Linux 3.11-rc3
[cris-mirror.git] / drivers / net / ethernet / intel / e1000e / netdev.c
blob77f81cbb601a4b248f4018f76a3d6efbb94726bc
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
54 #include "e1000.h"
56 #define DRV_EXTRAVERSION "-k"
58 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69 static const struct e1000_info *e1000_info_tbl[] = {
70 [board_82571] = &e1000_82571_info,
71 [board_82572] = &e1000_82572_info,
72 [board_82573] = &e1000_82573_info,
73 [board_82574] = &e1000_82574_info,
74 [board_82583] = &e1000_82583_info,
75 [board_80003es2lan] = &e1000_es2_info,
76 [board_ich8lan] = &e1000_ich8_info,
77 [board_ich9lan] = &e1000_ich9_info,
78 [board_ich10lan] = &e1000_ich10_info,
79 [board_pchlan] = &e1000_pch_info,
80 [board_pch2lan] = &e1000_pch2_info,
81 [board_pch_lpt] = &e1000_pch_lpt_info,
84 struct e1000_reg_info {
85 u32 ofs;
86 char *name;
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90 /* General Registers */
91 {E1000_CTRL, "CTRL"},
92 {E1000_STATUS, "STATUS"},
93 {E1000_CTRL_EXT, "CTRL_EXT"},
95 /* Interrupt Registers */
96 {E1000_ICR, "ICR"},
98 /* Rx Registers */
99 {E1000_RCTL, "RCTL"},
100 {E1000_RDLEN(0), "RDLEN"},
101 {E1000_RDH(0), "RDH"},
102 {E1000_RDT(0), "RDT"},
103 {E1000_RDTR, "RDTR"},
104 {E1000_RXDCTL(0), "RXDCTL"},
105 {E1000_ERT, "ERT"},
106 {E1000_RDBAL(0), "RDBAL"},
107 {E1000_RDBAH(0), "RDBAH"},
108 {E1000_RDFH, "RDFH"},
109 {E1000_RDFT, "RDFT"},
110 {E1000_RDFHS, "RDFHS"},
111 {E1000_RDFTS, "RDFTS"},
112 {E1000_RDFPC, "RDFPC"},
114 /* Tx Registers */
115 {E1000_TCTL, "TCTL"},
116 {E1000_TDBAL(0), "TDBAL"},
117 {E1000_TDBAH(0), "TDBAH"},
118 {E1000_TDLEN(0), "TDLEN"},
119 {E1000_TDH(0), "TDH"},
120 {E1000_TDT(0), "TDT"},
121 {E1000_TIDV, "TIDV"},
122 {E1000_TXDCTL(0), "TXDCTL"},
123 {E1000_TADV, "TADV"},
124 {E1000_TARC(0), "TARC"},
125 {E1000_TDFH, "TDFH"},
126 {E1000_TDFT, "TDFT"},
127 {E1000_TDFHS, "TDFHS"},
128 {E1000_TDFTS, "TDFTS"},
129 {E1000_TDFPC, "TDFPC"},
131 /* List Terminator */
132 {0, NULL}
136 * e1000_regdump - register printout routine
137 * @hw: pointer to the HW structure
138 * @reginfo: pointer to the register info table
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
142 int n = 0;
143 char rname[16];
144 u32 regs[8];
146 switch (reginfo->ofs) {
147 case E1000_RXDCTL(0):
148 for (n = 0; n < 2; n++)
149 regs[n] = __er32(hw, E1000_RXDCTL(n));
150 break;
151 case E1000_TXDCTL(0):
152 for (n = 0; n < 2; n++)
153 regs[n] = __er32(hw, E1000_TXDCTL(n));
154 break;
155 case E1000_TARC(0):
156 for (n = 0; n < 2; n++)
157 regs[n] = __er32(hw, E1000_TARC(n));
158 break;
159 default:
160 pr_info("%-15s %08x\n",
161 reginfo->name, __er32(hw, reginfo->ofs));
162 return;
165 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170 struct e1000_buffer *bi)
172 int i;
173 struct e1000_ps_page *ps_page;
175 for (i = 0; i < adapter->rx_ps_pages; i++) {
176 ps_page = &bi->ps_pages[i];
178 if (ps_page->page) {
179 pr_info("packet dump for ps_page %d:\n", i);
180 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181 16, 1, page_address(ps_page->page),
182 PAGE_SIZE, true);
188 * e1000e_dump - Print registers, Tx-ring and Rx-ring
189 * @adapter: board private structure
191 static void e1000e_dump(struct e1000_adapter *adapter)
193 struct net_device *netdev = adapter->netdev;
194 struct e1000_hw *hw = &adapter->hw;
195 struct e1000_reg_info *reginfo;
196 struct e1000_ring *tx_ring = adapter->tx_ring;
197 struct e1000_tx_desc *tx_desc;
198 struct my_u0 {
199 __le64 a;
200 __le64 b;
201 } *u0;
202 struct e1000_buffer *buffer_info;
203 struct e1000_ring *rx_ring = adapter->rx_ring;
204 union e1000_rx_desc_packet_split *rx_desc_ps;
205 union e1000_rx_desc_extended *rx_desc;
206 struct my_u1 {
207 __le64 a;
208 __le64 b;
209 __le64 c;
210 __le64 d;
211 } *u1;
212 u32 staterr;
213 int i = 0;
215 if (!netif_msg_hw(adapter))
216 return;
218 /* Print netdevice Info */
219 if (netdev) {
220 dev_info(&adapter->pdev->dev, "Net device Info\n");
221 pr_info("Device Name state trans_start last_rx\n");
222 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
223 netdev->state, netdev->trans_start, netdev->last_rx);
226 /* Print Registers */
227 dev_info(&adapter->pdev->dev, "Register Dump\n");
228 pr_info(" Register Name Value\n");
229 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
230 reginfo->name; reginfo++) {
231 e1000_regdump(hw, reginfo);
234 /* Print Tx Ring Summary */
235 if (!netdev || !netif_running(netdev))
236 return;
238 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
239 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
240 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
241 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
242 0, tx_ring->next_to_use, tx_ring->next_to_clean,
243 (unsigned long long)buffer_info->dma,
244 buffer_info->length,
245 buffer_info->next_to_watch,
246 (unsigned long long)buffer_info->time_stamp);
248 /* Print Tx Ring */
249 if (!netif_msg_tx_done(adapter))
250 goto rx_ring_summary;
252 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256 * Legacy Transmit Descriptor
257 * +--------------------------------------------------------------+
258 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
259 * +--------------------------------------------------------------+
260 * 8 | Special | CSS | Status | CMD | CSO | Length |
261 * +--------------------------------------------------------------+
262 * 63 48 47 36 35 32 31 24 23 16 15 0
264 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
265 * 63 48 47 40 39 32 31 16 15 8 7 0
266 * +----------------------------------------------------------------+
267 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
268 * +----------------------------------------------------------------+
269 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
270 * +----------------------------------------------------------------+
271 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
273 * Extended Data Descriptor (DTYP=0x1)
274 * +----------------------------------------------------------------+
275 * 0 | Buffer Address [63:0] |
276 * +----------------------------------------------------------------+
277 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
278 * +----------------------------------------------------------------+
279 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
281 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
282 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
283 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
284 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
285 const char *next_desc;
286 tx_desc = E1000_TX_DESC(*tx_ring, i);
287 buffer_info = &tx_ring->buffer_info[i];
288 u0 = (struct my_u0 *)tx_desc;
289 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
290 next_desc = " NTC/U";
291 else if (i == tx_ring->next_to_use)
292 next_desc = " NTU";
293 else if (i == tx_ring->next_to_clean)
294 next_desc = " NTC";
295 else
296 next_desc = "";
297 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
298 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
299 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
301 (unsigned long long)le64_to_cpu(u0->a),
302 (unsigned long long)le64_to_cpu(u0->b),
303 (unsigned long long)buffer_info->dma,
304 buffer_info->length, buffer_info->next_to_watch,
305 (unsigned long long)buffer_info->time_stamp,
306 buffer_info->skb, next_desc);
308 if (netif_msg_pktdata(adapter) && buffer_info->skb)
309 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
310 16, 1, buffer_info->skb->data,
311 buffer_info->skb->len, true);
314 /* Print Rx Ring Summary */
315 rx_ring_summary:
316 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
317 pr_info("Queue [NTU] [NTC]\n");
318 pr_info(" %5d %5X %5X\n",
319 0, rx_ring->next_to_use, rx_ring->next_to_clean);
321 /* Print Rx Ring */
322 if (!netif_msg_rx_status(adapter))
323 return;
325 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
326 switch (adapter->rx_ps_pages) {
327 case 1:
328 case 2:
329 case 3:
330 /* [Extended] Packet Split Receive Descriptor Format
332 * +-----------------------------------------------------+
333 * 0 | Buffer Address 0 [63:0] |
334 * +-----------------------------------------------------+
335 * 8 | Buffer Address 1 [63:0] |
336 * +-----------------------------------------------------+
337 * 16 | Buffer Address 2 [63:0] |
338 * +-----------------------------------------------------+
339 * 24 | Buffer Address 3 [63:0] |
340 * +-----------------------------------------------------+
342 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
343 /* [Extended] Receive Descriptor (Write-Back) Format
345 * 63 48 47 32 31 13 12 8 7 4 3 0
346 * +------------------------------------------------------+
347 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
348 * | Checksum | Ident | | Queue | | Type |
349 * +------------------------------------------------------+
350 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351 * +------------------------------------------------------+
352 * 63 48 47 32 31 20 19 0
354 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
355 for (i = 0; i < rx_ring->count; i++) {
356 const char *next_desc;
357 buffer_info = &rx_ring->buffer_info[i];
358 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
359 u1 = (struct my_u1 *)rx_desc_ps;
360 staterr =
361 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363 if (i == rx_ring->next_to_use)
364 next_desc = " NTU";
365 else if (i == rx_ring->next_to_clean)
366 next_desc = " NTC";
367 else
368 next_desc = "";
370 if (staterr & E1000_RXD_STAT_DD) {
371 /* Descriptor Done */
372 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
373 "RWB", i,
374 (unsigned long long)le64_to_cpu(u1->a),
375 (unsigned long long)le64_to_cpu(u1->b),
376 (unsigned long long)le64_to_cpu(u1->c),
377 (unsigned long long)le64_to_cpu(u1->d),
378 buffer_info->skb, next_desc);
379 } else {
380 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
381 "R ", i,
382 (unsigned long long)le64_to_cpu(u1->a),
383 (unsigned long long)le64_to_cpu(u1->b),
384 (unsigned long long)le64_to_cpu(u1->c),
385 (unsigned long long)le64_to_cpu(u1->d),
386 (unsigned long long)buffer_info->dma,
387 buffer_info->skb, next_desc);
389 if (netif_msg_pktdata(adapter))
390 e1000e_dump_ps_pages(adapter,
391 buffer_info);
394 break;
395 default:
396 case 0:
397 /* Extended Receive Descriptor (Read) Format
399 * +-----------------------------------------------------+
400 * 0 | Buffer Address [63:0] |
401 * +-----------------------------------------------------+
402 * 8 | Reserved |
403 * +-----------------------------------------------------+
405 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
406 /* Extended Receive Descriptor (Write-Back) Format
408 * 63 48 47 32 31 24 23 4 3 0
409 * +------------------------------------------------------+
410 * | RSS Hash | | | |
411 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
412 * | Packet | IP | | | Type |
413 * | Checksum | Ident | | | |
414 * +------------------------------------------------------+
415 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
416 * +------------------------------------------------------+
417 * 63 48 47 32 31 20 19 0
419 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
421 for (i = 0; i < rx_ring->count; i++) {
422 const char *next_desc;
424 buffer_info = &rx_ring->buffer_info[i];
425 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
426 u1 = (struct my_u1 *)rx_desc;
427 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429 if (i == rx_ring->next_to_use)
430 next_desc = " NTU";
431 else if (i == rx_ring->next_to_clean)
432 next_desc = " NTC";
433 else
434 next_desc = "";
436 if (staterr & E1000_RXD_STAT_DD) {
437 /* Descriptor Done */
438 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
439 "RWB", i,
440 (unsigned long long)le64_to_cpu(u1->a),
441 (unsigned long long)le64_to_cpu(u1->b),
442 buffer_info->skb, next_desc);
443 } else {
444 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
445 "R ", i,
446 (unsigned long long)le64_to_cpu(u1->a),
447 (unsigned long long)le64_to_cpu(u1->b),
448 (unsigned long long)buffer_info->dma,
449 buffer_info->skb, next_desc);
451 if (netif_msg_pktdata(adapter) &&
452 buffer_info->skb)
453 print_hex_dump(KERN_INFO, "",
454 DUMP_PREFIX_ADDRESS, 16,
456 buffer_info->skb->data,
457 adapter->rx_buffer_len,
458 true);
465 * e1000_desc_unused - calculate if we have unused descriptors
467 static int e1000_desc_unused(struct e1000_ring *ring)
469 if (ring->next_to_clean > ring->next_to_use)
470 return ring->next_to_clean - ring->next_to_use - 1;
472 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477 * @adapter: board private structure
478 * @hwtstamps: time stamp structure to update
479 * @systim: unsigned 64bit system time value.
481 * Convert the system time value stored in the RX/TXSTMP registers into a
482 * hwtstamp which can be used by the upper level time stamping functions.
484 * The 'systim_lock' spinlock is used to protect the consistency of the
485 * system time value. This is needed because reading the 64 bit time
486 * value involves reading two 32 bit registers. The first read latches the
487 * value.
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
490 struct skb_shared_hwtstamps *hwtstamps,
491 u64 systim)
493 u64 ns;
494 unsigned long flags;
496 spin_lock_irqsave(&adapter->systim_lock, flags);
497 ns = timecounter_cyc2time(&adapter->tc, systim);
498 spin_unlock_irqrestore(&adapter->systim_lock, flags);
500 memset(hwtstamps, 0, sizeof(*hwtstamps));
501 hwtstamps->hwtstamp = ns_to_ktime(ns);
505 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506 * @adapter: board private structure
507 * @status: descriptor extended error and status field
508 * @skb: particular skb to include time stamp
510 * If the time stamp is valid, convert it into the timecounter ns value
511 * and store that result into the shhwtstamps structure which is passed
512 * up the network stack.
514 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
515 struct sk_buff *skb)
517 struct e1000_hw *hw = &adapter->hw;
518 u64 rxstmp;
520 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
521 !(status & E1000_RXDEXT_STATERR_TST) ||
522 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
523 return;
525 /* The Rx time stamp registers contain the time stamp. No other
526 * received packet will be time stamped until the Rx time stamp
527 * registers are read. Because only one packet can be time stamped
528 * at a time, the register values must belong to this packet and
529 * therefore none of the other additional attributes need to be
530 * compared.
