2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/pinctrl/consumer.h>
31 #include <linux/of_device.h>
32 #include <linux/of_mtd.h>
33 #include "gpmi-nand.h"
35 /* Resource names for the GPMI NAND driver. */
36 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
37 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
38 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
40 /* add our owner bbt descriptor */
41 static uint8_t scan_ff_pattern
[] = { 0xff };
42 static struct nand_bbt_descr gpmi_bbt_descr
= {
46 .pattern
= scan_ff_pattern
49 /* We will use all the (page + OOB). */
50 static struct nand_ecclayout gpmi_hw_ecclayout
= {
53 .oobfree
= { {.offset
= 0, .length
= 0} }
56 static irqreturn_t
bch_irq(int irq
, void *cookie
)
58 struct gpmi_nand_data
*this = cookie
;
61 complete(&this->bch_done
);
66 * Calculate the ECC strength by hand:
67 * E : The ECC strength.
68 * G : the length of Galois Field.
69 * N : The chunk count of per page.
70 * O : the oobsize of the NAND chip.
71 * M : the metasize of per page.
75 * ------------ <= (O - M)
83 static inline int get_ecc_strength(struct gpmi_nand_data
*this)
85 struct bch_geometry
*geo
= &this->bch_geometry
;
86 struct mtd_info
*mtd
= &this->mtd
;
89 ecc_strength
= ((mtd
->oobsize
- geo
->metadata_size
) * 8)
90 / (geo
->gf_len
* geo
->ecc_chunk_count
);
92 /* We need the minor even number. */
93 return round_down(ecc_strength
, 2);
96 static inline bool gpmi_check_ecc(struct gpmi_nand_data
*this)
98 struct bch_geometry
*geo
= &this->bch_geometry
;
100 /* Do the sanity check. */
101 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
102 /* The mx23/mx28 only support the GF13. */
103 if (geo
->gf_len
== 14)
106 if (geo
->ecc_strength
> MXS_ECC_STRENGTH_MAX
)
108 } else if (GPMI_IS_MX6Q(this)) {
109 if (geo
->ecc_strength
> MX6_ECC_STRENGTH_MAX
)
115 int common_nfc_set_geometry(struct gpmi_nand_data
*this)
117 struct bch_geometry
*geo
= &this->bch_geometry
;
118 struct mtd_info
*mtd
= &this->mtd
;
119 unsigned int metadata_size
;
120 unsigned int status_size
;
121 unsigned int block_mark_bit_offset
;
124 * The size of the metadata can be changed, though we set it to 10
125 * bytes now. But it can't be too large, because we have to save
126 * enough space for BCH.
128 geo
->metadata_size
= 10;
130 /* The default for the length of Galois Field. */
133 /* The default for chunk size. */
134 geo
->ecc_chunk_size
= 512;
135 while (geo
->ecc_chunk_size
< mtd
->oobsize
) {
136 geo
->ecc_chunk_size
*= 2; /* keep C >= O */
140 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
142 /* We use the same ECC strength for all chunks. */
143 geo
->ecc_strength
= get_ecc_strength(this);
144 if (!gpmi_check_ecc(this)) {
146 "We can not support this nand chip."
147 " Its required ecc strength(%d) is beyond our"
148 " capability(%d).\n", geo
->ecc_strength
,
149 (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
150 : MXS_ECC_STRENGTH_MAX
));
154 geo
->page_size
= mtd
->writesize
+ mtd
->oobsize
;
155 geo
->payload_size
= mtd
->writesize
;
158 * The auxiliary buffer contains the metadata and the ECC status. The
159 * metadata is padded to the nearest 32-bit boundary. The ECC status
160 * contains one byte for every ECC chunk, and is also padded to the
161 * nearest 32-bit boundary.
163 metadata_size
= ALIGN(geo
->metadata_size
, 4);
164 status_size
= ALIGN(geo
->ecc_chunk_count
, 4);
166 geo
->auxiliary_size
= metadata_size
+ status_size
;
167 geo
->auxiliary_status_offset
= metadata_size
;
169 if (!this->swap_block_mark
)
173 * We need to compute the byte and bit offsets of
174 * the physical block mark within the ECC-based view of the page.
176 * NAND chip with 2K page shows below:
182 * +---+----------+-+----------+-+----------+-+----------+-+
183 * | M | data |E| data |E| data |E| data |E|
184 * +---+----------+-+----------+-+----------+-+----------+-+
186 * The position of block mark moves forward in the ECC-based view
187 * of page, and the delta is:
190 * D = (---------------- + M)
193 * With the formula to compute the ECC strength, and the condition
194 * : C >= O (C is the ecc chunk size)
196 * It's easy to deduce to the following result:
198 * E * G (O - M) C - M C - M
199 * ----------- <= ------- <= -------- < ---------
205 * D = (---------------- + M) < C
208 * The above inequality means the position of block mark
209 * within the ECC-based view of the page is still in the data chunk,
210 * and it's NOT in the ECC bits of the chunk.
