1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
56 #define DRV_EXTRAVERSION "-k"
58 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
59 char e1000e_driver_name
[] = "e1000e";
60 const char e1000e_driver_version
[] = DRV_VERSION
;
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug
= -1;
64 module_param(debug
, int, 0);
65 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
67 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
);
69 static const struct e1000_info
*e1000_info_tbl
[] = {
70 [board_82571
] = &e1000_82571_info
,
71 [board_82572
] = &e1000_82572_info
,
72 [board_82573
] = &e1000_82573_info
,
73 [board_82574
] = &e1000_82574_info
,
74 [board_82583
] = &e1000_82583_info
,
75 [board_80003es2lan
] = &e1000_es2_info
,
76 [board_ich8lan
] = &e1000_ich8_info
,
77 [board_ich9lan
] = &e1000_ich9_info
,
78 [board_ich10lan
] = &e1000_ich10_info
,
79 [board_pchlan
] = &e1000_pch_info
,
80 [board_pch2lan
] = &e1000_pch2_info
,
81 [board_pch_lpt
] = &e1000_pch_lpt_info
,
84 struct e1000_reg_info
{
89 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
90 /* General Registers */
92 {E1000_STATUS
, "STATUS"},
93 {E1000_CTRL_EXT
, "CTRL_EXT"},
95 /* Interrupt Registers */
100 {E1000_RDLEN(0), "RDLEN"},
101 {E1000_RDH(0), "RDH"},
102 {E1000_RDT(0), "RDT"},
103 {E1000_RDTR
, "RDTR"},
104 {E1000_RXDCTL(0), "RXDCTL"},
106 {E1000_RDBAL(0), "RDBAL"},
107 {E1000_RDBAH(0), "RDBAH"},
108 {E1000_RDFH
, "RDFH"},
109 {E1000_RDFT
, "RDFT"},
110 {E1000_RDFHS
, "RDFHS"},
111 {E1000_RDFTS
, "RDFTS"},
112 {E1000_RDFPC
, "RDFPC"},
115 {E1000_TCTL
, "TCTL"},
116 {E1000_TDBAL(0), "TDBAL"},
117 {E1000_TDBAH(0), "TDBAH"},
118 {E1000_TDLEN(0), "TDLEN"},
119 {E1000_TDH(0), "TDH"},
120 {E1000_TDT(0), "TDT"},
121 {E1000_TIDV
, "TIDV"},
122 {E1000_TXDCTL(0), "TXDCTL"},
123 {E1000_TADV
, "TADV"},
124 {E1000_TARC(0), "TARC"},
125 {E1000_TDFH
, "TDFH"},
126 {E1000_TDFT
, "TDFT"},
127 {E1000_TDFHS
, "TDFHS"},
128 {E1000_TDFTS
, "TDFTS"},
129 {E1000_TDFPC
, "TDFPC"},
131 /* List Terminator */
136 * e1000_regdump - register printout routine
137 * @hw: pointer to the HW structure
138 * @reginfo: pointer to the register info table
140 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
146 switch (reginfo
->ofs
) {
147 case E1000_RXDCTL(0):
148 for (n
= 0; n
< 2; n
++)
149 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
151 case E1000_TXDCTL(0):
152 for (n
= 0; n
< 2; n
++)
153 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
156 for (n
= 0; n
< 2; n
++)
157 regs
[n
] = __er32(hw
, E1000_TARC(n
));
160 pr_info("%-15s %08x\n",
161 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
165 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
166 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
169 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
170 struct e1000_buffer
*bi
)
173 struct e1000_ps_page
*ps_page
;
175 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
176 ps_page
= &bi
->ps_pages
[i
];
179 pr_info("packet dump for ps_page %d:\n", i
);
180 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
181 16, 1, page_address(ps_page
->page
),
188 * e1000e_dump - Print registers, Tx-ring and Rx-ring
189 * @adapter: board private structure
191 static void e1000e_dump(struct e1000_adapter
*adapter
)
193 struct net_device
*netdev
= adapter
->netdev
;
194 struct e1000_hw
*hw
= &adapter
->hw
;
195 struct e1000_reg_info
*reginfo
;
196 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
197 struct e1000_tx_desc
*tx_desc
;
202 struct e1000_buffer
*buffer_info
;
203 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
204 union e1000_rx_desc_packet_split
*rx_desc_ps
;
205 union e1000_rx_desc_extended
*rx_desc
;
215 if (!netif_msg_hw(adapter
))
218 /* Print netdevice Info */
220 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
221 pr_info("Device Name state trans_start last_rx\n");
222 pr_info("%-15s %016lX %016lX %016lX\n", netdev
->name
,
223 netdev
->state
, netdev
->trans_start
, netdev
->last_rx
);
226 /* Print Registers */
227 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
228 pr_info(" Register Name Value\n");
229 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
230 reginfo
->name
; reginfo
++) {
231 e1000_regdump(hw
, reginfo
);
234 /* Print Tx Ring Summary */
235 if (!netdev
|| !netif_running(netdev
))
238 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
239 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
240 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
241 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
242 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
243 (unsigned long long)buffer_info
->dma
,
245 buffer_info
->next_to_watch
,
246 (unsigned long long)buffer_info
->time_stamp
);
249 if (!netif_msg_tx_done(adapter
))
250 goto rx_ring_summary
;
252 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
254 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256 * Legacy Transmit Descriptor
257 * +--------------------------------------------------------------+
258 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
259 * +--------------------------------------------------------------+
260 * 8 | Special | CSS | Status | CMD | CSO | Length |
261 * +--------------------------------------------------------------+
262 * 63 48 47 36 35 32 31 24 23 16 15 0
264 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
265 * 63 48 47 40 39 32 31 16 15 8 7 0
266 * +----------------------------------------------------------------+
267 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
268 * +----------------------------------------------------------------+
269 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
270 * +----------------------------------------------------------------+
271 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
273 * Extended Data Descriptor (DTYP=0x1)
274 * +----------------------------------------------------------------+
275 * 0 | Buffer Address [63:0] |
276 * +----------------------------------------------------------------+
277 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
278 * +----------------------------------------------------------------+
279 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
281 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
282 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
283 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
284 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
285 const char *next_desc
;
286 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
287 buffer_info
= &tx_ring
->buffer_info
[i
];
288 u0
= (struct my_u0
*)tx_desc
;
289 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
290 next_desc
= " NTC/U";
291 else if (i
== tx_ring
->next_to_use
)
293 else if (i
== tx_ring
->next_to_clean
)
297 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
298 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
299 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')),
301 (unsigned long long)le64_to_cpu(u0
->a
),
302 (unsigned long long)le64_to_cpu(u0
->b
),
303 (unsigned long long)buffer_info
->dma
,
304 buffer_info
->length
, buffer_info
->next_to_watch
,
305 (unsigned long long)buffer_info
->time_stamp
,
306 buffer_info
->skb
, next_desc
);
308 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
309 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
310 16, 1, buffer_info
->skb
->data
,
311 buffer_info
->skb
->len
, true);
314 /* Print Rx Ring Summary */
316 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
317 pr_info("Queue [NTU] [NTC]\n");
318 pr_info(" %5d %5X %5X\n",
319 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
322 if (!netif_msg_rx_status(adapter
))
325 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
326 switch (adapter
->rx_ps_pages
) {
330 /* [Extended] Packet Split Receive Descriptor Format
332 * +-----------------------------------------------------+
333 * 0 | Buffer Address 0 [63:0] |
334 * +-----------------------------------------------------+
335 * 8 | Buffer Address 1 [63:0] |
336 * +-----------------------------------------------------+
337 * 16 | Buffer Address 2 [63:0] |
338 * +-----------------------------------------------------+
339 * 24 | Buffer Address 3 [63:0] |
340 * +-----------------------------------------------------+
342 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
343 /* [Extended] Receive Descriptor (Write-Back) Format
345 * 63 48 47 32 31 13 12 8 7 4 3 0
346 * +------------------------------------------------------+
347 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
348 * | Checksum | Ident | | Queue | | Type |
349 * +------------------------------------------------------+
350 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351 * +------------------------------------------------------+
352 * 63 48 47 32 31 20 19 0
354 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
355 for (i
= 0; i
< rx_ring
->count
; i
++) {
356 const char *next_desc
;
357 buffer_info
= &rx_ring
->buffer_info
[i
];
358 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
359 u1
= (struct my_u1
*)rx_desc_ps
;
361 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
363 if (i
== rx_ring
->next_to_use
)
365 else if (i
== rx_ring
->next_to_clean
)
370 if (staterr
& E1000_RXD_STAT_DD
) {
371 /* Descriptor Done */
372 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374 (unsigned long long)le64_to_cpu(u1
->a
),
375 (unsigned long long)le64_to_cpu(u1
->b
),
376 (unsigned long long)le64_to_cpu(u1
->c
),
377 (unsigned long long)le64_to_cpu(u1
->d
),
378 buffer_info
->skb
, next_desc
);
380 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
382 (unsigned long long)le64_to_cpu(u1
->a
),
383 (unsigned long long)le64_to_cpu(u1
->b
),
384 (unsigned long long)le64_to_cpu(u1
->c
),
385 (unsigned long long)le64_to_cpu(u1
->d
),
386 (unsigned long long)buffer_info
->dma
,
387 buffer_info
->skb
, next_desc
);
389 if (netif_msg_pktdata(adapter
))
390 e1000e_dump_ps_pages(adapter
,
397 /* Extended Receive Descriptor (Read) Format
399 * +-----------------------------------------------------+
400 * 0 | Buffer Address [63:0] |
401 * +-----------------------------------------------------+
403 * +-----------------------------------------------------+
405 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
406 /* Extended Receive Descriptor (Write-Back) Format
408 * 63 48 47 32 31 24 23 4 3 0
409 * +------------------------------------------------------+
411 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
412 * | Packet | IP | | | Type |
413 * | Checksum | Ident | | | |
414 * +------------------------------------------------------+
415 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
416 * +------------------------------------------------------+
417 * 63 48 47 32 31 20 19 0
419 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
421 for (i
= 0; i
< rx_ring
->count
; i
++) {
422 const char *next_desc
;
424 buffer_info
= &rx_ring
->buffer_info
[i
];
425 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
426 u1
= (struct my_u1
*)rx_desc
;
427 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
429 if (i
== rx_ring
->next_to_use
)
431 else if (i
== rx_ring
->next_to_clean
)
436 if (staterr
& E1000_RXD_STAT_DD
) {
437 /* Descriptor Done */
438 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
440 (unsigned long long)le64_to_cpu(u1
->a
),
441 (unsigned long long)le64_to_cpu(u1
->b
),
442 buffer_info
->skb
, next_desc
);
444 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
446 (unsigned long long)le64_to_cpu(u1
->a
),
447 (unsigned long long)le64_to_cpu(u1
->b
),
448 (unsigned long long)buffer_info
->dma
,
449 buffer_info
->skb
, next_desc
);
451 if (netif_msg_pktdata(adapter
) &&
453 print_hex_dump(KERN_INFO
, "",
454 DUMP_PREFIX_ADDRESS
, 16,
456 buffer_info
->skb
->data
,
457 adapter
->rx_buffer_len
,
465 * e1000_desc_unused - calculate if we have unused descriptors
467 static int e1000_desc_unused(struct e1000_ring
*ring
)
469 if (ring
->next_to_clean
> ring
->next_to_use
)
470 return ring
->next_to_clean
- ring
->next_to_use
- 1;
472 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
476 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477 * @adapter: board private structure
478 * @hwtstamps: time stamp structure to update
479 * @systim: unsigned 64bit system time value.
481 * Convert the system time value stored in the RX/TXSTMP registers into a
482 * hwtstamp which can be used by the upper level time stamping functions.
484 * The 'systim_lock' spinlock is used to protect the consistency of the
485 * system time value. This is needed because reading the 64 bit time
486 * value involves reading two 32 bit registers. The first read latches the
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
490 struct skb_shared_hwtstamps
*hwtstamps
,
496 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
497 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
498 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
500 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
501 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
505 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506 * @adapter: board private structure
507 * @status: descriptor extended error and status field
508 * @skb: particular skb to include time stamp
510 * If the time stamp is valid, convert it into the timecounter ns value
511 * and store that result into the shhwtstamps structure which is passed
512 * up the network stack.
514 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
517 struct e1000_hw
*hw
= &adapter
->hw
;
520 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
521 !(status
& E1000_RXDEXT_STATERR_TST
) ||
522 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
525 /* The Rx time stamp registers contain the time stamp. No other
526 * received packet will be time stamped until the Rx time stamp
527 * registers are read. Because only one packet can be time stamped
528 * at a time, the register values must belong to this packet and
529 * therefore none of the other additional attributes need to be
532 rxstmp
= (u64
)er32(RXSTMPL
);
533 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
534 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
536 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
540 * e1000_receive_skb - helper function to handle Rx indications
541 * @adapter: board private structure
542 * @staterr: descriptor extended error and status field as written by hardware
543 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
544 * @skb: pointer to sk_buff to be indicated to stack
546 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
547 struct net_device
*netdev
, struct sk_buff
*skb
,
548 u32 staterr
, __le16 vlan
)
550 u16 tag
= le16_to_cpu(vlan
);
552 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
554 skb
->protocol
= eth_type_trans(skb
, netdev
);
556 if (staterr
& E1000_RXD_STAT_VP
)
557 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
559 napi_gro_receive(&adapter
->napi
, skb
);
563 * e1000_rx_checksum - Receive Checksum Offload
564 * @adapter: board private structure
565 * @status_err: receive descriptor status and error fields
566 * @csum: receive descriptor csum field
567 * @sk_buff: socket buffer with received data
569 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
572 u16 status
= (u16
)status_err
;
573 u8 errors
= (u8
)(status_err
>> 24);
575 skb_checksum_none_assert(skb
);
577 /* Rx checksum disabled */
578 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
581 /* Ignore Checksum bit is set */
582 if (status
& E1000_RXD_STAT_IXSM
)
585 /* TCP/UDP checksum error bit or IP checksum error bit is set */
586 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
587 /* let the stack verify checksum errors */
588 adapter
->hw_csum_err
++;
592 /* TCP/UDP Checksum has not been calculated */
593 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
596 /* It must be a TCP or UDP packet with a valid checksum */
597 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
598 adapter
->hw_csum_good
++;
601 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
603 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
604 struct e1000_hw
*hw
= &adapter
->hw
;
605 s32 ret_val
= __ew32_prepare(hw
);
607 writel(i
, rx_ring
->tail
);
609 if (unlikely(!ret_val
&& (i
!= readl(rx_ring
->tail
)))) {
610 u32 rctl
= er32(RCTL
);
611 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
612 e_err("ME firmware caused invalid RDT - resetting\n");
613 schedule_work(&adapter
->reset_task
);
617 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
619 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
620 struct e1000_hw
*hw
= &adapter
->hw
;
621 s32 ret_val
= __ew32_prepare(hw
);
623 writel(i
, tx_ring
->tail
);
625 if (unlikely(!ret_val
&& (i
!= readl(tx_ring
->tail
)))) {
626 u32 tctl
= er32(TCTL
);
627 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
628 e_err("ME firmware caused invalid TDT - resetting\n");
629 schedule_work(&adapter
->reset_task
);
634 * e1000_alloc_rx_buffers - Replace used receive buffers
635 * @rx_ring: Rx descriptor ring
637 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
638 int cleaned_count
, gfp_t gfp
)
640 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
641 struct net_device
*netdev
= adapter
->netdev
;
642 struct pci_dev
*pdev
= adapter
->pdev
;
643 union e1000_rx_desc_extended
*rx_desc
;
644 struct e1000_buffer
*buffer_info
;
647 unsigned int bufsz
= adapter
->rx_buffer_len
;
649 i
= rx_ring
->next_to_use
;
650 buffer_info
= &rx_ring
->buffer_info
[i
];
652 while (cleaned_count
--) {
653 skb
= buffer_info
->skb
;
659 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
661 /* Better luck next round */
662 adapter
->alloc_rx_buff_failed
++;
666 buffer_info
->skb
= skb
;
668 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
669 adapter
->rx_buffer_len
,
671 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
672 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
673 adapter
->rx_dma_failed
++;
677 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
678 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
680 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
681 /* Force memory writes to complete before letting h/w
682 * know there are new descriptors to fetch. (Only
683 * applicable for weak-ordered memory model archs,
687 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
688 e1000e_update_rdt_wa(rx_ring
, i
);
690 writel(i
, rx_ring
->tail
);
693 if (i
== rx_ring
->count
)
695 buffer_info
= &rx_ring
->buffer_info
[i
];
698 rx_ring
->next_to_use
= i
;
702 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
703 * @rx_ring: Rx descriptor ring
705 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
706 int cleaned_count
, gfp_t gfp
)
708 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
709 struct net_device
*netdev
= adapter
->netdev
;
710 struct pci_dev
*pdev
= adapter
->pdev
;
711 union e1000_rx_desc_packet_split
*rx_desc
;
712 struct e1000_buffer
*buffer_info
;
713 struct e1000_ps_page
*ps_page
;
717 i
= rx_ring
->next_to_use
;
718 buffer_info
= &rx_ring
->buffer_info
[i
];
720 while (cleaned_count
--) {
721 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
723 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
724 ps_page
= &buffer_info
->ps_pages
[j
];
725 if (j
>= adapter
->rx_ps_pages
) {
726 /* all unused desc entries get hw null ptr */
727 rx_desc
->read
.buffer_addr
[j
+ 1] =
731 if (!ps_page
->page
) {
732 ps_page
->page
= alloc_page(gfp
);
733 if (!ps_page
->page
) {
734 adapter
->alloc_rx_buff_failed
++;
737 ps_page
->dma
= dma_map_page(&pdev
->dev
,
741 if (dma_mapping_error(&pdev
->dev
,
743 dev_err(&adapter
->pdev
->dev
,
744 "Rx DMA page map failed\n");
745 adapter
->rx_dma_failed
++;
749 /* Refresh the desc even if buffer_addrs
750 * didn't change because each write-back
753 rx_desc
->read
.buffer_addr
[j
+ 1] =
754 cpu_to_le64(ps_page
->dma
);
757 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
761 adapter
->alloc_rx_buff_failed
++;
765 buffer_info
->skb
= skb
;
766 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
767 adapter
->rx_ps_bsize0
,
769 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
770 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
771 adapter
->rx_dma_failed
++;
773 dev_kfree_skb_any(skb
);
774 buffer_info
->skb
= NULL
;
778 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
780 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
781 /* Force memory writes to complete before letting h/w
782 * know there are new descriptors to fetch. (Only
783 * applicable for weak-ordered memory model archs,
787 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
788 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
790 writel(i
<< 1, rx_ring
->tail
);
794 if (i
== rx_ring
->count
)
796 buffer_info
= &rx_ring
->buffer_info
[i
];
800 rx_ring
->next_to_use
= i
;
804 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
805 * @rx_ring: Rx descriptor ring
806 * @cleaned_count: number of buffers to allocate this pass
809 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
810 int cleaned_count
, gfp_t gfp
)
812 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
813 struct net_device
*netdev
= adapter
->netdev
;
814 struct pci_dev
*pdev
= adapter
->pdev
;
815 union e1000_rx_desc_extended
*rx_desc
;
816 struct e1000_buffer
*buffer_info
;
819 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
821 i
= rx_ring
->next_to_use
;
822 buffer_info
= &rx_ring
->buffer_info
[i
];
824 while (cleaned_count
--) {
825 skb
= buffer_info
->skb
;
831 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
832 if (unlikely(!skb
)) {
833 /* Better luck next round */
834 adapter
->alloc_rx_buff_failed
++;
838 buffer_info
->skb
= skb
;
840 /* allocate a new page if necessary */
841 if (!buffer_info
->page
) {
842 buffer_info
->page
= alloc_page(gfp
);
843 if (unlikely(!buffer_info
->page
)) {
844 adapter
->alloc_rx_buff_failed
++;
849 if (!buffer_info
->dma
) {
850 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
851 buffer_info
->page
, 0,
854 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
855 adapter
->alloc_rx_buff_failed
++;
860 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
861 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
863 if (unlikely(++i
== rx_ring
->count
))
865 buffer_info
= &rx_ring
->buffer_info
[i
];
868 if (likely(rx_ring
->next_to_use
!= i
)) {
869 rx_ring
->next_to_use
= i
;
870 if (unlikely(i
-- == 0))
871 i
= (rx_ring
->count
- 1);
873 /* Force memory writes to complete before letting h/w
874 * know there are new descriptors to fetch. (Only
875 * applicable for weak-ordered memory model archs,
879 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
880 e1000e_update_rdt_wa(rx_ring
, i
);
882 writel(i
, rx_ring
->tail
);
886 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
889 if (netdev
->features
& NETIF_F_RXHASH
)
890 skb
->rxhash
= le32_to_cpu(rss
);
894 * e1000_clean_rx_irq - Send received data up the network stack
895 * @rx_ring: Rx descriptor ring
897 * the return value indicates whether actual cleaning was done, there
898 * is no guarantee that everything was cleaned
900 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
903 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
904 struct net_device
*netdev
= adapter
->netdev
;
905 struct pci_dev
*pdev
= adapter
->pdev
;
906 struct e1000_hw
*hw
= &adapter
->hw
;
907 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
908 struct e1000_buffer
*buffer_info
, *next_buffer
;
911 int cleaned_count
= 0;
912 bool cleaned
= false;
913 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
915 i
= rx_ring
->next_to_clean
;
916 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
917 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
918 buffer_info
= &rx_ring
->buffer_info
[i
];
920 while (staterr
& E1000_RXD_STAT_DD
) {
923 if (*work_done
>= work_to_do
)
926 rmb(); /* read descriptor and rx_buffer_info after status DD */
928 skb
= buffer_info
->skb
;
929 buffer_info
->skb
= NULL
;
931 prefetch(skb
->data
- NET_IP_ALIGN
);
934 if (i
== rx_ring
->count
)
936 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
939 next_buffer
= &rx_ring
->buffer_info
[i
];
943 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
944 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
945 buffer_info
->dma
= 0;
947 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
949 /* !EOP means multiple descriptors were used to store a single
950 * packet, if that's the case we need to toss it. In fact, we
951 * need to toss every packet with the EOP bit clear and the
952 * next frame that _does_ have the EOP bit set, as it is by
953 * definition only a frame fragment
955 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
956 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
958 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
959 /* All receives must fit into a single buffer */
960 e_dbg("Receive packet consumed multiple buffers\n");
962 buffer_info
->skb
= skb
;
963 if (staterr
& E1000_RXD_STAT_EOP
)
964 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
968 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
969 !(netdev
->features
& NETIF_F_RXALL
))) {
971 buffer_info
->skb
= skb
;
975 /* adjust length to remove Ethernet CRC */
976 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
977 /* If configured to store CRC, don't subtract FCS,
978 * but keep the FCS bytes out of the total_rx_bytes
981 if (netdev
->features
& NETIF_F_RXFCS
)
987 total_rx_bytes
+= length
;
990 /* code added for copybreak, this should improve
991 * performance for small packets with large amounts
