
*sg
, int num_elems
,
572 struct lli
*lli
, dma_addr_t dma_lli
,
573 void __iomem
*dmadr_addr
, int dir
)
579 int sms_val
, dms_val
;
582 dms_val
= 1 + host_pvt
.dma_channel
;
583 dev_dbg(host_pvt
.dwc_dev
, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
584 " dmadr=0x%08x\n", __func__
, sg
, num_elems
, lli
, (u32
)dma_lli
,
587 bl
= get_burst_length_encode(AHB_DMA_BRST_DFLT
);
589 for (i
= 0; i
< num_elems
; i
++, sg
++) {
593 addr
= (u32
) sg_dma_address(sg
);
594 sg_len
= sg_dma_len(sg
);
596 dev_dbg(host_pvt
.dwc_dev
, "%s: elem=%d sg_addr=0x%x sg_len"
597 "=%d\n", __func__
, i
, addr
, sg_len
);
600 if (idx
>= SATA_DWC_DMAC_LLI_NUM
) {
601 /* The LLI table is not large enough. */
602 dev_err(host_pvt
.dwc_dev
, "LLI table overrun "
606 len
= (sg_len
> SATA_DWC_DMAC_CTRL_TSIZE_MAX
) ?
607 SATA_DWC_DMAC_CTRL_TSIZE_MAX
: sg_len
;
609 offset
= addr
& 0xffff;
610 if ((offset
+ sg_len
) > 0x10000)
611 len
= 0x10000 - offset
;
614 * Make sure a LLI block is not created that will span
615 * 8K max FIS boundary. If the block spans such a FIS
616 * boundary, there is a chance that a DMA burst will
617 * cross that boundary -- this results in an error in
618 * the host controller.
620 if (fis_len
+ len
> 8192) {
621 dev_dbg(host_pvt
.dwc_dev
, "SPLITTING: fis_len="
622 "%d(0x%x) len=%d(0x%x)\n", fis_len
,
624 len
= 8192 - fis_len
;
633 * Set DMA addresses and lower half of control register
634 * based on direction.
636 if (dir
== DMA_FROM_DEVICE
) {
637 lli
[idx
].dar
= cpu_to_le32(addr
);
638 lli
[idx
].sar
= cpu_to_le32((u32
)dmadr_addr
);
640 lli
[idx
].ctl
.low
= cpu_to_le32(
641 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC
) |
642 DMA_CTL_SMS(sms_val
) |
643 DMA_CTL_DMS(dms_val
) |
644 DMA_CTL_SRC_MSIZE(bl
) |
645 DMA_CTL_DST_MSIZE(bl
) |
646 DMA_CTL_SINC_NOCHANGE
|
647 DMA_CTL_SRC_TRWID(2) |
648 DMA_CTL_DST_TRWID(2) |
652 } else { /* DMA_TO_DEVICE */
653 lli
[idx
].sar
= cpu_to_le32(addr
);
654 lli
[idx
].dar
= cpu_to_le32((u32
)dmadr_addr
);
656 lli
[idx
].ctl
.low
= cpu_to_le32(
657 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER
) |
658 DMA_CTL_SMS(dms_val
) |
659 DMA_CTL_DMS(sms_val
) |
660 DMA_CTL_SRC_MSIZE(bl
) |
661 DMA_CTL_DST_MSIZE(bl
) |
662 DMA_CTL_DINC_NOCHANGE
|
663 DMA_CTL_SRC_TRWID(2) |
664 DMA_CTL_DST_TRWID(2) |
670 dev_dbg(host_pvt
.dwc_dev
, "%s setting ctl.high len: "
671 "0x%08x val: 0x%08x\n", __func__
,
672 len
, DMA_CTL_BLK_TS(len
/ 4));
674 /* Program the LLI CTL high register */
675 lli
[idx
].ctl
.high
= cpu_to_le32(DMA_CTL_BLK_TS\
678 /* Program the next pointer. The next pointer must be
679 * the physical address, not the virtual address.
681 next_llp
= (dma_lli
+ ((idx
+ 1) * sizeof(struct \
684 /* The last 2 bits encode the list master select. */
685 next_llp
= DMA_LLP_LMS(next_llp
, DMA_LLP_AHBMASTER2
);
687 lli
[idx
].llp
= cpu_to_le32(next_llp
);
695 * The last next ptr has to be zero and the last control low register
696 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
697 * and destination enable) set back to 0 (disabled.) This is what tells
698 * the core that this is the last item in the linked list.