212 * Use the following to compute the bit position of the
213 * physical block mark within the ECC-based view of the page:
214 * (page_size - D) * 8
218 block_mark_bit_offset
= mtd
->writesize
* 8 -
219 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
220 + geo
->metadata_size
* 8);
222 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
223 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
227 struct dma_chan
*get_dma_chan(struct gpmi_nand_data
*this)
229 int chipnr
= this->current_chip
;
231 return this->dma_chans
[chipnr
];
234 /* Can we use the upper's buffer directly for DMA? */
235 void prepare_data_dma(struct gpmi_nand_data
*this, enum dma_data_direction dr
)
237 struct scatterlist
*sgl
= &this->data_sgl
;
240 this->direct_dma_map_ok
= true;
242 /* first try to map the upper buffer directly */
243 sg_init_one(sgl
, this->upper_buf
, this->upper_len
);
244 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
246 /* We have to use our own DMA buffer. */
247 sg_init_one(sgl
, this->data_buffer_dma
, PAGE_SIZE
);
249 if (dr
== DMA_TO_DEVICE
)
250 memcpy(this->data_buffer_dma
, this->upper_buf
,
253 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
255 pr_err("DMA mapping failed.\n");
257 this->direct_dma_map_ok
= false;
261 /* This will be called after the DMA operation is finished. */
262 static void dma_irq_callback(void *param
)
264 struct gpmi_nand_data
*this = param
;
265 struct completion
*dma_c
= &this->dma_done
;
269 switch (this->dma_type
) {
270 case DMA_FOR_COMMAND
:
271 dma_unmap_sg(this->dev
, &this->cmd_sgl
, 1, DMA_TO_DEVICE
);
274 case DMA_FOR_READ_DATA
:
275 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_FROM_DEVICE
);
276 if (this->direct_dma_map_ok
== false)
277 memcpy(this->upper_buf
, this->data_buffer_dma
,
281 case DMA_FOR_WRITE_DATA
:
282 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_TO_DEVICE
);
285 case DMA_FOR_READ_ECC_PAGE
:
286 case DMA_FOR_WRITE_ECC_PAGE
:
287 /* We have to wait the BCH interrupt to finish. */
291 pr_err("in wrong DMA operation.\n");
295 int start_dma_without_bch_irq(struct gpmi_nand_data
*this,
296 struct dma_async_tx_descriptor
*desc
)
298 struct completion
*dma_c
= &this->dma_done
;
301 init_completion(dma_c
);
303 desc
->callback
= dma_irq_callback
;
304 desc
->callback_param
= this;
305 dmaengine_submit(desc
);
306 dma_async_issue_pending(get_dma_chan(this));
308 /* Wait for the interrupt from the DMA block. */
309 err
= wait_for_completion_timeout(dma_c
, msecs_to_jiffies(1000));
311 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type
);
312 gpmi_dump_info(this);
319 * This function is used in BCH reading or BCH writing pages.
320 * It will wait for the BCH interrupt as long as ONE second.
321 * Actually, we must wait for two interrupts :
322 * [1] firstly the DMA interrupt and
323 * [2] secondly the BCH interrupt.
325 int start_dma_with_bch_irq(struct gpmi_nand_data
*this,
326 struct dma_async_tx_descriptor
*desc
)
328 struct completion
*bch_c
= &this->bch_done
;
331 /* Prepare to receive an interrupt from the BCH block. */
332 init_completion(bch_c
);
335 start_dma_without_bch_irq(this, desc
);
337 /* Wait for the interrupt from the BCH block. */
338 err
= wait_for_completion_timeout(bch_c
, msecs_to_jiffies(1000));
340 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type
);
341 gpmi_dump_info(this);
347 static int acquire_register_block(struct gpmi_nand_data
*this,
348 const char *res_name
)
350 struct platform_device
*pdev
= this->pdev
;
351 struct resources
*res
= &this->resources
;
355 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, res_name
);
357 pr_err("Can't get resource for %s\n", res_name
);
361 p
= ioremap(r
->start
, resource_size(r
));
363 pr_err("Can't remap %s\n", res_name
);
367 if (!strcmp(res_name
, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
))
369 else if (!strcmp(res_name
, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
))
372 pr_err("unknown resource name : %s\n", res_name
);
377 static void release_register_block(struct gpmi_nand_data
*this)
379 struct resources
*res
= &this->resources
;
381 iounmap(res
->gpmi_regs
);
383 iounmap(res
->bch_regs
);
384 res
->gpmi_regs
= NULL
;
385 res
->bch_regs
= NULL
;
388 static int acquire_bch_irq(struct gpmi_nand_data
*this, irq_handler_t irq_h
)
390 struct platform_device
*pdev
= this->pdev
;
391 struct resources
*res
= &this->resources
;
392 const char *res_name
= GPMI_NAND_BCH_INTERRUPT_RES_NAME
;
396 r
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
, res_name
);
398 pr_err("Can't get resource for %s\n", res_name
);
402 err
= request_irq(r
->start
, irq_h
, 0, res_name
, this);
404 pr_err("Can't own %s\n", res_name
);
408 res
->bch_low_interrupt
= r
->start
;
409 res
->bch_high_interrupt
= r
->end
;
413 static void release_bch_irq(struct gpmi_nand_data
*this)
415 struct resources
*res
= &this->resources
;
416 int i
= res
->bch_low_interrupt
;
418 for (; i
<= res
->bch_high_interrupt
; i
++)
422 static void release_dma_channels(struct gpmi_nand_data
*this)
425 for (i
= 0; i
< DMA_CHANS
; i
++)
426 if (this->dma_chans
[i
]) {
427 dma_release_channel(this->dma_chans
[i
]);
428 this->dma_chans
[i
] = NULL
;
432 static int acquire_dma_channels(struct gpmi_nand_data
*this)
434 struct platform_device
*pdev
= this->pdev
;
435 struct dma_chan
*dma_chan
;
437 /* request dma channel */
438 dma_chan
= dma_request_slave_channel(&pdev
->dev
, "rx-tx");
440 pr_err("Failed to request DMA channel.\n");
444 this->dma_chans
[0] = dma_chan
;
448 release_dma_channels(this);
452 static void gpmi_put_clks(struct gpmi_nand_data
*this)
454 struct resources
*r
= &this->resources
;
458 for (i
= 0; i
< GPMI_CLK_MAX
; i
++) {
467 static char *extra_clks_for_mx6q
[GPMI_CLK_MAX
] = {
468 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
471 static int gpmi_get_clks(struct gpmi_nand_data
*this)
473 struct resources
*r
= &this->resources
;
474 char **extra_clks
= NULL
;
478 /* The main clock is stored in the first. */
479 r
->clock
[0] = clk_get(this->dev
, "gpmi_io");
480 if (IS_ERR(r
->clock
[0]))
483 /* Get extra clocks */
484 if (GPMI_IS_MX6Q(this))
485 extra_clks
= extra_clks_for_mx6q
;
489 for (i
= 1; i
< GPMI_CLK_MAX
; i
++) {
490 if (extra_clks
[i
- 1] == NULL
)
493 clk
= clk_get(this->dev
, extra_clks
[i
- 1]);
500 if (GPMI_IS_MX6Q(this))
502 * Set the default value for the gpmi clock in mx6q:
504 * If you want to use the ONFI nand which is in the
505 * Synchronous Mode, you should change the clock as you need.