992 * of reassembly being done in the stack
994 if (length
< copybreak
) {
995 struct sk_buff
*new_skb
=
996 netdev_alloc_skb_ip_align(netdev
, length
);
998 skb_copy_to_linear_data_offset(new_skb
,
1004 /* save the skb in buffer_info as good */
1005 buffer_info
->skb
= skb
;
1008 /* else just continue with the old one */
1010 /* end copybreak code */
1011 skb_put(skb
, length
);
1013 /* Receive Checksum Offload */
1014 e1000_rx_checksum(adapter
, staterr
, skb
);
1016 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1018 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1019 rx_desc
->wb
.upper
.vlan
);
1022 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1024 /* return some buffers to hardware, one at a time is too slow */
1025 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1026 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1031 /* use prefetched values */
1033 buffer_info
= next_buffer
;
1035 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1037 rx_ring
->next_to_clean
= i
;
1039 cleaned_count
= e1000_desc_unused(rx_ring
);
1041 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1043 adapter
->total_rx_bytes
+= total_rx_bytes
;
1044 adapter
->total_rx_packets
+= total_rx_packets
;
1048 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1049 struct e1000_buffer
*buffer_info
)
1051 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1053 if (buffer_info
->dma
) {
1054 if (buffer_info
->mapped_as_page
)
1055 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1056 buffer_info
->length
, DMA_TO_DEVICE
);
1058 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1059 buffer_info
->length
, DMA_TO_DEVICE
);
1060 buffer_info
->dma
= 0;
1062 if (buffer_info
->skb
) {
1063 dev_kfree_skb_any(buffer_info
->skb
);
1064 buffer_info
->skb
= NULL
;
1066 buffer_info
->time_stamp
= 0;
1069 static void e1000_print_hw_hang(struct work_struct
*work
)
1071 struct e1000_adapter
*adapter
= container_of(work
,
1072 struct e1000_adapter
,
1074 struct net_device
*netdev
= adapter
->netdev
;
1075 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1076 unsigned int i
= tx_ring
->next_to_clean
;
1077 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1078 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1079 struct e1000_hw
*hw
= &adapter
->hw
;
1080 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1083 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1086 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1087 /* May be block on write-back, flush and detect again
1088 * flush pending descriptor writebacks to memory
1090 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1091 /* execute the writes immediately */
1093 /* Due to rare timing issues, write to TIDV again to ensure
1094 * the write is successful
1096 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1097 /* execute the writes immediately */
1099 adapter
->tx_hang_recheck
= true;
1102 /* Real hang detected */
1103 adapter
->tx_hang_recheck
= false;
1104 netif_stop_queue(netdev
);
1106 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1107 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1108 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1110 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1112 /* detected Hardware unit hang */
1113 e_err("Detected Hardware Unit Hang:\n"
1116 " next_to_use <%x>\n"
1117 " next_to_clean <%x>\n"
1118 "buffer_info[next_to_clean]:\n"
1119 " time_stamp <%lx>\n"
1120 " next_to_watch <%x>\n"
1122 " next_to_watch.status <%x>\n"
1125 "PHY 1000BASE-T Status <%x>\n"
1126 "PHY Extended Status <%x>\n"
1127 "PCI Status <%x>\n",
1128 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1129 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1130 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1131 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1133 /* Suggest workaround for known h/w issue */
1134 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1135 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1139 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1140 * @work: pointer to work struct
1142 * This work function polls the TSYNCTXCTL valid bit to determine when a
1143 * timestamp has been taken for the current stored skb. The timestamp must
1144 * be for this skb because only one such packet is allowed in the queue.
1146 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1148 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1150 struct e1000_hw
*hw
= &adapter
->hw
;
1152 if (!adapter
->tx_hwtstamp_skb
)
1155 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1156 struct skb_shared_hwtstamps shhwtstamps
;
1159 txstmp
= er32(TXSTMPL
);
1160 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1162 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1164 skb_tstamp_tx(adapter
->tx_hwtstamp_skb
, &shhwtstamps
);
1165 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1166 adapter
->tx_hwtstamp_skb
= NULL
;
1168 /* reschedule to check later */
1169 schedule_work(&adapter
->tx_hwtstamp_work
);
1174 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1175 * @tx_ring: Tx descriptor ring
1177 * the return value indicates whether actual cleaning was done, there
1178 * is no guarantee that everything was cleaned
1180 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1182 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1183 struct net_device
*netdev
= adapter
->netdev
;
1184 struct e1000_hw
*hw
= &adapter
->hw
;
1185 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1186 struct e1000_buffer
*buffer_info
;
1187 unsigned int i
, eop
;
1188 unsigned int count
= 0;
1189 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1190 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1192 i
= tx_ring
->next_to_clean
;
1193 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1194 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1196 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1197 (count
< tx_ring
->count
)) {
1198 bool cleaned
= false;
1199 rmb(); /* read buffer_info after eop_desc */
1200 for (; !cleaned
; count
++) {
1201 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1202 buffer_info
= &tx_ring
->buffer_info
[i
];
1203 cleaned
= (i
== eop
);
1206 total_tx_packets
+= buffer_info
->segs
;
1207 total_tx_bytes
+= buffer_info
->bytecount
;
1208 if (buffer_info
->skb
) {
1209 bytes_compl
+= buffer_info
->skb
->len
;
1214 e1000_put_txbuf(tx_ring
, buffer_info
);
1215 tx_desc
->upper
.data
= 0;
1218 if (i
== tx_ring
->count
)
1222 if (i
== tx_ring
->next_to_use
)
1224 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1225 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1228 tx_ring
->next_to_clean
= i
;
1230 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1232 #define TX_WAKE_THRESHOLD 32
1233 if (count
&& netif_carrier_ok(netdev
) &&
1234 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1235 /* Make sure that anybody stopping the queue after this
1236 * sees the new next_to_clean.
1240 if (netif_queue_stopped(netdev
) &&
1241 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1242 netif_wake_queue(netdev
);
1243 ++adapter
->restart_queue
;
1247 if (adapter
->detect_tx_hung
) {
1248 /* Detect a transmit hang in hardware, this serializes the
1249 * check with the clearing of time_stamp and movement of i
1251 adapter
->detect_tx_hung
= false;
1252 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1253 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1254 + (adapter
->tx_timeout_factor
* HZ
)) &&
1255 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1256 schedule_work(&adapter
->print_hang_task
);
1258 adapter
->tx_hang_recheck
= false;
1260 adapter
->total_tx_bytes
+= total_tx_bytes
;
1261 adapter
->total_tx_packets
+= total_tx_packets
;
1262 return count
< tx_ring
->count
;
1266 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1267 * @rx_ring: Rx descriptor ring
1269 * the return value indicates whether actual cleaning was done, there
1270 * is no guarantee that everything was cleaned
1272 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1275 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1276 struct e1000_hw
*hw
= &adapter
->hw
;
1277 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1278 struct net_device
*netdev
= adapter
->netdev
;
1279 struct pci_dev
*pdev
= adapter
->pdev
;
1280 struct e1000_buffer
*buffer_info
, *next_buffer
;
1281 struct e1000_ps_page
*ps_page
;
1282 struct sk_buff
*skb
;
1284 u32 length
, staterr
;
1285 int cleaned_count
= 0;
1286 bool cleaned
= false;
1287 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1289 i
= rx_ring
->next_to_clean
;
1290 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1291 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1292 buffer_info
= &rx_ring
->buffer_info
[i
];
1294 while (staterr
& E1000_RXD_STAT_DD
) {
1295 if (*work_done
>= work_to_do
)
1298 skb
= buffer_info
->skb
;
1299 rmb(); /* read descriptor and rx_buffer_info after status DD */
1301 /* in the packet split case this is header only */
1302 prefetch(skb
->data
- NET_IP_ALIGN
);
1305 if (i
== rx_ring
->count
)
1307 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1310 next_buffer
= &rx_ring
->buffer_info
[i
];
1314 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1315 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1316 buffer_info
->dma
= 0;
1318 /* see !EOP comment in other Rx routine */
1319 if (!(staterr
& E1000_RXD_STAT_EOP
))
1320 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1322 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1323 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1324 dev_kfree_skb_irq(skb
);
1325 if (staterr
& E1000_RXD_STAT_EOP
)
1326 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1330 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1331 !(netdev
->features
& NETIF_F_RXALL
))) {
1332 dev_kfree_skb_irq(skb
);
1336 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1339 e_dbg("Last part of the packet spanning multiple descriptors\n");
1340 dev_kfree_skb_irq(skb
);
1345 skb_put(skb
, length
);
1348 /* this looks ugly, but it seems compiler issues make
1349 * it more efficient than reusing j
1351 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1353 /* page alloc/put takes too long and effects small
1354 * packet throughput, so unsplit small packets and
1355 * save the alloc/put only valid in softirq (napi)
1356 * context to call kmap_*
1358 if (l1
&& (l1
<= copybreak
) &&
1359 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1362 ps_page
= &buffer_info
->ps_pages
[0];
1364 /* there is no documentation about how to call
1365 * kmap_atomic, so we can't hold the mapping
1368 dma_sync_single_for_cpu(&pdev
->dev
,
1372 vaddr
= kmap_atomic(ps_page
->page
);
1373 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1374 kunmap_atomic(vaddr
);
1375 dma_sync_single_for_device(&pdev
->dev
,
1380 /* remove the CRC */
1381 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1382 if (!(netdev
->features
& NETIF_F_RXFCS
))
1391 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1392 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1396 ps_page
= &buffer_info
->ps_pages
[j
];
1397 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1400 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1401 ps_page
->page
= NULL
;
1403 skb
->data_len
+= length
;
1404 skb
->truesize
+= PAGE_SIZE
;
1407 /* strip the ethernet crc, problem is we're using pages now so
1408 * this whole operation can get a little cpu intensive
1410 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1411 if (!(netdev
->features
& NETIF_F_RXFCS
))
1412 pskb_trim(skb
, skb
->len
- 4);
1416 total_rx_bytes
+= skb
->len
;
1419 e1000_rx_checksum(adapter
, staterr
, skb
);
1421 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1423 if (rx_desc
->wb
.upper
.header_status
&
1424 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1425 adapter
->rx_hdr_split
++;
1427 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1428 rx_desc
->wb
.middle
.vlan
);
1431 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1432 buffer_info
->skb
= NULL
;
1434 /* return some buffers to hardware, one at a time is too slow */
1435 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1436 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1441 /* use prefetched values */
1443 buffer_info
= next_buffer
;
1445 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1447 rx_ring
->next_to_clean
= i
;
1449 cleaned_count
= e1000_desc_unused(rx_ring
);
1451 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1453 adapter
->total_rx_bytes
+= total_rx_bytes
;
1454 adapter
->total_rx_packets
+= total_rx_packets
;
1459 * e1000_consume_page - helper function
1461 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1466 skb
->data_len
+= length
;
1467 skb
->truesize
+= PAGE_SIZE
;
1471 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1472 * @adapter: board private structure
1474 * the return value indicates whether actual cleaning was done, there
1475 * is no guarantee that everything was cleaned
1477 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1480 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1481 struct net_device
*netdev
= adapter
->netdev
;
1482 struct pci_dev
*pdev
= adapter
->pdev
;
1483 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1484 struct e1000_buffer
*buffer_info
, *next_buffer
;
1485 u32 length
, staterr
;
1487 int cleaned_count
= 0;
1488 bool cleaned
= false;
1489 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1490 struct skb_shared_info
*shinfo
;
1492 i
= rx_ring
->next_to_clean
;
1493 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1494 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1495 buffer_info
= &rx_ring
->buffer_info
[i
];
1497 while (staterr
& E1000_RXD_STAT_DD
) {
1498 struct sk_buff
*skb
;
1500 if (*work_done
>= work_to_do
)
1503 rmb(); /* read descriptor and rx_buffer_info after status DD */
1505 skb
= buffer_info
->skb
;
1506 buffer_info
->skb
= NULL
;
1509 if (i
== rx_ring
->count
)
1511 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1514 next_buffer
= &rx_ring
->buffer_info
[i
];
1518 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1520 buffer_info
->dma
= 0;
1522 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1524 /* errors is only valid for DD + EOP descriptors */
1525 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1526 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1527 !(netdev
->features
& NETIF_F_RXALL
)))) {
1528 /* recycle both page and skb */
1529 buffer_info
->skb
= skb
;
1530 /* an error means any chain goes out the window too */
1531 if (rx_ring
->rx_skb_top
)
1532 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1533 rx_ring
->rx_skb_top
= NULL
;
1536 #define rxtop (rx_ring->rx_skb_top)
1537 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1538 /* this descriptor is only the beginning (or middle) */
1540 /* this is the beginning of a chain */
1542 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1545 /* this is the middle of a chain */
1546 shinfo
= skb_shinfo(rxtop
);
1547 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1548 buffer_info
->page
, 0,
1550 /* re-use the skb, only consumed the page */
1551 buffer_info
->skb
= skb
;
1553 e1000_consume_page(buffer_info
, rxtop
, length
);
1557 /* end of the chain */
1558 shinfo
= skb_shinfo(rxtop
);
1559 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1560 buffer_info
->page
, 0,
1562 /* re-use the current skb, we only consumed the
1565 buffer_info
->skb
= skb
;
1568 e1000_consume_page(buffer_info
, skb
, length
);
1570 /* no chain, got EOP, this buf is the packet
1571 * copybreak to save the put_page/alloc_page
1573 if (length
<= copybreak
&&
1574 skb_tailroom(skb
) >= length
) {
1576 vaddr
= kmap_atomic(buffer_info
->page
);
1577 memcpy(skb_tail_pointer(skb
), vaddr
,
1579 kunmap_atomic(vaddr
);
1580 /* re-use the page, so don't erase
1583 skb_put(skb
, length
);
1585 skb_fill_page_desc(skb
, 0,
1586 buffer_info
->page
, 0,
1588 e1000_consume_page(buffer_info
, skb
,
1594 /* Receive Checksum Offload */
1595 e1000_rx_checksum(adapter
, staterr
, skb
);
1597 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1599 /* probably a little skewed due to removing CRC */
1600 total_rx_bytes
+= skb
->len
;
1603 /* eth type trans needs skb->data to point to something */
1604 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1605 e_err("pskb_may_pull failed.\n");
1606 dev_kfree_skb_irq(skb
);
1610 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1611 rx_desc
->wb
.upper
.vlan
);
1614 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1616 /* return some buffers to hardware, one at a time is too slow */
1617 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1618 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1623 /* use prefetched values */
1625 buffer_info
= next_buffer
;
1627 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1629 rx_ring
->next_to_clean
= i
;
1631 cleaned_count
= e1000_desc_unused(rx_ring
);
1633 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1635 adapter
->total_rx_bytes
+= total_rx_bytes
;
1636 adapter
->total_rx_packets
+= total_rx_packets
;
1641 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1642 * @rx_ring: Rx descriptor ring
1644 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1646 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1647 struct e1000_buffer
*buffer_info
;
1648 struct e1000_ps_page
*ps_page
;
1649 struct pci_dev
*pdev
= adapter
->pdev
;
1652 /* Free all the Rx ring sk_buffs */
1653 for (i
= 0; i
< rx_ring
->count
; i
++) {
1654 buffer_info
= &rx_ring
->buffer_info
[i
];
1655 if (buffer_info
->dma
) {
1656 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1657 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1658 adapter
->rx_buffer_len
,
1660 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1661 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1662 PAGE_SIZE
, DMA_FROM_DEVICE
);
1663 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1664 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1665 adapter
->rx_ps_bsize0
,
1667 buffer_info
->dma
= 0;
1670 if (buffer_info
->page
) {
1671 put_page(buffer_info
->page
);
1672 buffer_info
->page
= NULL
;
1675 if (buffer_info
->skb
) {
1676 dev_kfree_skb(buffer_info
->skb
);
1677 buffer_info
->skb
= NULL
;
1680 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1681 ps_page
= &buffer_info
->ps_pages
[j
];
1684 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1687 put_page(ps_page
->page
);
1688 ps_page
->page
= NULL
;
1692 /* there also may be some cached data from a chained receive */
1693 if (rx_ring
->rx_skb_top
) {
1694 dev_kfree_skb(rx_ring
->rx_skb_top
);
1695 rx_ring
->rx_skb_top
= NULL
;
1698 /* Zero out the descriptor ring */
1699 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1701 rx_ring
->next_to_clean
= 0;
1702 rx_ring
->next_to_use
= 0;
1703 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1705 writel(0, rx_ring
->head
);
1706 if (rx_ring
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
1707 e1000e_update_rdt_wa(rx_ring
, 0);
1709 writel(0, rx_ring
->tail
);
1712 static void e1000e_downshift_workaround(struct work_struct
*work
)
1714 struct e1000_adapter
*adapter
= container_of(work
,
1715 struct e1000_adapter
,
1718 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1721 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1725 * e1000_intr_msi - Interrupt Handler
1726 * @irq: interrupt number
1727 * @data: pointer to a network interface device structure
1729 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1731 struct net_device
*netdev
= data
;
1732 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1733 struct e1000_hw
*hw
= &adapter
->hw
;
1734 u32 icr
= er32(ICR
);
1736 /* read ICR disables interrupts using IAM */
1737 if (icr
& E1000_ICR_LSC
) {
1738 hw
->mac
.get_link_status
= true;
1739 /* ICH8 workaround-- Call gig speed drop workaround on cable
1740 * disconnect (LSC) before accessing any PHY registers
1742 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1743 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1744 schedule_work(&adapter
->downshift_task
);
1746 /* 80003ES2LAN workaround-- For packet buffer work-around on
1747 * link down event; disable receives here in the ISR and reset
1748 * adapter in watchdog
1750 if (netif_carrier_ok(netdev
) &&
1751 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1752 /* disable receives */
1753 u32 rctl
= er32(RCTL
);
1754 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1755 adapter
->flags
|= FLAG_RESTART_NOW
;
1757 /* guard against interrupt when we're going down */
1758 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1759 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1762 /* Reset on uncorrectable ECC error */
1763 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
== e1000_pch_lpt
)) {
1764 u32 pbeccsts
= er32(PBECCSTS
);
1766 adapter
->corr_errors
+=
1767 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1768 adapter
->uncorr_errors
+=
1769 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1770 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1772 /* Do the reset outside of interrupt context */
1773 schedule_work(&adapter
->reset_task
);
1775 /* return immediately since reset is imminent */
1779 if (napi_schedule_prep(&adapter
->napi
)) {
1780 adapter
->total_tx_bytes
= 0;
1781 adapter
->total_tx_packets
= 0;
1782 adapter
->total_rx_bytes
= 0;
1783 adapter
->total_rx_packets
= 0;
1784 __napi_schedule(&adapter
->napi
);
1791 * e1000_intr - Interrupt Handler
1792 * @irq: interrupt number
1793 * @data: pointer to a network interface device structure
1795 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1797 struct net_device
*netdev
= data
;
1798 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1799 struct e1000_hw
*hw
= &adapter
->hw
;
1800 u32 rctl
, icr
= er32(ICR
);
1802 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1803 return IRQ_NONE
; /* Not our interrupt */
1805 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1806 * not set, then the adapter didn't send an interrupt
1808 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1811 /* Interrupt Auto-Mask...upon reading ICR,
1812 * interrupts are masked. No need for the
1816 if (icr
& E1000_ICR_LSC
) {
1817 hw
->mac
.get_link_status
= true;
1818 /* ICH8 workaround-- Call gig speed drop workaround on cable
1819 * disconnect (LSC) before accessing any PHY registers
1821 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1822 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1823 schedule_work(&adapter
->downshift_task
);
1825 /* 80003ES2LAN workaround--
1826 * For packet buffer work-around on link down event;
1827 * disable receives here in the ISR and
1828 * reset adapter in watchdog
1830 if (netif_carrier_ok(netdev
) &&
1831 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1832 /* disable receives */
1834 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1835 adapter
->flags
|= FLAG_RESTART_NOW
;
1837 /* guard against interrupt when we're going down */
1838 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1839 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1842 /* Reset on uncorrectable ECC error */
1843 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
== e1000_pch_lpt
)) {
1844 u32 pbeccsts
= er32(PBECCSTS
);
1846 adapter
->corr_errors
+=
1847 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1848 adapter
->uncorr_errors
+=
1849 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1850 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1852 /* Do the reset outside of interrupt context */
1853 schedule_work(&adapter
->reset_task
);
1855 /* return immediately since reset is imminent */
1859 if (napi_schedule_prep(&adapter
->napi
)) {
1860 adapter
->total_tx_bytes
= 0;
1861 adapter
->total_tx_packets
= 0;
1862 adapter
->total_rx_bytes
= 0;
1863 adapter
->total_rx_packets
= 0;
1864 __napi_schedule(&adapter
->napi
);
1870 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1872 struct net_device
*netdev
= data
;
1873 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1874 struct e1000_hw
*hw
= &adapter
->hw
;
1875 u32 icr
= er32(ICR
);
1877 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1878 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1879 ew32(IMS
, E1000_IMS_OTHER
);
1883 if (icr
& adapter
->eiac_mask
)
1884 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1886 if (icr
& E1000_ICR_OTHER
) {
1887 if (!(icr
& E1000_ICR_LSC
))
1888 goto no_link_interrupt
;
1889 hw
->mac
.get_link_status
= true;
1890 /* guard against interrupt when we're going down */
1891 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1892 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1896 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1897 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1902 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1904 struct net_device
*netdev
= data
;
1905 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1906 struct e1000_hw
*hw
= &adapter
->hw
;
1907 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1909 adapter
->total_tx_bytes
= 0;
1910 adapter
->total_tx_packets
= 0;
1912 if (!e1000_clean_tx_irq(tx_ring
))
1913 /* Ring was not completely cleaned, so fire another interrupt */
1914 ew32(ICS
, tx_ring
->ims_val
);
1919 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1921 struct net_device
*netdev
= data
;
1922 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1923 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1925 /* Write the ITR value calculated at the end of the
1926 * previous interrupt.