532 rxstmp = (u64)er32(RXSTMPL);
533 rxstmp |= (u64)er32(RXSTMPH) << 32;
534 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 * e1000_receive_skb - helper function to handle Rx indications
541 * @adapter: board private structure
542 * @staterr: descriptor extended error and status field as written by hardware
543 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
544 * @skb: pointer to sk_buff to be indicated to stack
546 static void e1000_receive_skb(struct e1000_adapter *adapter,
547 struct net_device *netdev, struct sk_buff *skb,
548 u32 staterr, __le16 vlan)
550 u16 tag = le16_to_cpu(vlan);
552 e1000e_rx_hwtstamp(adapter, staterr, skb);
554 skb->protocol = eth_type_trans(skb, netdev);
556 if (staterr & E1000_RXD_STAT_VP)
557 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
559 napi_gro_receive(&adapter->napi, skb);
563 * e1000_rx_checksum - Receive Checksum Offload
564 * @adapter: board private structure
565 * @status_err: receive descriptor status and error fields
566 * @csum: receive descriptor csum field
567 * @sk_buff: socket buffer with received data
569 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
570 struct sk_buff *skb)
572 u16 status = (u16)status_err;
573 u8 errors = (u8)(status_err >> 24);
575 skb_checksum_none_assert(skb);
577 /* Rx checksum disabled */
578 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
579 return;
581 /* Ignore Checksum bit is set */
582 if (status & E1000_RXD_STAT_IXSM)
583 return;
585 /* TCP/UDP checksum error bit or IP checksum error bit is set */
586 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
587 /* let the stack verify checksum errors */
588 adapter->hw_csum_err++;
589 return;
592 /* TCP/UDP Checksum has not been calculated */
593 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
594 return;
596 /* It must be a TCP or UDP packet with a valid checksum */
597 skb->ip_summed = CHECKSUM_UNNECESSARY;
598 adapter->hw_csum_good++;
601 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 struct e1000_adapter *adapter = rx_ring->adapter;
604 struct e1000_hw *hw = &adapter->hw;
605 s32 ret_val = __ew32_prepare(hw);
607 writel(i, rx_ring->tail);
609 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
610 u32 rctl = er32(RCTL);
611 ew32(RCTL, rctl & ~E1000_RCTL_EN);
612 e_err("ME firmware caused invalid RDT - resetting\n");
613 schedule_work(&adapter->reset_task);
617 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
619 struct e1000_adapter *adapter = tx_ring->adapter;
620 struct e1000_hw *hw = &adapter->hw;
621 s32 ret_val = __ew32_prepare(hw);
623 writel(i, tx_ring->tail);
625 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
626 u32 tctl = er32(TCTL);
627 ew32(TCTL, tctl & ~E1000_TCTL_EN);
628 e_err("ME firmware caused invalid TDT - resetting\n");
629 schedule_work(&adapter->reset_task);
634 * e1000_alloc_rx_buffers - Replace used receive buffers
635 * @rx_ring: Rx descriptor ring
637 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
638 int cleaned_count, gfp_t gfp)
640 struct e1000_adapter *adapter = rx_ring->adapter;
641 struct net_device *netdev = adapter->netdev;
642 struct pci_dev *pdev = adapter->pdev;
643 union e1000_rx_desc_extended *rx_desc;
644 struct e1000_buffer *buffer_info;
645 struct sk_buff *skb;
646 unsigned int i;
647 unsigned int bufsz = adapter->rx_buffer_len;
649 i = rx_ring->next_to_use;
650 buffer_info = &rx_ring->buffer_info[i];
652 while (cleaned_count--) {
653 skb = buffer_info->skb;
654 if (skb) {
655 skb_trim(skb, 0);
656 goto map_skb;
659 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
660 if (!skb) {
661 /* Better luck next round */
662 adapter->alloc_rx_buff_failed++;
663 break;
666 buffer_info->skb = skb;
667 map_skb:
668 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
669 adapter->rx_buffer_len,
670 DMA_FROM_DEVICE);
671 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
672 dev_err(&pdev->dev, "Rx DMA map failed\n");
673 adapter->rx_dma_failed++;
674 break;
677 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
678 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
680 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
681 /* Force memory writes to complete before letting h/w
682 * know there are new descriptors to fetch. (Only
683 * applicable for weak-ordered memory model archs,
684 * such as IA-64).
686 wmb();
687 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
688 e1000e_update_rdt_wa(rx_ring, i);
689 else
690 writel(i, rx_ring->tail);
692 i++;
693 if (i == rx_ring->count)
694 i = 0;
695 buffer_info = &rx_ring->buffer_info[i];
698 rx_ring->next_to_use = i;
702 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
703 * @rx_ring: Rx descriptor ring
705 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
706 int cleaned_count, gfp_t gfp)
708 struct e1000_adapter *adapter = rx_ring->adapter;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 union e1000_rx_desc_packet_split *rx_desc;
712 struct e1000_buffer *buffer_info;
713 struct e1000_ps_page *ps_page;
714 struct sk_buff *skb;
715 unsigned int i, j;
717 i = rx_ring->next_to_use;
718 buffer_info = &rx_ring->buffer_info[i];
720 while (cleaned_count--) {
721 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
724 ps_page = &buffer_info->ps_pages[j];
725 if (j >= adapter->rx_ps_pages) {
726 /* all unused desc entries get hw null ptr */
727 rx_desc->read.buffer_addr[j + 1] =
728 ~cpu_to_le64(0);
729 continue;
731 if (!ps_page->page) {
732 ps_page->page = alloc_page(gfp);
733 if (!ps_page->page) {
734 adapter->alloc_rx_buff_failed++;
735 goto no_buffers;
737 ps_page->dma = dma_map_page(&pdev->dev,
738 ps_page->page,
739 0, PAGE_SIZE,
740 DMA_FROM_DEVICE);
741 if (dma_mapping_error(&pdev->dev,
742 ps_page->dma)) {
743 dev_err(&adapter->pdev->dev,
744 "Rx DMA page map failed\n");
745 adapter->rx_dma_failed++;
746 goto no_buffers;
749 /* Refresh the desc even if buffer_addrs
750 * didn't change because each write-back
751 * erases this info.
753 rx_desc->read.buffer_addr[j + 1] =
754 cpu_to_le64(ps_page->dma);
757 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
758 gfp);
760 if (!skb) {
761 adapter->alloc_rx_buff_failed++;
762 break;
765 buffer_info->skb = skb;
766 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
767 adapter->rx_ps_bsize0,
768 DMA_FROM_DEVICE);
769 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
770 dev_err(&pdev->dev, "Rx DMA map failed\n");
771 adapter->rx_dma_failed++;
772 /* cleanup skb */
773 dev_kfree_skb_any(skb);
774 buffer_info->skb = NULL;
775 break;
778 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
780 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
781 /* Force memory writes to complete before letting h/w
782 * know there are new descriptors to fetch. (Only
783 * applicable for weak-ordered memory model archs,
784 * such as IA-64).
786 wmb();
787 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
788 e1000e_update_rdt_wa(rx_ring, i << 1);
789 else
790 writel(i << 1, rx_ring->tail);
793 i++;
794 if (i == rx_ring->count)
795 i = 0;
796 buffer_info = &rx_ring->buffer_info[i];
799 no_buffers:
800 rx_ring->next_to_use = i;
804 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
805 * @rx_ring: Rx descriptor ring
806 * @cleaned_count: number of buffers to allocate this pass
809 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
810 int cleaned_count, gfp_t gfp)
812 struct e1000_adapter *adapter = rx_ring->adapter;
813 struct net_device *netdev = adapter->netdev;
814 struct pci_dev *pdev = adapter->pdev;
815 union e1000_rx_desc_extended *rx_desc;
816 struct e1000_buffer *buffer_info;
817 struct sk_buff *skb;
818 unsigned int i;
819 unsigned int bufsz = 256 - 16; /* for skb_reserve */
821 i = rx_ring->next_to_use;
822 buffer_info = &rx_ring->buffer_info[i];
824 while (cleaned_count--) {
825 skb = buffer_info->skb;
826 if (skb) {
827 skb_trim(skb, 0);
828 goto check_page;
831 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
832 if (unlikely(!skb)) {
833 /* Better luck next round */
834 adapter->alloc_rx_buff_failed++;
835 break;
838 buffer_info->skb = skb;
839 check_page:
840 /* allocate a new page if necessary */
841 if (!buffer_info->page) {
842 buffer_info->page = alloc_page(gfp);
843 if (unlikely(!buffer_info->page)) {
844 adapter->alloc_rx_buff_failed++;
845 break;
849 if (!buffer_info->dma) {
850 buffer_info->dma = dma_map_page(&pdev->dev,
851 buffer_info->page, 0,
852 PAGE_SIZE,
853 DMA_FROM_DEVICE);
854 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
855 adapter->alloc_rx_buff_failed++;
856 break;
860 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
861 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
863 if (unlikely(++i == rx_ring->count))
864 i = 0;
865 buffer_info = &rx_ring->buffer_info[i];
868 if (likely(rx_ring->next_to_use != i)) {
869 rx_ring->next_to_use = i;
870 if (unlikely(i-- == 0))
871 i = (rx_ring->count - 1);
873 /* Force memory writes to complete before letting h/w
874 * know there are new descriptors to fetch. (Only
875 * applicable for weak-ordered memory model archs,
876 * such as IA-64).
878 wmb();
879 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
880 e1000e_update_rdt_wa(rx_ring, i);
881 else
882 writel(i, rx_ring->tail);
886 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
887 struct sk_buff *skb)
889 if (netdev->features & NETIF_F_RXHASH)
890 skb->rxhash = le32_to_cpu(rss);
894 * e1000_clean_rx_irq - Send received data up the network stack
895 * @rx_ring: Rx descriptor ring
897 * the return value indicates whether actual cleaning was done, there
898 * is no guarantee that everything was cleaned
900 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
901 int work_to_do)
903 struct e1000_adapter *adapter = rx_ring->adapter;
904 struct net_device *netdev = adapter->netdev;
905 struct pci_dev *pdev = adapter->pdev;
906 struct e1000_hw *hw = &adapter->hw;
907 union e1000_rx_desc_extended *rx_desc, *next_rxd;
908 struct e1000_buffer *buffer_info, *next_buffer;
909 u32 length, staterr;
910 unsigned int i;
911 int cleaned_count = 0;
912 bool cleaned = false;
913 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
915 i = rx_ring->next_to_clean;
916 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
917 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
918 buffer_info = &rx_ring->buffer_info[i];
920 while (staterr & E1000_RXD_STAT_DD) {
921 struct sk_buff *skb;
923 if (*work_done >= work_to_do)
924 break;
925 (*work_done)++;
926 rmb(); /* read descriptor and rx_buffer_info after status DD */
928 skb = buffer_info->skb;
929 buffer_info->skb = NULL;
931 prefetch(skb->data - NET_IP_ALIGN);
933 i++;
934 if (i == rx_ring->count)
935 i = 0;
936 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
937 prefetch(next_rxd);
939 next_buffer = &rx_ring->buffer_info[i];
941 cleaned = true;
942 cleaned_count++;
943 dma_unmap_single(&pdev->dev, buffer_info->dma,
944 adapter->rx_buffer_len, DMA_FROM_DEVICE);
945 buffer_info->dma = 0;
947 length = le16_to_cpu(rx_desc->wb.upper.length);
949 /* !EOP means multiple descriptors were used to store a single
950 * packet, if that's the case we need to toss it. In fact, we
951 * need to toss every packet with the EOP bit clear and the
952 * next frame that _does_ have the EOP bit set, as it is by
953 * definition only a frame fragment
955 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
956 adapter->flags2 |= FLAG2_IS_DISCARDING;
958 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
959 /* All receives must fit into a single buffer */
960 e_dbg("Receive packet consumed multiple buffers\n");
961 /* recycle */
962 buffer_info->skb = skb;
963 if (staterr & E1000_RXD_STAT_EOP)
964 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
965 goto next_desc;
968 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
969 !(netdev->features & NETIF_F_RXALL))) {
970 /* recycle */
971 buffer_info->skb = skb;
972 goto next_desc;
975 /* adjust length to remove Ethernet CRC */
976 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
977 /* If configured to store CRC, don't subtract FCS,
978 * but keep the FCS bytes out of the total_rx_bytes
979 * counter
981 if (netdev->features & NETIF_F_RXFCS)
982 total_rx_bytes -= 4;
983 else
984 length -= 4;
987 total_rx_bytes += length;
988 total_rx_packets++;
990 /* code added for copybreak, this should improve
991 * performance for small packets with large amounts
992 * of reassembly being done in the stack
994 if (length < copybreak) {
995 struct sk_buff *new_skb =
996 netdev_alloc_skb_ip_align(netdev, length);
997 if (new_skb) {
998 skb_copy_to_linear_data_offset(new_skb,
999 -NET_IP_ALIGN,
1000 (skb->data -
1001 NET_IP_ALIGN),
1002 (length +
1003 NET_IP_ALIGN));
1004 /* save the skb in buffer_info as good */
1005 buffer_info->skb = skb;
1006 skb = new_skb;
1008 /* else just continue with the old one */
1010 /* end copybreak code */
1011 skb_put(skb, length);
1013 /* Receive Checksum Offload */
1014 e1000_rx_checksum(adapter, staterr, skb);
1016 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1018 e1000_receive_skb(adapter, netdev, skb, staterr,
1019 rx_desc->wb.upper.vlan);
1021 next_desc:
1022 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1024 /* return some buffers to hardware, one at a time is too slow */
1025 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1026 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1027 GFP_ATOMIC);
1028 cleaned_count = 0;
1031 /* use prefetched values */
1032 rx_desc = next_rxd;
1033 buffer_info = next_buffer;
1035 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1037 rx_ring->next_to_clean = i;
1039 cleaned_count = e1000_desc_unused(rx_ring);
1040 if (cleaned_count)
1041 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1043 adapter->total_rx_bytes += total_rx_bytes;
1044 adapter->total_rx_packets += total_rx_packets;
1045 return cleaned;
1048 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1049 struct e1000_buffer *buffer_info)
1051 struct e1000_adapter *adapter = tx_ring->adapter;
1053 if (buffer_info->dma) {
1054 if (buffer_info->mapped_as_page)
1055 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1056 buffer_info->length, DMA_TO_DEVICE);
1057 else
1058 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1059 buffer_info->length, DMA_TO_DEVICE);
1060 buffer_info->dma = 0;
1062 if (buffer_info->skb) {
1063 dev_kfree_skb_any(buffer_info->skb);
1064 buffer_info->skb = NULL;
1066 buffer_info->time_stamp = 0;
1069 static void e1000_print_hw_hang(struct work_struct *work)
1071 struct e1000_adapter *adapter = container_of(work,
1072 struct e1000_adapter,
1073 print_hang_task);
1074 struct net_device *netdev = adapter->netdev;
1075 struct e1000_ring *tx_ring = adapter->tx_ring;
1076 unsigned int i = tx_ring->next_to_clean;
1077 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1078 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1079 struct e1000_hw *hw = &adapter->hw;
1080 u16 phy_status, phy_1000t_status, phy_ext_status;
1081 u16 pci_status;
1083 if (test_bit(__E1000_DOWN, &adapter->state))
1084 return;
1086 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1087 /* May be block on write-back, flush and detect again
1088 * flush pending descriptor writebacks to memory
1090 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1091 /* execute the writes immediately */
1092 e1e_flush();
1093 /* Due to rare timing issues, write to TIDV again to ensure
1094 * the write is successful
1096 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1097 /* execute the writes immediately */
1098 e1e_flush();
1099 adapter->tx_hang_recheck = true;
1100 return;
1102 /* Real hang detected */
1103 adapter->tx_hang_recheck = false;
1104 netif_stop_queue(netdev);
1106 e1e_rphy(hw, MII_BMSR, &phy_status);
1107 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1108 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1110 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1112 /* detected Hardware unit hang */
1113 e_err("Detected Hardware Unit Hang:\n"
1114 " TDH <%x>\n"
1115 " TDT <%x>\n"
1116 " next_to_use <%x>\n"
1117 " next_to_clean <%x>\n"
1118 "buffer_info[next_to_clean]:\n"
1119 " time_stamp <%lx>\n"
1120 " next_to_watch <%x>\n"
1121 " jiffies <%lx>\n"
1122 " next_to_watch.status <%x>\n"
1123 "MAC Status <%x>\n"
1124 "PHY Status <%x>\n"
1125 "PHY 1000BASE-T Status <%x>\n"
1126 "PHY Extended Status <%x>\n"
1127 "PCI Status <%x>\n",
1128 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1129 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1130 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1131 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1133 /* Suggest workaround for known h/w issue */
1134 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1135 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1139 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1140 * @work: pointer to work struct
1142 * This work function polls the TSYNCTXCTL valid bit to determine when a
1143 * timestamp has been taken for the current stored skb. The timestamp must
1144 * be for this skb because only one such packet is allowed in the queue.