507 clk_set_rate(r
->clock
[0], 22000000);
512 dev_dbg(this->dev
, "failed in finding the clocks.\n");
517 static int acquire_resources(struct gpmi_nand_data
*this)
519 struct pinctrl
*pinctrl
;
522 ret
= acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
);
526 ret
= acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
);
530 ret
= acquire_bch_irq(this, bch_irq
);
534 ret
= acquire_dma_channels(this);
536 goto exit_dma_channels
;
538 pinctrl
= devm_pinctrl_get_select_default(&this->pdev
->dev
);
539 if (IS_ERR(pinctrl
)) {
540 ret
= PTR_ERR(pinctrl
);
544 ret
= gpmi_get_clks(this);
551 release_dma_channels(this);
553 release_bch_irq(this);
555 release_register_block(this);
559 static void release_resources(struct gpmi_nand_data
*this)
562 release_register_block(this);
563 release_bch_irq(this);
564 release_dma_channels(this);
567 static int init_hardware(struct gpmi_nand_data
*this)
572 * This structure contains the "safe" GPMI timing that should succeed
573 * with any NAND Flash device
574 * (although, with less-than-optimal performance).
576 struct nand_timing safe_timing
= {
577 .data_setup_in_ns
= 80,
578 .data_hold_in_ns
= 60,
579 .address_setup_in_ns
= 25,
580 .gpmi_sample_delay_in_ns
= 6,
586 /* Initialize the hardwares. */
587 ret
= gpmi_init(this);
591 this->timing
= safe_timing
;
595 static int read_page_prepare(struct gpmi_nand_data
*this,
596 void *destination
, unsigned length
,
597 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
598 void **use_virt
, dma_addr_t
*use_phys
)
600 struct device
*dev
= this->dev
;
602 if (virt_addr_valid(destination
)) {
603 dma_addr_t dest_phys
;
605 dest_phys
= dma_map_single(dev
, destination
,
606 length
, DMA_FROM_DEVICE
);
607 if (dma_mapping_error(dev
, dest_phys
)) {
608 if (alt_size
< length
) {
609 pr_err("%s, Alternate buffer is too small\n",
615 *use_virt
= destination
;
616 *use_phys
= dest_phys
;
617 this->direct_dma_map_ok
= true;
622 *use_virt
= alt_virt
;
623 *use_phys
= alt_phys
;
624 this->direct_dma_map_ok
= false;
628 static inline void read_page_end(struct gpmi_nand_data
*this,
629 void *destination
, unsigned length
,
630 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
631 void *used_virt
, dma_addr_t used_phys
)
633 if (this->direct_dma_map_ok
)
634 dma_unmap_single(this->dev
, used_phys
, length
, DMA_FROM_DEVICE
);
637 static inline void read_page_swap_end(struct gpmi_nand_data
*this,
638 void *destination
, unsigned length
,
639 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
640 void *used_virt
, dma_addr_t used_phys
)
642 if (!this->direct_dma_map_ok
)
643 memcpy(destination
, alt_virt
, length
);
646 static int send_page_prepare(struct gpmi_nand_data
*this,
647 const void *source
, unsigned length
,
648 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
649 const void **use_virt
, dma_addr_t
*use_phys
)
651 struct device
*dev
= this->dev
;
653 if (virt_addr_valid(source
)) {
654 dma_addr_t source_phys
;
656 source_phys
= dma_map_single(dev
, (void *)source
, length
,
658 if (dma_mapping_error(dev
, source_phys
)) {
659 if (alt_size
< length
) {
660 pr_err("%s, Alternate buffer is too small\n",
667 *use_phys
= source_phys
;
672 * Copy the content of the source buffer into the alternate
673 * buffer and set up the return values accordingly.
675 memcpy(alt_virt
, source
, length
);
677 *use_virt
= alt_virt
;
678 *use_phys
= alt_phys
;
682 static void send_page_end(struct gpmi_nand_data
*this,
683 const void *source
, unsigned length
,
684 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
685 const void *used_virt
, dma_addr_t used_phys
)
687 struct device
*dev
= this->dev
;
688 if (used_virt
== source
)
689 dma_unmap_single(dev
, used_phys
, length
, DMA_TO_DEVICE
);
692 static void gpmi_free_dma_buffer(struct gpmi_nand_data
*this)
694 struct device
*dev
= this->dev
;
696 if (this->page_buffer_virt
&& virt_addr_valid(this->page_buffer_virt
))
697 dma_free_coherent(dev
, this->page_buffer_size
,
698 this->page_buffer_virt
,
699 this->page_buffer_phys
);
700 kfree(this->cmd_buffer
);
701 kfree(this->data_buffer_dma
);
703 this->cmd_buffer
= NULL
;
704 this->data_buffer_dma
= NULL
;
705 this->page_buffer_virt
= NULL
;
706 this->page_buffer_size
= 0;
709 /* Allocate the DMA buffers */
710 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data
*this)
712 struct bch_geometry
*geo
= &this->bch_geometry
;
713 struct device
*dev
= this->dev
;
715 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
716 this->cmd_buffer
= kzalloc(PAGE_SIZE
, GFP_DMA
| GFP_KERNEL
);
717 if (this->cmd_buffer
== NULL
)
720 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
721 this->data_buffer_dma
= kzalloc(PAGE_SIZE
, GFP_DMA
| GFP_KERNEL
);
722 if (this->data_buffer_dma
== NULL
)
726 * [3] Allocate the page buffer.