1928 if (rx_ring
->set_itr
) {
1929 writel(1000000000 / (rx_ring
->itr_val
* 256),
1930 rx_ring
->itr_register
);
1931 rx_ring
->set_itr
= 0;
1934 if (napi_schedule_prep(&adapter
->napi
)) {
1935 adapter
->total_rx_bytes
= 0;
1936 adapter
->total_rx_packets
= 0;
1937 __napi_schedule(&adapter
->napi
);
1943 * e1000_configure_msix - Configure MSI-X hardware
1945 * e1000_configure_msix sets up the hardware to properly
1946 * generate MSI-X interrupts.
1948 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1950 struct e1000_hw
*hw
= &adapter
->hw
;
1951 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1952 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1954 u32 ctrl_ext
, ivar
= 0;
1956 adapter
->eiac_mask
= 0;
1958 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1959 if (hw
->mac
.type
== e1000_82574
) {
1960 u32 rfctl
= er32(RFCTL
);
1961 rfctl
|= E1000_RFCTL_ACK_DIS
;
1965 /* Configure Rx vector */
1966 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1967 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1968 if (rx_ring
->itr_val
)
1969 writel(1000000000 / (rx_ring
->itr_val
* 256),
1970 rx_ring
->itr_register
);
1972 writel(1, rx_ring
->itr_register
);
1973 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1975 /* Configure Tx vector */
1976 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1978 if (tx_ring
->itr_val
)
1979 writel(1000000000 / (tx_ring
->itr_val
* 256),
1980 tx_ring
->itr_register
);
1982 writel(1, tx_ring
->itr_register
);
1983 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1984 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1986 /* set vector for Other Causes, e.g. link changes */
1988 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1989 if (rx_ring
->itr_val
)
1990 writel(1000000000 / (rx_ring
->itr_val
* 256),
1991 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1993 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1995 /* Cause Tx interrupts on every write back */
2000 /* enable MSI-X PBA support */
2001 ctrl_ext
= er32(CTRL_EXT
);
2002 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
2004 /* Auto-Mask Other interrupts upon ICR read */
2005 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
2006 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
2007 ew32(CTRL_EXT
, ctrl_ext
);
2011 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2013 if (adapter
->msix_entries
) {
2014 pci_disable_msix(adapter
->pdev
);
2015 kfree(adapter
->msix_entries
);
2016 adapter
->msix_entries
= NULL
;
2017 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2018 pci_disable_msi(adapter
->pdev
);
2019 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2024 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2026 * Attempt to configure interrupts using the best available
2027 * capabilities of the hardware and kernel.
2029 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2034 switch (adapter
->int_mode
) {
2035 case E1000E_INT_MODE_MSIX
:
2036 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2037 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2038 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2042 if (adapter
->msix_entries
) {
2043 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2044 adapter
->msix_entries
[i
].entry
= i
;
2046 err
= pci_enable_msix(adapter
->pdev
,
2047 adapter
->msix_entries
,
2048 adapter
->num_vectors
);
2052 /* MSI-X failed, so fall through and try MSI */
2053 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2054 e1000e_reset_interrupt_capability(adapter
);
2056 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2058 case E1000E_INT_MODE_MSI
:
2059 if (!pci_enable_msi(adapter
->pdev
)) {
2060 adapter
->flags
|= FLAG_MSI_ENABLED
;
2062 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2063 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2066 case E1000E_INT_MODE_LEGACY
:
2067 /* Don't do anything; this is the system default */
2071 /* store the number of vectors being used */
2072 adapter
->num_vectors
= 1;
2076 * e1000_request_msix - Initialize MSI-X interrupts
2078 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2081 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2083 struct net_device
*netdev
= adapter
->netdev
;
2084 int err
= 0, vector
= 0;
2086 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2087 snprintf(adapter
->rx_ring
->name
,
2088 sizeof(adapter
->rx_ring
->name
) - 1,
2089 "%s-rx-0", netdev
->name
);
2091 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2092 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2093 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2097 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2098 E1000_EITR_82574(vector
);
2099 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2102 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2103 snprintf(adapter
->tx_ring
->name
,
2104 sizeof(adapter
->tx_ring
->name
) - 1,
2105 "%s-tx-0", netdev
->name
);
2107 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2108 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2109 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2113 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2114 E1000_EITR_82574(vector
);
2115 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2118 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2119 e1000_msix_other
, 0, netdev
->name
, netdev
);
2123 e1000_configure_msix(adapter
);
2129 * e1000_request_irq - initialize interrupts
2131 * Attempts to configure interrupts using the best available
2132 * capabilities of the hardware and kernel.
2134 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2136 struct net_device
*netdev
= adapter
->netdev
;
2139 if (adapter
->msix_entries
) {
2140 err
= e1000_request_msix(adapter
);
2143 /* fall back to MSI */
2144 e1000e_reset_interrupt_capability(adapter
);
2145 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2146 e1000e_set_interrupt_capability(adapter
);
2148 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2149 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2150 netdev
->name
, netdev
);
2154 /* fall back to legacy interrupt */
2155 e1000e_reset_interrupt_capability(adapter
);
2156 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2159 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2160 netdev
->name
, netdev
);
2162 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2167 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2169 struct net_device
*netdev
= adapter
->netdev
;
2171 if (adapter
->msix_entries
) {
2174 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2177 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2180 /* Other Causes interrupt vector */
2181 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2185 free_irq(adapter
->pdev
->irq
, netdev
);
2189 * e1000_irq_disable - Mask off interrupt generation on the NIC
2191 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2193 struct e1000_hw
*hw
= &adapter
->hw
;
2196 if (adapter
->msix_entries
)
2197 ew32(EIAC_82574
, 0);
2200 if (adapter
->msix_entries
) {
2202 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2203 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2205 synchronize_irq(adapter
->pdev
->irq
);
2210 * e1000_irq_enable - Enable default interrupt generation settings
2212 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2214 struct e1000_hw
*hw
= &adapter
->hw
;
2216 if (adapter
->msix_entries
) {
2217 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2218 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
2219 } else if (hw
->mac
.type
== e1000_pch_lpt
) {
2220 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2222 ew32(IMS
, IMS_ENABLE_MASK
);
2228 * e1000e_get_hw_control - get control of the h/w from f/w
2229 * @adapter: address of board private structure
2231 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2232 * For ASF and Pass Through versions of f/w this means that
2233 * the driver is loaded. For AMT version (only with 82573)
2234 * of the f/w this means that the network i/f is open.
2236 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2238 struct e1000_hw
*hw
= &adapter
->hw
;
2242 /* Let firmware know the driver has taken over */
2243 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2245 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2246 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2247 ctrl_ext
= er32(CTRL_EXT
);
2248 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2253 * e1000e_release_hw_control - release control of the h/w to f/w
2254 * @adapter: address of board private structure
2256 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2257 * For ASF and Pass Through versions of f/w this means that the
2258 * driver is no longer loaded. For AMT version (only with 82573) i
2259 * of the f/w this means that the network i/f is closed.
2262 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2264 struct e1000_hw
*hw
= &adapter
->hw
;
2268 /* Let firmware taken over control of h/w */
2269 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2271 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2272 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2273 ctrl_ext
= er32(CTRL_EXT
);
2274 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2279 * e1000_alloc_ring_dma - allocate memory for a ring structure
2281 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2282 struct e1000_ring
*ring
)
2284 struct pci_dev
*pdev
= adapter
->pdev
;
2286 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2295 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2296 * @tx_ring: Tx descriptor ring
2298 * Return 0 on success, negative on failure
2300 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2302 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2303 int err
= -ENOMEM
, size
;
2305 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2306 tx_ring
->buffer_info
= vzalloc(size
);
2307 if (!tx_ring
->buffer_info
)
2310 /* round up to nearest 4K */
2311 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2312 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2314 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2318 tx_ring
->next_to_use
= 0;
2319 tx_ring
->next_to_clean
= 0;
2323 vfree(tx_ring
->buffer_info
);
2324 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2329 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2330 * @rx_ring: Rx descriptor ring
2332 * Returns 0 on success, negative on failure
2334 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2336 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2337 struct e1000_buffer
*buffer_info
;
2338 int i
, size
, desc_len
, err
= -ENOMEM
;
2340 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2341 rx_ring
->buffer_info
= vzalloc(size
);
2342 if (!rx_ring
->buffer_info
)
2345 for (i
= 0; i
< rx_ring
->count
; i
++) {
2346 buffer_info
= &rx_ring
->buffer_info
[i
];
2347 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2348 sizeof(struct e1000_ps_page
),
2350 if (!buffer_info
->ps_pages
)
2354 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2356 /* Round up to nearest 4K */
2357 rx_ring
->size
= rx_ring
->count
* desc_len
;
2358 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2360 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2364 rx_ring
->next_to_clean
= 0;
2365 rx_ring
->next_to_use
= 0;
2366 rx_ring
->rx_skb_top
= NULL
;
2371 for (i
= 0; i
< rx_ring
->count
; i
++) {
2372 buffer_info
= &rx_ring
->buffer_info
[i
];
2373 kfree(buffer_info
->ps_pages
);
2376 vfree(rx_ring
->buffer_info
);
2377 e_err("Unable to allocate memory for the receive descriptor ring\n");
2382 * e1000_clean_tx_ring - Free Tx Buffers
2383 * @tx_ring: Tx descriptor ring
2385 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2387 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2388 struct e1000_buffer
*buffer_info
;
2392 for (i
= 0; i
< tx_ring
->count
; i
++) {
2393 buffer_info
= &tx_ring
->buffer_info
[i
];
2394 e1000_put_txbuf(tx_ring
, buffer_info
);
2397 netdev_reset_queue(adapter
->netdev
);
2398 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2399 memset(tx_ring
->buffer_info
, 0, size
);
2401 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2403 tx_ring
->next_to_use
= 0;
2404 tx_ring
->next_to_clean
= 0;
2406 writel(0, tx_ring
->head
);
2407 if (tx_ring
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2408 e1000e_update_tdt_wa(tx_ring
, 0);
2410 writel(0, tx_ring
->tail
);
2414 * e1000e_free_tx_resources - Free Tx Resources per Queue
2415 * @tx_ring: Tx descriptor ring
2417 * Free all transmit software resources
2419 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2421 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2422 struct pci_dev
*pdev
= adapter
->pdev
;
2424 e1000_clean_tx_ring(tx_ring
);
2426 vfree(tx_ring
->buffer_info
);
2427 tx_ring
->buffer_info
= NULL
;
2429 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2431 tx_ring
->desc
= NULL
;
2435 * e1000e_free_rx_resources - Free Rx Resources
2436 * @rx_ring: Rx descriptor ring
2438 * Free all receive software resources
2440 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2442 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2443 struct pci_dev
*pdev
= adapter
->pdev
;
2446 e1000_clean_rx_ring(rx_ring
);
2448 for (i
= 0; i
< rx_ring
->count
; i
++)
2449 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2451 vfree(rx_ring
->buffer_info
);
2452 rx_ring
->buffer_info
= NULL
;
2454 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2456 rx_ring
->desc
= NULL
;
2460 * e1000_update_itr - update the dynamic ITR value based on statistics
2461 * @adapter: pointer to adapter
2462 * @itr_setting: current adapter->itr
2463 * @packets: the number of packets during this measurement interval
2464 * @bytes: the number of bytes during this measurement interval
2466 * Stores a new ITR value based on packets and byte
2467 * counts during the last interrupt. The advantage of per interrupt
2468 * computation is faster updates and more accurate ITR for the current
2469 * traffic pattern. Constants in this function were computed
2470 * based on theoretical maximum wire speed and thresholds were set based
2471 * on testing data as well as attempting to minimize response time
2472 * while increasing bulk throughput. This functionality is controlled
2473 * by the InterruptThrottleRate module parameter.
2475 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2477 unsigned int retval
= itr_setting
;
2482 switch (itr_setting
) {
2483 case lowest_latency
:
2484 /* handle TSO and jumbo frames */
2485 if (bytes
/ packets
> 8000)
2486 retval
= bulk_latency
;
2487 else if ((packets
< 5) && (bytes
> 512))
2488 retval
= low_latency
;
2490 case low_latency
: /* 50 usec aka 20000 ints/s */
2491 if (bytes
> 10000) {
2492 /* this if handles the TSO accounting */
2493 if (bytes
/ packets
> 8000)
2494 retval
= bulk_latency
;
2495 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2496 retval
= bulk_latency
;
2497 else if ((packets
> 35))
2498 retval
= lowest_latency
;
2499 } else if (bytes
/ packets
> 2000) {
2500 retval
= bulk_latency
;
2501 } else if (packets
<= 2 && bytes
< 512) {
2502 retval
= lowest_latency
;
2505 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2506 if (bytes
> 25000) {
2508 retval
= low_latency
;
2509 } else if (bytes
< 6000) {
2510 retval
= low_latency
;
2518 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2521 u32 new_itr
= adapter
->itr
;
2523 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2524 if (adapter
->link_speed
!= SPEED_1000
) {
2530 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2535 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2536 adapter
->total_tx_packets
,
2537 adapter
->total_tx_bytes
);
2538 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2539 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2540 adapter
->tx_itr
= low_latency
;
2542 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2543 adapter
->total_rx_packets
,
2544 adapter
->total_rx_bytes
);
2545 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2546 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2547 adapter
->rx_itr
= low_latency
;
2549 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2551 /* counts and packets in update_itr are dependent on these numbers */
2552 switch (current_itr
) {
2553 case lowest_latency
:
2557 new_itr
= 20000; /* aka hwitr = ~200 */
2567 if (new_itr
!= adapter
->itr
) {
2568 /* this attempts to bias the interrupt rate towards Bulk
2569 * by adding intermediate steps when interrupt rate is
2572 new_itr
= new_itr
> adapter
->itr
?
2573 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2574 adapter
->itr
= new_itr
;
2575 adapter
->rx_ring
->itr_val
= new_itr
;
2576 if (adapter
->msix_entries
)
2577 adapter
->rx_ring
->set_itr
= 1;
2579 e1000e_write_itr(adapter
, new_itr
);
2584 * e1000e_write_itr - write the ITR value to the appropriate registers
2585 * @adapter: address of board private structure
2586 * @itr: new ITR value to program
2588 * e1000e_write_itr determines if the adapter is in MSI-X mode
2589 * and, if so, writes the EITR registers with the ITR value.
2590 * Otherwise, it writes the ITR value into the ITR register.