1146 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1148 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1149 tx_hwtstamp_work);
1150 struct e1000_hw *hw = &adapter->hw;
1152 if (!adapter->tx_hwtstamp_skb)
1153 return;
1155 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1156 struct skb_shared_hwtstamps shhwtstamps;
1157 u64 txstmp;
1159 txstmp = er32(TXSTMPL);
1160 txstmp |= (u64)er32(TXSTMPH) << 32;
1162 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1164 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1165 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1166 adapter->tx_hwtstamp_skb = NULL;
1167 } else {
1168 /* reschedule to check later */
1169 schedule_work(&adapter->tx_hwtstamp_work);
1174 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1175 * @tx_ring: Tx descriptor ring
1177 * the return value indicates whether actual cleaning was done, there
1178 * is no guarantee that everything was cleaned
1180 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1182 struct e1000_adapter *adapter = tx_ring->adapter;
1183 struct net_device *netdev = adapter->netdev;
1184 struct e1000_hw *hw = &adapter->hw;
1185 struct e1000_tx_desc *tx_desc, *eop_desc;
1186 struct e1000_buffer *buffer_info;
1187 unsigned int i, eop;
1188 unsigned int count = 0;
1189 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1190 unsigned int bytes_compl = 0, pkts_compl = 0;
1192 i = tx_ring->next_to_clean;
1193 eop = tx_ring->buffer_info[i].next_to_watch;
1194 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1196 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1197 (count < tx_ring->count)) {
1198 bool cleaned = false;
1199 rmb(); /* read buffer_info after eop_desc */
1200 for (; !cleaned; count++) {
1201 tx_desc = E1000_TX_DESC(*tx_ring, i);
1202 buffer_info = &tx_ring->buffer_info[i];
1203 cleaned = (i == eop);
1205 if (cleaned) {
1206 total_tx_packets += buffer_info->segs;
1207 total_tx_bytes += buffer_info->bytecount;
1208 if (buffer_info->skb) {
1209 bytes_compl += buffer_info->skb->len;
1210 pkts_compl++;
1214 e1000_put_txbuf(tx_ring, buffer_info);
1215 tx_desc->upper.data = 0;
1217 i++;
1218 if (i == tx_ring->count)
1219 i = 0;
1222 if (i == tx_ring->next_to_use)
1223 break;
1224 eop = tx_ring->buffer_info[i].next_to_watch;
1225 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228 tx_ring->next_to_clean = i;
1230 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1232 #define TX_WAKE_THRESHOLD 32
1233 if (count && netif_carrier_ok(netdev) &&
1234 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1235 /* Make sure that anybody stopping the queue after this
1236 * sees the new next_to_clean.
1238 smp_mb();
1240 if (netif_queue_stopped(netdev) &&
1241 !(test_bit(__E1000_DOWN, &adapter->state))) {
1242 netif_wake_queue(netdev);
1243 ++adapter->restart_queue;
1247 if (adapter->detect_tx_hung) {
1248 /* Detect a transmit hang in hardware, this serializes the
1249 * check with the clearing of time_stamp and movement of i
1251 adapter->detect_tx_hung = false;
1252 if (tx_ring->buffer_info[i].time_stamp &&
1253 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1254 + (adapter->tx_timeout_factor * HZ)) &&
1255 !(er32(STATUS) & E1000_STATUS_TXOFF))
1256 schedule_work(&adapter->print_hang_task);
1257 else
1258 adapter->tx_hang_recheck = false;
1260 adapter->total_tx_bytes += total_tx_bytes;
1261 adapter->total_tx_packets += total_tx_packets;
1262 return count < tx_ring->count;
1266 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1267 * @rx_ring: Rx descriptor ring
1269 * the return value indicates whether actual cleaning was done, there
1270 * is no guarantee that everything was cleaned
1272 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1273 int work_to_do)
1275 struct e1000_adapter *adapter = rx_ring->adapter;
1276 struct e1000_hw *hw = &adapter->hw;
1277 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1278 struct net_device *netdev = adapter->netdev;
1279 struct pci_dev *pdev = adapter->pdev;
1280 struct e1000_buffer *buffer_info, *next_buffer;
1281 struct e1000_ps_page *ps_page;
1282 struct sk_buff *skb;
1283 unsigned int i, j;
1284 u32 length, staterr;
1285 int cleaned_count = 0;
1286 bool cleaned = false;
1287 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1289 i = rx_ring->next_to_clean;
1290 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1291 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1292 buffer_info = &rx_ring->buffer_info[i];
1294 while (staterr & E1000_RXD_STAT_DD) {
1295 if (*work_done >= work_to_do)
1296 break;
1297 (*work_done)++;
1298 skb = buffer_info->skb;
1299 rmb(); /* read descriptor and rx_buffer_info after status DD */
1301 /* in the packet split case this is header only */
1302 prefetch(skb->data - NET_IP_ALIGN);
1304 i++;
1305 if (i == rx_ring->count)
1306 i = 0;
1307 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1308 prefetch(next_rxd);
1310 next_buffer = &rx_ring->buffer_info[i];
1312 cleaned = true;
1313 cleaned_count++;
1314 dma_unmap_single(&pdev->dev, buffer_info->dma,
1315 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1316 buffer_info->dma = 0;
1318 /* see !EOP comment in other Rx routine */
1319 if (!(staterr & E1000_RXD_STAT_EOP))
1320 adapter->flags2 |= FLAG2_IS_DISCARDING;
1322 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1323 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1324 dev_kfree_skb_irq(skb);
1325 if (staterr & E1000_RXD_STAT_EOP)
1326 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1327 goto next_desc;
1330 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1331 !(netdev->features & NETIF_F_RXALL))) {
1332 dev_kfree_skb_irq(skb);
1333 goto next_desc;
1336 length = le16_to_cpu(rx_desc->wb.middle.length0);
1338 if (!length) {
1339 e_dbg("Last part of the packet spanning multiple descriptors\n");
1340 dev_kfree_skb_irq(skb);
1341 goto next_desc;
1344 /* Good Receive */
1345 skb_put(skb, length);
1348 /* this looks ugly, but it seems compiler issues make
1349 * it more efficient than reusing j
1351 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1353 /* page alloc/put takes too long and effects small
1354 * packet throughput, so unsplit small packets and
1355 * save the alloc/put only valid in softirq (napi)
1356 * context to call kmap_*
1358 if (l1 && (l1 <= copybreak) &&
1359 ((length + l1) <= adapter->rx_ps_bsize0)) {
1360 u8 *vaddr;
1362 ps_page = &buffer_info->ps_pages[0];
1364 /* there is no documentation about how to call
1365 * kmap_atomic, so we can't hold the mapping
1366 * very long
1368 dma_sync_single_for_cpu(&pdev->dev,
1369 ps_page->dma,
1370 PAGE_SIZE,
1371 DMA_FROM_DEVICE);
1372 vaddr = kmap_atomic(ps_page->page);
1373 memcpy(skb_tail_pointer(skb), vaddr, l1);
1374 kunmap_atomic(vaddr);
1375 dma_sync_single_for_device(&pdev->dev,
1376 ps_page->dma,
1377 PAGE_SIZE,
1378 DMA_FROM_DEVICE);
1380 /* remove the CRC */
1381 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1382 if (!(netdev->features & NETIF_F_RXFCS))
1383 l1 -= 4;
1386 skb_put(skb, l1);
1387 goto copydone;
1388 } /* if */
1391 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1392 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1393 if (!length)
1394 break;
1396 ps_page = &buffer_info->ps_pages[j];
1397 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1398 DMA_FROM_DEVICE);
1399 ps_page->dma = 0;
1400 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1401 ps_page->page = NULL;
1402 skb->len += length;
1403 skb->data_len += length;
1404 skb->truesize += PAGE_SIZE;
1407 /* strip the ethernet crc, problem is we're using pages now so
1408 * this whole operation can get a little cpu intensive
1410 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411 if (!(netdev->features & NETIF_F_RXFCS))
1412 pskb_trim(skb, skb->len - 4);
1415 copydone:
1416 total_rx_bytes += skb->len;
1417 total_rx_packets++;
1419 e1000_rx_checksum(adapter, staterr, skb);
1421 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1423 if (rx_desc->wb.upper.header_status &
1424 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1425 adapter->rx_hdr_split++;
1427 e1000_receive_skb(adapter, netdev, skb, staterr,
1428 rx_desc->wb.middle.vlan);
1430 next_desc:
1431 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1432 buffer_info->skb = NULL;
1434 /* return some buffers to hardware, one at a time is too slow */
1435 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1436 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1437 GFP_ATOMIC);
1438 cleaned_count = 0;
1441 /* use prefetched values */
1442 rx_desc = next_rxd;
1443 buffer_info = next_buffer;
1445 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1447 rx_ring->next_to_clean = i;
1449 cleaned_count = e1000_desc_unused(rx_ring);
1450 if (cleaned_count)
1451 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1453 adapter->total_rx_bytes += total_rx_bytes;
1454 adapter->total_rx_packets += total_rx_packets;
1455 return cleaned;
1459 * e1000_consume_page - helper function
1461 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1462 u16 length)
1464 bi->page = NULL;
1465 skb->len += length;
1466 skb->data_len += length;
1467 skb->truesize += PAGE_SIZE;
1471 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1472 * @adapter: board private structure
1474 * the return value indicates whether actual cleaning was done, there
1475 * is no guarantee that everything was cleaned
1477 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1478 int work_to_do)
1480 struct e1000_adapter *adapter = rx_ring->adapter;
1481 struct net_device *netdev = adapter->netdev;
1482 struct pci_dev *pdev = adapter->pdev;
1483 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1484 struct e1000_buffer *buffer_info, *next_buffer;
1485 u32 length, staterr;
1486 unsigned int i;
1487 int cleaned_count = 0;
1488 bool cleaned = false;
1489 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1490 struct skb_shared_info *shinfo;
1492 i = rx_ring->next_to_clean;
1493 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1494 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1495 buffer_info = &rx_ring->buffer_info[i];
1497 while (staterr & E1000_RXD_STAT_DD) {
1498 struct sk_buff *skb;
1500 if (*work_done >= work_to_do)
1501 break;
1502 (*work_done)++;
1503 rmb(); /* read descriptor and rx_buffer_info after status DD */
1505 skb = buffer_info->skb;
1506 buffer_info->skb = NULL;
1508 ++i;
1509 if (i == rx_ring->count)
1510 i = 0;
1511 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1512 prefetch(next_rxd);
1514 next_buffer = &rx_ring->buffer_info[i];
1516 cleaned = true;
1517 cleaned_count++;
1518 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1519 DMA_FROM_DEVICE);
1520 buffer_info->dma = 0;
1522 length = le16_to_cpu(rx_desc->wb.upper.length);
1524 /* errors is only valid for DD + EOP descriptors */
1525 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1526 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1527 !(netdev->features & NETIF_F_RXALL)))) {
1528 /* recycle both page and skb */
1529 buffer_info->skb = skb;
1530 /* an error means any chain goes out the window too */
1531 if (rx_ring->rx_skb_top)
1532 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1533 rx_ring->rx_skb_top = NULL;
1534 goto next_desc;
1536 #define rxtop (rx_ring->rx_skb_top)
1537 if (!(staterr & E1000_RXD_STAT_EOP)) {
1538 /* this descriptor is only the beginning (or middle) */
1539 if (!rxtop) {
1540 /* this is the beginning of a chain */
1541 rxtop = skb;
1542 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1543 0, length);
1544 } else {
1545 /* this is the middle of a chain */
1546 shinfo = skb_shinfo(rxtop);
1547 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1548 buffer_info->page, 0,
1549 length);
1550 /* re-use the skb, only consumed the page */
1551 buffer_info->skb = skb;
1553 e1000_consume_page(buffer_info, rxtop, length);
1554 goto next_desc;
1555 } else {
1556 if (rxtop) {
1557 /* end of the chain */
1558 shinfo = skb_shinfo(rxtop);
1559 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1560 buffer_info->page, 0,
1561 length);
1562 /* re-use the current skb, we only consumed the
1563 * page
1565 buffer_info->skb = skb;
1566 skb = rxtop;
1567 rxtop = NULL;
1568 e1000_consume_page(buffer_info, skb, length);
1569 } else {
1570 /* no chain, got EOP, this buf is the packet
1571 * copybreak to save the put_page/alloc_page
1573 if (length <= copybreak &&
1574 skb_tailroom(skb) >= length) {
1575 u8 *vaddr;
1576 vaddr = kmap_atomic(buffer_info->page);
1577 memcpy(skb_tail_pointer(skb), vaddr,
1578 length);
1579 kunmap_atomic(vaddr);
1580 /* re-use the page, so don't erase
1581 * buffer_info->page
1583 skb_put(skb, length);
1584 } else {
1585 skb_fill_page_desc(skb, 0,
1586 buffer_info->page, 0,
1587 length);
1588 e1000_consume_page(buffer_info, skb,
1589 length);
1594 /* Receive Checksum Offload */
1595 e1000_rx_checksum(adapter, staterr, skb);
1597 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1599 /* probably a little skewed due to removing CRC */
1600 total_rx_bytes += skb->len;
1601 total_rx_packets++;
1603 /* eth type trans needs skb->data to point to something */
1604 if (!pskb_may_pull(skb, ETH_HLEN)) {
1605 e_err("pskb_may_pull failed.\n");
1606 dev_kfree_skb_irq(skb);
1607 goto next_desc;
1610 e1000_receive_skb(adapter, netdev, skb, staterr,
1611 rx_desc->wb.upper.vlan);
1613 next_desc:
1614 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1616 /* return some buffers to hardware, one at a time is too slow */
1617 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1618 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1619 GFP_ATOMIC);
1620 cleaned_count = 0;
1623 /* use prefetched values */
1624 rx_desc = next_rxd;
1625 buffer_info = next_buffer;
1627 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1629 rx_ring->next_to_clean = i;
1631 cleaned_count = e1000_desc_unused(rx_ring);
1632 if (cleaned_count)
1633 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1635 adapter->total_rx_bytes += total_rx_bytes;
1636 adapter->total_rx_packets += total_rx_packets;
1637 return cleaned;
1641 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1642 * @rx_ring: Rx descriptor ring
1644 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1646 struct e1000_adapter *adapter = rx_ring->adapter;