728 * Both the payload buffer and the auxiliary buffer must appear on
729 * 32-bit boundaries. We presume the size of the payload buffer is a
730 * power of two and is much larger than four, which guarantees the
731 * auxiliary buffer will appear on a 32-bit boundary.
733 this->page_buffer_size
= geo
->payload_size
+ geo
->auxiliary_size
;
734 this->page_buffer_virt
= dma_alloc_coherent(dev
, this->page_buffer_size
,
735 &this->page_buffer_phys
, GFP_DMA
);
736 if (!this->page_buffer_virt
)
740 /* Slice up the page buffer. */
741 this->payload_virt
= this->page_buffer_virt
;
742 this->payload_phys
= this->page_buffer_phys
;
743 this->auxiliary_virt
= this->payload_virt
+ geo
->payload_size
;
744 this->auxiliary_phys
= this->payload_phys
+ geo
->payload_size
;
748 gpmi_free_dma_buffer(this);
749 pr_err("Error allocating DMA buffers!\n");
753 static void gpmi_cmd_ctrl(struct mtd_info
*mtd
, int data
, unsigned int ctrl
)
755 struct nand_chip
*chip
= mtd
->priv
;
756 struct gpmi_nand_data
*this = chip
->priv
;
760 * Every operation begins with a command byte and a series of zero or
761 * more address bytes. These are distinguished by either the Address
762 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
763 * asserted. When MTD is ready to execute the command, it will deassert
764 * both latch enables.
766 * Rather than run a separate DMA operation for every single byte, we
767 * queue them up and run a single DMA operation for the entire series
768 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
770 if ((ctrl
& (NAND_ALE
| NAND_CLE
))) {
771 if (data
!= NAND_CMD_NONE
)
772 this->cmd_buffer
[this->command_length
++] = data
;
776 if (!this->command_length
)
779 ret
= gpmi_send_command(this);
781 pr_err("Chip: %u, Error %d\n", this->current_chip
, ret
);
783 this->command_length
= 0;
786 static int gpmi_dev_ready(struct mtd_info
*mtd
)
788 struct nand_chip
*chip
= mtd
->priv
;
789 struct gpmi_nand_data
*this = chip
->priv
;
791 return gpmi_is_ready(this, this->current_chip
);
794 static void gpmi_select_chip(struct mtd_info
*mtd
, int chipnr
)
796 struct nand_chip
*chip
= mtd
->priv
;
797 struct gpmi_nand_data
*this = chip
->priv
;
799 if ((this->current_chip
< 0) && (chipnr
>= 0))
801 else if ((this->current_chip
>= 0) && (chipnr
< 0))
804 this->current_chip
= chipnr
;
807 static void gpmi_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
809 struct nand_chip
*chip
= mtd
->priv
;
810 struct gpmi_nand_data
*this = chip
->priv
;
812 pr_debug("len is %d\n", len
);
813 this->upper_buf
= buf
;
814 this->upper_len
= len
;
816 gpmi_read_data(this);
819 static void gpmi_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
821 struct nand_chip
*chip
= mtd
->priv
;
822 struct gpmi_nand_data
*this = chip
->priv
;
824 pr_debug("len is %d\n", len
);
825 this->upper_buf
= (uint8_t *)buf
;
826 this->upper_len
= len
;
828 gpmi_send_data(this);
831 static uint8_t gpmi_read_byte(struct mtd_info
*mtd
)
833 struct nand_chip
*chip
= mtd
->priv
;
834 struct gpmi_nand_data
*this = chip
->priv
;
835 uint8_t *buf
= this->data_buffer_dma
;
837 gpmi_read_buf(mtd
, buf
, 1);
842 * Handles block mark swapping.
843 * It can be called in swapping the block mark, or swapping it back,
844 * because the the operations are the same.
846 static void block_mark_swapping(struct gpmi_nand_data
*this,
847 void *payload
, void *auxiliary
)
849 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
854 unsigned char from_data
;
855 unsigned char from_oob
;
857 if (!this->swap_block_mark
)
861 * If control arrives here, we're swapping. Make some convenience
864 bit
= nfc_geo
->block_mark_bit_offset
;
865 p
= payload
+ nfc_geo
->block_mark_byte_offset
;
869 * Get the byte from the data area that overlays the block mark. Since
870 * the ECC engine applies its own view to the bits in the page, the
871 * physical block mark won't (in general) appear on a byte boundary in
874 from_data
= (p
[0] >> bit
) | (p
[1] << (8 - bit
));
876 /* Get the byte from the OOB. */
882 mask
= (0x1 << bit
) - 1;
883 p
[0] = (p
[0] & mask
) | (from_oob
<< bit
);
886 p
[1] = (p
[1] & mask
) | (from_oob
>> (8 - bit
));
889 static int gpmi_ecc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
890 uint8_t *buf
, int oob_required
, int page
)
892 struct gpmi_nand_data
*this = chip
->priv
;
893 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
895 dma_addr_t payload_phys
;
896 void *auxiliary_virt
;
897 dma_addr_t auxiliary_phys
;
899 unsigned char *status
;
900 unsigned int max_bitflips
= 0;
903 pr_debug("page number is : %d\n", page
);
904 ret
= read_page_prepare(this, buf
, mtd
->writesize
,
905 this->payload_virt
, this->payload_phys
,
906 nfc_geo
->payload_size
,
907 &payload_virt
, &payload_phys
);
909 pr_err("Inadequate DMA buffer\n");
913 auxiliary_virt
= this->auxiliary_virt
;
914 auxiliary_phys
= this->auxiliary_phys
;
917 ret
= gpmi_read_page(this, payload_phys
, auxiliary_phys
);
918 read_page_end(this, buf
, mtd
->writesize
,
919 this->payload_virt
, this->payload_phys
,
920 nfc_geo
->payload_size
,
921 payload_virt
, payload_phys
);
923 pr_err("Error in ECC-based read: %d\n", ret
);
927 /* handle the block mark swapping */
928 block_mark_swapping(this, payload_virt
, auxiliary_virt
);
930 /* Loop over status bytes, accumulating ECC status. */
931 status
= auxiliary_virt
+ nfc_geo
->auxiliary_status_offset
;
933 for (i
= 0; i
< nfc_geo
->ecc_chunk_count
; i
++, status
++) {
934 if ((*status
== STATUS_GOOD
) || (*status
== STATUS_ERASED
))
937 if (*status
== STATUS_UNCORRECTABLE
) {
938 mtd
->ecc_stats
.failed
++;
941 mtd
->ecc_stats
.corrected
+= *status
;
942 max_bitflips
= max_t(unsigned int, max_bitflips
, *status
);
947 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
948 * for details about our policy for delivering the OOB.