2592 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2594 struct e1000_hw
*hw
= &adapter
->hw
;
2595 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2597 if (adapter
->msix_entries
) {
2600 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2601 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2608 * e1000_alloc_queues - Allocate memory for all rings
2609 * @adapter: board private structure to initialize
2611 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2613 int size
= sizeof(struct e1000_ring
);
2615 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2616 if (!adapter
->tx_ring
)
2618 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2619 adapter
->tx_ring
->adapter
= adapter
;
2621 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2622 if (!adapter
->rx_ring
)
2624 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2625 adapter
->rx_ring
->adapter
= adapter
;
2629 e_err("Unable to allocate memory for queues\n");
2630 kfree(adapter
->rx_ring
);
2631 kfree(adapter
->tx_ring
);
2636 * e1000e_poll - NAPI Rx polling callback
2637 * @napi: struct associated with this polling callback
2638 * @weight: number of packets driver is allowed to process this poll
2640 static int e1000e_poll(struct napi_struct
*napi
, int weight
)
2642 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2644 struct e1000_hw
*hw
= &adapter
->hw
;
2645 struct net_device
*poll_dev
= adapter
->netdev
;
2646 int tx_cleaned
= 1, work_done
= 0;
2648 adapter
= netdev_priv(poll_dev
);
2650 if (!adapter
->msix_entries
||
2651 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2652 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2654 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, weight
);
2659 /* If weight not fully consumed, exit the polling mode */
2660 if (work_done
< weight
) {
2661 if (adapter
->itr_setting
& 3)
2662 e1000_set_itr(adapter
);
2663 napi_complete(napi
);
2664 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2665 if (adapter
->msix_entries
)
2666 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2668 e1000_irq_enable(adapter
);
2675 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2676 __always_unused __be16 proto
, u16 vid
)
2678 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2679 struct e1000_hw
*hw
= &adapter
->hw
;
2682 /* don't update vlan cookie if already programmed */
2683 if ((adapter
->hw
.mng_cookie
.status
&
2684 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2685 (vid
== adapter
->mng_vlan_id
))
2688 /* add VID to filter table */
2689 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2690 index
= (vid
>> 5) & 0x7F;
2691 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2692 vfta
|= (1 << (vid
& 0x1F));
2693 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2696 set_bit(vid
, adapter
->active_vlans
);
2701 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2702 __always_unused __be16 proto
, u16 vid
)
2704 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2705 struct e1000_hw
*hw
= &adapter
->hw
;
2708 if ((adapter
->hw
.mng_cookie
.status
&
2709 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2710 (vid
== adapter
->mng_vlan_id
)) {
2711 /* release control to f/w */
2712 e1000e_release_hw_control(adapter
);
2716 /* remove VID from filter table */
2717 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2718 index
= (vid
>> 5) & 0x7F;
2719 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2720 vfta
&= ~(1 << (vid
& 0x1F));
2721 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2724 clear_bit(vid
, adapter
->active_vlans
);
2730 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2731 * @adapter: board private structure to initialize
2733 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2735 struct net_device
*netdev
= adapter
->netdev
;
2736 struct e1000_hw
*hw
= &adapter
->hw
;
2739 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2740 /* disable VLAN receive filtering */
2742 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2745 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2746 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2747 adapter
->mng_vlan_id
);
2748 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2754 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2755 * @adapter: board private structure to initialize
2757 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2759 struct e1000_hw
*hw
= &adapter
->hw
;
2762 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2763 /* enable VLAN receive filtering */
2765 rctl
|= E1000_RCTL_VFE
;
2766 rctl
&= ~E1000_RCTL_CFIEN
;
2772 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2773 * @adapter: board private structure to initialize
2775 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2777 struct e1000_hw
*hw
= &adapter
->hw
;
2780 /* disable VLAN tag insert/strip */
2782 ctrl
&= ~E1000_CTRL_VME
;
2787 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2788 * @adapter: board private structure to initialize
2790 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2792 struct e1000_hw
*hw
= &adapter
->hw
;
2795 /* enable VLAN tag insert/strip */
2797 ctrl
|= E1000_CTRL_VME
;
2801 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2803 struct net_device
*netdev
= adapter
->netdev
;
2804 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2805 u16 old_vid
= adapter
->mng_vlan_id
;
2807 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2808 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2809 adapter
->mng_vlan_id
= vid
;
2812 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2813 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2816 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2820 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2822 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2823 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2826 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2828 struct e1000_hw
*hw
= &adapter
->hw
;
2829 u32 manc
, manc2h
, mdef
, i
, j
;
2831 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2836 /* enable receiving management packets to the host. this will probably
2837 * generate destination unreachable messages from the host OS, but
2838 * the packets will be handled on SMBUS
2840 manc
|= E1000_MANC_EN_MNG2HOST
;
2841 manc2h
= er32(MANC2H
);
2843 switch (hw
->mac
.type
) {
2845 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2849 /* Check if IPMI pass-through decision filter already exists;
2852 for (i
= 0, j
= 0; i
< 8; i
++) {
2853 mdef
= er32(MDEF(i
));
2855 /* Ignore filters with anything other than IPMI ports */
2856 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2859 /* Enable this decision filter in MANC2H */
2866 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2869 /* Create new decision filter in an empty filter */
2870 for (i
= 0, j
= 0; i
< 8; i
++)
2871 if (er32(MDEF(i
)) == 0) {
2872 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2873 E1000_MDEF_PORT_664
));
2880 e_warn("Unable to create IPMI pass-through filter\n");
2884 ew32(MANC2H
, manc2h
);
2889 * e1000_configure_tx - Configure Transmit Unit after Reset
2890 * @adapter: board private structure
2892 * Configure the Tx unit of the MAC after a reset.
2894 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2896 struct e1000_hw
*hw
= &adapter
->hw
;
2897 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2901 /* Setup the HW Tx Head and Tail descriptor pointers */
2902 tdba
= tx_ring
->dma
;
2903 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2904 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2905 ew32(TDBAH(0), (tdba
>> 32));
2906 ew32(TDLEN(0), tdlen
);
2909 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2910 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2912 /* Set the Tx Interrupt Delay register */
2913 ew32(TIDV
, adapter
->tx_int_delay
);
2914 /* Tx irq moderation */
2915 ew32(TADV
, adapter
->tx_abs_int_delay
);
2917 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2918 u32 txdctl
= er32(TXDCTL(0));
2919 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2920 E1000_TXDCTL_WTHRESH
);
2921 /* set up some performance related parameters to encourage the
2922 * hardware to use the bus more efficiently in bursts, depends
2923 * on the tx_int_delay to be enabled,
2924 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2925 * hthresh = 1 ==> prefetch when one or more available
2926 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2927 * BEWARE: this seems to work but should be considered first if
2928 * there are Tx hangs or other Tx related bugs
2930 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2931 ew32(TXDCTL(0), txdctl
);
2933 /* erratum work around: set txdctl the same for both queues */
2934 ew32(TXDCTL(1), er32(TXDCTL(0)));
2936 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2937 tarc
= er32(TARC(0));
2938 /* set the speed mode bit, we'll clear it if we're not at
2939 * gigabit link later
2941 #define SPEED_MODE_BIT (1 << 21)
2942 tarc
|= SPEED_MODE_BIT
;
2943 ew32(TARC(0), tarc
);
2946 /* errata: program both queues to unweighted RR */
2947 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2948 tarc
= er32(TARC(0));
2950 ew32(TARC(0), tarc
);
2951 tarc
= er32(TARC(1));
2953 ew32(TARC(1), tarc
);
2956 /* Setup Transmit Descriptor Settings for eop descriptor */
2957 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2959 /* only set IDE if we are delaying interrupts using the timers */
2960 if (adapter
->tx_int_delay
)
2961 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2963 /* enable Report Status bit */
2964 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2966 hw
->mac
.ops
.config_collision_dist(hw
);
2970 * e1000_setup_rctl - configure the receive control registers
2971 * @adapter: Board private structure
2973 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2974 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2975 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2977 struct e1000_hw
*hw
= &adapter
->hw
;
2981 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2982 if (hw
->mac
.type
>= e1000_pch2lan
) {
2985 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2986 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2988 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2991 e_dbg("failed to enable jumbo frame workaround mode\n");
2994 /* Program MC offset vector base */
2996 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2997 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2998 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2999 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3001 /* Do not Store bad packets */
3002 rctl
&= ~E1000_RCTL_SBP
;
3004 /* Enable Long Packet receive */
3005 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3006 rctl
&= ~E1000_RCTL_LPE
;
3008 rctl
|= E1000_RCTL_LPE
;
3010 /* Some systems expect that the CRC is included in SMBUS traffic. The
3011 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3012 * host memory when this is enabled
3014 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3015 rctl
|= E1000_RCTL_SECRC
;
3017 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3018 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3021 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3023 phy_data
|= (1 << 2);
3024 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3026 e1e_rphy(hw
, 22, &phy_data
);
3028 phy_data
|= (1 << 14);
3029 e1e_wphy(hw
, 0x10, 0x2823);
3030 e1e_wphy(hw
, 0x11, 0x0003);
3031 e1e_wphy(hw
, 22, phy_data
);
3034 /* Setup buffer sizes */
3035 rctl
&= ~E1000_RCTL_SZ_4096
;
3036 rctl
|= E1000_RCTL_BSEX
;
3037 switch (adapter
->rx_buffer_len
) {
3040 rctl
|= E1000_RCTL_SZ_2048
;
3041 rctl
&= ~E1000_RCTL_BSEX
;
3044 rctl
|= E1000_RCTL_SZ_4096
;
3047 rctl
|= E1000_RCTL_SZ_8192
;
3050 rctl
|= E1000_RCTL_SZ_16384
;
3054 /* Enable Extended Status in all Receive Descriptors */
3055 rfctl
= er32(RFCTL
);
3056 rfctl
|= E1000_RFCTL_EXTEN
;
3059 /* 82571 and greater support packet-split where the protocol
3060 * header is placed in skb->data and the packet data is
3061 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3062 * In the case of a non-split, skb->data is linearly filled,
3063 * followed by the page buffers. Therefore, skb->data is
3064 * sized to hold the largest protocol header.
3066 * allocations using alloc_page take too long for regular MTU
3067 * so only enable packet split for jumbo frames
3069 * Using pages when the page size is greater than 16k wastes
3070 * a lot of memory, since we allocate 3 pages at all times
3073 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3074 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3075 adapter
->rx_ps_pages
= pages
;
3077 adapter
->rx_ps_pages
= 0;
3079 if (adapter
->rx_ps_pages
) {
3082 /* Enable Packet split descriptors */
3083 rctl
|= E1000_RCTL_DTYP_PS
;
3085 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3087 switch (adapter
->rx_ps_pages
) {
3089 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3092 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3095 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3099 ew32(PSRCTL
, psrctl
);
3102 /* This is useful for sniffing bad packets. */
3103 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3104 /* UPE and MPE will be handled by normal PROMISC logic
3105 * in e1000e_set_rx_mode
3107 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3108 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3109 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3111 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3112 E1000_RCTL_DPF
| /* Allow filtered pause */
3113 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3114 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3115 * and that breaks VLANs.
3120 /* just started the receive unit, no need to restart */
3121 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3125 * e1000_configure_rx - Configure Receive Unit after Reset
3126 * @adapter: board private structure
3128 * Configure the Rx unit of the MAC after a reset.
3130 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3132 struct e1000_hw
*hw
= &adapter
->hw
;
3133 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3135 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3137 if (adapter
->rx_ps_pages
) {
3138 /* this is a 32 byte descriptor */
3139 rdlen
= rx_ring
->count
*
3140 sizeof(union e1000_rx_desc_packet_split
);
3141 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3142 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3143 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3144 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3145 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3146 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3148 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3149 adapter
->clean_rx
= e1000_clean_rx_irq
;
3150 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3153 /* disable receives while setting up the descriptors */
3155 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3156 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3158 usleep_range(10000, 20000);
3160 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3161 /* set the writeback threshold (only takes effect if the RDTR
3162 * is set). set GRAN=1 and write back up to 0x4 worth, and
3163 * enable prefetching of 0x20 Rx descriptors
3169 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3170 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3172 /* override the delay timers for enabling bursting, only if
3173 * the value was not set by the user via module options
3175 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3176 adapter
->rx_int_delay
= BURST_RDTR
;
3177 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3178 adapter
->rx_abs_int_delay
= BURST_RADV
;
3181 /* set the Receive Delay Timer Register */
3182 ew32(RDTR
, adapter
->rx_int_delay
);
3184 /* irq moderation */
3185 ew32(RADV
, adapter
->rx_abs_int_delay
);
3186 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3187 e1000e_write_itr(adapter
, adapter
->itr
);
3189 ctrl_ext
= er32(CTRL_EXT
);
3190 /* Auto-Mask interrupts upon ICR access */
3191 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3192 ew32(IAM
, 0xffffffff);
3193 ew32(CTRL_EXT
, ctrl_ext
);
3196 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3197 * the Base and Length of the Rx Descriptor Ring
3199 rdba
= rx_ring
->dma
;
3200 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3201 ew32(RDBAH(0), (rdba
>> 32));
3202 ew32(RDLEN(0), rdlen
);
3205 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3206 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3208 /* Enable Receive Checksum Offload for TCP and UDP */
3209 rxcsum
= er32(RXCSUM
);
3210 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3211 rxcsum
|= E1000_RXCSUM_TUOFL
;
3213 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3214 ew32(RXCSUM
, rxcsum
);
3216 /* With jumbo frames, excessive C-state transition latencies result
3217 * in dropped transactions.
3219 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3221 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3222 adapter
->max_frame_size
) * 8 / 1000;
3224 if (adapter
->flags
& FLAG_IS_ICH
) {
3225 u32 rxdctl
= er32(RXDCTL(0));
3226 ew32(RXDCTL(0), rxdctl
| 0x3);
3229 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, lat
);
3231 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
3232 PM_QOS_DEFAULT_VALUE
);
3235 /* Enable Receives */
3240 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3241 * @netdev: network interface device structure
3243 * Writes multicast address list to the MTA hash table.
3244 * Returns: -ENOMEM on failure
3245 * 0 on no addresses written
3246 * X on writing X addresses to MTA
3248 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3250 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3251 struct e1000_hw
*hw
= &adapter
->hw
;
3252 struct netdev_hw_addr
*ha
;
3256 if (netdev_mc_empty(netdev
)) {
3257 /* nothing to program, so clear mc list */
3258 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3262 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3266 /* update_mc_addr_list expects a packed array of only addresses. */
3268 netdev_for_each_mc_addr(ha
, netdev
)
3269 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3271 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3274 return netdev_mc_count(netdev
);
3278 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3279 * @netdev: network interface device structure
3281 * Writes unicast address list to the RAR table.
3282 * Returns: -ENOMEM on failure/insufficient address space
3283 * 0 on no addresses written
3284 * X on writing X addresses to the RAR table
3286 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3288 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3289 struct e1000_hw
*hw
= &adapter
->hw
;
3290 unsigned int rar_entries
= hw
->mac
.rar_entry_count
;
3293 /* save a rar entry for our hardware address */
3296 /* save a rar entry for the LAA workaround */
3297 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3300 /* return ENOMEM indicating insufficient memory for addresses */
3301 if (netdev_uc_count(netdev
) > rar_entries
)
3304 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3305 struct netdev_hw_addr
*ha
;
3307 /* write the addresses in reverse order to avoid write
3310 netdev_for_each_uc_addr(ha
, netdev
) {
3313 hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3318 /* zero out the remaining RAR entries not used above */
3319 for (; rar_entries
> 0; rar_entries
--) {
3320 ew32(RAH(rar_entries
), 0);
3321 ew32(RAL(rar_entries
), 0);
3329 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3330 * @netdev: network interface device structure
3332 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3333 * address list or the network interface flags are updated. This routine is
3334 * responsible for configuring the hardware for proper unicast, multicast,
3335 * promiscuous mode, and all-multi behavior.
3337 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3339 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3340 struct e1000_hw
*hw
= &adapter
->hw
;
3343 /* Check for Promiscuous and All Multicast modes */
3346 /* clear the affected bits */
3347 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3349 if (netdev
->flags
& IFF_PROMISC
) {
3350 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3351 /* Do not hardware filter VLANs in promisc mode */
3352 e1000e_vlan_filter_disable(adapter
);
3356 if (netdev
->flags
& IFF_ALLMULTI
) {
3357 rctl
|= E1000_RCTL_MPE
;
3359 /* Write addresses to the MTA, if the attempt fails
3360 * then we should just turn on promiscuous mode so
3361 * that we can at least receive multicast traffic
3363 count
= e1000e_write_mc_addr_list(netdev
);
3365 rctl
|= E1000_RCTL_MPE
;
3367 e1000e_vlan_filter_enable(adapter
);
3368 /* Write addresses to available RAR registers, if there is not
3369 * sufficient space to store all the addresses then enable
3370 * unicast promiscuous mode
3372 count
= e1000e_write_uc_addr_list(netdev
);
3374 rctl
|= E1000_RCTL_UPE
;
3379 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3380 e1000e_vlan_strip_enable(adapter
);
3382 e1000e_vlan_strip_disable(adapter
);
3385 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3387 struct e1000_hw
*hw
= &adapter
->hw
;
3390 static const u32 rsskey
[10] = {
3391 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3392 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3395 /* Fill out hash function seed */
3396 for (i
= 0; i
< 10; i
++)
3397 ew32(RSSRK(i
), rsskey
[i
]);
3399 /* Direct all traffic to queue 0 */
3400 for (i
= 0; i
< 32; i
++)
3403 /* Disable raw packet checksumming so that RSS hash is placed in
3404 * descriptor on writeback.
3406 rxcsum
= er32(RXCSUM
);
3407 rxcsum
|= E1000_RXCSUM_PCSD
;
3409 ew32(RXCSUM
, rxcsum
);
3411 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3412 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3413 E1000_MRQC_RSS_FIELD_IPV6
|
3414 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3415 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3421 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3422 * @adapter: board private structure
3423 * @timinca: pointer to returned time increment attributes
3425 * Get attributes for incrementing the System Time Register SYSTIML/H at
3426 * the default base frequency, and set the cyclecounter shift value.
3428 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3430 struct e1000_hw
*hw
= &adapter
->hw
;
3431 u32 incvalue
, incperiod
, shift
;
3433 /* Make sure clock is enabled on I217 before checking the frequency */
3434 if ((hw
->mac
.type
== e1000_pch_lpt
) &&
3435 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3436 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3437 u32 fextnvm7
= er32(FEXTNVM7
);
3439 if (!(fextnvm7
& (1 << 0))) {
3440 ew32(FEXTNVM7
, fextnvm7
| (1 << 0));
3445 switch (hw
->mac
.type
) {
3448 /* On I217, the clock frequency is 25MHz or 96MHz as
3449 * indicated by the System Clock Frequency Indication
3451 if ((hw
->mac
.type
!= e1000_pch_lpt
) ||
3452 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
)) {
3453 /* Stable 96MHz frequency */
3454 incperiod
= INCPERIOD_96MHz
;
3455 incvalue
= INCVALUE_96MHz
;
3456 shift
= INCVALUE_SHIFT_96MHz
;
3457 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHz
;
3463 /* Stable 25MHz frequency */
3464 incperiod
= INCPERIOD_25MHz
;
3465 incvalue
= INCVALUE_25MHz
;
3466 shift
= INCVALUE_SHIFT_25MHz
;
3467 adapter
->cc
.shift
= shift
;
3473 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3474 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3480 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3481 * @adapter: board private structure
3483 * Outgoing time stamping can be enabled and disabled. Play nice and
3484 * disable it when requested, although it shouldn't cause any overhead
3485 * when no packet needs it. At most one packet in the queue may be
3486 * marked for time stamping, otherwise it would be impossible to tell
3487 * for sure to which packet the hardware time stamp belongs.
3489 * Incoming time stamping has to be configured via the hardware filters.
3490 * Not all combinations are supported, in particular event type has to be
3491 * specified. Matching the kind of event packet is not supported, with the
3492 * exception of "all V2 events regardless of level 2 or 4".
3494 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
)
3496 struct e1000_hw
*hw
= &adapter
->hw
;
3497 struct hwtstamp_config
*config
= &adapter
->hwtstamp_config
;
3498 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3499 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3507 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3510 /* flags reserved for future extensions - must be zero */
3514 switch (config
->tx_type
) {
3515 case HWTSTAMP_TX_OFF
:
3518 case HWTSTAMP_TX_ON
:
3524 switch (config
->rx_filter
) {
3525 case HWTSTAMP_FILTER_NONE
:
3528 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3529 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3530 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3533 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3534 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3535 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3538 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3539 /* Also time stamps V2 L2 Path Delay Request/Response */
3540 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3541 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3544 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3545 /* Also time stamps V2 L2 Path Delay Request/Response. */
3546 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3547 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3550 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3551 /* Hardware cannot filter just V2 L4 Sync messages;
3552 * fall-through to V2 (both L2 and L4) Sync.
3554 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3555 /* Also time stamps V2 Path Delay Request/Response. */
3556 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3557 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3561 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3562 /* Hardware cannot filter just V2 L4 Delay Request messages;
3563 * fall-through to V2 (both L2 and L4) Delay Request.