1647 struct e1000_buffer *buffer_info;
1648 struct e1000_ps_page *ps_page;
1649 struct pci_dev *pdev = adapter->pdev;
1650 unsigned int i, j;
1652 /* Free all the Rx ring sk_buffs */
1653 for (i = 0; i < rx_ring->count; i++) {
1654 buffer_info = &rx_ring->buffer_info[i];
1655 if (buffer_info->dma) {
1656 if (adapter->clean_rx == e1000_clean_rx_irq)
1657 dma_unmap_single(&pdev->dev, buffer_info->dma,
1658 adapter->rx_buffer_len,
1659 DMA_FROM_DEVICE);
1660 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1661 dma_unmap_page(&pdev->dev, buffer_info->dma,
1662 PAGE_SIZE, DMA_FROM_DEVICE);
1663 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1664 dma_unmap_single(&pdev->dev, buffer_info->dma,
1665 adapter->rx_ps_bsize0,
1666 DMA_FROM_DEVICE);
1667 buffer_info->dma = 0;
1670 if (buffer_info->page) {
1671 put_page(buffer_info->page);
1672 buffer_info->page = NULL;
1675 if (buffer_info->skb) {
1676 dev_kfree_skb(buffer_info->skb);
1677 buffer_info->skb = NULL;
1680 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1681 ps_page = &buffer_info->ps_pages[j];
1682 if (!ps_page->page)
1683 break;
1684 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1685 DMA_FROM_DEVICE);
1686 ps_page->dma = 0;
1687 put_page(ps_page->page);
1688 ps_page->page = NULL;
1692 /* there also may be some cached data from a chained receive */
1693 if (rx_ring->rx_skb_top) {
1694 dev_kfree_skb(rx_ring->rx_skb_top);
1695 rx_ring->rx_skb_top = NULL;
1698 /* Zero out the descriptor ring */
1699 memset(rx_ring->desc, 0, rx_ring->size);
1701 rx_ring->next_to_clean = 0;
1702 rx_ring->next_to_use = 0;
1703 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1705 writel(0, rx_ring->head);
1706 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1707 e1000e_update_rdt_wa(rx_ring, 0);
1708 else
1709 writel(0, rx_ring->tail);
1712 static void e1000e_downshift_workaround(struct work_struct *work)
1714 struct e1000_adapter *adapter = container_of(work,
1715 struct e1000_adapter,
1716 downshift_task);
1718 if (test_bit(__E1000_DOWN, &adapter->state))
1719 return;
1721 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1725 * e1000_intr_msi - Interrupt Handler
1726 * @irq: interrupt number
1727 * @data: pointer to a network interface device structure
1729 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1731 struct net_device *netdev = data;
1732 struct e1000_adapter *adapter = netdev_priv(netdev);
1733 struct e1000_hw *hw = &adapter->hw;
1734 u32 icr = er32(ICR);
1736 /* read ICR disables interrupts using IAM */
1737 if (icr & E1000_ICR_LSC) {
1738 hw->mac.get_link_status = true;
1739 /* ICH8 workaround-- Call gig speed drop workaround on cable
1740 * disconnect (LSC) before accessing any PHY registers
1742 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1743 (!(er32(STATUS) & E1000_STATUS_LU)))
1744 schedule_work(&adapter->downshift_task);
1746 /* 80003ES2LAN workaround-- For packet buffer work-around on
1747 * link down event; disable receives here in the ISR and reset
1748 * adapter in watchdog
1750 if (netif_carrier_ok(netdev) &&
1751 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1752 /* disable receives */
1753 u32 rctl = er32(RCTL);
1754 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1755 adapter->flags |= FLAG_RESTART_NOW;
1757 /* guard against interrupt when we're going down */
1758 if (!test_bit(__E1000_DOWN, &adapter->state))
1759 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1762 /* Reset on uncorrectable ECC error */
1763 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1764 u32 pbeccsts = er32(PBECCSTS);
1766 adapter->corr_errors +=
1767 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1768 adapter->uncorr_errors +=
1769 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1770 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1772 /* Do the reset outside of interrupt context */
1773 schedule_work(&adapter->reset_task);
1775 /* return immediately since reset is imminent */
1776 return IRQ_HANDLED;
1779 if (napi_schedule_prep(&adapter->napi)) {
1780 adapter->total_tx_bytes = 0;
1781 adapter->total_tx_packets = 0;
1782 adapter->total_rx_bytes = 0;
1783 adapter->total_rx_packets = 0;
1784 __napi_schedule(&adapter->napi);
1787 return IRQ_HANDLED;
1791 * e1000_intr - Interrupt Handler
1792 * @irq: interrupt number
1793 * @data: pointer to a network interface device structure
1795 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1797 struct net_device *netdev = data;
1798 struct e1000_adapter *adapter = netdev_priv(netdev);
1799 struct e1000_hw *hw = &adapter->hw;
1800 u32 rctl, icr = er32(ICR);
1802 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1803 return IRQ_NONE; /* Not our interrupt */
1805 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1806 * not set, then the adapter didn't send an interrupt
1808 if (!(icr & E1000_ICR_INT_ASSERTED))
1809 return IRQ_NONE;
1811 /* Interrupt Auto-Mask...upon reading ICR,
1812 * interrupts are masked. No need for the
1813 * IMC write
1816 if (icr & E1000_ICR_LSC) {
1817 hw->mac.get_link_status = true;
1818 /* ICH8 workaround-- Call gig speed drop workaround on cable
1819 * disconnect (LSC) before accessing any PHY registers
1821 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1822 (!(er32(STATUS) & E1000_STATUS_LU)))
1823 schedule_work(&adapter->downshift_task);
1825 /* 80003ES2LAN workaround--
1826 * For packet buffer work-around on link down event;
1827 * disable receives here in the ISR and
1828 * reset adapter in watchdog
1830 if (netif_carrier_ok(netdev) &&
1831 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1832 /* disable receives */
1833 rctl = er32(RCTL);
1834 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1835 adapter->flags |= FLAG_RESTART_NOW;
1837 /* guard against interrupt when we're going down */
1838 if (!test_bit(__E1000_DOWN, &adapter->state))
1839 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1842 /* Reset on uncorrectable ECC error */
1843 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1844 u32 pbeccsts = er32(PBECCSTS);
1846 adapter->corr_errors +=
1847 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1848 adapter->uncorr_errors +=
1849 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1850 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1852 /* Do the reset outside of interrupt context */
1853 schedule_work(&adapter->reset_task);
1855 /* return immediately since reset is imminent */
1856 return IRQ_HANDLED;
1859 if (napi_schedule_prep(&adapter->napi)) {
1860 adapter->total_tx_bytes = 0;
1861 adapter->total_tx_packets = 0;
1862 adapter->total_rx_bytes = 0;
1863 adapter->total_rx_packets = 0;
1864 __napi_schedule(&adapter->napi);
1867 return IRQ_HANDLED;
1870 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1872 struct net_device *netdev = data;
1873 struct e1000_adapter *adapter = netdev_priv(netdev);
1874 struct e1000_hw *hw = &adapter->hw;
1875 u32 icr = er32(ICR);
1877 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1878 if (!test_bit(__E1000_DOWN, &adapter->state))
1879 ew32(IMS, E1000_IMS_OTHER);
1880 return IRQ_NONE;
1883 if (icr & adapter->eiac_mask)
1884 ew32(ICS, (icr & adapter->eiac_mask));
1886 if (icr & E1000_ICR_OTHER) {
1887 if (!(icr & E1000_ICR_LSC))
1888 goto no_link_interrupt;
1889 hw->mac.get_link_status = true;
1890 /* guard against interrupt when we're going down */
1891 if (!test_bit(__E1000_DOWN, &adapter->state))
1892 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1895 no_link_interrupt:
1896 if (!test_bit(__E1000_DOWN, &adapter->state))
1897 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1899 return IRQ_HANDLED;
1902 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1904 struct net_device *netdev = data;
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906 struct e1000_hw *hw = &adapter->hw;
1907 struct e1000_ring *tx_ring = adapter->tx_ring;
1909 adapter->total_tx_bytes = 0;
1910 adapter->total_tx_packets = 0;
1912 if (!e1000_clean_tx_irq(tx_ring))
1913 /* Ring was not completely cleaned, so fire another interrupt */
1914 ew32(ICS, tx_ring->ims_val);
1916 return IRQ_HANDLED;
1919 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1921 struct net_device *netdev = data;
1922 struct e1000_adapter *adapter = netdev_priv(netdev);
1923 struct e1000_ring *rx_ring = adapter->rx_ring;
1925 /* Write the ITR value calculated at the end of the
1926 * previous interrupt.
1928 if (rx_ring->set_itr) {
1929 writel(1000000000 / (rx_ring->itr_val * 256),
1930 rx_ring->itr_register);
1931 rx_ring->set_itr = 0;
1934 if (napi_schedule_prep(&adapter->napi)) {
1935 adapter->total_rx_bytes = 0;
1936 adapter->total_rx_packets = 0;
1937 __napi_schedule(&adapter->napi);
1939 return IRQ_HANDLED;
1943 * e1000_configure_msix - Configure MSI-X hardware
1945 * e1000_configure_msix sets up the hardware to properly
1946 * generate MSI-X interrupts.
1948 static void e1000_configure_msix(struct e1000_adapter *adapter)
1950 struct e1000_hw *hw = &adapter->hw;
1951 struct e1000_ring *rx_ring = adapter->rx_ring;
1952 struct e1000_ring *tx_ring = adapter->tx_ring;
1953 int vector = 0;
1954 u32 ctrl_ext, ivar = 0;
1956 adapter->eiac_mask = 0;
1958 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1959 if (hw->mac.type == e1000_82574) {
1960 u32 rfctl = er32(RFCTL);
1961 rfctl |= E1000_RFCTL_ACK_DIS;
1962 ew32(RFCTL, rfctl);
1965 /* Configure Rx vector */
1966 rx_ring->ims_val = E1000_IMS_RXQ0;
1967 adapter->eiac_mask |= rx_ring->ims_val;
1968 if (rx_ring->itr_val)
1969 writel(1000000000 / (rx_ring->itr_val * 256),
1970 rx_ring->itr_register);
1971 else
1972 writel(1, rx_ring->itr_register);
1973 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1975 /* Configure Tx vector */
1976 tx_ring->ims_val = E1000_IMS_TXQ0;
1977 vector++;
1978 if (tx_ring->itr_val)
1979 writel(1000000000 / (tx_ring->itr_val * 256),
1980 tx_ring->itr_register);
1981 else
1982 writel(1, tx_ring->itr_register);
1983 adapter->eiac_mask |= tx_ring->ims_val;
1984 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1986 /* set vector for Other Causes, e.g. link changes */
1987 vector++;
1988 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1989 if (rx_ring->itr_val)
1990 writel(1000000000 / (rx_ring->itr_val * 256),
1991 hw->hw_addr + E1000_EITR_82574(vector));
1992 else
1993 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1995 /* Cause Tx interrupts on every write back */
1996 ivar |= (1 << 31);
1998 ew32(IVAR, ivar);
2000 /* enable MSI-X PBA support */
2001 ctrl_ext = er32(CTRL_EXT);
2002 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2004 /* Auto-Mask Other interrupts upon ICR read */
2005 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2006 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2007 ew32(CTRL_EXT, ctrl_ext);
2008 e1e_flush();
2011 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2013 if (adapter->msix_entries) {
2014 pci_disable_msix(adapter->pdev);
2015 kfree(adapter->msix_entries);
2016 adapter->msix_entries = NULL;
2017 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2018 pci_disable_msi(adapter->pdev);
2019 adapter->flags &= ~FLAG_MSI_ENABLED;
2024 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2026 * Attempt to configure interrupts using the best available
2027 * capabilities of the hardware and kernel.
2029 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2031 int err;
2032 int i;
2034 switch (adapter->int_mode) {
2035 case E1000E_INT_MODE_MSIX:
2036 if (adapter->flags & FLAG_HAS_MSIX) {
2037 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2038 adapter->msix_entries = kcalloc(adapter->num_vectors,
2039 sizeof(struct
2040 msix_entry),
2041 GFP_KERNEL);
2042 if (adapter->msix_entries) {
2043 for (i = 0; i < adapter->num_vectors; i++)
2044 adapter->msix_entries[i].entry = i;
2046 err = pci_enable_msix(adapter->pdev,
2047 adapter->msix_entries,
2048 adapter->num_vectors);
2049 if (err == 0)
2050 return;
2052 /* MSI-X failed, so fall through and try MSI */
2053 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2054 e1000e_reset_interrupt_capability(adapter);
2056 adapter->int_mode = E1000E_INT_MODE_MSI;
2057 /* Fall through */
2058 case E1000E_INT_MODE_MSI:
2059 if (!pci_enable_msi(adapter->pdev)) {
2060 adapter->flags |= FLAG_MSI_ENABLED;
2061 } else {
2062 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2063 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2065 /* Fall through */
2066 case E1000E_INT_MODE_LEGACY:
2067 /* Don't do anything; this is the system default */
2068 break;
2071 /* store the number of vectors being used */
2072 adapter->num_vectors = 1;
2076 * e1000_request_msix - Initialize MSI-X interrupts
2078 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2079 * kernel.
2081 static int e1000_request_msix(struct e1000_adapter *adapter)
2083 struct net_device *netdev = adapter->netdev;
2084 int err = 0, vector = 0;
2086 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2087 snprintf(adapter->rx_ring->name,
2088 sizeof(adapter->rx_ring->name) - 1,
2089 "%s-rx-0", netdev->name);
2090 else
2091 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2092 err = request_irq(adapter->msix_entries[vector].vector,
2093 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2094 netdev);
2095 if (err)
2096 return err;
2097 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2098 E1000_EITR_82574(vector);
2099 adapter->rx_ring->itr_val = adapter->itr;
2100 vector++;
2102 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2103 snprintf(adapter->tx_ring->name,
2104 sizeof(adapter->tx_ring->name) - 1,
2105 "%s-tx-0", netdev->name);
2106 else
2107 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2108 err = request_irq(adapter->msix_entries[vector].vector,
2109 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2110 netdev);
2111 if (err)
2112 return err;
2113 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2114 E1000_EITR_82574(vector);
2115 adapter->tx_ring->itr_val = adapter->itr;
2116 vector++;
2118 err = request_irq(adapter->msix_entries[vector].vector,
2119 e1000_msix_other, 0, netdev->name, netdev);
2120 if (err)
2121 return err;
2123 e1000_configure_msix(adapter);
2125 return 0;
2129 * e1000_request_irq - initialize interrupts
2131 * Attempts to configure interrupts using the best available
2132 * capabilities of the hardware and kernel.