950 * We fill the caller's buffer with set bits, and then copy the
951 * block mark to th caller's buffer. Note that, if block mark
952 * swapping was necessary, it has already been done, so we can
953 * rely on the first byte of the auxiliary buffer to contain
956 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
957 chip
->oob_poi
[0] = ((uint8_t *) auxiliary_virt
)[0];
960 read_page_swap_end(this, buf
, mtd
->writesize
,
961 this->payload_virt
, this->payload_phys
,
962 nfc_geo
->payload_size
,
963 payload_virt
, payload_phys
);
968 static int gpmi_ecc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
969 const uint8_t *buf
, int oob_required
)
971 struct gpmi_nand_data
*this = chip
->priv
;
972 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
973 const void *payload_virt
;
974 dma_addr_t payload_phys
;
975 const void *auxiliary_virt
;
976 dma_addr_t auxiliary_phys
;
979 pr_debug("ecc write page.\n");
980 if (this->swap_block_mark
) {
982 * If control arrives here, we're doing block mark swapping.
983 * Since we can't modify the caller's buffers, we must copy them
986 memcpy(this->payload_virt
, buf
, mtd
->writesize
);
987 payload_virt
= this->payload_virt
;
988 payload_phys
= this->payload_phys
;
990 memcpy(this->auxiliary_virt
, chip
->oob_poi
,
991 nfc_geo
->auxiliary_size
);
992 auxiliary_virt
= this->auxiliary_virt
;
993 auxiliary_phys
= this->auxiliary_phys
;
995 /* Handle block mark swapping. */
996 block_mark_swapping(this,
997 (void *) payload_virt
, (void *) auxiliary_virt
);
1000 * If control arrives here, we're not doing block mark swapping,
1001 * so we can to try and use the caller's buffers.
1003 ret
= send_page_prepare(this,
1004 buf
, mtd
->writesize
,
1005 this->payload_virt
, this->payload_phys
,
1006 nfc_geo
->payload_size
,
1007 &payload_virt
, &payload_phys
);
1009 pr_err("Inadequate payload DMA buffer\n");
1013 ret
= send_page_prepare(this,
1014 chip
->oob_poi
, mtd
->oobsize
,
1015 this->auxiliary_virt
, this->auxiliary_phys
,
1016 nfc_geo
->auxiliary_size
,
1017 &auxiliary_virt
, &auxiliary_phys
);
1019 pr_err("Inadequate auxiliary DMA buffer\n");
1020 goto exit_auxiliary
;
1025 ret
= gpmi_send_page(this, payload_phys
, auxiliary_phys
);
1027 pr_err("Error in ECC-based write: %d\n", ret
);
1029 if (!this->swap_block_mark
) {
1030 send_page_end(this, chip
->oob_poi
, mtd
->oobsize
,
1031 this->auxiliary_virt
, this->auxiliary_phys
,
1032 nfc_geo
->auxiliary_size
,
1033 auxiliary_virt
, auxiliary_phys
);
1035 send_page_end(this, buf
, mtd
->writesize
,
1036 this->payload_virt
, this->payload_phys
,
1037 nfc_geo
->payload_size
,
1038 payload_virt
, payload_phys
);
1045 * There are several places in this driver where we have to handle the OOB and
1046 * block marks. This is the function where things are the most complicated, so
1047 * this is where we try to explain it all. All the other places refer back to
1050 * These are the rules, in order of decreasing importance:
1052 * 1) Nothing the caller does can be allowed to imperil the block mark.
1054 * 2) In read operations, the first byte of the OOB we return must reflect the
1055 * true state of the block mark, no matter where that block mark appears in
1056 * the physical page.
1058 * 3) ECC-based read operations return an OOB full of set bits (since we never
1059 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1062 * 4) "Raw" read operations return a direct view of the physical bytes in the
1063 * page, using the conventional definition of which bytes are data and which
1064 * are OOB. This gives the caller a way to see the actual, physical bytes
1065 * in the page, without the distortions applied by our ECC engine.
1068 * What we do for this specific read operation depends on two questions:
1070 * 1) Are we doing a "raw" read, or an ECC-based read?
1072 * 2) Are we using block mark swapping or transcription?
1074 * There are four cases, illustrated by the following Karnaugh map:
1076 * | Raw | ECC-based |
1077 * -------------+-------------------------+-------------------------+
1078 * | Read the conventional | |
1079 * | OOB at the end of the | |
1080 * Swapping | page and return it. It | |
1081 * | contains exactly what | |
1082 * | we want. | Read the block mark and |
1083 * -------------+-------------------------+ return it in a buffer |
1084 * | Read the conventional | full of set bits. |
1085 * | OOB at the end of the | |
1086 * | page and also the block | |
1087 * Transcribing | mark in the metadata. | |
1088 * | Copy the block mark | |
1089 * | into the first byte of | |
1091 * -------------+-------------------------+-------------------------+
1093 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1094 * giving an accurate view of the actual, physical bytes in the page (we're
1095 * overwriting the block mark). That's OK because it's more important to follow
1098 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1099 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1100 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1101 * ECC-based or raw view of the page is implicit in which function it calls
1102 * (there is a similar pair of ECC-based/raw functions for writing).