3565 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3566 /* Also time stamps V2 Path Delay Request/Response. */
3567 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3568 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3572 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3573 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3574 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3575 * fall-through to all V2 (both L2 and L4) Events.
3577 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3578 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3579 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3583 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3584 /* For V1, the hardware can only filter Sync messages or
3585 * Delay Request messages but not both so fall-through to
3586 * time stamp all packets.
3588 case HWTSTAMP_FILTER_ALL
:
3591 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3592 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3598 /* enable/disable Tx h/w time stamping */
3599 regval
= er32(TSYNCTXCTL
);
3600 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3601 regval
|= tsync_tx_ctl
;
3602 ew32(TSYNCTXCTL
, regval
);
3603 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3604 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3605 e_err("Timesync Tx Control register not set as expected\n");
3609 /* enable/disable Rx h/w time stamping */
3610 regval
= er32(TSYNCRXCTL
);
3611 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3612 regval
|= tsync_rx_ctl
;
3613 ew32(TSYNCRXCTL
, regval
);
3614 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3615 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3616 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3617 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3618 e_err("Timesync Rx Control register not set as expected\n");
3622 /* L2: define ethertype filter for time stamped packets */
3624 rxmtrl
|= ETH_P_1588
;
3626 /* define which PTP packets get time stamped */
3627 ew32(RXMTRL
, rxmtrl
);
3629 /* Filter by destination port */
3631 rxudp
= PTP_EV_PORT
;
3632 cpu_to_be16s(&rxudp
);
3638 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3642 /* Get and set the System Time Register SYSTIM base frequency */
3643 ret_val
= e1000e_get_base_timinca(adapter
, ®val
);
3646 ew32(TIMINCA
, regval
);
3648 /* reset the ns time counter */
3649 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3650 ktime_to_ns(ktime_get_real()));
3656 * e1000_configure - configure the hardware for Rx and Tx
3657 * @adapter: private board structure
3659 static void e1000_configure(struct e1000_adapter
*adapter
)
3661 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3663 e1000e_set_rx_mode(adapter
->netdev
);
3665 e1000_restore_vlan(adapter
);
3666 e1000_init_manageability_pt(adapter
);
3668 e1000_configure_tx(adapter
);
3670 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3671 e1000e_setup_rss_hash(adapter
);
3672 e1000_setup_rctl(adapter
);
3673 e1000_configure_rx(adapter
);
3674 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3678 * e1000e_power_up_phy - restore link in case the phy was powered down
3679 * @adapter: address of board private structure
3681 * The phy may be powered down to save power and turn off link when the
3682 * driver is unloaded and wake on lan is not enabled (among others)
3683 * *** this routine MUST be followed by a call to e1000e_reset ***
3685 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3687 if (adapter
->hw
.phy
.ops
.power_up
)
3688 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3690 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3694 * e1000_power_down_phy - Power down the PHY
3696 * Power down the PHY so no link is implied when interface is down.
3697 * The PHY cannot be powered down if management or WoL is active.
3699 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3701 /* WoL is enabled */
3705 if (adapter
->hw
.phy
.ops
.power_down
)
3706 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3710 * e1000e_reset - bring the hardware into a known good state
3712 * This function boots the hardware and enables some settings that
3713 * require a configuration cycle of the hardware - those cannot be
3714 * set/changed during runtime. After reset the device needs to be
3715 * properly configured for Rx, Tx etc.
3717 void e1000e_reset(struct e1000_adapter
*adapter
)
3719 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3720 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3721 struct e1000_hw
*hw
= &adapter
->hw
;
3722 u32 tx_space
, min_tx_space
, min_rx_space
;
3723 u32 pba
= adapter
->pba
;
3726 /* reset Packet Buffer Allocation to default */
3729 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3730 /* To maintain wire speed transmits, the Tx FIFO should be
3731 * large enough to accommodate two full transmit packets,
3732 * rounded up to the next 1KB and expressed in KB. Likewise,
3733 * the Rx FIFO should be large enough to accommodate at least
3734 * one full receive packet and is similarly rounded up and
3738 /* upper 16 bits has Tx packet buffer allocation size in KB */
3739 tx_space
= pba
>> 16;
3740 /* lower 16 bits has Rx packet buffer allocation size in KB */
3742 /* the Tx fifo also stores 16 bytes of information about the Tx
3743 * but don't include ethernet FCS because hardware appends it
3745 min_tx_space
= (adapter
->max_frame_size
+
3746 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
3747 min_tx_space
= ALIGN(min_tx_space
, 1024);
3748 min_tx_space
>>= 10;
3749 /* software strips receive CRC, so leave room for it */
3750 min_rx_space
= adapter
->max_frame_size
;
3751 min_rx_space
= ALIGN(min_rx_space
, 1024);
3752 min_rx_space
>>= 10;
3754 /* If current Tx allocation is less than the min Tx FIFO size,
3755 * and the min Tx FIFO size is less than the current Rx FIFO
3756 * allocation, take space away from current Rx allocation
3758 if ((tx_space
< min_tx_space
) &&
3759 ((min_tx_space
- tx_space
) < pba
)) {
3760 pba
-= min_tx_space
- tx_space
;
3762 /* if short on Rx space, Rx wins and must trump Tx
3765 if (pba
< min_rx_space
)
3772 /* flow control settings
3774 * The high water mark must be low enough to fit one full frame
3775 * (or the size used for early receive) above it in the Rx FIFO.
3776 * Set it to the lower of:
3777 * - 90% of the Rx FIFO size, and
3778 * - the full Rx FIFO size minus one full frame
3780 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3781 fc
->pause_time
= 0xFFFF;
3783 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3784 fc
->send_xon
= true;
3785 fc
->current_mode
= fc
->requested_mode
;
3787 switch (hw
->mac
.type
) {
3789 case e1000_ich10lan
:
3790 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3793 fc
->high_water
= 0x2800;
3794 fc
->low_water
= fc
->high_water
- 8;
3799 hwm
= min(((pba
<< 10) * 9 / 10),
3800 ((pba
<< 10) - adapter
->max_frame_size
));
3802 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3803 fc
->low_water
= fc
->high_water
- 8;
3806 /* Workaround PCH LOM adapter hangs with certain network
3807 * loads. If hangs persist, try disabling Tx flow control.
3809 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3810 fc
->high_water
= 0x3500;
3811 fc
->low_water
= 0x1500;
3813 fc
->high_water
= 0x5000;
3814 fc
->low_water
= 0x3000;
3816 fc
->refresh_time
= 0x1000;
3820 fc
->refresh_time
= 0x0400;
3822 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
3823 fc
->high_water
= 0x05C20;
3824 fc
->low_water
= 0x05048;
3825 fc
->pause_time
= 0x0650;
3829 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
3830 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
3834 /* Alignment of Tx data is on an arbitrary byte boundary with the
3835 * maximum size per Tx descriptor limited only to the transmit
3836 * allocation of the packet buffer minus 96 bytes with an upper
3837 * limit of 24KB due to receive synchronization limitations.
3839 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
3842 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3843 * fit in receive buffer.
3845 if (adapter
->itr_setting
& 0x3) {
3846 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
3847 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3848 dev_info(&adapter
->pdev
->dev
,
3849 "Interrupt Throttle Rate off\n");
3850 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3851 e1000e_write_itr(adapter
, 0);
3853 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3854 dev_info(&adapter
->pdev
->dev
,
3855 "Interrupt Throttle Rate on\n");
3856 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3857 adapter
->itr
= 20000;
3858 e1000e_write_itr(adapter
, adapter
->itr
);
3862 /* Allow time for pending master requests to run */
3863 mac
->ops
.reset_hw(hw
);
3865 /* For parts with AMT enabled, let the firmware know
3866 * that the network interface is in control
3868 if (adapter
->flags
& FLAG_HAS_AMT
)
3869 e1000e_get_hw_control(adapter
);
3873 if (mac
->ops
.init_hw(hw
))
3874 e_err("Hardware Error\n");
3876 e1000_update_mng_vlan(adapter
);
3878 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3879 ew32(VET
, ETH_P_8021Q
);
3881 e1000e_reset_adaptive(hw
);
3883 /* initialize systim and reset the ns time counter */
3884 e1000e_config_hwtstamp(adapter
);
3886 /* Set EEE advertisement as appropriate */
3887 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
3891 switch (hw
->phy
.type
) {
3892 case e1000_phy_82579
:
3893 adv_addr
= I82579_EEE_ADVERTISEMENT
;
3895 case e1000_phy_i217
:
3896 adv_addr
= I217_EEE_ADVERTISEMENT
;
3899 dev_err(&adapter
->pdev
->dev
,
3900 "Invalid PHY type setting EEE advertisement\n");
3904 ret_val
= hw
->phy
.ops
.acquire(hw
);
3906 dev_err(&adapter
->pdev
->dev
,
3907 "EEE advertisement - unable to acquire PHY\n");
3911 e1000_write_emi_reg_locked(hw
, adv_addr
,
3912 hw
->dev_spec
.ich8lan
.eee_disable
?
3913 0 : adapter
->eee_advert
);
3915 hw
->phy
.ops
.release(hw
);
3918 if (!netif_running(adapter
->netdev
) &&
3919 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3920 e1000_power_down_phy(adapter
);
3924 e1000_get_phy_info(hw
);
3926 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3927 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3929 /* speed up time to link by disabling smart power down, ignore
3930 * the return value of this function because there is nothing
3931 * different we would do if it failed
3933 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3934 phy_data
&= ~IGP02E1000_PM_SPD
;
3935 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3939 int e1000e_up(struct e1000_adapter
*adapter
)
3941 struct e1000_hw
*hw
= &adapter
->hw
;
3943 /* hardware has been reset, we need to reload some things */
3944 e1000_configure(adapter
);
3946 clear_bit(__E1000_DOWN
, &adapter
->state
);
3948 if (adapter
->msix_entries
)
3949 e1000_configure_msix(adapter
);
3950 e1000_irq_enable(adapter
);
3952 netif_start_queue(adapter
->netdev
);
3954 /* fire a link change interrupt to start the watchdog */
3955 if (adapter
->msix_entries
)
3956 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3958 ew32(ICS
, E1000_ICS_LSC
);
3963 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3965 struct e1000_hw
*hw
= &adapter
->hw
;
3967 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3970 /* flush pending descriptor writebacks to memory */
3971 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3972 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3974 /* execute the writes immediately */
3977 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3978 * write is successful
3980 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3981 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3983 /* execute the writes immediately */
3987 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3989 void e1000e_down(struct e1000_adapter
*adapter
)
3991 struct net_device
*netdev
= adapter
->netdev
;
3992 struct e1000_hw
*hw
= &adapter
->hw
;
3995 /* signal that we're down so the interrupt handler does not
3996 * reschedule our watchdog timer
3998 set_bit(__E1000_DOWN
, &adapter
->state
);
4000 /* disable receives in the hardware */
4002 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4003 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4004 /* flush and sleep below */
4006 netif_stop_queue(netdev
);
4008 /* disable transmits in the hardware */
4010 tctl
&= ~E1000_TCTL_EN
;
4013 /* flush both disables and wait for them to finish */
4015 usleep_range(10000, 20000);
4017 e1000_irq_disable(adapter
);
4019 napi_synchronize(&adapter
->napi
);
4021 del_timer_sync(&adapter
->watchdog_timer
);
4022 del_timer_sync(&adapter
->phy_info_timer
);
4024 netif_carrier_off(netdev
);
4026 spin_lock(&adapter
->stats64_lock
);
4027 e1000e_update_stats(adapter
);
4028 spin_unlock(&adapter
->stats64_lock
);
4030 e1000e_flush_descriptors(adapter
);
4031 e1000_clean_tx_ring(adapter
->tx_ring
);
4032 e1000_clean_rx_ring(adapter
->rx_ring
);
4034 adapter
->link_speed
= 0;
4035 adapter
->link_duplex
= 0;
4037 if (!pci_channel_offline(adapter
->pdev
))
4038 e1000e_reset(adapter
);
4040 /* TODO: for power management, we could drop the link and
4041 * pci_disable_device here.
4045 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4048 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4049 usleep_range(1000, 2000);
4050 e1000e_down(adapter
);
4052 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4056 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4057 * @cc: cyclecounter structure
4059 static cycle_t
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4061 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4063 struct e1000_hw
*hw
= &adapter
->hw
;
4066 /* latch SYSTIMH on read of SYSTIML */
4067 systim
= (cycle_t
)er32(SYSTIML
);
4068 systim
|= (cycle_t
)er32(SYSTIMH
) << 32;
4074 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4075 * @adapter: board private structure to initialize
4077 * e1000_sw_init initializes the Adapter private data structure.
4078 * Fields are initialized based on PCI device information and
4079 * OS network device settings (MTU size).
4081 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4083 struct net_device
*netdev
= adapter
->netdev
;
4085 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
4086 adapter
->rx_ps_bsize0
= 128;
4087 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4088 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4089 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4090 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4092 spin_lock_init(&adapter
->stats64_lock
);
4094 e1000e_set_interrupt_capability(adapter
);
4096 if (e1000_alloc_queues(adapter
))
4099 /* Setup hardware time stamping cyclecounter */
4100 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4101 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4102 adapter
->cc
.mask
= CLOCKSOURCE_MASK(64);
4103 adapter
->cc
.mult
= 1;
4104 /* cc.shift set in e1000e_get_base_tininca() */
4106 spin_lock_init(&adapter
->systim_lock
);
4107 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4110 /* Explicitly disable IRQ since the NIC can be in any state. */
4111 e1000_irq_disable(adapter
);
4113 set_bit(__E1000_DOWN
, &adapter
->state
);
4118 * e1000_intr_msi_test - Interrupt Handler
4119 * @irq: interrupt number
4120 * @data: pointer to a network interface device structure
4122 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4124 struct net_device
*netdev
= data
;
4125 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4126 struct e1000_hw
*hw
= &adapter
->hw
;
4127 u32 icr
= er32(ICR
);
4129 e_dbg("icr is %08X\n", icr
);
4130 if (icr
& E1000_ICR_RXSEQ
) {
4131 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4132 /* Force memory writes to complete before acknowledging the
4133 * interrupt is handled.
4142 * e1000_test_msi_interrupt - Returns 0 for successful test
4143 * @adapter: board private struct
4145 * code flow taken from tg3.c
4147 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4149 struct net_device
*netdev
= adapter
->netdev
;
4150 struct e1000_hw
*hw
= &adapter
->hw
;
4153 /* poll_enable hasn't been called yet, so don't need disable */
4154 /* clear any pending events */
4157 /* free the real vector and request a test handler */
4158 e1000_free_irq(adapter
);
4159 e1000e_reset_interrupt_capability(adapter
);
4161 /* Assume that the test fails, if it succeeds then the test
4162 * MSI irq handler will unset this flag
4164 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4166 err
= pci_enable_msi(adapter
->pdev
);
4168 goto msi_test_failed
;
4170 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4171 netdev
->name
, netdev
);
4173 pci_disable_msi(adapter
->pdev
);
4174 goto msi_test_failed
;
4177 /* Force memory writes to complete before enabling and firing an
4182 e1000_irq_enable(adapter
);
4184 /* fire an unusual interrupt on the test handler */
4185 ew32(ICS
, E1000_ICS_RXSEQ
);
4189 e1000_irq_disable(adapter
);
4191 rmb(); /* read flags after interrupt has been fired */
4193 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4194 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4195 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4197 e_dbg("MSI interrupt test succeeded!\n");
4200 free_irq(adapter
->pdev
->irq
, netdev
);
4201 pci_disable_msi(adapter
->pdev
);
4204 e1000e_set_interrupt_capability(adapter
);
4205 return e1000_request_irq(adapter
);
4209 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4210 * @adapter: board private struct
4212 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4214 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4219 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4222 /* disable SERR in case the MSI write causes a master abort */
4223 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4224 if (pci_cmd
& PCI_COMMAND_SERR
)
4225 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4226 pci_cmd
& ~PCI_COMMAND_SERR
);
4228 err
= e1000_test_msi_interrupt(adapter
);
4230 /* re-enable SERR */
4231 if (pci_cmd
& PCI_COMMAND_SERR
) {
4232 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4233 pci_cmd
|= PCI_COMMAND_SERR
;
4234 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4241 * e1000_open - Called when a network interface is made active
4242 * @netdev: network interface device structure
4244 * Returns 0 on success, negative value on failure
4246 * The open entry point is called when a network interface is made
4247 * active by the system (IFF_UP). At this point all resources needed
4248 * for transmit and receive operations are allocated, the interrupt
4249 * handler is registered with the OS, the watchdog timer is started,
4250 * and the stack is notified that the interface is ready.
4252 static int e1000_open(struct net_device
*netdev
)
4254 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4255 struct e1000_hw
*hw
= &adapter
->hw
;
4256 struct pci_dev
*pdev
= adapter
->pdev
;
4259 /* disallow open during test */
4260 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4263 pm_runtime_get_sync(&pdev
->dev
);
4265 netif_carrier_off(netdev
);
4267 /* allocate transmit descriptors */
4268 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4272 /* allocate receive descriptors */
4273 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4277 /* If AMT is enabled, let the firmware know that the network
4278 * interface is now open and reset the part to a known state.
4280 if (adapter
->flags
& FLAG_HAS_AMT
) {
4281 e1000e_get_hw_control(adapter
);
4282 e1000e_reset(adapter
);
4285 e1000e_power_up_phy(adapter
);
4287 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4288 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4289 e1000_update_mng_vlan(adapter
);
4291 /* DMA latency requirement to workaround jumbo issue */
4292 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
,
4293 PM_QOS_DEFAULT_VALUE
);
4295 /* before we allocate an interrupt, we must be ready to handle it.
4296 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4297 * as soon as we call pci_request_irq, so we have to setup our
4298 * clean_rx handler before we do so.
4300 e1000_configure(adapter
);
4302 err
= e1000_request_irq(adapter
);
4306 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4307 * ignore e1000e MSI messages, which means we need to test our MSI
4310 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4311 err
= e1000_test_msi(adapter
);
4313 e_err("Interrupt allocation failed\n");
4318 /* From here on the code is the same as e1000e_up() */
4319 clear_bit(__E1000_DOWN
, &adapter
->state
);
4321 napi_enable(&adapter
->napi
);
4323 e1000_irq_enable(adapter
);
4325 adapter
->tx_hang_recheck
= false;
4326 netif_start_queue(netdev
);
4328 adapter
->idle_check
= true;
4329 hw
->mac
.get_link_status
= true;
4330 pm_runtime_put(&pdev
->dev
);
4332 /* fire a link status change interrupt to start the watchdog */
4333 if (adapter
->msix_entries
)
4334 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
4336 ew32(ICS
, E1000_ICS_LSC
);
4341 e1000e_release_hw_control(adapter
);
4342 e1000_power_down_phy(adapter
);
4343 e1000e_free_rx_resources(adapter
->rx_ring
);
4345 e1000e_free_tx_resources(adapter
->tx_ring
);
4347 e1000e_reset(adapter
);
4348 pm_runtime_put_sync(&pdev
->dev
);
4354 * e1000_close - Disables a network interface
4355 * @netdev: network interface device structure
4357 * Returns 0, this is not allowed to fail
4359 * The close entry point is called when an interface is de-activated
4360 * by the OS. The hardware is still under the drivers control, but
4361 * needs to be disabled. A global MAC reset is issued to stop the
4362 * hardware, and all transmit and receive resources are freed.