701 lli
[idx
-1].llp
= 0x00000000;
702 lli
[idx
-1].ctl
.low
&= DMA_CTL_LLP_DISABLE_LE32
;
704 /* Flush cache to memory */
705 dma_cache_sync(NULL
, lli
, (sizeof(struct lli
) * idx
),
713 * Function: dma_dwc_xfer_start
714 * arguments: Channel number
716 * Enables the DMA channel
718 static void dma_dwc_xfer_start(int dma_ch
)
720 /* Enable the DMA channel */
721 out_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
),
722 in_le32(&(host_pvt
.sata_dma_regs
->dma_chan_en
.low
)) |
723 DMA_ENABLE_CHAN(dma_ch
));
726 static int dma_dwc_xfer_setup(struct scatterlist
*sg
, int num_elems
,
727 struct lli
*lli
, dma_addr_t dma_lli
,
728 void __iomem
*addr
, int dir
)
732 /* Acquire DMA channel */
733 dma_ch
= dma_request_channel();
735 dev_err(host_pvt
.dwc_dev
, "%s: dma channel unavailable\n",
740 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
741 num_lli
= map_sg_to_lli(sg
, num_elems
, lli
, dma_lli
, addr
, dir
);
743 dev_dbg(host_pvt
.dwc_dev
, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
744 " 0x%0xlx addr: %p lli count: %d\n", __func__
, sg
, num_elems
,
745 lli
, (u32
)dma_lli
, addr
, num_lli
);
747 clear_chan_interrupts(dma_ch
);
749 /* Program the CFG register. */
750 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].cfg
.high
),
751 DMA_CFG_HW_HS_SRC(dma_ch
) | DMA_CFG_HW_HS_DEST(dma_ch
) |
752 DMA_CFG_PROTCTL
| DMA_CFG_FCMOD_REQ
);
753 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].cfg
.low
),
754 DMA_CFG_HW_CH_PRIOR(dma_ch
));
756 /* Program the address of the linked list */
757 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].llp
.low
),
758 DMA_LLP_LMS(dma_lli
, DMA_LLP_AHBMASTER2
));
760 /* Program the CTL register with src enable / dst enable */
761 out_le32(&(host_pvt
.sata_dma_regs
->chan_regs
[dma_ch
].ctl
.low
),
762 DMA_CTL_LLP_SRCEN
| DMA_CTL_LLP_DSTEN
);
767 * Function: dma_dwc_exit
770 * This function exits the SATA DMA driver
772 static void dma_dwc_exit(struct sata_dwc_device
*hsdev
)
774 dev_dbg(host_pvt
.dwc_dev
, "%s:\n", __func__
);
775 if (host_pvt
.sata_dma_regs
) {
776 iounmap(host_pvt
.sata_dma_regs
);
777 host_pvt
.sata_dma_regs
= NULL
;
780 if (hsdev
->irq_dma
) {
781 free_irq(hsdev
->irq_dma
, hsdev
);
787 * Function: dma_dwc_init
790 * This function initializes the SATA DMA driver
792 static int dma_dwc_init(struct sata_dwc_device
*hsdev
, int irq
)
796 err
= dma_request_interrupts(hsdev
, irq
);
798 dev_err(host_pvt
.dwc_dev
, "%s: dma_request_interrupts returns"
799 " %d\n", __func__
, err
);
804 out_le32(&(host_pvt
.sata_dma_regs
->dma_cfg
.low
), DMA_EN
);
806 dev_notice(host_pvt
.dwc_dev
, "DMA initialized\n");
807 dev_dbg(host_pvt
.dwc_dev
, "SATA DMA registers=0x%p\n", host_pvt
.\
818 static int sata_dwc_scr_read(struct ata_link
*link
, unsigned int scr
, u32
*val
)
820 if (scr
> SCR_NOTIFICATION
) {
821 dev_err(link
->ap
->dev
, "%s: Incorrect SCR offset 0x%02x\n",
826 *val
= in_le32((void *)link
->ap
->ioaddr
.scr_addr
+ (scr
* 4));
827 dev_dbg(link
->ap
->dev
, "%s: id=%d reg=%d val=val=0x%08x\n",
828 __func__
, link
->ap
->print_id
, scr
, *val
);
833 static int sata_dwc_scr_write(struct ata_link
*link
, unsigned int scr
, u32 val
)
835 dev_dbg(link
->ap
->dev
, "%s: id=%d reg=%d val=val=0x%08x\n",
836 __func__
, link
->ap
->print_id
, scr
, val
);
837 if (scr
> SCR_NOTIFICATION
) {
838 dev_err(link
->ap
->dev
, "%s: Incorrect SCR offset 0x%02x\n",
842 out_le32((void *)link
->ap
->ioaddr
.scr_addr
+ (scr
* 4), val
);
847 static u32
core_scr_read(unsigned int scr
)
849 return in_le32((void __iomem
*)(host_pvt
.scr_addr_sstatus
) +\
853 static void core_scr_write(unsigned int scr
, u32 val
)
855 out_le32((void __iomem
*)(host_pvt
.scr_addr_sstatus
) + (scr
* 4),
859 static void clear_serror(void)
862 val
= core_scr_read(SCR_ERROR
);
863 core_scr_write(SCR_ERROR
, val
);
867 static void clear_interrupt_bit(struct sata_dwc_device
*hsdev
, u32 bit
)
869 out_le32(&hsdev
->sata_dwc_regs
->intpr
,
870 in_le32(&hsdev
->sata_dwc_regs
->intpr
));
873 static u32
qcmd_tag_to_mask(u8 tag
)
875 return 0x00000001 << (tag
& 0x1f);
879 static void sata_dwc_error_intr(struct ata_port
*ap
,
880 struct sata_dwc_device
*hsdev
, uint intpr
)
882 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
883 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
884 unsigned int err_mask
= 0, action
= 0;
885 struct ata_queued_cmd
*qc
;
890 ata_ehi_clear_desc(ehi
);
892 serror
= core_scr_read(SCR_ERROR
);
893 status
= ap
->ops
->sff_check_status(ap
);
895 err_reg
= in_le32(&(host_pvt
.sata_dma_regs
->interrupt_status
.error
.\
897 tag
= ap
->link
.active_tag
;
899 dev_err(ap
->dev
, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
900 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
901 __func__
, serror
, intpr
, status
, host_pvt
.dma_interrupt_count
,
902 hsdevp
->dma_pending
[tag
], hsdevp
->cmd_issued
[tag
], err_reg
);
904 /* Clear error register and interrupt bit */
906 clear_interrupt_bit(hsdev
, SATA_DWC_INTPR_ERR
);
908 /* This is the only error happening now. TODO check for exact error */
910 err_mask
|= AC_ERR_HOST_BUS
;
911 action
|= ATA_EH_RESET
;
913 /* Pass this on to EH */
914 ehi
->serror
|= serror
;
915 ehi
->action
|= action
;
917 qc
= ata_qc_from_tag(ap
, tag
);
919 qc
->err_mask
|= err_mask
;
921 ehi
->err_mask
|= err_mask
;
927 * Function : sata_dwc_isr
928 * arguments : irq, void *dev_instance, struct pt_regs *regs
929 * Return value : irqreturn_t - status of IRQ
930 * This Interrupt handler called via port ops registered function.