1104 * FIXME: The following paragraph is incorrect, now that there exist
1105 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1107 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1108 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1109 * caller wants an ECC-based or raw view of the page is not propagated down to
1112 static int gpmi_ecc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1115 struct gpmi_nand_data
*this = chip
->priv
;
1117 pr_debug("page number is %d\n", page
);
1118 /* clear the OOB buffer */
1119 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1121 /* Read out the conventional OOB. */
1122 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1123 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1126 * Now, we want to make sure the block mark is correct. In the
1127 * Swapping/Raw case, we already have it. Otherwise, we need to
1128 * explicitly read it.
1130 if (!this->swap_block_mark
) {
1131 /* Read the block mark into the first byte of the OOB buffer. */
1132 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1133 chip
->oob_poi
[0] = chip
->read_byte(mtd
);
1140 gpmi_ecc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1143 * The BCH will use all the (page + oob).
1144 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1145 * But it can not stop some ioctls such MEMWRITEOOB which uses
1146 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1152 static int gpmi_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1154 struct nand_chip
*chip
= mtd
->priv
;
1155 struct gpmi_nand_data
*this = chip
->priv
;
1157 uint8_t *block_mark
;
1158 int column
, page
, status
, chipnr
;
1160 /* Get block number */
1161 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
1163 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
1165 /* Do we have a flash based bad block table ? */
1166 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
1167 ret
= nand_update_bbt(mtd
, ofs
);
1169 chipnr
= (int)(ofs
>> chip
->chip_shift
);
1170 chip
->select_chip(mtd
, chipnr
);
1172 column
= this->swap_block_mark
? mtd
->writesize
: 0;
1174 /* Write the block mark. */
1175 block_mark
= this->data_buffer_dma
;
1176 block_mark
[0] = 0; /* bad block marker */
1178 /* Shift to get page */
1179 page
= (int)(ofs
>> chip
->page_shift
);
1181 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, column
, page
);
1182 chip
->write_buf(mtd
, block_mark
, 1);
1183 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1185 status
= chip
->waitfunc(mtd
, chip
);
1186 if (status
& NAND_STATUS_FAIL
)
1189 chip
->select_chip(mtd
, -1);
1192 mtd
->ecc_stats
.badblocks
++;
1197 static int nand_boot_set_geometry(struct gpmi_nand_data
*this)
1199 struct boot_rom_geometry
*geometry
= &this->rom_geometry
;
1202 * Set the boot block stride size.
1204 * In principle, we should be reading this from the OTP bits, since
1205 * that's where the ROM is going to get it. In fact, we don't have any
1206 * way to read the OTP bits, so we go with the default and hope for the
1209 geometry
->stride_size_in_pages
= 64;
1212 * Set the search area stride exponent.
1214 * In principle, we should be reading this from the OTP bits, since
1215 * that's where the ROM is going to get it. In fact, we don't have any
1216 * way to read the OTP bits, so we go with the default and hope for the
1219 geometry
->search_area_stride_exponent
= 2;
1223 static const char *fingerprint
= "STMP";
1224 static int mx23_check_transcription_stamp(struct gpmi_nand_data
*this)
1226 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1227 struct device
*dev
= this->dev
;
1228 struct mtd_info
*mtd
= &this->mtd
;
1229 struct nand_chip
*chip
= &this->nand
;
1230 unsigned int search_area_size_in_strides
;
1231 unsigned int stride
;
1233 uint8_t *buffer
= chip
->buffers
->databuf
;
1234 int saved_chip_number
;
1235 int found_an_ncb_fingerprint
= false;
1237 /* Compute the number of strides in a search area. */
1238 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1240 saved_chip_number
= this->current_chip
;
1241 chip
->select_chip(mtd
, 0);
1244 * Loop through the first search area, looking for the NCB fingerprint.
1246 dev_dbg(dev
, "Scanning for an NCB fingerprint...\n");
1248 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1249 /* Compute the page addresses. */
1250 page
= stride
* rom_geo
->stride_size_in_pages
;
1252 dev_dbg(dev
, "Looking for a fingerprint in page 0x%x\n", page
);
1255 * Read the NCB fingerprint. The fingerprint is four bytes long
1256 * and starts in the 12th byte of the page.