4364 static int e1000_close(struct net_device
*netdev
)
4366 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4367 struct pci_dev
*pdev
= adapter
->pdev
;
4368 int count
= E1000_CHECK_RESET_COUNT
;
4370 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4371 usleep_range(10000, 20000);
4373 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4375 pm_runtime_get_sync(&pdev
->dev
);
4377 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
4378 e1000e_down(adapter
);
4379 e1000_free_irq(adapter
);
4382 napi_disable(&adapter
->napi
);
4384 e1000_power_down_phy(adapter
);
4386 e1000e_free_tx_resources(adapter
->tx_ring
);
4387 e1000e_free_rx_resources(adapter
->rx_ring
);
4389 /* kill manageability vlan ID if supported, but not if a vlan with
4390 * the same ID is registered on the host OS (let 8021q kill it)
4392 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4393 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4394 adapter
->mng_vlan_id
);
4396 /* If AMT is enabled, let the firmware know that the network
4397 * interface is now closed
4399 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4400 !test_bit(__E1000_TESTING
, &adapter
->state
))
4401 e1000e_release_hw_control(adapter
);
4403 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
4405 pm_runtime_put_sync(&pdev
->dev
);
4411 * e1000_set_mac - Change the Ethernet Address of the NIC
4412 * @netdev: network interface device structure
4413 * @p: pointer to an address structure
4415 * Returns 0 on success, negative on failure
4417 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4419 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4420 struct e1000_hw
*hw
= &adapter
->hw
;
4421 struct sockaddr
*addr
= p
;
4423 if (!is_valid_ether_addr(addr
->sa_data
))
4424 return -EADDRNOTAVAIL
;
4426 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4427 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4429 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4431 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4432 /* activate the work around */
4433 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4435 /* Hold a copy of the LAA in RAR[14] This is done so that
4436 * between the time RAR[0] gets clobbered and the time it
4437 * gets fixed (in e1000_watchdog), the actual LAA is in one
4438 * of the RARs and no incoming packets directed to this port
4439 * are dropped. Eventually the LAA will be in RAR[0] and
4442 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4443 adapter
->hw
.mac
.rar_entry_count
- 1);
4450 * e1000e_update_phy_task - work thread to update phy
4451 * @work: pointer to our work struct
4453 * this worker thread exists because we must acquire a
4454 * semaphore to read the phy, which we could msleep while
4455 * waiting for it, and we can't msleep in a timer.
4457 static void e1000e_update_phy_task(struct work_struct
*work
)
4459 struct e1000_adapter
*adapter
= container_of(work
,
4460 struct e1000_adapter
,
4463 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4466 e1000_get_phy_info(&adapter
->hw
);
4470 * e1000_update_phy_info - timre call-back to update PHY info
4471 * @data: pointer to adapter cast into an unsigned long
4473 * Need to wait a few seconds after link up to get diagnostic information from
4476 static void e1000_update_phy_info(unsigned long data
)
4478 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
4480 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4483 schedule_work(&adapter
->update_phy_task
);
4487 * e1000e_update_phy_stats - Update the PHY statistics counters
4488 * @adapter: board private structure
4490 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4492 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4494 struct e1000_hw
*hw
= &adapter
->hw
;
4498 ret_val
= hw
->phy
.ops
.acquire(hw
);
4502 /* A page set is expensive so check if already on desired page.
4503 * If not, set to the page with the PHY status registers.
4506 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4510 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4511 ret_val
= hw
->phy
.ops
.set_page(hw
,
4512 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4517 /* Single Collision Count */
4518 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4519 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4521 adapter
->stats
.scc
+= phy_data
;
4523 /* Excessive Collision Count */
4524 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4525 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4527 adapter
->stats
.ecol
+= phy_data
;
4529 /* Multiple Collision Count */
4530 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4531 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4533 adapter
->stats
.mcc
+= phy_data
;
4535 /* Late Collision Count */
4536 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4537 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4539 adapter
->stats
.latecol
+= phy_data
;
4541 /* Collision Count - also used for adaptive IFS */
4542 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4543 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4545 hw
->mac
.collision_delta
= phy_data
;
4548 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4549 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4551 adapter
->stats
.dc
+= phy_data
;
4553 /* Transmit with no CRS */
4554 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4555 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4557 adapter
->stats
.tncrs
+= phy_data
;
4560 hw
->phy
.ops
.release(hw
);
4564 * e1000e_update_stats - Update the board statistics counters
4565 * @adapter: board private structure
4567 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4569 struct net_device
*netdev
= adapter
->netdev
;
4570 struct e1000_hw
*hw
= &adapter
->hw
;
4571 struct pci_dev
*pdev
= adapter
->pdev
;
4573 /* Prevent stats update while adapter is being reset, or if the pci
4574 * connection is down.
4576 if (adapter
->link_speed
== 0)
4578 if (pci_channel_offline(pdev
))
4581 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4582 adapter
->stats
.gprc
+= er32(GPRC
);
4583 adapter
->stats
.gorc
+= er32(GORCL
);
4584 er32(GORCH
); /* Clear gorc */
4585 adapter
->stats
.bprc
+= er32(BPRC
);
4586 adapter
->stats
.mprc
+= er32(MPRC
);
4587 adapter
->stats
.roc
+= er32(ROC
);
4589 adapter
->stats
.mpc
+= er32(MPC
);
4591 /* Half-duplex statistics */
4592 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4593 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4594 e1000e_update_phy_stats(adapter
);
4596 adapter
->stats
.scc
+= er32(SCC
);
4597 adapter
->stats
.ecol
+= er32(ECOL
);
4598 adapter
->stats
.mcc
+= er32(MCC
);
4599 adapter
->stats
.latecol
+= er32(LATECOL
);
4600 adapter
->stats
.dc
+= er32(DC
);
4602 hw
->mac
.collision_delta
= er32(COLC
);
4604 if ((hw
->mac
.type
!= e1000_82574
) &&
4605 (hw
->mac
.type
!= e1000_82583
))
4606 adapter
->stats
.tncrs
+= er32(TNCRS
);
4608 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4611 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4612 adapter
->stats
.xontxc
+= er32(XONTXC
);
4613 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4614 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4615 adapter
->stats
.gptc
+= er32(GPTC
);
4616 adapter
->stats
.gotc
+= er32(GOTCL
);
4617 er32(GOTCH
); /* Clear gotc */
4618 adapter
->stats
.rnbc
+= er32(RNBC
);
4619 adapter
->stats
.ruc
+= er32(RUC
);
4621 adapter
->stats
.mptc
+= er32(MPTC
);
4622 adapter
->stats
.bptc
+= er32(BPTC
);
4624 /* used for adaptive IFS */
4626 hw
->mac
.tx_packet_delta
= er32(TPT
);
4627 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4629 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4630 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4631 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4632 adapter
->stats
.tsctc
+= er32(TSCTC
);
4633 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4635 /* Fill out the OS statistics structure */
4636 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4637 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4641 /* RLEC on some newer hardware can be incorrect so build
4642 * our own version based on RUC and ROC
4644 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4645 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4646 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
4647 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4649 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4650 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4651 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4654 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
4655 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4656 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4657 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4659 /* Tx Dropped needs to be maintained elsewhere */
4661 /* Management Stats */
4662 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4663 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4664 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4666 /* Correctable ECC Errors */
4667 if (hw
->mac
.type
== e1000_pch_lpt
) {
4668 u32 pbeccsts
= er32(PBECCSTS
);
4669 adapter
->corr_errors
+=
4670 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
4671 adapter
->uncorr_errors
+=
4672 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
4673 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
4678 * e1000_phy_read_status - Update the PHY register status snapshot
4679 * @adapter: board private structure
4681 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4683 struct e1000_hw
*hw
= &adapter
->hw
;
4684 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4686 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4687 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4690 pm_runtime_get_sync(&adapter
->pdev
->dev
);
4691 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
4692 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
4693 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
4694 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
4695 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
4696 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
4697 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
4698 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
4700 e_warn("Error reading PHY register\n");
4701 pm_runtime_put_sync(&adapter
->pdev
->dev
);
4703 /* Do not read PHY registers if link is not up
4704 * Set values to typical power-on defaults
4706 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4707 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4708 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4710 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4711 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4713 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4714 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4716 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4720 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4722 struct e1000_hw
*hw
= &adapter
->hw
;
4723 u32 ctrl
= er32(CTRL
);
4725 /* Link status message must follow this format for user tools */
4726 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4727 adapter
->netdev
->name
, adapter
->link_speed
,
4728 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
4729 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
4730 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4731 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
4734 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4736 struct e1000_hw
*hw
= &adapter
->hw
;
4737 bool link_active
= false;
4740 /* get_link_status is set on LSC (link status) interrupt or
4741 * Rx sequence error interrupt. get_link_status will stay
4742 * false until the check_for_link establishes link
4743 * for copper adapters ONLY
4745 switch (hw
->phy
.media_type
) {
4746 case e1000_media_type_copper
:
4747 if (hw
->mac
.get_link_status
) {
4748 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4749 link_active
= !hw
->mac
.get_link_status
;
4754 case e1000_media_type_fiber
:
4755 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4756 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4758 case e1000_media_type_internal_serdes
:
4759 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4760 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4763 case e1000_media_type_unknown
:
4767 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4768 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4769 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4770 e_info("Gigabit has been disabled, downgrading speed\n");
4776 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4778 /* make sure the receive unit is started */
4779 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4780 (adapter
->flags
& FLAG_RESTART_NOW
)) {
4781 struct e1000_hw
*hw
= &adapter
->hw
;
4782 u32 rctl
= er32(RCTL
);
4783 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4784 adapter
->flags
&= ~FLAG_RESTART_NOW
;
4788 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4790 struct e1000_hw
*hw
= &adapter
->hw
;
4792 /* With 82574 controllers, PHY needs to be checked periodically
4793 * for hung state and reset, if two calls return true
4795 if (e1000_check_phy_82574(hw
))
4796 adapter
->phy_hang_count
++;
4798 adapter
->phy_hang_count
= 0;
4800 if (adapter
->phy_hang_count
> 1) {
4801 adapter
->phy_hang_count
= 0;
4802 schedule_work(&adapter
->reset_task
);
4807 * e1000_watchdog - Timer Call-back
4808 * @data: pointer to adapter cast into an unsigned long
4810 static void e1000_watchdog(unsigned long data
)
4812 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
4814 /* Do the rest outside of interrupt context */
4815 schedule_work(&adapter
->watchdog_task
);
4817 /* TODO: make this use queue_delayed_work() */
4820 static void e1000_watchdog_task(struct work_struct
*work
)
4822 struct e1000_adapter
*adapter
= container_of(work
,
4823 struct e1000_adapter
,
4825 struct net_device
*netdev
= adapter
->netdev
;
4826 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4827 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4828 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4829 struct e1000_hw
*hw
= &adapter
->hw
;
4832 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4835 link
= e1000e_has_link(adapter
);
4836 if ((netif_carrier_ok(netdev
)) && link
) {
4837 /* Cancel scheduled suspend requests. */
4838 pm_runtime_resume(netdev
->dev
.parent
);
4840 e1000e_enable_receives(adapter
);
4844 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4845 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4846 e1000_update_mng_vlan(adapter
);
4849 if (!netif_carrier_ok(netdev
)) {
4852 /* Cancel scheduled suspend requests. */
4853 pm_runtime_resume(netdev
->dev
.parent
);
4855 /* update snapshot of PHY registers on LSC */
4856 e1000_phy_read_status(adapter
);
4857 mac
->ops
.get_link_up_info(&adapter
->hw
,
4858 &adapter
->link_speed
,
4859 &adapter
->link_duplex
);
4860 e1000_print_link_info(adapter
);
4862 /* check if SmartSpeed worked */
4863 e1000e_check_downshift(hw
);
4864 if (phy
->speed_downgraded
)
4866 "Link Speed was downgraded by SmartSpeed\n");
4868 /* On supported PHYs, check for duplex mismatch only
4869 * if link has autonegotiated at 10/100 half
4871 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4872 hw
->phy
.type
== e1000_phy_bm
) &&
4873 (hw
->mac
.autoneg
== true) &&
4874 (adapter
->link_speed
== SPEED_10
||
4875 adapter
->link_speed
== SPEED_100
) &&
4876 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4879 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
4881 if (!(autoneg_exp
& EXPANSION_NWAY
))
4882 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4885 /* adjust timeout factor according to speed/duplex */
4886 adapter
->tx_timeout_factor
= 1;
4887 switch (adapter
->link_speed
) {
4890 adapter
->tx_timeout_factor
= 16;
4894 adapter
->tx_timeout_factor
= 10;
4898 /* workaround: re-program speed mode bit after
4901 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4904 tarc0
= er32(TARC(0));
4905 tarc0
&= ~SPEED_MODE_BIT
;
4906 ew32(TARC(0), tarc0
);
4909 /* disable TSO for pcie and 10/100 speeds, to avoid
4910 * some hardware issues
4912 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4913 switch (adapter
->link_speed
) {
4916 e_info("10/100 speed: disabling TSO\n");
4917 netdev
->features
&= ~NETIF_F_TSO
;
4918 netdev
->features
&= ~NETIF_F_TSO6
;
4921 netdev
->features
|= NETIF_F_TSO
;
4922 netdev
->features
|= NETIF_F_TSO6
;
4930 /* enable transmits in the hardware, need to do this
4931 * after setting TARC(0)
4934 tctl
|= E1000_TCTL_EN
;
4937 /* Perform any post-link-up configuration before
4938 * reporting link up.
4940 if (phy
->ops
.cfg_on_link_up
)
4941 phy
->ops
.cfg_on_link_up(hw
);
4943 netif_carrier_on(netdev
);
4945 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4946 mod_timer(&adapter
->phy_info_timer
,
4947 round_jiffies(jiffies
+ 2 * HZ
));
4950 if (netif_carrier_ok(netdev
)) {
4951 adapter
->link_speed
= 0;
4952 adapter
->link_duplex
= 0;
4953 /* Link status message must follow this format */
4954 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
4955 netif_carrier_off(netdev
);
4956 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4957 mod_timer(&adapter
->phy_info_timer
,
4958 round_jiffies(jiffies
+ 2 * HZ
));
4960 /* The link is lost so the controller stops DMA.
4961 * If there is queued Tx work that cannot be done
4962 * or if on an 8000ES2LAN which requires a Rx packet
4963 * buffer work-around on link down event, reset the
4964 * controller to flush the Tx/Rx packet buffers.
4965 * (Do the reset outside of interrupt context).
4967 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) ||
4968 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
4969 adapter
->flags
|= FLAG_RESTART_NOW
;
4971 pm_schedule_suspend(netdev
->dev
.parent
,
4977 spin_lock(&adapter
->stats64_lock
);
4978 e1000e_update_stats(adapter
);
4980 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4981 adapter
->tpt_old
= adapter
->stats
.tpt
;
4982 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4983 adapter
->colc_old
= adapter
->stats
.colc
;
4985 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4986 adapter
->gorc_old
= adapter
->stats
.gorc
;
4987 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4988 adapter
->gotc_old
= adapter
->stats
.gotc
;
4989 spin_unlock(&adapter
->stats64_lock
);
4991 if (adapter
->flags
& FLAG_RESTART_NOW
) {
4992 schedule_work(&adapter
->reset_task
);
4993 /* return immediately since reset is imminent */
4997 e1000e_update_adaptive(&adapter
->hw
);
4999 /* Simple mode for Interrupt Throttle Rate (ITR) */
5000 if (adapter
->itr_setting
== 4) {
5001 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5002 * Total asymmetrical Tx or Rx gets ITR=8000;
5003 * everyone else is between 2000-8000.
5005 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5006 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5007 adapter
->gotc
- adapter
->gorc
:
5008 adapter
->gorc
- adapter
->gotc
) / 10000;
5009 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5011 e1000e_write_itr(adapter
, itr
);
5014 /* Cause software interrupt to ensure Rx ring is cleaned */
5015 if (adapter
->msix_entries
)
5016 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5018 ew32(ICS
, E1000_ICS_RXDMT0
);
5020 /* flush pending descriptors to memory before detecting Tx hang */
5021 e1000e_flush_descriptors(adapter
);
5023 /* Force detection of hung controller every watchdog period */
5024 adapter
->detect_tx_hung
= true;
5026 /* With 82571 controllers, LAA may be overwritten due to controller
5027 * reset from the other port. Set the appropriate LAA in RAR[0]
5029 if (e1000e_get_laa_state_82571(hw
))
5030 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5032 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5033 e1000e_check_82574_phy_workaround(adapter
);
5035 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5036 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5037 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5038 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5040 adapter
->rx_hwtstamp_cleared
++;
5042 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5046 /* Reset the timer */
5047 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5048 mod_timer(&adapter
->watchdog_timer
,
5049 round_jiffies(jiffies
+ 2 * HZ
));
5052 #define E1000_TX_FLAGS_CSUM 0x00000001
5053 #define E1000_TX_FLAGS_VLAN 0x00000002
5054 #define E1000_TX_FLAGS_TSO 0x00000004
5055 #define E1000_TX_FLAGS_IPV4 0x00000008
5056 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5057 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5058 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5059 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5061 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
)
5063 struct e1000_context_desc
*context_desc
;
5064 struct e1000_buffer
*buffer_info
;
5068 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5070 if (!skb_is_gso(skb
))
5073 if (skb_header_cloned(skb
)) {
5074 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
5080 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5081 mss
= skb_shinfo(skb
)->gso_size
;
5082 if (skb
->protocol
== htons(ETH_P_IP
)) {
5083 struct iphdr
*iph
= ip_hdr(skb
);
5086 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5088 cmd_length
= E1000_TXD_CMD_IP
;
5089 ipcse
= skb_transport_offset(skb
) - 1;
5090 } else if (skb_is_gso_v6(skb
)) {
5091 ipv6_hdr(skb
)->payload_len
= 0;
5092 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
5093 &ipv6_hdr(skb
)->daddr
,
5097 ipcss
= skb_network_offset(skb
);
5098 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5099 tucss
= skb_transport_offset(skb
);
5100 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5102 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5103 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5105 i
= tx_ring
->next_to_use
;
5106 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5107 buffer_info
= &tx_ring
->buffer_info
[i
];
5109 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5110 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5111 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5112 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5113 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5114 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5115 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5116 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5117 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5119 buffer_info
->time_stamp
= jiffies
;
5120 buffer_info
->next_to_watch
= i
;
5123 if (i
== tx_ring
->count
)
5125 tx_ring
->next_to_use
= i
;
5130 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
)
5132 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5133 struct e1000_context_desc
*context_desc
;
5134 struct e1000_buffer
*buffer_info
;
5137 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5140 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5143 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
5144 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
5146 protocol
= skb
->protocol
;
5149 case cpu_to_be16(ETH_P_IP
):
5150 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5151 cmd_len
|= E1000_TXD_CMD_TCP
;
5153 case cpu_to_be16(ETH_P_IPV6
):
5154 /* XXX not handling all IPV6 headers */
5155 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5156 cmd_len
|= E1000_TXD_CMD_TCP
;
5159 if (unlikely(net_ratelimit()))
5160 e_warn("checksum_partial proto=%x!\n",
5161 be16_to_cpu(protocol
));
5165 css
= skb_checksum_start_offset(skb
);
5167 i
= tx_ring
->next_to_use
;
5168 buffer_info
= &tx_ring
->buffer_info
[i
];
5169 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5171 context_desc
->lower_setup
.ip_config
= 0;
5172 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5173 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5174 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5175 context_desc
->tcp_seg_setup
.data
= 0;
5176 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5178 buffer_info
->time_stamp
= jiffies
;
5179 buffer_info
->next_to_watch
= i
;
5182 if (i
== tx_ring
->count
)
5184 tx_ring
->next_to_use
= i
;
5189 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5190 unsigned int first
, unsigned int max_per_txd
,
5191 unsigned int nr_frags
)
5193 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5194 struct pci_dev
*pdev
= adapter
->pdev
;
5195 struct e1000_buffer
*buffer_info
;
5196 unsigned int len
= skb_headlen(skb
);
5197 unsigned int offset
= 0, size
, count
= 0, i
;
5198 unsigned int f
, bytecount
, segs
;
5200 i
= tx_ring
->next_to_use
;
5203 buffer_info
= &tx_ring
->buffer_info
[i
];
5204 size
= min(len
, max_per_txd
);
5206 buffer_info
->length
= size
;
5207 buffer_info
->time_stamp
= jiffies
;
5208 buffer_info
->next_to_watch
= i
;
5209 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5211 size
, DMA_TO_DEVICE
);
5212 buffer_info
->mapped_as_page
= false;
5213 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5222 if (i
== tx_ring
->count
)
5227 for (f
= 0; f
< nr_frags
; f
++) {
5228 const struct skb_frag_struct
*frag
;
5230 frag
= &skb_shinfo(skb
)->frags
[f
];
5231 len
= skb_frag_size(frag
);
5236 if (i
== tx_ring
->count
)
5239 buffer_info
= &tx_ring
->buffer_info
[i
];
5240 size
= min(len
, max_per_txd
);
5242 buffer_info
->length
= size
;
5243 buffer_info
->time_stamp
= jiffies
;
5244 buffer_info
->next_to_watch
= i
;
5245 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5248 buffer_info
->mapped_as_page
= true;
5249 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5258 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5259 /* multiply data chunks by size of headers */
5260 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5262 tx_ring
->buffer_info
[i
].skb
= skb
;
5263 tx_ring
->buffer_info
[i
].segs
= segs
;
5264 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5265 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5270 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5271 buffer_info
->dma
= 0;
5277 i
+= tx_ring
->count
;
5279 buffer_info
= &tx_ring
->buffer_info
[i
];
5280 e1000_put_txbuf(tx_ring
, buffer_info
);
5286 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5288 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5289 struct e1000_tx_desc
*tx_desc
= NULL
;
5290 struct e1000_buffer
*buffer_info
;
5291 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5294 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5295 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5297 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5299 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5300 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5303 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5304 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5305 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5308 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5309 txd_lower
|= E1000_TXD_CMD_VLE
;
5310 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5313 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5314 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5316 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5317 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5318 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5321 i
= tx_ring
->next_to_use
;
5324 buffer_info
= &tx_ring
->buffer_info
[i
];
5325 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5326 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5327 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5328 buffer_info
->length
);
5329 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5332 if (i
== tx_ring
->count
)
5334 } while (--count
> 0);
5336 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5338 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5339 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5340 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5342 /* Force memory writes to complete before letting h/w
5343 * know there are new descriptors to fetch. (Only
5344 * applicable for weak-ordered memory model archs,
5349 tx_ring
->next_to_use
= i
;
5351 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5352 e1000e_update_tdt_wa(tx_ring
, i
);
5354 writel(i
, tx_ring
->tail
);
5356 /* we need this if more than one processor can write to our tail
5357 * at a time, it synchronizes IO on IA64/Altix systems
5362 #define MINIMUM_DHCP_PACKET_SIZE 282
5363 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5364 struct sk_buff
*skb
)
5366 struct e1000_hw
*hw
= &adapter
->hw
;
5369 if (vlan_tx_tag_present(skb
) &&
5370 !((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5371 (adapter
->hw
.mng_cookie
.status
&
5372 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5375 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5378 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5382 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5385 if (ip
->protocol
!= IPPROTO_UDP
)
5388 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5389 if (ntohs(udp
->dest
) != 67)
5392 offset
= (u8
*)udp
+ 8 - skb
->data
;
5393 length
= skb
->len
- offset
;
5394 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5400 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5402 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5404 netif_stop_queue(adapter
->netdev
);
5405 /* Herbert's original patch had:
5406 * smp_mb__after_netif_stop_queue();
5407 * but since that doesn't exist yet, just open code it.