931 * .irq_handler = sata_dwc_isr
933 static irqreturn_t
sata_dwc_isr(int irq
, void *dev_instance
)
935 struct ata_host
*host
= (struct ata_host
*)dev_instance
;
936 struct sata_dwc_device
*hsdev
= HSDEV_FROM_HOST(host
);
938 struct ata_queued_cmd
*qc
;
941 int handled
, num_processed
, port
= 0;
942 uint intpr
, sactive
, sactive2
, tag_mask
;
943 struct sata_dwc_device_port
*hsdevp
;
944 host_pvt
.sata_dwc_sactive_issued
= 0;
946 spin_lock_irqsave(&host
->lock
, flags
);
948 /* Read the interrupt register */
949 intpr
= in_le32(&hsdev
->sata_dwc_regs
->intpr
);
951 ap
= host
->ports
[port
];
952 hsdevp
= HSDEVP_FROM_AP(ap
);
954 dev_dbg(ap
->dev
, "%s intpr=0x%08x active_tag=%d\n", __func__
, intpr
,
955 ap
->link
.active_tag
);
957 /* Check for error interrupt */
958 if (intpr
& SATA_DWC_INTPR_ERR
) {
959 sata_dwc_error_intr(ap
, hsdev
, intpr
);
964 /* Check for DMA SETUP FIS (FP DMA) interrupt */
965 if (intpr
& SATA_DWC_INTPR_NEWFP
) {
966 clear_interrupt_bit(hsdev
, SATA_DWC_INTPR_NEWFP
);
968 tag
= (u8
)(in_le32(&hsdev
->sata_dwc_regs
->fptagr
));
969 dev_dbg(ap
->dev
, "%s: NEWFP tag=%d\n", __func__
, tag
);
970 if (hsdevp
->cmd_issued
[tag
] != SATA_DWC_CMD_ISSUED_PEND
)
971 dev_warn(ap
->dev
, "CMD tag=%d not pending?\n", tag
);
973 host_pvt
.sata_dwc_sactive_issued
|= qcmd_tag_to_mask(tag
);
975 qc
= ata_qc_from_tag(ap
, tag
);
977 * Start FP DMA for NCQ command. At this point the tag is the
978 * active tag. It is the tag that matches the command about to
981 qc
->ap
->link
.active_tag
= tag
;
982 sata_dwc_bmdma_start_by_tag(qc
, tag
);
987 sactive
= core_scr_read(SCR_ACTIVE
);
988 tag_mask
= (host_pvt
.sata_dwc_sactive_issued
| sactive
) ^ sactive
;
990 /* If no sactive issued and tag_mask is zero then this is not NCQ */
991 if (host_pvt
.sata_dwc_sactive_issued
== 0 && tag_mask
== 0) {
992 if (ap
->link
.active_tag
== ATA_TAG_POISON
)
995 tag
= ap
->link
.active_tag
;
996 qc
= ata_qc_from_tag(ap
, tag
);
998 /* DEV interrupt w/ no active qc? */
999 if (unlikely(!qc
|| (qc
->tf
.flags
& ATA_TFLAG_POLLING
))) {
1000 dev_err(ap
->dev
, "%s interrupt with no active qc "
1001 "qc=%p\n", __func__
, qc
);
1002 ap
->ops
->sff_check_status(ap
);
1006 status
= ap
->ops
->sff_check_status(ap
);
1008 qc
->ap
->link
.active_tag
= tag
;
1009 hsdevp
->cmd_issued
[tag
] = SATA_DWC_CMD_ISSUED_NOT
;
1011 if (status
& ATA_ERR
) {
1012 dev_dbg(ap
->dev
, "interrupt ATA_ERR (0x%x)\n", status
);
1013 sata_dwc_qc_complete(ap
, qc
, 1);
1018 dev_dbg(ap
->dev
, "%s non-NCQ cmd interrupt, protocol: %s\n",
1019 __func__
, get_prot_descript(qc
->tf
.protocol
));
1021 if (ata_is_dma(qc
->tf
.protocol
)) {
1023 * Each DMA transaction produces 2 interrupts. The DMAC
1024 * transfer complete interrupt and the SATA controller
1025 * operation done interrupt. The command should be
1026 * completed only after both interrupts are seen.
1028 host_pvt
.dma_interrupt_count
++;
1029 if (hsdevp
->dma_pending
[tag
] == \
1030 SATA_DWC_DMA_PENDING_NONE
) {
1031 dev_err(ap
->dev
, "%s: DMA not pending "
1032 "intpr=0x%08x status=0x%08x pending"
1033 "=%d\n", __func__
, intpr
, status
,
1034 hsdevp
->dma_pending
[tag
]);
1037 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
1038 sata_dwc_dma_xfer_complete(ap
, 1);
1039 } else if (ata_is_pio(qc
->tf
.protocol
)) {
1040 ata_sff_hsm_move(ap
, qc
, status
, 0);
1044 if (unlikely(sata_dwc_qc_complete(ap
, qc
, 1)))
1053 * This is a NCQ command. At this point we need to figure out for which
1054 * tags we have gotten a completion interrupt. One interrupt may serve
1055 * as completion for more than one operation when commands are queued
1056 * (NCQ). We need to process each completed command.