1258 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 12, page
);
1259 chip
->read_buf(mtd
, buffer
, strlen(fingerprint
));
1261 /* Look for the fingerprint. */
1262 if (!memcmp(buffer
, fingerprint
, strlen(fingerprint
))) {
1263 found_an_ncb_fingerprint
= true;
1269 chip
->select_chip(mtd
, saved_chip_number
);
1271 if (found_an_ncb_fingerprint
)
1272 dev_dbg(dev
, "\tFound a fingerprint\n");
1274 dev_dbg(dev
, "\tNo fingerprint found\n");
1275 return found_an_ncb_fingerprint
;
1278 /* Writes a transcription stamp. */
1279 static int mx23_write_transcription_stamp(struct gpmi_nand_data
*this)
1281 struct device
*dev
= this->dev
;
1282 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1283 struct mtd_info
*mtd
= &this->mtd
;
1284 struct nand_chip
*chip
= &this->nand
;
1285 unsigned int block_size_in_pages
;
1286 unsigned int search_area_size_in_strides
;
1287 unsigned int search_area_size_in_pages
;
1288 unsigned int search_area_size_in_blocks
;
1290 unsigned int stride
;
1292 uint8_t *buffer
= chip
->buffers
->databuf
;
1293 int saved_chip_number
;
1296 /* Compute the search area geometry. */
1297 block_size_in_pages
= mtd
->erasesize
/ mtd
->writesize
;
1298 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1299 search_area_size_in_pages
= search_area_size_in_strides
*
1300 rom_geo
->stride_size_in_pages
;
1301 search_area_size_in_blocks
=
1302 (search_area_size_in_pages
+ (block_size_in_pages
- 1)) /
1303 block_size_in_pages
;
1305 dev_dbg(dev
, "Search Area Geometry :\n");
1306 dev_dbg(dev
, "\tin Blocks : %u\n", search_area_size_in_blocks
);
1307 dev_dbg(dev
, "\tin Strides: %u\n", search_area_size_in_strides
);
1308 dev_dbg(dev
, "\tin Pages : %u\n", search_area_size_in_pages
);
1310 /* Select chip 0. */
1311 saved_chip_number
= this->current_chip
;
1312 chip
->select_chip(mtd
, 0);
1314 /* Loop over blocks in the first search area, erasing them. */
1315 dev_dbg(dev
, "Erasing the search area...\n");
1317 for (block
= 0; block
< search_area_size_in_blocks
; block
++) {
1318 /* Compute the page address. */
1319 page
= block
* block_size_in_pages
;
1321 /* Erase this block. */
1322 dev_dbg(dev
, "\tErasing block 0x%x\n", block
);
1323 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1324 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1326 /* Wait for the erase to finish. */
1327 status
= chip
->waitfunc(mtd
, chip
);
1328 if (status
& NAND_STATUS_FAIL
)
1329 dev_err(dev
, "[%s] Erase failed.\n", __func__
);
1332 /* Write the NCB fingerprint into the page buffer. */
1333 memset(buffer
, ~0, mtd
->writesize
);
1334 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1335 memcpy(buffer
+ 12, fingerprint
, strlen(fingerprint
));
1337 /* Loop through the first search area, writing NCB fingerprints. */
1338 dev_dbg(dev
, "Writing NCB fingerprints...\n");
1339 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1340 /* Compute the page addresses. */
1341 page
= stride
* rom_geo
->stride_size_in_pages
;
1343 /* Write the first page of the current stride. */
1344 dev_dbg(dev
, "Writing an NCB fingerprint in page 0x%x\n", page
);
1345 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1346 chip
->ecc
.write_page_raw(mtd
, chip
, buffer
, 0);
1347 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1349 /* Wait for the write to finish. */
1350 status
= chip
->waitfunc(mtd
, chip
);
1351 if (status
& NAND_STATUS_FAIL
)
1352 dev_err(dev
, "[%s] Write failed.\n", __func__
);
1355 /* Deselect chip 0. */
1356 chip
->select_chip(mtd
, saved_chip_number
);
1360 static int mx23_boot_init(struct gpmi_nand_data
*this)
1362 struct device
*dev
= this->dev
;
1363 struct nand_chip
*chip
= &this->nand
;
1364 struct mtd_info
*mtd
= &this->mtd
;
1365 unsigned int block_count
;
1374 * If control arrives here, we can't use block mark swapping, which
1375 * means we're forced to use transcription. First, scan for the
1376 * transcription stamp. If we find it, then we don't have to do
1377 * anything -- the block marks are already transcribed.
1379 if (mx23_check_transcription_stamp(this))
1383 * If control arrives here, we couldn't find a transcription stamp, so
1384 * so we presume the block marks are in the conventional location.
1386 dev_dbg(dev
, "Transcribing bad block marks...\n");
1388 /* Compute the number of blocks in the entire medium. */
1389 block_count
= chip
->chipsize
>> chip
->phys_erase_shift
;
1392 * Loop over all the blocks in the medium, transcribing block marks as
1395 for (block
= 0; block
< block_count
; block
++) {
1397 * Compute the chip, page and byte addresses for this block's
1398 * conventional mark.
1400 chipnr
= block
>> (chip
->chip_shift
- chip
->phys_erase_shift
);
1401 page
= block
<< (chip
->phys_erase_shift
- chip
->page_shift
);
1402 byte
= block
<< chip
->phys_erase_shift
;
1404 /* Send the command to read the conventional block mark. */
1405 chip
->select_chip(mtd
, chipnr
);
1406 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1407 block_mark
= chip
->read_byte(mtd
);
1408 chip
->select_chip(mtd
, -1);
1411 * Check if the block is marked bad. If so, we need to mark it
1412 * again, but this time the result will be a mark in the
1413 * location where we transcribe block marks.
1415 if (block_mark
!= 0xff) {
1416 dev_dbg(dev
, "Transcribing mark in block %u\n", block
);
1417 ret
= chip
->block_markbad(mtd
, byte
);
1419 dev_err(dev
, "Failed to mark block bad with "
1424 /* Write the stamp that indicates we've transcribed the block marks. */
1425 mx23_write_transcription_stamp(this);
1429 static int nand_boot_init(struct gpmi_nand_data
*this)
1431 nand_boot_set_geometry(this);
1433 /* This is ROM arch-specific initilization before the BBT scanning. */
1434 if (GPMI_IS_MX23(this))
1435 return mx23_boot_init(this);
1439 static int gpmi_set_geometry(struct gpmi_nand_data
*this)
1443 /* Free the temporary DMA memory for reading ID. */
1444 gpmi_free_dma_buffer(this);
1446 /* Set up the NFC geometry which is used by BCH. */
1447 ret
= bch_set_geometry(this);
1449 pr_err("Error setting BCH geometry : %d\n", ret
);
1453 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1454 return gpmi_alloc_dma_buffer(this);
1457 static int gpmi_pre_bbt_scan(struct gpmi_nand_data
*this)
1461 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1462 if (GPMI_IS_MX23(this))
1463 this->swap_block_mark
= false;
1465 this->swap_block_mark
= true;
1467 /* Set up the medium geometry */
1468 ret
= gpmi_set_geometry(this);
1472 /* Adjust the ECC strength according to the chip. */
1473 this->nand
.ecc
.strength
= this->bch_geometry
.ecc_strength
;
1474 this->mtd
.ecc_strength
= this->bch_geometry
.ecc_strength
;
1475 this->mtd
.bitflip_threshold
= this->bch_geometry
.ecc_strength
;
1477 /* NAND boot init, depends on the gpmi_set_geometry(). */
1478 return nand_boot_init(this);
1481 static int gpmi_scan_bbt(struct mtd_info
*mtd
)
1483 struct nand_chip
*chip
= mtd
->priv
;
1484 struct gpmi_nand_data
*this = chip
->priv
;
1487 /* Prepare for the BBT scan. */
1488 ret
= gpmi_pre_bbt_scan(this);
1493 * Can we enable the extra features? such as EDO or Sync mode.