2134 static int e1000_request_irq(struct e1000_adapter *adapter)
2136 struct net_device *netdev = adapter->netdev;
2137 int err;
2139 if (adapter->msix_entries) {
2140 err = e1000_request_msix(adapter);
2141 if (!err)
2142 return err;
2143 /* fall back to MSI */
2144 e1000e_reset_interrupt_capability(adapter);
2145 adapter->int_mode = E1000E_INT_MODE_MSI;
2146 e1000e_set_interrupt_capability(adapter);
2148 if (adapter->flags & FLAG_MSI_ENABLED) {
2149 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2150 netdev->name, netdev);
2151 if (!err)
2152 return err;
2154 /* fall back to legacy interrupt */
2155 e1000e_reset_interrupt_capability(adapter);
2156 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2159 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2160 netdev->name, netdev);
2161 if (err)
2162 e_err("Unable to allocate interrupt, Error: %d\n", err);
2164 return err;
2167 static void e1000_free_irq(struct e1000_adapter *adapter)
2169 struct net_device *netdev = adapter->netdev;
2171 if (adapter->msix_entries) {
2172 int vector = 0;
2174 free_irq(adapter->msix_entries[vector].vector, netdev);
2175 vector++;
2177 free_irq(adapter->msix_entries[vector].vector, netdev);
2178 vector++;
2180 /* Other Causes interrupt vector */
2181 free_irq(adapter->msix_entries[vector].vector, netdev);
2182 return;
2185 free_irq(adapter->pdev->irq, netdev);
2189 * e1000_irq_disable - Mask off interrupt generation on the NIC
2191 static void e1000_irq_disable(struct e1000_adapter *adapter)
2193 struct e1000_hw *hw = &adapter->hw;
2195 ew32(IMC, ~0);
2196 if (adapter->msix_entries)
2197 ew32(EIAC_82574, 0);
2198 e1e_flush();
2200 if (adapter->msix_entries) {
2201 int i;
2202 for (i = 0; i < adapter->num_vectors; i++)
2203 synchronize_irq(adapter->msix_entries[i].vector);
2204 } else {
2205 synchronize_irq(adapter->pdev->irq);
2210 * e1000_irq_enable - Enable default interrupt generation settings
2212 static void e1000_irq_enable(struct e1000_adapter *adapter)
2214 struct e1000_hw *hw = &adapter->hw;
2216 if (adapter->msix_entries) {
2217 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2218 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2219 } else if (hw->mac.type == e1000_pch_lpt) {
2220 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2221 } else {
2222 ew32(IMS, IMS_ENABLE_MASK);
2224 e1e_flush();
2228 * e1000e_get_hw_control - get control of the h/w from f/w
2229 * @adapter: address of board private structure
2231 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2232 * For ASF and Pass Through versions of f/w this means that
2233 * the driver is loaded. For AMT version (only with 82573)
2234 * of the f/w this means that the network i/f is open.
2236 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2238 struct e1000_hw *hw = &adapter->hw;
2239 u32 ctrl_ext;
2240 u32 swsm;
2242 /* Let firmware know the driver has taken over */
2243 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2244 swsm = er32(SWSM);
2245 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2246 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2247 ctrl_ext = er32(CTRL_EXT);
2248 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2253 * e1000e_release_hw_control - release control of the h/w to f/w
2254 * @adapter: address of board private structure
2256 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2257 * For ASF and Pass Through versions of f/w this means that the
2258 * driver is no longer loaded. For AMT version (only with 82573) i
2259 * of the f/w this means that the network i/f is closed.
2262 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2264 struct e1000_hw *hw = &adapter->hw;
2265 u32 ctrl_ext;
2266 u32 swsm;
2268 /* Let firmware taken over control of h/w */
2269 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270 swsm = er32(SWSM);
2271 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2272 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273 ctrl_ext = er32(CTRL_EXT);
2274 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2279 * e1000_alloc_ring_dma - allocate memory for a ring structure
2281 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2282 struct e1000_ring *ring)
2284 struct pci_dev *pdev = adapter->pdev;
2286 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2287 GFP_KERNEL);
2288 if (!ring->desc)
2289 return -ENOMEM;
2291 return 0;
2295 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2296 * @tx_ring: Tx descriptor ring
2298 * Return 0 on success, negative on failure
2300 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2302 struct e1000_adapter *adapter = tx_ring->adapter;
2303 int err = -ENOMEM, size;
2305 size = sizeof(struct e1000_buffer) * tx_ring->count;
2306 tx_ring->buffer_info = vzalloc(size);
2307 if (!tx_ring->buffer_info)
2308 goto err;
2310 /* round up to nearest 4K */
2311 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2312 tx_ring->size = ALIGN(tx_ring->size, 4096);
2314 err = e1000_alloc_ring_dma(adapter, tx_ring);
2315 if (err)
2316 goto err;
2318 tx_ring->next_to_use = 0;
2319 tx_ring->next_to_clean = 0;
2321 return 0;
2322 err:
2323 vfree(tx_ring->buffer_info);
2324 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2325 return err;
2329 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2330 * @rx_ring: Rx descriptor ring
2332 * Returns 0 on success, negative on failure
2334 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2336 struct e1000_adapter *adapter = rx_ring->adapter;
2337 struct e1000_buffer *buffer_info;
2338 int i, size, desc_len, err = -ENOMEM;
2340 size = sizeof(struct e1000_buffer) * rx_ring->count;
2341 rx_ring->buffer_info = vzalloc(size);
2342 if (!rx_ring->buffer_info)
2343 goto err;
2345 for (i = 0; i < rx_ring->count; i++) {
2346 buffer_info = &rx_ring->buffer_info[i];
2347 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2348 sizeof(struct e1000_ps_page),
2349 GFP_KERNEL);
2350 if (!buffer_info->ps_pages)
2351 goto err_pages;
2354 desc_len = sizeof(union e1000_rx_desc_packet_split);
2356 /* Round up to nearest 4K */
2357 rx_ring->size = rx_ring->count * desc_len;
2358 rx_ring->size = ALIGN(rx_ring->size, 4096);
2360 err = e1000_alloc_ring_dma(adapter, rx_ring);
2361 if (err)
2362 goto err_pages;
2364 rx_ring->next_to_clean = 0;
2365 rx_ring->next_to_use = 0;
2366 rx_ring->rx_skb_top = NULL;
2368 return 0;
2370 err_pages:
2371 for (i = 0; i < rx_ring->count; i++) {
2372 buffer_info = &rx_ring->buffer_info[i];
2373 kfree(buffer_info->ps_pages);
2375 err:
2376 vfree(rx_ring->buffer_info);
2377 e_err("Unable to allocate memory for the receive descriptor ring\n");
2378 return err;
2382 * e1000_clean_tx_ring - Free Tx Buffers
2383 * @tx_ring: Tx descriptor ring
2385 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2387 struct e1000_adapter *adapter = tx_ring->adapter;
2388 struct e1000_buffer *buffer_info;
2389 unsigned long size;
2390 unsigned int i;
2392 for (i = 0; i < tx_ring->count; i++) {
2393 buffer_info = &tx_ring->buffer_info[i];
2394 e1000_put_txbuf(tx_ring, buffer_info);
2397 netdev_reset_queue(adapter->netdev);
2398 size = sizeof(struct e1000_buffer) * tx_ring->count;
2399 memset(tx_ring->buffer_info, 0, size);
2401 memset(tx_ring->desc, 0, tx_ring->size);
2403 tx_ring->next_to_use = 0;
2404 tx_ring->next_to_clean = 0;
2406 writel(0, tx_ring->head);
2407 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2408 e1000e_update_tdt_wa(tx_ring, 0);
2409 else
2410 writel(0, tx_ring->tail);
2414 * e1000e_free_tx_resources - Free Tx Resources per Queue
2415 * @tx_ring: Tx descriptor ring
2417 * Free all transmit software resources
2419 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2421 struct e1000_adapter *adapter = tx_ring->adapter;
2422 struct pci_dev *pdev = adapter->pdev;
2424 e1000_clean_tx_ring(tx_ring);
2426 vfree(tx_ring->buffer_info);
2427 tx_ring->buffer_info = NULL;
2429 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2430 tx_ring->dma);
2431 tx_ring->desc = NULL;
2435 * e1000e_free_rx_resources - Free Rx Resources
2436 * @rx_ring: Rx descriptor ring
2438 * Free all receive software resources
2440 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2442 struct e1000_adapter *adapter = rx_ring->adapter;
2443 struct pci_dev *pdev = adapter->pdev;
2444 int i;
2446 e1000_clean_rx_ring(rx_ring);
2448 for (i = 0; i < rx_ring->count; i++)
2449 kfree(rx_ring->buffer_info[i].ps_pages);
2451 vfree(rx_ring->buffer_info);
2452 rx_ring->buffer_info = NULL;
2454 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2455 rx_ring->dma);
2456 rx_ring->desc = NULL;
2460 * e1000_update_itr - update the dynamic ITR value based on statistics
2461 * @adapter: pointer to adapter
2462 * @itr_setting: current adapter->itr
2463 * @packets: the number of packets during this measurement interval
2464 * @bytes: the number of bytes during this measurement interval
2466 * Stores a new ITR value based on packets and byte
2467 * counts during the last interrupt. The advantage of per interrupt
2468 * computation is faster updates and more accurate ITR for the current
2469 * traffic pattern. Constants in this function were computed
2470 * based on theoretical maximum wire speed and thresholds were set based
2471 * on testing data as well as attempting to minimize response time
2472 * while increasing bulk throughput. This functionality is controlled
2473 * by the InterruptThrottleRate module parameter.
2475 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2477 unsigned int retval = itr_setting;
2479 if (packets == 0)
2480 return itr_setting;
2482 switch (itr_setting) {
2483 case lowest_latency:
2484 /* handle TSO and jumbo frames */
2485 if (bytes / packets > 8000)
2486 retval = bulk_latency;
2487 else if ((packets < 5) && (bytes > 512))
2488 retval = low_latency;
2489 break;
2490 case low_latency: /* 50 usec aka 20000 ints/s */
2491 if (bytes > 10000) {
2492 /* this if handles the TSO accounting */
2493 if (bytes / packets > 8000)
2494 retval = bulk_latency;
2495 else if ((packets < 10) || ((bytes / packets) > 1200))
2496 retval = bulk_latency;
2497 else if ((packets > 35))
2498 retval = lowest_latency;
2499 } else if (bytes / packets > 2000) {
2500 retval = bulk_latency;
2501 } else if (packets <= 2 && bytes < 512) {
2502 retval = lowest_latency;
2504 break;
2505 case bulk_latency: /* 250 usec aka 4000 ints/s */
2506 if (bytes > 25000) {
2507 if (packets > 35)
2508 retval = low_latency;
2509 } else if (bytes < 6000) {
2510 retval = low_latency;
2512 break;
2515 return retval;
2518 static void e1000_set_itr(struct e1000_adapter *adapter)
2520 u16 current_itr;
2521 u32 new_itr = adapter->itr;
2523 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2524 if (adapter->link_speed != SPEED_1000) {
2525 current_itr = 0;
2526 new_itr = 4000;
2527 goto set_itr_now;
2530 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2531 new_itr = 0;
2532 goto set_itr_now;
2535 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2536 adapter->total_tx_packets,
2537 adapter->total_tx_bytes);
2538 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2539 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2540 adapter->tx_itr = low_latency;
2542 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2543 adapter->total_rx_packets,
2544 adapter->total_rx_bytes);
2545 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2546 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2547 adapter->rx_itr = low_latency;
2549 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2551 /* counts and packets in update_itr are dependent on these numbers */
2552 switch (current_itr) {
2553 case lowest_latency:
2554 new_itr = 70000;
2555 break;
2556 case low_latency:
2557 new_itr = 20000; /* aka hwitr = ~200 */
2558 break;
2559 case bulk_latency:
2560 new_itr = 4000;
2561 break;
2562 default:
2563 break;
2566 set_itr_now:
2567 if (new_itr != adapter->itr) {
2568 /* this attempts to bias the interrupt rate towards Bulk
2569 * by adding intermediate steps when interrupt rate is
2570 * increasing
2572 new_itr = new_itr > adapter->itr ?
2573 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2574 adapter->itr = new_itr;
2575 adapter->rx_ring->itr_val = new_itr;
2576 if (adapter->msix_entries)
2577 adapter->rx_ring->set_itr = 1;
2578 else
2579 e1000e_write_itr(adapter, new_itr);
2584 * e1000e_write_itr - write the ITR value to the appropriate registers
2585 * @adapter: address of board private structure
2586 * @itr: new ITR value to program
2588 * e1000e_write_itr determines if the adapter is in MSI-X mode
2589 * and, if so, writes the EITR registers with the ITR value.
2590 * Otherwise, it writes the ITR value into the ITR register.