1059 /* process completed commands */
1060 sactive
= core_scr_read(SCR_ACTIVE
);
1061 tag_mask
= (host_pvt
.sata_dwc_sactive_issued
| sactive
) ^ sactive
;
1063 if (sactive
!= 0 || (host_pvt
.sata_dwc_sactive_issued
) > 1 || \
1065 dev_dbg(ap
->dev
, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1066 "tag_mask=0x%08x\n", __func__
, sactive
,
1067 host_pvt
.sata_dwc_sactive_issued
, tag_mask
);
1070 if ((tag_mask
| (host_pvt
.sata_dwc_sactive_issued
)) != \
1071 (host_pvt
.sata_dwc_sactive_issued
)) {
1072 dev_warn(ap
->dev
, "Bad tag mask? sactive=0x%08x "
1073 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1074 "=0x%08x\n", sactive
, host_pvt
.sata_dwc_sactive_issued
,
1078 /* read just to clear ... not bad if currently still busy */
1079 status
= ap
->ops
->sff_check_status(ap
);
1080 dev_dbg(ap
->dev
, "%s ATA status register=0x%x\n", __func__
, status
);
1086 while (!(tag_mask
& 0x00000001)) {
1091 tag_mask
&= (~0x00000001);
1092 qc
= ata_qc_from_tag(ap
, tag
);
1094 /* To be picked up by completion functions */
1095 qc
->ap
->link
.active_tag
= tag
;
1096 hsdevp
->cmd_issued
[tag
] = SATA_DWC_CMD_ISSUED_NOT
;
1098 /* Let libata/scsi layers handle error */
1099 if (status
& ATA_ERR
) {
1100 dev_dbg(ap
->dev
, "%s ATA_ERR (0x%x)\n", __func__
,
1102 sata_dwc_qc_complete(ap
, qc
, 1);
1107 /* Process completed command */
1108 dev_dbg(ap
->dev
, "%s NCQ command, protocol: %s\n", __func__
,
1109 get_prot_descript(qc
->tf
.protocol
));
1110 if (ata_is_dma(qc
->tf
.protocol
)) {
1111 host_pvt
.dma_interrupt_count
++;
1112 if (hsdevp
->dma_pending
[tag
] == \
1113 SATA_DWC_DMA_PENDING_NONE
)
1114 dev_warn(ap
->dev
, "%s: DMA not pending?\n",
1116 if ((host_pvt
.dma_interrupt_count
% 2) == 0)
1117 sata_dwc_dma_xfer_complete(ap
, 1);
1119 if (unlikely(sata_dwc_qc_complete(ap
, qc
, 1)))
1125 ap
->stats
.idle_irq
++;
1126 dev_warn(ap
->dev
, "STILL BUSY IRQ ata%d: irq trap\n",
1128 } /* while tag_mask */
1131 * Check to see if any commands completed while we were processing our
1132 * initial set of completed commands (read status clears interrupts,
1133 * so we might miss a completed command interrupt if one came in while
1134 * we were processing --we read status as part of processing a completed
1137 sactive2
= core_scr_read(SCR_ACTIVE
);
1138 if (sactive2
!= sactive
) {
1139 dev_dbg(ap
->dev
, "More completed - sactive=0x%x sactive2"
1140 "=0x%x\n", sactive
, sactive2
);
1145 spin_unlock_irqrestore(&host
->lock
, flags
);
1146 return IRQ_RETVAL(handled
);
1149 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port
*hsdevp
, u8 tag
)
1151 struct sata_dwc_device
*hsdev
= HSDEV_FROM_HSDEVP(hsdevp
);
1153 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_RX
) {
1154 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1155 SATA_DWC_DMACR_RX_CLEAR(
1156 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
))));
1157 } else if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_TX
) {
1158 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1159 SATA_DWC_DMACR_TX_CLEAR(
1160 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
))));
1163 * This should not happen, it indicates the driver is out of
1164 * sync. If it does happen, clear dmacr anyway.