1495 * We do not check the return value now. That's means if we fail in
1496 * enable the extra features, we still can run in the normal way.
1498 gpmi_extra_init(this);
1500 /* use the default BBT implementation */
1501 return nand_default_bbt(mtd
);
1504 static void gpmi_nfc_exit(struct gpmi_nand_data
*this)
1506 nand_release(&this->mtd
);
1507 gpmi_free_dma_buffer(this);
1510 static int gpmi_nfc_init(struct gpmi_nand_data
*this)
1512 struct mtd_info
*mtd
= &this->mtd
;
1513 struct nand_chip
*chip
= &this->nand
;
1514 struct mtd_part_parser_data ppdata
= {};
1517 /* init current chip */
1518 this->current_chip
= -1;
1520 /* init the MTD data structures */
1522 mtd
->name
= "gpmi-nand";
1523 mtd
->owner
= THIS_MODULE
;
1525 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1527 chip
->select_chip
= gpmi_select_chip
;
1528 chip
->cmd_ctrl
= gpmi_cmd_ctrl
;
1529 chip
->dev_ready
= gpmi_dev_ready
;
1530 chip
->read_byte
= gpmi_read_byte
;
1531 chip
->read_buf
= gpmi_read_buf
;
1532 chip
->write_buf
= gpmi_write_buf
;
1533 chip
->ecc
.read_page
= gpmi_ecc_read_page
;
1534 chip
->ecc
.write_page
= gpmi_ecc_write_page
;
1535 chip
->ecc
.read_oob
= gpmi_ecc_read_oob
;
1536 chip
->ecc
.write_oob
= gpmi_ecc_write_oob
;
1537 chip
->scan_bbt
= gpmi_scan_bbt
;
1538 chip
->badblock_pattern
= &gpmi_bbt_descr
;
1539 chip
->block_markbad
= gpmi_block_markbad
;
1540 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1541 chip
->ecc
.mode
= NAND_ECC_HW
;
1543 chip
->ecc
.strength
= 8;
1544 chip
->ecc
.layout
= &gpmi_hw_ecclayout
;
1545 if (of_get_nand_on_flash_bbt(this->dev
->of_node
))
1546 chip
->bbt_options
|= NAND_BBT_USE_FLASH
| NAND_BBT_NO_OOB
;
1548 /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1549 this->bch_geometry
.payload_size
= 1024;
1550 this->bch_geometry
.auxiliary_size
= 128;
1551 ret
= gpmi_alloc_dma_buffer(this);
1555 ret
= nand_scan(mtd
, 1);
1557 pr_err("Chip scan failed\n");
1561 ppdata
.of_node
= this->pdev
->dev
.of_node
;
1562 ret
= mtd_device_parse_register(mtd
, NULL
, &ppdata
, NULL
, 0);
1568 gpmi_nfc_exit(this);
1572 static const struct platform_device_id gpmi_ids
[] = {
1573 { .name
= "imx23-gpmi-nand", .driver_data
= IS_MX23
, },
1574 { .name
= "imx28-gpmi-nand", .driver_data
= IS_MX28
, },
1575 { .name
= "imx6q-gpmi-nand", .driver_data
= IS_MX6Q
, },
1579 static const struct of_device_id gpmi_nand_id_table
[] = {
1581 .compatible
= "fsl,imx23-gpmi-nand",
1582 .data
= (void *)&gpmi_ids
[IS_MX23
]
1584 .compatible
= "fsl,imx28-gpmi-nand",
1585 .data
= (void *)&gpmi_ids
[IS_MX28
]
1587 .compatible
= "fsl,imx6q-gpmi-nand",
1588 .data
= (void *)&gpmi_ids
[IS_MX6Q
]
1591 MODULE_DEVICE_TABLE(of
, gpmi_nand_id_table
);
1593 static int gpmi_nand_probe(struct platform_device
*pdev
)
1595 struct gpmi_nand_data
*this;
1596 const struct of_device_id
*of_id
;
1599 of_id
= of_match_device(gpmi_nand_id_table
, &pdev
->dev
);
1601 pdev
->id_entry
= of_id
->data
;
1603 pr_err("Failed to find the right device id.\n");
1607 this = kzalloc(sizeof(*this), GFP_KERNEL
);
1609 pr_err("Failed to allocate per-device memory\n");
1613 platform_set_drvdata(pdev
, this);
1615 this->dev
= &pdev
->dev
;
1617 ret
= acquire_resources(this);
1619 goto exit_acquire_resources
;
1621 ret
= init_hardware(this);
1625 ret
= gpmi_nfc_init(this);
1629 dev_info(this->dev
, "driver registered.\n");
1634 release_resources(this);
1635 exit_acquire_resources
:
1636 platform_set_drvdata(pdev
, NULL
);
1637 dev_err(this->dev
, "driver registration failed: %d\n", ret
);
1643 static int gpmi_nand_remove(struct platform_device
*pdev
)
1645 struct gpmi_nand_data
*this = platform_get_drvdata(pdev
);
1647 gpmi_nfc_exit(this);
1648 release_resources(this);
1649 platform_set_drvdata(pdev
, NULL
);
1654 static struct platform_driver gpmi_nand_driver
= {
1656 .name
= "gpmi-nand",
1657 .of_match_table
= gpmi_nand_id_table
,
1659 .probe
= gpmi_nand_probe
,
1660 .remove
= gpmi_nand_remove
,
1661 .id_table
= gpmi_ids
,
1663 module_platform_driver(gpmi_nand_driver
);
1665 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1666 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1667 MODULE_LICENSE("GPL");