5411 /* We need to check again in a case another CPU has just
5412 * made room available.
5414 if (e1000_desc_unused(tx_ring
) < size
)
5418 netif_start_queue(adapter
->netdev
);
5419 ++adapter
->restart_queue
;
5423 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5425 BUG_ON(size
> tx_ring
->count
);
5427 if (e1000_desc_unused(tx_ring
) >= size
)
5429 return __e1000_maybe_stop_tx(tx_ring
, size
);
5432 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5433 struct net_device
*netdev
)
5435 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5436 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5438 unsigned int tx_flags
= 0;
5439 unsigned int len
= skb_headlen(skb
);
5440 unsigned int nr_frags
;
5446 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5447 dev_kfree_skb_any(skb
);
5448 return NETDEV_TX_OK
;
5451 if (skb
->len
<= 0) {
5452 dev_kfree_skb_any(skb
);
5453 return NETDEV_TX_OK
;
5456 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5457 * pad skb in order to meet this minimum size requirement
5459 if (unlikely(skb
->len
< 17)) {
5460 if (skb_pad(skb
, 17 - skb
->len
))
5461 return NETDEV_TX_OK
;
5463 skb_set_tail_pointer(skb
, 17);
5466 mss
= skb_shinfo(skb
)->gso_size
;
5470 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5471 * points to just header, pull a few bytes of payload from
5472 * frags into skb->data
5474 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5475 /* we do this workaround for ES2LAN, but it is un-necessary,
5476 * avoiding it could save a lot of cycles
5478 if (skb
->data_len
&& (hdr_len
== len
)) {
5479 unsigned int pull_size
;
5481 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5482 if (!__pskb_pull_tail(skb
, pull_size
)) {
5483 e_err("__pskb_pull_tail failed.\n");
5484 dev_kfree_skb_any(skb
);
5485 return NETDEV_TX_OK
;
5487 len
= skb_headlen(skb
);
5491 /* reserve a descriptor for the offload context */
5492 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5496 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5498 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5499 for (f
= 0; f
< nr_frags
; f
++)
5500 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5501 adapter
->tx_fifo_limit
);
5503 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5504 e1000_transfer_dhcp_info(adapter
, skb
);
5506 /* need: count + 2 desc gap to keep tail from touching
5507 * head, otherwise try next time
5509 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5510 return NETDEV_TX_BUSY
;
5512 if (vlan_tx_tag_present(skb
)) {
5513 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5514 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
5517 first
= tx_ring
->next_to_use
;
5519 tso
= e1000_tso(tx_ring
, skb
);
5521 dev_kfree_skb_any(skb
);
5522 return NETDEV_TX_OK
;
5526 tx_flags
|= E1000_TX_FLAGS_TSO
;
5527 else if (e1000_tx_csum(tx_ring
, skb
))
5528 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5530 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5531 * 82571 hardware supports TSO capabilities for IPv6 as well...
5532 * no longer assume, we must.
5534 if (skb
->protocol
== htons(ETH_P_IP
))
5535 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5537 if (unlikely(skb
->no_fcs
))
5538 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5540 /* if count is 0 then mapping error has occurred */
5541 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5544 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5545 !adapter
->tx_hwtstamp_skb
)) {
5546 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5547 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5548 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5549 schedule_work(&adapter
->tx_hwtstamp_work
);
5551 skb_tx_timestamp(skb
);
5554 netdev_sent_queue(netdev
, skb
->len
);
5555 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5556 /* Make sure there is space in the ring for the next send. */
5557 e1000_maybe_stop_tx(tx_ring
,
5559 DIV_ROUND_UP(PAGE_SIZE
,
5560 adapter
->tx_fifo_limit
) + 2));
5562 dev_kfree_skb_any(skb
);
5563 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5564 tx_ring
->next_to_use
= first
;
5567 return NETDEV_TX_OK
;
5571 * e1000_tx_timeout - Respond to a Tx Hang
5572 * @netdev: network interface device structure
5574 static void e1000_tx_timeout(struct net_device
*netdev
)
5576 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5578 /* Do the reset outside of interrupt context */
5579 adapter
->tx_timeout_count
++;
5580 schedule_work(&adapter
->reset_task
);
5583 static void e1000_reset_task(struct work_struct
*work
)
5585 struct e1000_adapter
*adapter
;
5586 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5588 /* don't run the task if already down */
5589 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5592 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5593 e1000e_dump(adapter
);
5594 e_err("Reset adapter unexpectedly\n");
5596 e1000e_reinit_locked(adapter
);
5600 * e1000_get_stats64 - Get System Network Statistics
5601 * @netdev: network interface device structure
5602 * @stats: rtnl_link_stats64 pointer
5604 * Returns the address of the device statistics structure.
5606 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
5607 struct rtnl_link_stats64
*stats
)
5609 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5611 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
5612 spin_lock(&adapter
->stats64_lock
);
5613 e1000e_update_stats(adapter
);
5614 /* Fill out the OS statistics structure */
5615 stats
->rx_bytes
= adapter
->stats
.gorc
;
5616 stats
->rx_packets
= adapter
->stats
.gprc
;
5617 stats
->tx_bytes
= adapter
->stats
.gotc
;
5618 stats
->tx_packets
= adapter
->stats
.gptc
;
5619 stats
->multicast
= adapter
->stats
.mprc
;
5620 stats
->collisions
= adapter
->stats
.colc
;
5624 /* RLEC on some newer hardware can be incorrect so build
5625 * our own version based on RUC and ROC
5627 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5628 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5629 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5630 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
5631 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5632 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5633 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5636 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5637 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5638 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5639 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5641 /* Tx Dropped needs to be maintained elsewhere */
5643 spin_unlock(&adapter
->stats64_lock
);
5648 * e1000_change_mtu - Change the Maximum Transfer Unit
5649 * @netdev: network interface device structure
5650 * @new_mtu: new value for maximum frame size
5652 * Returns 0 on success, negative on failure
5654 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5656 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5657 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5659 /* Jumbo frame support */
5660 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
5661 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5662 e_err("Jumbo Frames not supported.\n");
5666 /* Supported frame sizes */
5667 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5668 (max_frame
> adapter
->max_hw_frame_size
)) {
5669 e_err("Unsupported MTU setting\n");
5673 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5674 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
5675 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5676 (new_mtu
> ETH_DATA_LEN
)) {
5677 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5681 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5682 usleep_range(1000, 2000);
5683 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5684 adapter
->max_frame_size
= max_frame
;
5685 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5686 netdev
->mtu
= new_mtu
;
5687 if (netif_running(netdev
))
5688 e1000e_down(adapter
);
5690 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5691 * means we reserve 2 more, this pushes us to allocate from the next
5693 * i.e. RXBUFFER_2048 --> size-4096 slab
5694 * However with the new *_jumbo_rx* routines, jumbo receives will use
5698 if (max_frame
<= 2048)
5699 adapter
->rx_buffer_len
= 2048;
5701 adapter
->rx_buffer_len
= 4096;
5703 /* adjust allocation if LPE protects us, and we aren't using SBP */
5704 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5705 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5706 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5709 if (netif_running(netdev
))
5712 e1000e_reset(adapter
);
5714 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5719 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5722 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5723 struct mii_ioctl_data
*data
= if_mii(ifr
);
5725 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5730 data
->phy_id
= adapter
->hw
.phy
.addr
;
5733 e1000_phy_read_status(adapter
);
5735 switch (data
->reg_num
& 0x1F) {
5737 data
->val_out
= adapter
->phy_regs
.bmcr
;
5740 data
->val_out
= adapter
->phy_regs
.bmsr
;
5743 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5746 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5749 data
->val_out
= adapter
->phy_regs
.advertise
;
5752 data
->val_out
= adapter
->phy_regs
.lpa
;
5755 data
->val_out
= adapter
->phy_regs
.expansion
;
5758 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5761 data
->val_out
= adapter
->phy_regs
.stat1000
;
5764 data
->val_out
= adapter
->phy_regs
.estatus
;
5778 * e1000e_hwtstamp_ioctl - control hardware time stamping
5779 * @netdev: network interface device structure
5780 * @ifreq: interface request
5782 * Outgoing time stamping can be enabled and disabled. Play nice and
5783 * disable it when requested, although it shouldn't cause any overhead
5784 * when no packet needs it. At most one packet in the queue may be
5785 * marked for time stamping, otherwise it would be impossible to tell
5786 * for sure to which packet the hardware time stamp belongs.
5788 * Incoming time stamping has to be configured via the hardware filters.
5789 * Not all combinations are supported, in particular event type has to be
5790 * specified. Matching the kind of event packet is not supported, with the
5791 * exception of "all V2 events regardless of level 2 or 4".
5793 static int e1000e_hwtstamp_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
)
5795 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5796 struct hwtstamp_config config
;
5799 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
5802 adapter
->hwtstamp_config
= config
;
5804 ret_val
= e1000e_config_hwtstamp(adapter
);
5808 config
= adapter
->hwtstamp_config
;
5810 switch (config
.rx_filter
) {
5811 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
5812 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
5813 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
5814 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
5815 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
5816 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
5817 /* With V2 type filters which specify a Sync or Delay Request,
5818 * Path Delay Request/Response messages are also time stamped
5819 * by hardware so notify the caller the requested packets plus
5820 * some others are time stamped.
5822 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5828 return copy_to_user(ifr
->ifr_data
, &config
,
5829 sizeof(config
)) ? -EFAULT
: 0;
5832 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5838 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5840 return e1000e_hwtstamp_ioctl(netdev
, ifr
);
5846 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5848 struct e1000_hw
*hw
= &adapter
->hw
;
5850 u16 phy_reg
, wuc_enable
;
5853 /* copy MAC RARs to PHY RARs */
5854 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5856 retval
= hw
->phy
.ops
.acquire(hw
);
5858 e_err("Could not acquire PHY\n");
5862 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5863 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5867 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5868 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5869 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5870 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
5871 (u16
)(mac_reg
& 0xFFFF));
5872 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
5873 (u16
)((mac_reg
>> 16) & 0xFFFF));
5876 /* configure PHY Rx Control register */
5877 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5878 mac_reg
= er32(RCTL
);
5879 if (mac_reg
& E1000_RCTL_UPE
)
5880 phy_reg
|= BM_RCTL_UPE
;
5881 if (mac_reg
& E1000_RCTL_MPE
)
5882 phy_reg
|= BM_RCTL_MPE
;
5883 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5884 if (mac_reg
& E1000_RCTL_MO_3
)
5885 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5886 << BM_RCTL_MO_SHIFT
);
5887 if (mac_reg
& E1000_RCTL_BAM
)
5888 phy_reg
|= BM_RCTL_BAM
;
5889 if (mac_reg
& E1000_RCTL_PMCF
)
5890 phy_reg
|= BM_RCTL_PMCF
;
5891 mac_reg
= er32(CTRL
);
5892 if (mac_reg
& E1000_CTRL_RFCE
)
5893 phy_reg
|= BM_RCTL_RFCE
;
5894 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
5896 /* enable PHY wakeup in MAC register */
5898 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5900 /* configure and enable PHY wakeup in PHY registers */
5901 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
5902 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5904 /* activate PHY wakeup */
5905 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5906 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5908 e_err("Could not set PHY Host Wakeup bit\n");
5910 hw
->phy
.ops
.release(hw
);
5915 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
5917 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5918 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5919 struct e1000_hw
*hw
= &adapter
->hw
;
5920 u32 ctrl
, ctrl_ext
, rctl
, status
;
5921 /* Runtime suspend should only enable wakeup for link changes */
5922 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5925 netif_device_detach(netdev
);
5927 if (netif_running(netdev
)) {
5928 int count
= E1000_CHECK_RESET_COUNT
;
5930 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
5931 usleep_range(10000, 20000);
5933 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5934 e1000e_down(adapter
);
5935 e1000_free_irq(adapter
);
5937 e1000e_reset_interrupt_capability(adapter
);
5939 status
= er32(STATUS
);
5940 if (status
& E1000_STATUS_LU
)
5941 wufc
&= ~E1000_WUFC_LNKC
;
5944 e1000_setup_rctl(adapter
);
5945 e1000e_set_rx_mode(netdev
);
5947 /* turn on all-multi mode if wake on multicast is enabled */
5948 if (wufc
& E1000_WUFC_MC
) {
5950 rctl
|= E1000_RCTL_MPE
;
5955 ctrl
|= E1000_CTRL_ADVD3WUC
;
5956 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5957 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5960 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5961 adapter
->hw
.phy
.media_type
==
5962 e1000_media_type_internal_serdes
) {
5963 /* keep the laser running in D3 */
5964 ctrl_ext
= er32(CTRL_EXT
);
5965 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5966 ew32(CTRL_EXT
, ctrl_ext
);
5969 if (adapter
->flags
& FLAG_IS_ICH
)
5970 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
5972 /* Allow time for pending master requests to run */
5973 e1000e_disable_pcie_master(&adapter
->hw
);
5975 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5976 /* enable wakeup by the PHY */
5977 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5981 /* enable wakeup by the MAC */
5983 ew32(WUC
, E1000_WUC_PME_EN
);
5990 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5991 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5993 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5994 * would have already happened in close and is redundant.
5996 e1000e_release_hw_control(adapter
);
5998 /* The pci-e switch on some quad port adapters will report a
5999 * correctable error when the MAC transitions from D0 to D3. To
6000 * prevent this we need to mask off the correctable errors on the
6001 * downstream port of the pci-e switch.
6003 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6004 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6007 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6008 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6009 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6011 pci_save_state(pdev
);
6012 pci_prepare_to_sleep(pdev
);
6014 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6020 #ifdef CONFIG_PCIEASPM
6021 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6023 pci_disable_link_state_locked(pdev
, state
);
6026 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6030 if (state
& PCIE_LINK_STATE_L0S
)
6031 aspm_ctl
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6032 if (state
& PCIE_LINK_STATE_L1
)
6033 aspm_ctl
|= PCI_EXP_LNKCTL_ASPM_L1
;
6035 /* Both device and parent should have the same ASPM setting.
6036 * Disable ASPM in downstream component first and then upstream.
6038 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_ctl
);
6040 if (pdev
->bus
->self
)
6041 pcie_capability_clear_word(pdev
->bus
->self
, PCI_EXP_LNKCTL
,
6045 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6047 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6048 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
6049 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
6051 __e1000e_disable_aspm(pdev
, state
);
6055 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
6057 return !!adapter
->tx_ring
->buffer_info
;
6060 static int __e1000_resume(struct pci_dev
*pdev
)
6062 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6063 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6064 struct e1000_hw
*hw
= &adapter
->hw
;
6065 u16 aspm_disable_flag
= 0;
6068 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6069 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6070 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6071 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6072 if (aspm_disable_flag
)
6073 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6075 pci_set_master(pdev
);
6077 e1000e_set_interrupt_capability(adapter
);
6078 if (netif_running(netdev
)) {
6079 err
= e1000_request_irq(adapter
);
6084 if (hw
->mac
.type
>= e1000_pch2lan
)
6085 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6087 e1000e_power_up_phy(adapter
);
6089 /* report the system wakeup cause from S3/S4 */
6090 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6093 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6095 e_info("PHY Wakeup cause - %s\n",
6096 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6097 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6098 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6099 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6100 phy_data
& E1000_WUS_LNKC
?
6101 "Link Status Change" : "other");
6103 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6105 u32 wus
= er32(WUS
);
6107 e_info("MAC Wakeup cause - %s\n",
6108 wus
& E1000_WUS_EX
? "Unicast Packet" :
6109 wus
& E1000_WUS_MC
? "Multicast Packet" :
6110 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6111 wus
& E1000_WUS_MAG
? "Magic Packet" :
6112 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6118 e1000e_reset(adapter
);
6120 e1000_init_manageability_pt(adapter
);
6122 if (netif_running(netdev
))
6125 netif_device_attach(netdev
);
6127 /* If the controller has AMT, do not set DRV_LOAD until the interface
6128 * is up. For all other cases, let the f/w know that the h/w is now
6129 * under the control of the driver.