1166 dev_err(host_pvt
.dwc_dev
, "%s DMA protocol RX and"
1167 "TX DMA not pending tag=0x%02x pending=%d"
1168 " dmacr: 0x%08x\n", __func__
, tag
,
1169 hsdevp
->dma_pending
[tag
],
1170 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1171 out_le32(&(hsdev
->sata_dwc_regs
->dmacr
),
1172 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1176 static void sata_dwc_dma_xfer_complete(struct ata_port
*ap
, u32 check_status
)
1178 struct ata_queued_cmd
*qc
;
1179 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1180 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1183 tag
= ap
->link
.active_tag
;
1184 qc
= ata_qc_from_tag(ap
, tag
);
1186 dev_err(ap
->dev
, "failed to get qc");
1192 dev_info(ap
->dev
, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1193 "dmacr=0x%08x\n", __func__
, qc
->tag
, qc
->tf
.command
,
1194 get_dma_dir_descript(qc
->dma_dir
),
1195 get_prot_descript(qc
->tf
.protocol
),
1196 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1200 if (ata_is_dma(qc
->tf
.protocol
)) {
1201 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_NONE
) {
1202 dev_err(ap
->dev
, "%s DMA protocol RX and TX DMA not "
1203 "pending dmacr: 0x%08x\n", __func__
,
1204 in_le32(&(hsdev
->sata_dwc_regs
->dmacr
)));
1207 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_NONE
;
1208 sata_dwc_qc_complete(ap
, qc
, check_status
);
1209 ap
->link
.active_tag
= ATA_TAG_POISON
;
1211 sata_dwc_qc_complete(ap
, qc
, check_status
);
1215 static int sata_dwc_qc_complete(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1221 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1222 host_pvt
.sata_dwc_sactive_queued
= 0;
1223 dev_dbg(ap
->dev
, "%s checkstatus? %x\n", __func__
, check_status
);
1225 if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_TX
)
1226 dev_err(ap
->dev
, "TX DMA PENDING\n");
1227 else if (hsdevp
->dma_pending
[tag
] == SATA_DWC_DMA_PENDING_RX
)
1228 dev_err(ap
->dev
, "RX DMA PENDING\n");
1229 dev_dbg(ap
->dev
, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1230 " protocol=%d\n", qc
->tf
.command
, status
, ap
->print_id
,
1233 /* clear active bit */
1234 mask
= (~(qcmd_tag_to_mask(tag
)));
1235 host_pvt
.sata_dwc_sactive_queued
= (host_pvt
.sata_dwc_sactive_queued
) \
1237 host_pvt
.sata_dwc_sactive_issued
= (host_pvt
.sata_dwc_sactive_issued
) \
1239 ata_qc_complete(qc
);
1243 static void sata_dwc_enable_interrupts(struct sata_dwc_device
*hsdev
)
1245 /* Enable selective interrupts by setting the interrupt maskregister*/
1246 out_le32(&hsdev
->sata_dwc_regs
->intmr
,
1247 SATA_DWC_INTMR_ERRM
|
1248 SATA_DWC_INTMR_NEWFPM
|
1249 SATA_DWC_INTMR_PMABRTM
|
1250 SATA_DWC_INTMR_DMATM
);
1252 * Unmask the error bits that should trigger an error interrupt by
1253 * setting the error mask register.
1255 out_le32(&hsdev
->sata_dwc_regs
->errmr
, SATA_DWC_SERROR_ERR_BITS
);
1257 dev_dbg(host_pvt
.dwc_dev
, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1258 __func__
, in_le32(&hsdev
->sata_dwc_regs
->intmr
),
1259 in_le32(&hsdev
->sata_dwc_regs
->errmr
));
1262 static void sata_dwc_setup_port(struct ata_ioports
*port
, unsigned long base
)
1264 port
->cmd_addr
= (void *)base
+ 0x00;
1265 port
->data_addr
= (void *)base
+ 0x00;
1267 port
->error_addr
= (void *)base
+ 0x04;
1268 port
->feature_addr
= (void *)base
+ 0x04;
1270 port
->nsect_addr
= (void *)base
+ 0x08;
1272 port
->lbal_addr
= (void *)base
+ 0x0c;
1273 port
->lbam_addr
= (void *)base
+ 0x10;
1274 port
->lbah_addr
= (void *)base
+ 0x14;
1276 port
->device_addr
= (void *)base
+ 0x18;
1277 port
->command_addr
= (void *)base
+ 0x1c;
1278 port
->status_addr
= (void *)base
+ 0x1c;
1280 port
->altstatus_addr
= (void *)base
+ 0x20;
1281 port
->ctl_addr
= (void *)base
+ 0x20;
1285 * Function : sata_dwc_port_start
1286 * arguments : struct ata_ioports *port
1287 * Return value : returns 0 if success, error code otherwise
1288 * This function allocates the scatter gather LLI table for AHB DMA
1290 static int sata_dwc_port_start(struct ata_port
*ap
)
1293 struct sata_dwc_device
*hsdev
;
1294 struct sata_dwc_device_port
*hsdevp
= NULL
;
1295 struct device
*pdev
;
1298 hsdev
= HSDEV_FROM_AP(ap
);
1300 dev_dbg(ap
->dev
, "%s: port_no=%d\n", __func__
, ap
->port_no
);
1302 hsdev
->host
= ap
->host
;
1303 pdev
= ap
->host
->dev
;
1305 dev_err(ap
->dev
, "%s: no ap->host->dev\n", __func__
);
1310 /* Allocate Port Struct */
1311 hsdevp
= kzalloc(sizeof(*hsdevp
), GFP_KERNEL
);
1313 dev_err(ap
->dev
, "%s: kmalloc failed for hsdevp\n", __func__
);
1317 hsdevp
->hsdev
= hsdev
;
1319 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++)
1320 hsdevp
->cmd_issued
[i
] = SATA_DWC_CMD_ISSUED_NOT
;
1322 ap
->bmdma_prd
= 0; /* set these so libata doesn't use them */
1323 ap
->bmdma_prd_dma
= 0;
1326 * DMA - Assign scatter gather LLI table. We can't use the libata
1327 * version since it's PRD is IDE PCI specific.