2592 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2594 struct e1000_hw *hw = &adapter->hw;
2595 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2597 if (adapter->msix_entries) {
2598 int vector;
2600 for (vector = 0; vector < adapter->num_vectors; vector++)
2601 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2602 } else {
2603 ew32(ITR, new_itr);
2608 * e1000_alloc_queues - Allocate memory for all rings
2609 * @adapter: board private structure to initialize
2611 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2613 int size = sizeof(struct e1000_ring);
2615 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2616 if (!adapter->tx_ring)
2617 goto err;
2618 adapter->tx_ring->count = adapter->tx_ring_count;
2619 adapter->tx_ring->adapter = adapter;
2621 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2622 if (!adapter->rx_ring)
2623 goto err;
2624 adapter->rx_ring->count = adapter->rx_ring_count;
2625 adapter->rx_ring->adapter = adapter;
2627 return 0;
2628 err:
2629 e_err("Unable to allocate memory for queues\n");
2630 kfree(adapter->rx_ring);
2631 kfree(adapter->tx_ring);
2632 return -ENOMEM;
2636 * e1000e_poll - NAPI Rx polling callback
2637 * @napi: struct associated with this polling callback
2638 * @weight: number of packets driver is allowed to process this poll
2640 static int e1000e_poll(struct napi_struct *napi, int weight)
2642 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2643 napi);
2644 struct e1000_hw *hw = &adapter->hw;
2645 struct net_device *poll_dev = adapter->netdev;
2646 int tx_cleaned = 1, work_done = 0;
2648 adapter = netdev_priv(poll_dev);
2650 if (!adapter->msix_entries ||
2651 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2652 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2654 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2656 if (!tx_cleaned)
2657 work_done = weight;
2659 /* If weight not fully consumed, exit the polling mode */
2660 if (work_done < weight) {
2661 if (adapter->itr_setting & 3)
2662 e1000_set_itr(adapter);
2663 napi_complete(napi);
2664 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2665 if (adapter->msix_entries)
2666 ew32(IMS, adapter->rx_ring->ims_val);
2667 else
2668 e1000_irq_enable(adapter);
2672 return work_done;
2675 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2676 __always_unused __be16 proto, u16 vid)
2678 struct e1000_adapter *adapter = netdev_priv(netdev);
2679 struct e1000_hw *hw = &adapter->hw;
2680 u32 vfta, index;
2682 /* don't update vlan cookie if already programmed */
2683 if ((adapter->hw.mng_cookie.status &
2684 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2685 (vid == adapter->mng_vlan_id))
2686 return 0;
2688 /* add VID to filter table */
2689 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2690 index = (vid >> 5) & 0x7F;
2691 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2692 vfta |= (1 << (vid & 0x1F));
2693 hw->mac.ops.write_vfta(hw, index, vfta);
2696 set_bit(vid, adapter->active_vlans);
2698 return 0;
2701 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2702 __always_unused __be16 proto, u16 vid)
2704 struct e1000_adapter *adapter = netdev_priv(netdev);
2705 struct e1000_hw *hw = &adapter->hw;
2706 u32 vfta, index;
2708 if ((adapter->hw.mng_cookie.status &
2709 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2710 (vid == adapter->mng_vlan_id)) {
2711 /* release control to f/w */
2712 e1000e_release_hw_control(adapter);
2713 return 0;
2716 /* remove VID from filter table */
2717 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2718 index = (vid >> 5) & 0x7F;
2719 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2720 vfta &= ~(1 << (vid & 0x1F));
2721 hw->mac.ops.write_vfta(hw, index, vfta);
2724 clear_bit(vid, adapter->active_vlans);
2726 return 0;
2730 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2731 * @adapter: board private structure to initialize
2733 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2735 struct net_device *netdev = adapter->netdev;
2736 struct e1000_hw *hw = &adapter->hw;
2737 u32 rctl;
2739 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740 /* disable VLAN receive filtering */
2741 rctl = er32(RCTL);
2742 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2743 ew32(RCTL, rctl);
2745 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2746 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2747 adapter->mng_vlan_id);
2748 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2754 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2755 * @adapter: board private structure to initialize
2757 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2759 struct e1000_hw *hw = &adapter->hw;
2760 u32 rctl;
2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 /* enable VLAN receive filtering */
2764 rctl = er32(RCTL);
2765 rctl |= E1000_RCTL_VFE;
2766 rctl &= ~E1000_RCTL_CFIEN;
2767 ew32(RCTL, rctl);
2772 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2773 * @adapter: board private structure to initialize
2775 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2777 struct e1000_hw *hw = &adapter->hw;
2778 u32 ctrl;
2780 /* disable VLAN tag insert/strip */
2781 ctrl = er32(CTRL);
2782 ctrl &= ~E1000_CTRL_VME;
2783 ew32(CTRL, ctrl);
2787 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2788 * @adapter: board private structure to initialize
2790 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2792 struct e1000_hw *hw = &adapter->hw;
2793 u32 ctrl;
2795 /* enable VLAN tag insert/strip */
2796 ctrl = er32(CTRL);
2797 ctrl |= E1000_CTRL_VME;
2798 ew32(CTRL, ctrl);
2801 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2803 struct net_device *netdev = adapter->netdev;
2804 u16 vid = adapter->hw.mng_cookie.vlan_id;
2805 u16 old_vid = adapter->mng_vlan_id;
2807 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2808 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2809 adapter->mng_vlan_id = vid;
2812 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2813 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2816 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2818 u16 vid;
2820 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2822 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2823 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2826 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2828 struct e1000_hw *hw = &adapter->hw;
2829 u32 manc, manc2h, mdef, i, j;
2831 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2832 return;
2834 manc = er32(MANC);
2836 /* enable receiving management packets to the host. this will probably
2837 * generate destination unreachable messages from the host OS, but
2838 * the packets will be handled on SMBUS
2840 manc |= E1000_MANC_EN_MNG2HOST;
2841 manc2h = er32(MANC2H);
2843 switch (hw->mac.type) {
2844 default:
2845 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2846 break;
2847 case e1000_82574:
2848 case e1000_82583:
2849 /* Check if IPMI pass-through decision filter already exists;
2850 * if so, enable it.
2852 for (i = 0, j = 0; i < 8; i++) {
2853 mdef = er32(MDEF(i));
2855 /* Ignore filters with anything other than IPMI ports */
2856 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2857 continue;
2859 /* Enable this decision filter in MANC2H */
2860 if (mdef)
2861 manc2h |= (1 << i);
2863 j |= mdef;
2866 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2867 break;
2869 /* Create new decision filter in an empty filter */
2870 for (i = 0, j = 0; i < 8; i++)
2871 if (er32(MDEF(i)) == 0) {
2872 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2873 E1000_MDEF_PORT_664));
2874 manc2h |= (1 << 1);
2875 j++;
2876 break;
2879 if (!j)
2880 e_warn("Unable to create IPMI pass-through filter\n");
2881 break;
2884 ew32(MANC2H, manc2h);
2885 ew32(MANC, manc);
2889 * e1000_configure_tx - Configure Transmit Unit after Reset
2890 * @adapter: board private structure
2892 * Configure the Tx unit of the MAC after a reset.
2894 static void e1000_configure_tx(struct e1000_adapter *adapter)
2896 struct e1000_hw *hw = &adapter->hw;
2897 struct e1000_ring *tx_ring = adapter->tx_ring;
2898 u64 tdba;
2899 u32 tdlen, tarc;
2901 /* Setup the HW Tx Head and Tail descriptor pointers */
2902 tdba = tx_ring->dma;
2903 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2904 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2905 ew32(TDBAH(0), (tdba >> 32));
2906 ew32(TDLEN(0), tdlen);
2907 ew32(TDH(0), 0);
2908 ew32(TDT(0), 0);
2909 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2910 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2912 /* Set the Tx Interrupt Delay register */
2913 ew32(TIDV, adapter->tx_int_delay);
2914 /* Tx irq moderation */
2915 ew32(TADV, adapter->tx_abs_int_delay);
2917 if (adapter->flags2 & FLAG2_DMA_BURST) {
2918 u32 txdctl = er32(TXDCTL(0));
2919 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2920 E1000_TXDCTL_WTHRESH);
2921 /* set up some performance related parameters to encourage the
2922 * hardware to use the bus more efficiently in bursts, depends
2923 * on the tx_int_delay to be enabled,
2924 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2925 * hthresh = 1 ==> prefetch when one or more available
2926 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2927 * BEWARE: this seems to work but should be considered first if
2928 * there are Tx hangs or other Tx related bugs
2930 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2931 ew32(TXDCTL(0), txdctl);
2933 /* erratum work around: set txdctl the same for both queues */
2934 ew32(TXDCTL(1), er32(TXDCTL(0)));
2936 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2937 tarc = er32(TARC(0));
2938 /* set the speed mode bit, we'll clear it if we're not at
2939 * gigabit link later
2941 #define SPEED_MODE_BIT (1 << 21)
2942 tarc |= SPEED_MODE_BIT;
2943 ew32(TARC(0), tarc);
2946 /* errata: program both queues to unweighted RR */
2947 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2948 tarc = er32(TARC(0));
2949 tarc |= 1;
2950 ew32(TARC(0), tarc);
2951 tarc = er32(TARC(1));
2952 tarc |= 1;
2953 ew32(TARC(1), tarc);
2956 /* Setup Transmit Descriptor Settings for eop descriptor */
2957 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2959 /* only set IDE if we are delaying interrupts using the timers */
2960 if (adapter->tx_int_delay)
2961 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2963 /* enable Report Status bit */
2964 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2966 hw->mac.ops.config_collision_dist(hw);
2970 * e1000_setup_rctl - configure the receive control registers
2971 * @adapter: Board private structure
2973 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2974 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2975 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2977 struct e1000_hw *hw = &adapter->hw;
2978 u32 rctl, rfctl;
2979 u32 pages = 0;
2981 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2982 if (hw->mac.type >= e1000_pch2lan) {
2983 s32 ret_val;
2985 if (adapter->netdev->mtu > ETH_DATA_LEN)
2986 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2987 else
2988 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2990 if (ret_val)
2991 e_dbg("failed to enable jumbo frame workaround mode\n");
2994 /* Program MC offset vector base */
2995 rctl = er32(RCTL);
2996 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2997 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2998 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2999 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3001 /* Do not Store bad packets */
3002 rctl &= ~E1000_RCTL_SBP;
3004 /* Enable Long Packet receive */
3005 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3006 rctl &= ~E1000_RCTL_LPE;
3007 else
3008 rctl |= E1000_RCTL_LPE;
3010 /* Some systems expect that the CRC is included in SMBUS traffic. The
3011 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3012 * host memory when this is enabled
3014 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3015 rctl |= E1000_RCTL_SECRC;
3017 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3018 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3019 u16 phy_data;
3021 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3022 phy_data &= 0xfff8;
3023 phy_data |= (1 << 2);
3024 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3026 e1e_rphy(hw, 22, &phy_data);
3027 phy_data &= 0x0fff;
3028 phy_data |= (1 << 14);
3029 e1e_wphy(hw, 0x10, 0x2823);
3030 e1e_wphy(hw, 0x11, 0x0003);
3031 e1e_wphy(hw, 22, phy_data);
3034 /* Setup buffer sizes */
3035 rctl &= ~E1000_RCTL_SZ_4096;
3036 rctl |= E1000_RCTL_BSEX;
3037 switch (adapter->rx_buffer_len) {
3038 case 2048:
3039 default:
3040 rctl |= E1000_RCTL_SZ_2048;
3041 rctl &= ~E1000_RCTL_BSEX;
3042 break;
3043 case 4096:
3044 rctl |= E1000_RCTL_SZ_4096;
3045 break;
3046 case 8192:
3047 rctl |= E1000_RCTL_SZ_8192;
3048 break;
3049 case 16384:
3050 rctl |= E1000_RCTL_SZ_16384;
3051 break;
3054 /* Enable Extended Status in all Receive Descriptors */
3055 rfctl = er32(RFCTL);
3056 rfctl |= E1000_RFCTL_EXTEN;
3057 ew32(RFCTL, rfctl);
3059 /* 82571 and greater support packet-split where the protocol
3060 * header is placed in skb->data and the packet data is
3061 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3062 * In the case of a non-split, skb->data is linearly filled,
3063 * followed by the page buffers. Therefore, skb->data is
3064 * sized to hold the largest protocol header.
3066 * allocations using alloc_page take too long for regular MTU
3067 * so only enable packet split for jumbo frames
3069 * Using pages when the page size is greater than 16k wastes
3070 * a lot of memory, since we allocate 3 pages at all times
3071 * per packet.
3073 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3074 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3075 adapter->rx_ps_pages = pages;
3076 else
3077 adapter->rx_ps_pages = 0;
3079 if (adapter->rx_ps_pages) {
3080 u32 psrctl = 0;
3082 /* Enable Packet split descriptors */
3083 rctl |= E1000_RCTL_DTYP_PS;
3085 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3087 switch (adapter->rx_ps_pages) {
3088 case 3:
3089 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3090 /* fall-through */
3091 case 2:
3092 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3093 /* fall-through */
3094 case 1:
3095 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3096 break;
3099 ew32(PSRCTL, psrctl);
3102 /* This is useful for sniffing bad packets. */
3103 if (adapter->netdev->features & NETIF_F_RXALL) {
3104 /* UPE and MPE will be handled by normal PROMISC logic
3105 * in e1000e_set_rx_mode
3107 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3108 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3109 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3111 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3112 E1000_RCTL_DPF | /* Allow filtered pause */
3113 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3114 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3115 * and that breaks VLANs.
3119 ew32(RCTL, rctl);
3120 /* just started the receive unit, no need to restart */
3121 adapter->flags &= ~FLAG_RESTART_NOW;
3125 * e1000_configure_rx - Configure Receive Unit after Reset
3126 * @adapter: board private structure
3128 * Configure the Rx unit of the MAC after a reset.
3130 static void e1000_configure_rx(struct e1000_adapter *adapter)
3132 struct e1000_hw *hw = &adapter->hw;
3133 struct e1000_ring *rx_ring = adapter->rx_ring;
3134 u64 rdba;
3135 u32 rdlen, rctl, rxcsum, ctrl_ext;
3137 if (adapter->rx_ps_pages) {
3138 /* this is a 32 byte descriptor */
3139 rdlen = rx_ring->count *
3140 sizeof(union e1000_rx_desc_packet_split);
3141 adapter->clean_rx = e1000_clean_rx_irq_ps;
3142 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3143 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3144 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3145 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3146 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3147 } else {
3148 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3149 adapter->clean_rx = e1000_clean_rx_irq;
3150 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3153 /* disable receives while setting up the descriptors */
3154 rctl = er32(RCTL);
3155 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3156 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3157 e1e_flush();
3158 usleep_range(10000, 20000);
3160 if (adapter->flags2 & FLAG2_DMA_BURST) {
3161 /* set the writeback threshold (only takes effect if the RDTR
3162 * is set). set GRAN=1 and write back up to 0x4 worth, and
3163 * enable prefetching of 0x20 Rx descriptors
3164 * granularity = 01
3165 * wthresh = 04,
3166 * hthresh = 04,
3167 * pthresh = 0x20
3169 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3170 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3172 /* override the delay timers for enabling bursting, only if
3173 * the value was not set by the user via module options
3175 if (adapter->rx_int_delay == DEFAULT_RDTR)
3176 adapter->rx_int_delay = BURST_RDTR;
3177 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3178 adapter->rx_abs_int_delay = BURST_RADV;
3181 /* set the Receive Delay Timer Register */
3182 ew32(RDTR, adapter->rx_int_delay);
3184 /* irq moderation */
3185 ew32(RADV, adapter->rx_abs_int_delay);
3186 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3187 e1000e_write_itr(adapter, adapter->itr);
3189 ctrl_ext = er32(CTRL_EXT);
3190 /* Auto-Mask interrupts upon ICR access */
3191 ctrl_ext |= E1000_CTRL_EXT_IAME;
3192 ew32(IAM, 0xffffffff);
3193 ew32(CTRL_EXT, ctrl_ext);
3194 e1e_flush();
3196 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3197 * the Base and Length of the Rx Descriptor Ring
3199 rdba = rx_ring->dma;
3200 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3201 ew32(RDBAH(0), (rdba >> 32));
3202 ew32(RDLEN(0), rdlen);
3203 ew32(RDH(0), 0);
3204 ew32(RDT(0), 0);
3205 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3206 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3208 /* Enable Receive Checksum Offload for TCP and UDP */
3209 rxcsum = er32(RXCSUM);
3210 if (adapter->netdev->features & NETIF_F_RXCSUM)
3211 rxcsum |= E1000_RXCSUM_TUOFL;
3212 else
3213 rxcsum &= ~E1000_RXCSUM_TUOFL;
3214 ew32(RXCSUM, rxcsum);
3216 /* With jumbo frames, excessive C-state transition latencies result
3217 * in dropped transactions.
3219 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3220 u32 lat =
3221 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3222 adapter->max_frame_size) * 8 / 1000;
3224 if (adapter->flags & FLAG_IS_ICH) {
3225 u32 rxdctl = er32(RXDCTL(0));
3226 ew32(RXDCTL(0), rxdctl | 0x3);
3229 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3230 } else {
3231 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3232 PM_QOS_DEFAULT_VALUE);
3235 /* Enable Receives */
3236 ew32(RCTL, rctl);
3240 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3241 * @netdev: network interface device structure
3243 * Writes multicast address list to the MTA hash table.