6131 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6132 e1000e_get_hw_control(adapter
);
6137 #ifdef CONFIG_PM_SLEEP
6138 static int e1000_suspend(struct device
*dev
)
6140 struct pci_dev
*pdev
= to_pci_dev(dev
);
6142 return __e1000_shutdown(pdev
, false);
6145 static int e1000_resume(struct device
*dev
)
6147 struct pci_dev
*pdev
= to_pci_dev(dev
);
6148 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6149 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6151 if (e1000e_pm_ready(adapter
))
6152 adapter
->idle_check
= true;
6154 return __e1000_resume(pdev
);
6156 #endif /* CONFIG_PM_SLEEP */
6158 #ifdef CONFIG_PM_RUNTIME
6159 static int e1000_runtime_suspend(struct device
*dev
)
6161 struct pci_dev
*pdev
= to_pci_dev(dev
);
6162 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6163 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6165 if (!e1000e_pm_ready(adapter
))
6168 return __e1000_shutdown(pdev
, true);
6171 static int e1000_idle(struct device
*dev
)
6173 struct pci_dev
*pdev
= to_pci_dev(dev
);
6174 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6175 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6177 if (!e1000e_pm_ready(adapter
))
6180 if (adapter
->idle_check
) {
6181 adapter
->idle_check
= false;
6182 if (!e1000e_has_link(adapter
))
6183 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
6189 static int e1000_runtime_resume(struct device
*dev
)
6191 struct pci_dev
*pdev
= to_pci_dev(dev
);
6192 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6193 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6195 if (!e1000e_pm_ready(adapter
))
6198 adapter
->idle_check
= !dev
->power
.runtime_auto
;
6199 return __e1000_resume(pdev
);
6201 #endif /* CONFIG_PM_RUNTIME */
6202 #endif /* CONFIG_PM */
6204 static void e1000_shutdown(struct pci_dev
*pdev
)
6206 __e1000_shutdown(pdev
, false);
6209 #ifdef CONFIG_NET_POLL_CONTROLLER
6211 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
6213 struct net_device
*netdev
= data
;
6214 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6216 if (adapter
->msix_entries
) {
6217 int vector
, msix_irq
;
6220 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6221 disable_irq(msix_irq
);
6222 e1000_intr_msix_rx(msix_irq
, netdev
);
6223 enable_irq(msix_irq
);
6226 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6227 disable_irq(msix_irq
);
6228 e1000_intr_msix_tx(msix_irq
, netdev
);
6229 enable_irq(msix_irq
);
6232 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6233 disable_irq(msix_irq
);
6234 e1000_msix_other(msix_irq
, netdev
);
6235 enable_irq(msix_irq
);
6243 * @netdev: network interface device structure
6245 * Polling 'interrupt' - used by things like netconsole to send skbs
6246 * without having to re-enable interrupts. It's not called while
6247 * the interrupt routine is executing.
6249 static void e1000_netpoll(struct net_device
*netdev
)
6251 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6253 switch (adapter
->int_mode
) {
6254 case E1000E_INT_MODE_MSIX
:
6255 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
6257 case E1000E_INT_MODE_MSI
:
6258 disable_irq(adapter
->pdev
->irq
);
6259 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
6260 enable_irq(adapter
->pdev
->irq
);
6262 default: /* E1000E_INT_MODE_LEGACY */
6263 disable_irq(adapter
->pdev
->irq
);
6264 e1000_intr(adapter
->pdev
->irq
, netdev
);
6265 enable_irq(adapter
->pdev
->irq
);
6272 * e1000_io_error_detected - called when PCI error is detected
6273 * @pdev: Pointer to PCI device
6274 * @state: The current pci connection state
6276 * This function is called after a PCI bus error affecting
6277 * this device has been detected.
6279 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
6280 pci_channel_state_t state
)
6282 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6283 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6285 netif_device_detach(netdev
);
6287 if (state
== pci_channel_io_perm_failure
)
6288 return PCI_ERS_RESULT_DISCONNECT
;
6290 if (netif_running(netdev
))
6291 e1000e_down(adapter
);
6292 pci_disable_device(pdev
);
6294 /* Request a slot slot reset. */
6295 return PCI_ERS_RESULT_NEED_RESET
;
6299 * e1000_io_slot_reset - called after the pci bus has been reset.
6300 * @pdev: Pointer to PCI device
6302 * Restart the card from scratch, as if from a cold-boot. Implementation
6303 * resembles the first-half of the e1000_resume routine.
6305 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
6307 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6308 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6309 struct e1000_hw
*hw
= &adapter
->hw
;
6310 u16 aspm_disable_flag
= 0;
6312 pci_ers_result_t result
;
6314 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6315 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6316 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6317 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6318 if (aspm_disable_flag
)
6319 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6321 err
= pci_enable_device_mem(pdev
);
6324 "Cannot re-enable PCI device after reset.\n");
6325 result
= PCI_ERS_RESULT_DISCONNECT
;
6327 pdev
->state_saved
= true;
6328 pci_restore_state(pdev
);
6329 pci_set_master(pdev
);
6331 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6332 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6334 e1000e_reset(adapter
);
6336 result
= PCI_ERS_RESULT_RECOVERED
;
6339 pci_cleanup_aer_uncorrect_error_status(pdev
);
6345 * e1000_io_resume - called when traffic can start flowing again.
6346 * @pdev: Pointer to PCI device
6348 * This callback is called when the error recovery driver tells us that
6349 * its OK to resume normal operation. Implementation resembles the
6350 * second-half of the e1000_resume routine.
6352 static void e1000_io_resume(struct pci_dev
*pdev
)
6354 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6355 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6357 e1000_init_manageability_pt(adapter
);
6359 if (netif_running(netdev
)) {
6360 if (e1000e_up(adapter
)) {
6362 "can't bring device back up after reset\n");
6367 netif_device_attach(netdev
);
6369 /* If the controller has AMT, do not set DRV_LOAD until the interface
6370 * is up. For all other cases, let the f/w know that the h/w is now
6371 * under the control of the driver.
6373 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6374 e1000e_get_hw_control(adapter
);
6377 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
6379 struct e1000_hw
*hw
= &adapter
->hw
;
6380 struct net_device
*netdev
= adapter
->netdev
;
6382 u8 pba_str
[E1000_PBANUM_LENGTH
];
6384 /* print bus type/speed/width info */
6385 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6387 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
6391 e_info("Intel(R) PRO/%s Network Connection\n",
6392 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
6393 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
6394 E1000_PBANUM_LENGTH
);
6396 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
6397 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6398 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
6401 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
6403 struct e1000_hw
*hw
= &adapter
->hw
;
6407 if (hw
->mac
.type
!= e1000_82573
)
6410 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
6412 if (!ret_val
&& (!(buf
& (1 << 0)))) {
6413 /* Deep Smart Power Down (DSPD) */
6414 dev_warn(&adapter
->pdev
->dev
,
6415 "Warning: detected DSPD enabled in EEPROM\n");
6419 static int e1000_set_features(struct net_device
*netdev
,
6420 netdev_features_t features
)
6422 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6423 netdev_features_t changed
= features
^ netdev
->features
;
6425 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
6426 adapter
->flags
|= FLAG_TSO_FORCE
;
6428 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
6429 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
6433 if (changed
& NETIF_F_RXFCS
) {
6434 if (features
& NETIF_F_RXFCS
) {
6435 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6437 /* We need to take it back to defaults, which might mean
6438 * stripping is still disabled at the adapter level.
6440 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
6441 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
6443 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6447 netdev
->features
= features
;
6449 if (netif_running(netdev
))
6450 e1000e_reinit_locked(adapter
);
6452 e1000e_reset(adapter
);
6457 static const struct net_device_ops e1000e_netdev_ops
= {
6458 .ndo_open
= e1000_open
,
6459 .ndo_stop
= e1000_close
,
6460 .ndo_start_xmit
= e1000_xmit_frame
,
6461 .ndo_get_stats64
= e1000e_get_stats64
,
6462 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
6463 .ndo_set_mac_address
= e1000_set_mac
,
6464 .ndo_change_mtu
= e1000_change_mtu
,
6465 .ndo_do_ioctl
= e1000_ioctl
,
6466 .ndo_tx_timeout
= e1000_tx_timeout
,
6467 .ndo_validate_addr
= eth_validate_addr
,
6469 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
6470 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
6471 #ifdef CONFIG_NET_POLL_CONTROLLER
6472 .ndo_poll_controller
= e1000_netpoll
,
6474 .ndo_set_features
= e1000_set_features
,
6478 * e1000_probe - Device Initialization Routine
6479 * @pdev: PCI device information struct
6480 * @ent: entry in e1000_pci_tbl
6482 * Returns 0 on success, negative on failure
6484 * e1000_probe initializes an adapter identified by a pci_dev structure.
6485 * The OS initialization, configuring of the adapter private structure,
6486 * and a hardware reset occur.
6488 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6490 struct net_device
*netdev
;
6491 struct e1000_adapter
*adapter
;
6492 struct e1000_hw
*hw
;
6493 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
6494 resource_size_t mmio_start
, mmio_len
;
6495 resource_size_t flash_start
, flash_len
;
6496 static int cards_found
;
6497 u16 aspm_disable_flag
= 0;
6498 int bars
, i
, err
, pci_using_dac
;
6499 u16 eeprom_data
= 0;
6500 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
6502 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6503 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6504 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6505 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6506 if (aspm_disable_flag
)
6507 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6509 err
= pci_enable_device_mem(pdev
);
6514 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
6516 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
6520 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
6522 err
= dma_set_coherent_mask(&pdev
->dev
,
6526 "No usable DMA configuration, aborting\n");
6532 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
6533 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
6534 e1000e_driver_name
);
6538 /* AER (Advanced Error Reporting) hooks */
6539 pci_enable_pcie_error_reporting(pdev
);
6541 pci_set_master(pdev
);
6542 /* PCI config space info */
6543 err
= pci_save_state(pdev
);
6545 goto err_alloc_etherdev
;
6548 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
6550 goto err_alloc_etherdev
;
6552 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
6554 netdev
->irq
= pdev
->irq
;
6556 pci_set_drvdata(pdev
, netdev
);
6557 adapter
= netdev_priv(netdev
);
6559 adapter
->netdev
= netdev
;
6560 adapter
->pdev
= pdev
;
6562 adapter
->pba
= ei
->pba
;
6563 adapter
->flags
= ei
->flags
;
6564 adapter
->flags2
= ei
->flags2
;
6565 adapter
->hw
.adapter
= adapter
;
6566 adapter
->hw
.mac
.type
= ei
->mac
;
6567 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
6568 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
6570 mmio_start
= pci_resource_start(pdev
, 0);
6571 mmio_len
= pci_resource_len(pdev
, 0);
6574 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
6575 if (!adapter
->hw
.hw_addr
)
6578 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
6579 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
6580 flash_start
= pci_resource_start(pdev
, 1);
6581 flash_len
= pci_resource_len(pdev
, 1);
6582 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
6583 if (!adapter
->hw
.flash_address
)
6587 /* Set default EEE advertisement */
6588 if (adapter
->flags2
& FLAG2_HAS_EEE
)
6589 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
6591 /* construct the net_device struct */
6592 netdev
->netdev_ops
= &e1000e_netdev_ops
;
6593 e1000e_set_ethtool_ops(netdev
);
6594 netdev
->watchdog_timeo
= 5 * HZ
;
6595 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
6596 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
6598 netdev
->mem_start
= mmio_start
;
6599 netdev
->mem_end
= mmio_start
+ mmio_len
;
6601 adapter
->bd_number
= cards_found
++;
6603 e1000e_check_options(adapter
);
6605 /* setup adapter struct */
6606 err
= e1000_sw_init(adapter
);
6610 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
6611 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
6612 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
6614 err
= ei
->get_variants(adapter
);
6618 if ((adapter
->flags
& FLAG_IS_ICH
) &&
6619 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
6620 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
6622 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
6624 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
6626 /* Copper options */
6627 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
6628 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
6629 adapter
->hw
.phy
.disable_polarity_correction
= 0;
6630 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
6633 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
6634 dev_info(&pdev
->dev
,
6635 "PHY reset is blocked due to SOL/IDER session.\n");
6637 /* Set initial default active device features */
6638 netdev
->features
= (NETIF_F_SG
|
6639 NETIF_F_HW_VLAN_CTAG_RX
|
6640 NETIF_F_HW_VLAN_CTAG_TX
|
6647 /* Set user-changeable features (subset of all device features) */
6648 netdev
->hw_features
= netdev
->features
;
6649 netdev
->hw_features
|= NETIF_F_RXFCS
;
6650 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
6651 netdev
->hw_features
|= NETIF_F_RXALL
;
6653 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
6654 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
6656 netdev
->vlan_features
|= (NETIF_F_SG
|
6661 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
6663 if (pci_using_dac
) {
6664 netdev
->features
|= NETIF_F_HIGHDMA
;
6665 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
6668 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
6669 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
6671 /* before reading the NVM, reset the controller to
6672 * put the device in a known good starting state
6674 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
6676 /* systems with ASPM and others may see the checksum fail on the first
6677 * attempt. Let's give it a few tries
6680 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
6683 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
6689 e1000_eeprom_checks(adapter
);
6691 /* copy the MAC address */
6692 if (e1000e_read_mac_addr(&adapter
->hw
))
6694 "NVM Read Error while reading MAC address\n");
6696 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6698 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
6699 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
6705 init_timer(&adapter
->watchdog_timer
);
6706 adapter
->watchdog_timer
.function
= e1000_watchdog
;
6707 adapter
->watchdog_timer
.data
= (unsigned long)adapter
;
6709 init_timer(&adapter
->phy_info_timer
);
6710 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
6711 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
6713 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
6714 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
6715 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
6716 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
6717 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
6719 /* Initialize link parameters. User can change them with ethtool */
6720 adapter
->hw
.mac
.autoneg
= 1;
6721 adapter
->fc_autoneg
= true;
6722 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6723 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6724 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6726 /* ring size defaults */
6727 adapter
->rx_ring
->count
= E1000_DEFAULT_RXD
;
6728 adapter
->tx_ring
->count
= E1000_DEFAULT_TXD
;
6730 /* Initial Wake on LAN setting - If APM wake is enabled in
6731 * the EEPROM, enable the ACPI Magic Packet filter
6733 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6734 /* APME bit in EEPROM is mapped to WUC.APME */
6735 eeprom_data
= er32(WUC
);
6736 eeprom_apme_mask
= E1000_WUC_APME
;
6737 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6738 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6739 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6740 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6741 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6742 (adapter
->hw
.bus
.func
== 1))
6743 e1000_read_nvm(&adapter
->hw
, NVM_INIT_CONTROL3_PORT_B
,
6746 e1000_read_nvm(&adapter
->hw
, NVM_INIT_CONTROL3_PORT_A
,
6750 /* fetch WoL from EEPROM */
6751 if (eeprom_data
& eeprom_apme_mask
)
6752 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6754 /* now that we have the eeprom settings, apply the special cases
6755 * where the eeprom may be wrong or the board simply won't support
6756 * wake on lan on a particular port
6758 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6759 adapter
->eeprom_wol
= 0;
6761 /* initialize the wol settings based on the eeprom settings */
6762 adapter
->wol
= adapter
->eeprom_wol
;
6764 /* make sure adapter isn't asleep if manageability is enabled */
6765 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
6766 (hw
->mac
.ops
.check_mng_mode(hw
)))
6767 device_wakeup_enable(&pdev
->dev
);
6769 /* save off EEPROM version number */
6770 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6772 /* reset the hardware with the new settings */
6773 e1000e_reset(adapter
);
6775 /* If the controller has AMT, do not set DRV_LOAD until the interface
6776 * is up. For all other cases, let the f/w know that the h/w is now
6777 * under the control of the driver.
6779 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6780 e1000e_get_hw_control(adapter
);
6782 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
6783 err
= register_netdev(netdev
);
6787 /* carrier off reporting is important to ethtool even BEFORE open */
6788 netif_carrier_off(netdev
);
6790 /* init PTP hardware clock */
6791 e1000e_ptp_init(adapter
);
6793 e1000_print_device_info(adapter
);
6795 if (pci_dev_run_wake(pdev
))
6796 pm_runtime_put_noidle(&pdev
->dev
);
6801 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6802 e1000e_release_hw_control(adapter
);
6804 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
6805 e1000_phy_hw_reset(&adapter
->hw
);
6807 kfree(adapter
->tx_ring
);
6808 kfree(adapter
->rx_ring
);
6810 if (adapter
->hw
.flash_address
)
6811 iounmap(adapter
->hw
.flash_address
);
6812 e1000e_reset_interrupt_capability(adapter
);
6814 iounmap(adapter
->hw
.hw_addr
);
6816 free_netdev(netdev
);
6818 pci_release_selected_regions(pdev
,
6819 pci_select_bars(pdev
, IORESOURCE_MEM
));
6822 pci_disable_device(pdev
);
6827 * e1000_remove - Device Removal Routine
6828 * @pdev: PCI device information struct
6830 * e1000_remove is called by the PCI subsystem to alert the driver
6831 * that it should release a PCI device. The could be caused by a
6832 * Hot-Plug event, or because the driver is going to be removed from
6835 static void e1000_remove(struct pci_dev
*pdev
)
6837 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6838 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6839 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6841 e1000e_ptp_remove(adapter
);
6843 /* The timers may be rescheduled, so explicitly disable them
6844 * from being rescheduled.
6847 set_bit(__E1000_DOWN
, &adapter
->state
);
6848 del_timer_sync(&adapter
->watchdog_timer
);
6849 del_timer_sync(&adapter
->phy_info_timer
);
6851 cancel_work_sync(&adapter
->reset_task
);
6852 cancel_work_sync(&adapter
->watchdog_task
);
6853 cancel_work_sync(&adapter
->downshift_task
);
6854 cancel_work_sync(&adapter
->update_phy_task
);
6855 cancel_work_sync(&adapter
->print_hang_task
);
6857 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
6858 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
6859 if (adapter
->tx_hwtstamp_skb
) {
6860 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
6861 adapter
->tx_hwtstamp_skb
= NULL
;
6865 if (!(netdev
->flags
& IFF_UP
))
6866 e1000_power_down_phy(adapter
);
6868 /* Don't lie to e1000_close() down the road. */
6870 clear_bit(__E1000_DOWN
, &adapter
->state
);
6871 unregister_netdev(netdev
);
6873 if (pci_dev_run_wake(pdev
))
6874 pm_runtime_get_noresume(&pdev
->dev
);
6876 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6877 * would have already happened in close and is redundant.
6879 e1000e_release_hw_control(adapter
);
6881 e1000e_reset_interrupt_capability(adapter
);
6882 kfree(adapter
->tx_ring
);
6883 kfree(adapter
->rx_ring
);
6885 iounmap(adapter
->hw
.hw_addr
);
6886 if (adapter
->hw
.flash_address
)
6887 iounmap(adapter
->hw
.flash_address
);
6888 pci_release_selected_regions(pdev
,
6889 pci_select_bars(pdev
, IORESOURCE_MEM
));
6891 free_netdev(netdev
);
6894 pci_disable_pcie_error_reporting(pdev
);
6896 pci_disable_device(pdev
);
6899 /* PCI Error Recovery (ERS) */
6900 static const struct pci_error_handlers e1000_err_handler
= {
6901 .error_detected
= e1000_io_error_detected
,
6902 .slot_reset
= e1000_io_slot_reset
,
6903 .resume
= e1000_io_resume
,
6906 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6907 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6908 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6909 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6910 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
6912 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6913 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6914 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6915 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6916 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6918 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6919 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6920 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6921 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6923 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6924 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6925 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6927 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6928 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6929 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6931 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6932 board_80003es2lan
},
6933 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6934 board_80003es2lan
},
6935 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6936 board_80003es2lan
},
6937 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6938 board_80003es2lan
},
6940 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6941 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6942 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6943 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6944 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6945 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6946 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6947 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6949 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6950 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6951 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6952 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6953 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6954 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6955 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6956 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6957 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6959 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6960 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6961 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6963 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6964 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6965 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6967 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6968 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6969 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6970 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6972 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6973 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6975 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
6976 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
6977 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
6978 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
6980 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6982 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6985 static const struct dev_pm_ops e1000_pm_ops
= {
6986 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6987 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
, e1000_runtime_resume
,
6992 /* PCI Device API Driver */
6993 static struct pci_driver e1000_driver
= {
6994 .name
= e1000e_driver_name
,
6995 .id_table
= e1000_pci_tbl
,
6996 .probe
= e1000_probe
,
6997 .remove
= e1000_remove
,
7000 .pm
= &e1000_pm_ops
,
7003 .shutdown
= e1000_shutdown
,
7004 .err_handler
= &e1000_err_handler
7008 * e1000_init_module - Driver Registration Routine
7010 * e1000_init_module is the first routine called when the driver is
7011 * loaded. All it does is register with the PCI subsystem.
7013 static int __init
e1000_init_module(void)
7016 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7017 e1000e_driver_version
);
7018 pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7019 ret
= pci_register_driver(&e1000_driver
);
7023 module_init(e1000_init_module
);
7026 * e1000_exit_module - Driver Exit Cleanup Routine
7028 * e1000_exit_module is called just before the driver is removed
7031 static void __exit
e1000_exit_module(void)
7033 pci_unregister_driver(&e1000_driver
);
7035 module_exit(e1000_exit_module
);
7037 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7038 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7039 MODULE_LICENSE("GPL");
7040 MODULE_VERSION(DRV_VERSION
);