1329 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++) {
1330 hsdevp
->llit
[i
] = dma_alloc_coherent(pdev
,
1331 SATA_DWC_DMAC_LLI_TBL_SZ
,
1332 &(hsdevp
->llit_dma
[i
]),
1334 if (!hsdevp
->llit
[i
]) {
1335 dev_err(ap
->dev
, "%s: dma_alloc_coherent failed\n",
1342 if (ap
->port_no
== 0) {
1343 dev_dbg(ap
->dev
, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1345 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1346 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1348 dev_dbg(ap
->dev
, "%s: setting burst size in DBTSR\n",
1350 out_le32(&hsdev
->sata_dwc_regs
->dbtsr
,
1351 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT
) |
1352 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT
)));
1355 /* Clear any error bits before libata starts issuing commands */
1357 ap
->private_data
= hsdevp
;
1358 dev_dbg(ap
->dev
, "%s: done\n", __func__
);
1364 dev_dbg(ap
->dev
, "%s: fail. ap->id = %d\n", __func__
, ap
->print_id
);
1368 static void sata_dwc_port_stop(struct ata_port
*ap
)
1371 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1372 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1374 dev_dbg(ap
->dev
, "%s: ap->id = %d\n", __func__
, ap
->print_id
);
1376 if (hsdevp
&& hsdev
) {
1377 /* deallocate LLI table */
1378 for (i
= 0; i
< SATA_DWC_QCMD_MAX
; i
++) {
1379 dma_free_coherent(ap
->host
->dev
,
1380 SATA_DWC_DMAC_LLI_TBL_SZ
,
1381 hsdevp
->llit
[i
], hsdevp
->llit_dma
[i
]);
1386 ap
->private_data
= NULL
;
1390 * Function : sata_dwc_exec_command_by_tag
1391 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1392 * Return value : None
1393 * This function keeps track of individual command tag ids and calls
1394 * ata_exec_command in libata
1396 static void sata_dwc_exec_command_by_tag(struct ata_port
*ap
,
1397 struct ata_taskfile
*tf
,
1398 u8 tag
, u32 cmd_issued
)
1400 unsigned long flags
;
1401 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1403 dev_dbg(ap
->dev
, "%s cmd(0x%02x): %s tag=%d\n", __func__
, tf
->command
,
1404 ata_get_cmd_descript(tf
->command
), tag
);
1406 spin_lock_irqsave(&ap
->host
->lock
, flags
);
1407 hsdevp
->cmd_issued
[tag
] = cmd_issued
;
1408 spin_unlock_irqrestore(&ap
->host
->lock
, flags
);
1410 * Clear SError before executing a new command.
1411 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1412 * managed SError register for the disk needs to be done before the
1413 * task file is loaded.
1416 ata_sff_exec_command(ap
, tf
);
1419 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1421 sata_dwc_exec_command_by_tag(qc
->ap
, &qc
->tf
, tag
,
1422 SATA_DWC_CMD_ISSUED_PEND
);
1425 static void sata_dwc_bmdma_setup(struct ata_queued_cmd
*qc
)
1429 if (ata_is_ncq(qc
->tf
.protocol
)) {
1430 dev_dbg(qc
->ap
->dev
, "%s: ap->link.sactive=0x%08x tag=%d\n",
1431 __func__
, qc
->ap
->link
.sactive
, tag
);
1435 sata_dwc_bmdma_setup_by_tag(qc
, tag
);
1438 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1442 struct sata_dwc_device
*hsdev
= HSDEV_FROM_QC(qc
);
1443 struct ata_port
*ap
= qc
->ap
;
1444 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1445 int dir
= qc
->dma_dir
;
1446 dma_chan
= hsdevp
->dma_chan
[tag
];
1448 if (hsdevp
->cmd_issued
[tag
] != SATA_DWC_CMD_ISSUED_NOT
) {
1450 if (dir
== DMA_TO_DEVICE
)
1451 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_TX
;
1453 hsdevp
->dma_pending
[tag
] = SATA_DWC_DMA_PENDING_RX
;
1455 dev_err(ap
->dev
, "%s: Command not pending cmd_issued=%d "
1456 "(tag=%d) DMA NOT started\n", __func__
,
1457 hsdevp
->cmd_issued
[tag
], tag
);
1461 dev_dbg(ap
->dev
, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1462 "start_dma? %x\n", __func__
, qc
, tag
, qc
->tf
.command
,
1463 get_dma_dir_descript(qc
->dma_dir
), start_dma
);
1464 sata_dwc_tf_dump(&(qc
->tf
));
1467 reg
= core_scr_read(SCR_ERROR
);
1468 if (reg
& SATA_DWC_SERROR_ERR_BITS
) {
1469 dev_err(ap
->dev
, "%s: ****** SError=0x%08x ******\n",
1473 if (dir
== DMA_TO_DEVICE
)
1474 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1475 SATA_DWC_DMACR_TXCHEN
);
1477 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1478 SATA_DWC_DMACR_RXCHEN
);
1480 /* Enable AHB DMA transfer on the specified channel */
1481 dma_dwc_xfer_start(dma_chan
);
1485 static void sata_dwc_bmdma_start(struct ata_queued_cmd
*qc
)
1489 if (ata_is_ncq(qc
->tf
.protocol
)) {
1490 dev_dbg(qc
->ap
->dev
, "%s: ap->link.sactive=0x%08x tag=%d\n",
1491 __func__
, qc
->ap
->link
.sactive
, tag
);
1495 dev_dbg(qc
->ap
->dev
, "%s\n", __func__
);
1496 sata_dwc_bmdma_start_by_tag(qc
, tag
);
1500 * Function : sata_dwc_qc_prep_by_tag
1501 * arguments : ata_queued_cmd *qc, u8 tag
1502 * Return value : None
1503 * qc_prep for a particular queued command based on tag