3244 * Returns: -ENOMEM on failure
3245 * 0 on no addresses written
3246 * X on writing X addresses to MTA
3248 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3250 struct e1000_adapter *adapter = netdev_priv(netdev);
3251 struct e1000_hw *hw = &adapter->hw;
3252 struct netdev_hw_addr *ha;
3253 u8 *mta_list;
3254 int i;
3256 if (netdev_mc_empty(netdev)) {
3257 /* nothing to program, so clear mc list */
3258 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3259 return 0;
3262 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3263 if (!mta_list)
3264 return -ENOMEM;
3266 /* update_mc_addr_list expects a packed array of only addresses. */
3267 i = 0;
3268 netdev_for_each_mc_addr(ha, netdev)
3269 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3271 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3272 kfree(mta_list);
3274 return netdev_mc_count(netdev);
3278 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3279 * @netdev: network interface device structure
3281 * Writes unicast address list to the RAR table.
3282 * Returns: -ENOMEM on failure/insufficient address space
3283 * 0 on no addresses written
3284 * X on writing X addresses to the RAR table
3286 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3288 struct e1000_adapter *adapter = netdev_priv(netdev);
3289 struct e1000_hw *hw = &adapter->hw;
3290 unsigned int rar_entries = hw->mac.rar_entry_count;
3291 int count = 0;
3293 /* save a rar entry for our hardware address */
3294 rar_entries--;
3296 /* save a rar entry for the LAA workaround */
3297 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3298 rar_entries--;
3300 /* return ENOMEM indicating insufficient memory for addresses */
3301 if (netdev_uc_count(netdev) > rar_entries)
3302 return -ENOMEM;
3304 if (!netdev_uc_empty(netdev) && rar_entries) {
3305 struct netdev_hw_addr *ha;
3307 /* write the addresses in reverse order to avoid write
3308 * combining
3310 netdev_for_each_uc_addr(ha, netdev) {
3311 if (!rar_entries)
3312 break;
3313 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3314 count++;
3318 /* zero out the remaining RAR entries not used above */
3319 for (; rar_entries > 0; rar_entries--) {
3320 ew32(RAH(rar_entries), 0);
3321 ew32(RAL(rar_entries), 0);
3323 e1e_flush();
3325 return count;
3329 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3330 * @netdev: network interface device structure
3332 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3333 * address list or the network interface flags are updated. This routine is
3334 * responsible for configuring the hardware for proper unicast, multicast,
3335 * promiscuous mode, and all-multi behavior.
3337 static void e1000e_set_rx_mode(struct net_device *netdev)
3339 struct e1000_adapter *adapter = netdev_priv(netdev);
3340 struct e1000_hw *hw = &adapter->hw;
3341 u32 rctl;
3343 /* Check for Promiscuous and All Multicast modes */
3344 rctl = er32(RCTL);
3346 /* clear the affected bits */
3347 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3349 if (netdev->flags & IFF_PROMISC) {
3350 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3351 /* Do not hardware filter VLANs in promisc mode */
3352 e1000e_vlan_filter_disable(adapter);
3353 } else {
3354 int count;
3356 if (netdev->flags & IFF_ALLMULTI) {
3357 rctl |= E1000_RCTL_MPE;
3358 } else {
3359 /* Write addresses to the MTA, if the attempt fails
3360 * then we should just turn on promiscuous mode so
3361 * that we can at least receive multicast traffic
3363 count = e1000e_write_mc_addr_list(netdev);
3364 if (count < 0)
3365 rctl |= E1000_RCTL_MPE;
3367 e1000e_vlan_filter_enable(adapter);
3368 /* Write addresses to available RAR registers, if there is not
3369 * sufficient space to store all the addresses then enable
3370 * unicast promiscuous mode
3372 count = e1000e_write_uc_addr_list(netdev);
3373 if (count < 0)
3374 rctl |= E1000_RCTL_UPE;
3377 ew32(RCTL, rctl);
3379 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3380 e1000e_vlan_strip_enable(adapter);
3381 else
3382 e1000e_vlan_strip_disable(adapter);
3385 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3387 struct e1000_hw *hw = &adapter->hw;
3388 u32 mrqc, rxcsum;
3389 int i;
3390 static const u32 rsskey[10] = {
3391 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3392 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3395 /* Fill out hash function seed */
3396 for (i = 0; i < 10; i++)
3397 ew32(RSSRK(i), rsskey[i]);
3399 /* Direct all traffic to queue 0 */
3400 for (i = 0; i < 32; i++)
3401 ew32(RETA(i), 0);
3403 /* Disable raw packet checksumming so that RSS hash is placed in
3404 * descriptor on writeback.
3406 rxcsum = er32(RXCSUM);
3407 rxcsum |= E1000_RXCSUM_PCSD;
3409 ew32(RXCSUM, rxcsum);
3411 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3412 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3413 E1000_MRQC_RSS_FIELD_IPV6 |
3414 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3415 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3417 ew32(MRQC, mrqc);
3421 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3422 * @adapter: board private structure
3423 * @timinca: pointer to returned time increment attributes
3425 * Get attributes for incrementing the System Time Register SYSTIML/H at
3426 * the default base frequency, and set the cyclecounter shift value.
3428 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3430 struct e1000_hw *hw = &adapter->hw;
3431 u32 incvalue, incperiod, shift;
3433 /* Make sure clock is enabled on I217 before checking the frequency */
3434 if ((hw->mac.type == e1000_pch_lpt) &&
3435 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3436 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3437 u32 fextnvm7 = er32(FEXTNVM7);
3439 if (!(fextnvm7 & (1 << 0))) {
3440 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3441 e1e_flush();
3445 switch (hw->mac.type) {
3446 case e1000_pch2lan:
3447 case e1000_pch_lpt:
3448 /* On I217, the clock frequency is 25MHz or 96MHz as
3449 * indicated by the System Clock Frequency Indication
3451 if ((hw->mac.type != e1000_pch_lpt) ||
3452 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3453 /* Stable 96MHz frequency */
3454 incperiod = INCPERIOD_96MHz;
3455 incvalue = INCVALUE_96MHz;
3456 shift = INCVALUE_SHIFT_96MHz;
3457 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3458 break;
3460 /* fall-through */
3461 case e1000_82574:
3462 case e1000_82583:
3463 /* Stable 25MHz frequency */
3464 incperiod = INCPERIOD_25MHz;
3465 incvalue = INCVALUE_25MHz;
3466 shift = INCVALUE_SHIFT_25MHz;
3467 adapter->cc.shift = shift;
3468 break;
3469 default:
3470 return -EINVAL;
3473 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3474 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3476 return 0;
3480 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3481 * @adapter: board private structure
3483 * Outgoing time stamping can be enabled and disabled. Play nice and
3484 * disable it when requested, although it shouldn't cause any overhead
3485 * when no packet needs it. At most one packet in the queue may be
3486 * marked for time stamping, otherwise it would be impossible to tell
3487 * for sure to which packet the hardware time stamp belongs.
3489 * Incoming time stamping has to be configured via the hardware filters.
3490 * Not all combinations are supported, in particular event type has to be
3491 * specified. Matching the kind of event packet is not supported, with the
3492 * exception of "all V2 events regardless of level 2 or 4".
3494 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3496 struct e1000_hw *hw = &adapter->hw;
3497 struct hwtstamp_config *config = &adapter->hwtstamp_config;
3498 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3499 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3500 u32 rxmtrl = 0;
3501 u16 rxudp = 0;
3502 bool is_l4 = false;
3503 bool is_l2 = false;
3504 u32 regval;
3505 s32 ret_val;
3507 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3508 return -EINVAL;
3510 /* flags reserved for future extensions - must be zero */
3511 if (config->flags)
3512 return -EINVAL;
3514 switch (config->tx_type) {
3515 case HWTSTAMP_TX_OFF:
3516 tsync_tx_ctl = 0;
3517 break;
3518 case HWTSTAMP_TX_ON:
3519 break;
3520 default:
3521 return -ERANGE;
3524 switch (config->rx_filter) {
3525 case HWTSTAMP_FILTER_NONE:
3526 tsync_rx_ctl = 0;
3527 break;
3528 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3529 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3530 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3531 is_l4 = true;
3532 break;
3533 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3534 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3535 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3536 is_l4 = true;
3537 break;
3538 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3539 /* Also time stamps V2 L2 Path Delay Request/Response */
3540 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3541 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3542 is_l2 = true;
3543 break;
3544 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3545 /* Also time stamps V2 L2 Path Delay Request/Response. */
3546 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3547 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3548 is_l2 = true;
3549 break;
3550 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3551 /* Hardware cannot filter just V2 L4 Sync messages;
3552 * fall-through to V2 (both L2 and L4) Sync.
3554 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3555 /* Also time stamps V2 Path Delay Request/Response. */
3556 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3557 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3558 is_l2 = true;
3559 is_l4 = true;
3560 break;
3561 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3562 /* Hardware cannot filter just V2 L4 Delay Request messages;
3563 * fall-through to V2 (both L2 and L4) Delay Request.
3565 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3566 /* Also time stamps V2 Path Delay Request/Response. */
3567 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3568 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3569 is_l2 = true;
3570 is_l4 = true;
3571 break;
3572 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3573 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3574 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3575 * fall-through to all V2 (both L2 and L4) Events.
3577 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3578 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3579 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3580 is_l2 = true;
3581 is_l4 = true;
3582 break;
3583 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3584 /* For V1, the hardware can only filter Sync messages or
3585 * Delay Request messages but not both so fall-through to
3586 * time stamp all packets.
3588 case HWTSTAMP_FILTER_ALL:
3589 is_l2 = true;
3590 is_l4 = true;
3591 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3592 config->rx_filter = HWTSTAMP_FILTER_ALL;
3593 break;
3594 default:
3595 return -ERANGE;
3598 /* enable/disable Tx h/w time stamping */
3599 regval = er32(TSYNCTXCTL);
3600 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3601 regval |= tsync_tx_ctl;
3602 ew32(TSYNCTXCTL, regval);
3603 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3604 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3605 e_err("Timesync Tx Control register not set as expected\n");
3606 return -EAGAIN;
3609 /* enable/disable Rx h/w time stamping */
3610 regval = er32(TSYNCRXCTL);
3611 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3612 regval |= tsync_rx_ctl;
3613 ew32(TSYNCRXCTL, regval);
3614 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3615 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3616 (regval & (E1000_TSYNCRXCTL_ENABLED |
3617 E1000_TSYNCRXCTL_TYPE_MASK))) {
3618 e_err("Timesync Rx Control register not set as expected\n");
3619 return -EAGAIN;
3622 /* L2: define ethertype filter for time stamped packets */
3623 if (is_l2)
3624 rxmtrl |= ETH_P_1588;
3626 /* define which PTP packets get time stamped */
3627 ew32(RXMTRL, rxmtrl);
3629 /* Filter by destination port */
3630 if (is_l4) {
3631 rxudp = PTP_EV_PORT;
3632 cpu_to_be16s(&rxudp);
3634 ew32(RXUDP, rxudp);
3636 e1e_flush();
3638 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3639 er32(RXSTMPH);
3640 er32(TXSTMPH);
3642 /* Get and set the System Time Register SYSTIM base frequency */
3643 ret_val = e1000e_get_base_timinca(adapter, &regval);
3644 if (ret_val)
3645 return ret_val;
3646 ew32(TIMINCA, regval);
3648 /* reset the ns time counter */
3649 timecounter_init(&adapter->tc, &adapter->cc,
3650 ktime_to_ns(ktime_get_real()));
3652 return 0;
3656 * e1000_configure - configure the hardware for Rx and Tx
3657 * @adapter: private board structure
3659 static void e1000_configure(struct e1000_adapter *adapter)
3661 struct e1000_ring *rx_ring = adapter->rx_ring;
3663 e1000e_set_rx_mode(adapter->netdev);
3665 e1000_restore_vlan(adapter);
3666 e1000_init_manageability_pt(adapter);
3668 e1000_configure_tx(adapter);
3670 if (adapter->netdev->features & NETIF_F_RXHASH)
3671 e1000e_setup_rss_hash(adapter);
3672 e1000_setup_rctl(adapter);
3673 e1000_configure_rx(adapter);
3674 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3678 * e1000e_power_up_phy - restore link in case the phy was powered down
3679 * @adapter: address of board private structure
3681 * The phy may be powered down to save power and turn off link when the
3682 * driver is unloaded and wake on lan is not enabled (among others)
3683 * *** this routine MUST be followed by a call to e1000e_reset ***
3685 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3687 if (adapter->hw.phy.ops.power_up)
3688 adapter->hw.phy.ops.power_up(&adapter->hw);
3690 adapter->hw.mac.ops.setup_link(&adapter->hw);
3694 * e1000_power_down_phy - Power down the PHY
3696 * Power down the PHY so no link is implied when interface is down.
3697 * The PHY cannot be powered down if management or WoL is active.
3699 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3701 /* WoL is enabled */
3702 if (adapter->wol)
3703 return;
3705 if (adapter->hw.phy.ops.power_down)
3706 adapter->hw.phy.ops.power_down(&adapter->hw);
3710 * e1000e_reset - bring the hardware into a known good state
3712 * This function boots the hardware and enables some settings that
3713 * require a configuration cycle of the hardware - those cannot be
3714 * set/changed during runtime. After reset the device needs to be
3715 * properly configured for Rx, Tx etc.
3717 void e1000e_reset(struct e1000_adapter *adapter)
3719 struct e1000_mac_info *mac = &adapter->hw.mac;
3720 struct e1000_fc_info *fc = &adapter->hw.fc;
3721 struct e1000_hw *hw = &adapter->hw;
3722 u32 tx_space, min_tx_space, min_rx_space;
3723 u32 pba = adapter->pba;
3724 u16 hwm;
3726 /* reset Packet Buffer Allocation to default */
3727 ew32(PBA, pba);
3729 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3730 /* To maintain wire speed transmits, the Tx FIFO should be
3731 * large enough to accommodate two full transmit packets,
3732 * rounded up to the next 1KB and expressed in KB. Likewise,
3733 * the Rx FIFO should be large enough to accommodate at least
3734 * one full receive packet and is similarly rounded up and
3735 * expressed in KB.
3737 pba = er32(PBA);
3738 /* upper 16 bits has Tx packet buffer allocation size in KB */
3739 tx_space = pba >> 16;
3740 /* lower 16 bits has Rx packet buffer allocation size in KB */
3741 pba &= 0xffff;
3742 /* the Tx fifo also stores 16 bytes of information about the Tx
3743 * but don't include ethernet FCS because hardware appends it
3745 min_tx_space = (adapter->max_frame_size +
3746 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3747 min_tx_space = ALIGN(min_tx_space, 1024);
3748 min_tx_space >>= 10;
3749 /* software strips receive CRC, so leave room for it */
3750 min_rx_space = adapter->max_frame_size;
3751 min_rx_space = ALIGN(min_rx_space, 1024);
3752 min_rx_space >>= 10;
3754 /* If current Tx allocation is less than the min Tx FIFO size,
3755 * and the min Tx FIFO size is less than the current Rx FIFO
3756 * allocation, take space away from current Rx allocation
3758 if ((tx_space < min_tx_space) &&
3759 ((min_tx_space - tx_space) < pba)) {
3760 pba -= min_tx_space - tx_space;
3762 /* if short on Rx space, Rx wins and must trump Tx
3763 * adjustment
3765 if (pba < min_rx_space)
3766 pba = min_rx_space;
3769 ew32(PBA, pba);
3772 /* flow control settings
3774 * The high water mark must be low enough to fit one full frame
3775 * (or the size used for early receive) above it in the Rx FIFO.