1505 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd
*qc
, u8 tag
)
1507 struct scatterlist
*sg
= qc
->sg
;
1508 struct ata_port
*ap
= qc
->ap
;
1510 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(ap
);
1511 struct sata_dwc_device_port
*hsdevp
= HSDEVP_FROM_AP(ap
);
1513 dev_dbg(ap
->dev
, "%s: port=%d dma dir=%s n_elem=%d\n",
1514 __func__
, ap
->port_no
, get_dma_dir_descript(qc
->dma_dir
),
1517 dma_chan
= dma_dwc_xfer_setup(sg
, qc
->n_elem
, hsdevp
->llit
[tag
],
1518 hsdevp
->llit_dma
[tag
],
1519 (void *__iomem
)(&hsdev
->sata_dwc_regs
->\
1520 dmadr
), qc
->dma_dir
);
1522 dev_err(ap
->dev
, "%s: dma_dwc_xfer_setup returns err %d\n",
1523 __func__
, dma_chan
);
1526 hsdevp
->dma_chan
[tag
] = dma_chan
;
1529 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd
*qc
)
1533 struct ata_port
*ap
= qc
->ap
;
1536 if (qc
->tag
> 0 || ap
->link
.sactive
> 1)
1537 dev_info(ap
->dev
, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1538 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1539 __func__
, ap
->print_id
, qc
->tf
.command
,
1540 ata_get_cmd_descript(qc
->tf
.command
),
1541 qc
->tag
, get_prot_descript(qc
->tf
.protocol
),
1542 ap
->link
.active_tag
, ap
->link
.sactive
);
1545 if (!ata_is_ncq(qc
->tf
.protocol
))
1547 sata_dwc_qc_prep_by_tag(qc
, tag
);
1549 if (ata_is_ncq(qc
->tf
.protocol
)) {
1550 sactive
= core_scr_read(SCR_ACTIVE
);
1551 sactive
|= (0x00000001 << tag
);
1552 core_scr_write(SCR_ACTIVE
, sactive
);
1554 dev_dbg(qc
->ap
->dev
, "%s: tag=%d ap->link.sactive = 0x%08x "
1555 "sactive=0x%08x\n", __func__
, tag
, qc
->ap
->link
.sactive
,
1558 ap
->ops
->sff_tf_load(ap
, &qc
->tf
);
1559 sata_dwc_exec_command_by_tag(ap
, &qc
->tf
, qc
->tag
,
1560 SATA_DWC_CMD_ISSUED_PEND
);
1562 ata_sff_qc_issue(qc
);
1568 * Function : sata_dwc_qc_prep
1569 * arguments : ata_queued_cmd *qc
1570 * Return value : None
1571 * qc_prep for a particular queued command
1574 static void sata_dwc_qc_prep(struct ata_queued_cmd
*qc
)
1576 if ((qc
->dma_dir
== DMA_NONE
) || (qc
->tf
.protocol
== ATA_PROT_PIO
))
1581 dev_info(qc
->ap
->dev
, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1582 __func__
, qc
->tag
, qc
->ap
->link
.active_tag
);
1588 static void sata_dwc_error_handler(struct ata_port
*ap
)
1590 ata_sff_error_handler(ap
);
1593 int sata_dwc_hardreset(struct ata_link
*link
, unsigned int *class,
1594 unsigned long deadline
)
1596 struct sata_dwc_device
*hsdev
= HSDEV_FROM_AP(link
->ap
);
1599 ret
= sata_sff_hardreset(link
, class, deadline
);
1601 sata_dwc_enable_interrupts(hsdev
);
1603 /* Reconfigure the DMA control register */
1604 out_le32(&hsdev
->sata_dwc_regs
->dmacr
,
1605 SATA_DWC_DMACR_TXRXCH_CLEAR
);
1607 /* Reconfigure the DMA Burst Transaction Size register */
1608 out_le32(&hsdev
->sata_dwc_regs
->dbtsr
,
1609 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT
) |
1610 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT
));
1616 * scsi mid-layer and libata interface structures
1618 static struct scsi_host_template sata_dwc_sht
= {
1619 ATA_NCQ_SHT(DRV_NAME
),
1621 * test-only: Currently this driver doesn't handle NCQ
1622 * correctly. We enable NCQ but set the queue depth to a
1623 * max of 1. This will get fixed in in a future release.
1625 .sg_tablesize
= LIBATA_MAX_PRD
,
1626 .can_queue
= ATA_DEF_QUEUE
, /* ATA_MAX_QUEUE */
1627 .dma_boundary
= ATA_DMA_BOUNDARY
,
1630 static struct ata_port_operations sata_dwc_ops
= {
1631 .inherits
= &ata_sff_port_ops
,
1633 .error_handler
= sata_dwc_error_handler
,
1634 .hardreset
= sata_dwc_hardreset
,
1636 .qc_prep
= sata_dwc_qc_prep
,
1637 .qc_issue
= sata_dwc_qc_issue
,
1639 .scr_read
= sata_dwc_scr_read
,
1640 .scr_write
= sata_dwc_scr_write
,
1642 .port_start
= sata_dwc_port_start
,
1643 .port_stop
= sata_dwc_port_stop
,
1645 .bmdma_setup
= sata_dwc_bmdma_setup
,
1646 .bmdma_start
= sata_dwc_bmdma_start
,
1649 static const struct ata_port_info sata_dwc_port_info
[] = {
1651 .flags
= ATA_FLAG_SATA
| ATA_FLAG_NCQ
,
1652 .pio_mask
= ATA_PIO4
,
1653 .udma_mask
= ATA_UDMA6
,
1654 .port_ops
= &sata_dwc_ops
,
1658 static int sata_dwc_probe(struct platform_device
*ofdev
)
1660 struct sata_dwc_device
*hsdev
;
1662 char *ver
= (char *)&versionr
;
1666 struct ata_host
*host
;
1667 struct ata_port_info pi
= sata_dwc_port_info
[0];
1668 const struct ata_port_info
*ppi
[] = { &pi
, NULL
};
1669 struct device_node
*np
= ofdev
->dev
.of_node
;
1672 /* Allocate DWC SATA device */
1673 hsdev
= kzalloc(sizeof(*hsdev
), GFP_KERNEL
);
1674 if (hsdev
== NULL
) {
1675 dev_err(&ofdev
->dev
, "kmalloc failed for hsdev\n");
1680 if (of_property_read_u32(np
, "dma-channel", &dma_chan
)) {
1681 dev_warn(&ofdev
->dev
, "no dma-channel property set."
1682 " Use channel 0\n");
1685 host_pvt
.dma_channel
= dma_chan
;
1687 /* Ioremap SATA registers */
1688 base
= of_iomap(ofdev
->dev
.of_node
, 0);
1690 dev_err(&ofdev
->dev
, "ioremap failed for SATA register"
1695 hsdev
->reg_base
= base
;
1696 dev_dbg(&ofdev
->dev
, "ioremap done for SATA register address\n");
1698 /* Synopsys DWC SATA specific Registers */
1699 hsdev
->sata_dwc_regs
= (void *__iomem
)(base
+ SATA_DWC_REG_OFFSET
);
1701 /* Allocate and fill host */
1702 host
= ata_host_alloc_pinfo(&ofdev
->dev
, ppi
, SATA_DWC_MAX_PORTS
);
1704 dev_err(&ofdev
->dev
, "ata_host_alloc_pinfo failed\n");
1709 host
->private_data
= hsdev
;
1712 host
->ports
[0]->ioaddr
.cmd_addr
= base
;
1713 host
->ports
[0]->ioaddr
.scr_addr
= base
+ SATA_DWC_SCR_OFFSET
;
1714 host_pvt
.scr_addr_sstatus
= base
+ SATA_DWC_SCR_OFFSET
;
1715 sata_dwc_setup_port(&host
->ports
[0]->ioaddr
, (unsigned long)base
);
1717 /* Read the ID and Version Registers */
1718 idr
= in_le32(&hsdev
->sata_dwc_regs
->idr
);
1719 versionr
= in_le32(&hsdev
->sata_dwc_regs
->versionr
);
1720 dev_notice(&ofdev
->dev
, "id %d, controller version %c.%c%c\n",
1721 idr
, ver
[0], ver
[1], ver
[2]);
1723 /* Get SATA DMA interrupt number */
1724 irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 1);
1725 if (irq
== NO_IRQ
) {
1726 dev_err(&ofdev
->dev
, "no SATA DMA irq\n");
1731 /* Get physical SATA DMA register base address */
1732 host_pvt
.sata_dma_regs
= of_iomap(ofdev
->dev
.of_node
, 1);
1733 if (!(host_pvt
.sata_dma_regs
)) {
1734 dev_err(&ofdev
->dev
, "ioremap failed for AHBDMA register"
1740 /* Save dev for later use in dev_xxx() routines */
1741 host_pvt
.dwc_dev
= &ofdev
->dev
;
1743 /* Initialize AHB DMAC */
1744 dma_dwc_init(hsdev
, irq
);
1746 /* Enable SATA Interrupts */
1747 sata_dwc_enable_interrupts(hsdev
);
1749 /* Get SATA interrupt number */
1750 irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 0);
1751 if (irq
== NO_IRQ
) {
1752 dev_err(&ofdev
->dev
, "no SATA DMA irq\n");
1758 * Now, register with libATA core, this will also initiate the
1759 * device discovery process, invoking our port_start() handler &
1760 * error_handler() to execute a dummy Softreset EH session
1762 rc
= ata_host_activate(host
, irq
, sata_dwc_isr
, 0, &sata_dwc_sht
);
1765 dev_err(&ofdev
->dev
, "failed to activate host");
1767 dev_set_drvdata(&ofdev
->dev
, host
);
1771 /* Free SATA DMA resources */
1772 dma_dwc_exit(hsdev
);
1782 static int sata_dwc_remove(struct platform_device
*ofdev
)
1784 struct device
*dev
= &ofdev
->dev
;
1785 struct ata_host
*host
= dev_get_drvdata(dev
);
1786 struct sata_dwc_device
*hsdev
= host
->private_data
;
1788 ata_host_detach(host
);
1789 dev_set_drvdata(dev
, NULL
);
1791 /* Free SATA DMA resources */
1792 dma_dwc_exit(hsdev
);
1794 iounmap(hsdev
->reg_base
);
1797 dev_dbg(&ofdev
->dev
, "done\n");
1801 static const struct of_device_id sata_dwc_match
[] = {
1802 { .compatible
= "amcc,sata-460ex", },
1805 MODULE_DEVICE_TABLE(of
, sata_dwc_match
);
1807 static struct platform_driver sata_dwc_driver
= {
1810 .owner
= THIS_MODULE
,
1811 .of_match_table
= sata_dwc_match
,
1813 .probe
= sata_dwc_probe
,
1814 .remove
= sata_dwc_remove
,
1817 module_platform_driver(sata_dwc_driver
);
1819 MODULE_LICENSE("GPL");
1820 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1821 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1822 MODULE_VERSION(DRV_VERSION
);