3776 * Set it to the lower of:
3777 * - 90% of the Rx FIFO size, and
3778 * - the full Rx FIFO size minus one full frame
3780 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3781 fc->pause_time = 0xFFFF;
3782 else
3783 fc->pause_time = E1000_FC_PAUSE_TIME;
3784 fc->send_xon = true;
3785 fc->current_mode = fc->requested_mode;
3787 switch (hw->mac.type) {
3788 case e1000_ich9lan:
3789 case e1000_ich10lan:
3790 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3791 pba = 14;
3792 ew32(PBA, pba);
3793 fc->high_water = 0x2800;
3794 fc->low_water = fc->high_water - 8;
3795 break;
3797 /* fall-through */
3798 default:
3799 hwm = min(((pba << 10) * 9 / 10),
3800 ((pba << 10) - adapter->max_frame_size));
3802 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3803 fc->low_water = fc->high_water - 8;
3804 break;
3805 case e1000_pchlan:
3806 /* Workaround PCH LOM adapter hangs with certain network
3807 * loads. If hangs persist, try disabling Tx flow control.
3809 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3810 fc->high_water = 0x3500;
3811 fc->low_water = 0x1500;
3812 } else {
3813 fc->high_water = 0x5000;
3814 fc->low_water = 0x3000;
3816 fc->refresh_time = 0x1000;
3817 break;
3818 case e1000_pch2lan:
3819 case e1000_pch_lpt:
3820 fc->refresh_time = 0x0400;
3822 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3823 fc->high_water = 0x05C20;
3824 fc->low_water = 0x05048;
3825 fc->pause_time = 0x0650;
3826 break;
3829 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3830 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3831 break;
3834 /* Alignment of Tx data is on an arbitrary byte boundary with the
3835 * maximum size per Tx descriptor limited only to the transmit
3836 * allocation of the packet buffer minus 96 bytes with an upper
3837 * limit of 24KB due to receive synchronization limitations.
3839 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3840 24 << 10);
3842 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3843 * fit in receive buffer.
3845 if (adapter->itr_setting & 0x3) {
3846 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3847 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3848 dev_info(&adapter->pdev->dev,
3849 "Interrupt Throttle Rate off\n");
3850 adapter->flags2 |= FLAG2_DISABLE_AIM;
3851 e1000e_write_itr(adapter, 0);
3853 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3854 dev_info(&adapter->pdev->dev,
3855 "Interrupt Throttle Rate on\n");
3856 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3857 adapter->itr = 20000;
3858 e1000e_write_itr(adapter, adapter->itr);
3862 /* Allow time for pending master requests to run */
3863 mac->ops.reset_hw(hw);
3865 /* For parts with AMT enabled, let the firmware know
3866 * that the network interface is in control
3868 if (adapter->flags & FLAG_HAS_AMT)
3869 e1000e_get_hw_control(adapter);
3871 ew32(WUC, 0);
3873 if (mac->ops.init_hw(hw))
3874 e_err("Hardware Error\n");
3876 e1000_update_mng_vlan(adapter);
3878 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3879 ew32(VET, ETH_P_8021Q);
3881 e1000e_reset_adaptive(hw);
3883 /* initialize systim and reset the ns time counter */
3884 e1000e_config_hwtstamp(adapter);
3886 /* Set EEE advertisement as appropriate */
3887 if (adapter->flags2 & FLAG2_HAS_EEE) {
3888 s32 ret_val;
3889 u16 adv_addr;
3891 switch (hw->phy.type) {
3892 case e1000_phy_82579:
3893 adv_addr = I82579_EEE_ADVERTISEMENT;
3894 break;
3895 case e1000_phy_i217:
3896 adv_addr = I217_EEE_ADVERTISEMENT;
3897 break;
3898 default:
3899 dev_err(&adapter->pdev->dev,
3900 "Invalid PHY type setting EEE advertisement\n");
3901 return;
3904 ret_val = hw->phy.ops.acquire(hw);
3905 if (ret_val) {
3906 dev_err(&adapter->pdev->dev,
3907 "EEE advertisement - unable to acquire PHY\n");
3908 return;
3911 e1000_write_emi_reg_locked(hw, adv_addr,
3912 hw->dev_spec.ich8lan.eee_disable ?
3913 0 : adapter->eee_advert);
3915 hw->phy.ops.release(hw);
3918 if (!netif_running(adapter->netdev) &&
3919 !test_bit(__E1000_TESTING, &adapter->state)) {
3920 e1000_power_down_phy(adapter);
3921 return;
3924 e1000_get_phy_info(hw);
3926 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3927 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3928 u16 phy_data = 0;
3929 /* speed up time to link by disabling smart power down, ignore
3930 * the return value of this function because there is nothing
3931 * different we would do if it failed
3933 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3934 phy_data &= ~IGP02E1000_PM_SPD;
3935 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3939 int e1000e_up(struct e1000_adapter *adapter)
3941 struct e1000_hw *hw = &adapter->hw;
3943 /* hardware has been reset, we need to reload some things */
3944 e1000_configure(adapter);
3946 clear_bit(__E1000_DOWN, &adapter->state);
3948 if (adapter->msix_entries)
3949 e1000_configure_msix(adapter);
3950 e1000_irq_enable(adapter);
3952 netif_start_queue(adapter->netdev);
3954 /* fire a link change interrupt to start the watchdog */
3955 if (adapter->msix_entries)
3956 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3957 else
3958 ew32(ICS, E1000_ICS_LSC);
3960 return 0;
3963 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3965 struct e1000_hw *hw = &adapter->hw;
3967 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3968 return;
3970 /* flush pending descriptor writebacks to memory */
3971 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3972 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3974 /* execute the writes immediately */
3975 e1e_flush();
3977 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3978 * write is successful
3980 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3981 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3983 /* execute the writes immediately */
3984 e1e_flush();
3987 static void e1000e_update_stats(struct e1000_adapter *adapter);
3989 void e1000e_down(struct e1000_adapter *adapter)
3991 struct net_device *netdev = adapter->netdev;
3992 struct e1000_hw *hw = &adapter->hw;
3993 u32 tctl, rctl;
3995 /* signal that we're down so the interrupt handler does not
3996 * reschedule our watchdog timer
3998 set_bit(__E1000_DOWN, &adapter->state);
4000 /* disable receives in the hardware */
4001 rctl = er32(RCTL);
4002 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4003 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4004 /* flush and sleep below */
4006 netif_stop_queue(netdev);
4008 /* disable transmits in the hardware */
4009 tctl = er32(TCTL);
4010 tctl &= ~E1000_TCTL_EN;
4011 ew32(TCTL, tctl);
4013 /* flush both disables and wait for them to finish */
4014 e1e_flush();
4015 usleep_range(10000, 20000);
4017 e1000_irq_disable(adapter);
4019 napi_synchronize(&adapter->napi);
4021 del_timer_sync(&adapter->watchdog_timer);
4022 del_timer_sync(&adapter->phy_info_timer);
4024 netif_carrier_off(netdev);
4026 spin_lock(&adapter->stats64_lock);
4027 e1000e_update_stats(adapter);
4028 spin_unlock(&adapter->stats64_lock);
4030 e1000e_flush_descriptors(adapter);
4031 e1000_clean_tx_ring(adapter->tx_ring);
4032 e1000_clean_rx_ring(adapter->rx_ring);
4034 adapter->link_speed = 0;
4035 adapter->link_duplex = 0;
4037 if (!pci_channel_offline(adapter->pdev))
4038 e1000e_reset(adapter);
4040 /* TODO: for power management, we could drop the link and
4041 * pci_disable_device here.
4045 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4047 might_sleep();
4048 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4049 usleep_range(1000, 2000);
4050 e1000e_down(adapter);
4051 e1000e_up(adapter);
4052 clear_bit(__E1000_RESETTING, &adapter->state);
4056 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4057 * @cc: cyclecounter structure
4059 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4061 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4062 cc);
4063 struct e1000_hw *hw = &adapter->hw;
4064 cycle_t systim;
4066 /* latch SYSTIMH on read of SYSTIML */
4067 systim = (cycle_t)er32(SYSTIML);
4068 systim |= (cycle_t)er32(SYSTIMH) << 32;
4070 return systim;
4074 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4075 * @adapter: board private structure to initialize
4077 * e1000_sw_init initializes the Adapter private data structure.
4078 * Fields are initialized based on PCI device information and
4079 * OS network device settings (MTU size).
4081 static int e1000_sw_init(struct e1000_adapter *adapter)
4083 struct net_device *netdev = adapter->netdev;
4085 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4086 adapter->rx_ps_bsize0 = 128;
4087 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4088 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4089 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4090 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4092 spin_lock_init(&adapter->stats64_lock);
4094 e1000e_set_interrupt_capability(adapter);
4096 if (e1000_alloc_queues(adapter))
4097 return -ENOMEM;
4099 /* Setup hardware time stamping cyclecounter */
4100 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4101 adapter->cc.read = e1000e_cyclecounter_read;
4102 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4103 adapter->cc.mult = 1;
4104 /* cc.shift set in e1000e_get_base_tininca() */
4106 spin_lock_init(&adapter->systim_lock);
4107 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4110 /* Explicitly disable IRQ since the NIC can be in any state. */
4111 e1000_irq_disable(adapter);
4113 set_bit(__E1000_DOWN, &adapter->state);
4114 return 0;
4118 * e1000_intr_msi_test - Interrupt Handler
4119 * @irq: interrupt number
4120 * @data: pointer to a network interface device structure
4122 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4124 struct net_device *netdev = data;
4125 struct e1000_adapter *adapter = netdev_priv(netdev);
4126 struct e1000_hw *hw = &adapter->hw;
4127 u32 icr = er32(ICR);
4129 e_dbg("icr is %08X\n", icr);
4130 if (icr & E1000_ICR_RXSEQ) {
4131 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4132 /* Force memory writes to complete before acknowledging the
4133 * interrupt is handled.
4135 wmb();
4138 return IRQ_HANDLED;
4142 * e1000_test_msi_interrupt - Returns 0 for successful test
4143 * @adapter: board private struct
4145 * code flow taken from tg3.c
4147 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4149 struct net_device *netdev = adapter->netdev;
4150 struct e1000_hw *hw = &adapter->hw;
4151 int err;
4153 /* poll_enable hasn't been called yet, so don't need disable */
4154 /* clear any pending events */
4155 er32(ICR);
4157 /* free the real vector and request a test handler */
4158 e1000_free_irq(adapter);
4159 e1000e_reset_interrupt_capability(adapter);
4161 /* Assume that the test fails, if it succeeds then the test
4162 * MSI irq handler will unset this flag
4164 adapter->flags |= FLAG_MSI_TEST_FAILED;
4166 err = pci_enable_msi(adapter->pdev);
4167 if (err)
4168 goto msi_test_failed;
4170 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4171 netdev->name, netdev);
4172 if (err) {
4173 pci_disable_msi(adapter->pdev);
4174 goto msi_test_failed;
4177 /* Force memory writes to complete before enabling and firing an
4178 * interrupt.
4180 wmb();
4182 e1000_irq_enable(adapter);
4184 /* fire an unusual interrupt on the test handler */
4185 ew32(ICS, E1000_ICS_RXSEQ);
4186 e1e_flush();
4187 msleep(100);
4189 e1000_irq_disable(adapter);
4191 rmb(); /* read flags after interrupt has been fired */
4193 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4194 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4195 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4196 } else {
4197 e_dbg("MSI interrupt test succeeded!\n");
4200 free_irq(adapter->pdev->irq, netdev);
4201 pci_disable_msi(adapter->pdev);
4203 msi_test_failed:
4204 e1000e_set_interrupt_capability(adapter);
4205 return e1000_request_irq(adapter);
4209 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4210 * @adapter: board private struct
4212 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4214 static int e1000_test_msi(struct e1000_adapter *adapter)
4216 int err;
4217 u16 pci_cmd;
4219 if (!(adapter->flags & FLAG_MSI_ENABLED))
4220 return 0;
4222 /* disable SERR in case the MSI write causes a master abort */
4223 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4224 if (pci_cmd & PCI_COMMAND_SERR)
4225 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4226 pci_cmd & ~PCI_COMMAND_SERR);
4228 err = e1000_test_msi_interrupt(adapter);
4230 /* re-enable SERR */
4231 if (pci_cmd & PCI_COMMAND_SERR) {
4232 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4233 pci_cmd |= PCI_COMMAND_SERR;
4234 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4237 return err;
4241 * e1000_open - Called when a network interface is made active
4242 * @netdev: network interface device structure
4244 * Returns 0 on success, negative value on failure
4246 * The open entry point is called when a network interface is made
4247 * active by the system (IFF_UP). At this point all resources needed
4248 * for transmit and receive operations are allocated, the interrupt
4249 * handler is registered with the OS, the watchdog timer is started,
4250 * and the stack is notified that the interface is ready.
4252 static int e1000_open(struct net_device *netdev)
4254 struct e1000_adapter *adapter = netdev_priv(netdev);
4255 struct e1000_hw *hw = &adapter->hw;
4256 struct pci_dev *pdev = adapter->pdev;
4257 int err;
4259 /* disallow open during test */
4260 if (test_bit(__E1000_TESTING, &adapter->state))
4261 return -EBUSY;
4263 pm_runtime_get_sync(&pdev->dev);
4265 netif_carrier_off(netdev);
4267 /* allocate transmit descriptors */
4268 err = e1000e_setup_tx_resources(adapter->tx_ring);
4269 if (err)
4270 goto err_setup_tx;
4272 /* allocate receive descriptors */
4273 err = e1000e_setup_rx_resources(adapter->rx_ring);
4274 if (err)
4275 goto err_setup_rx;
4277 /* If AMT is enabled, let the firmware know that the network
4278 * interface is now open and reset the part to a known state.
4280 if (adapter->flags & FLAG_HAS_AMT) {
4281 e1000e_get_hw_control(adapter);
4282 e1000e_reset(adapter);
4285 e1000e_power_up_phy(adapter);
4287 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4288 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4289 e1000_update_mng_vlan(adapter);
4291 /* DMA latency requirement to workaround jumbo issue */
4292 pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4293 PM_QOS_DEFAULT_VALUE);
4295 /* before we allocate an interrupt, we must be ready to handle it.
4296 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4297 * as soon as we call pci_request_irq, so we have to setup our
4298 * clean_rx handler before we do so.
4300 e1000_configure(adapter);
4302 err = e1000_request_irq(adapter);
4303 if (err)
4304 goto err_req_irq;
4306 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4307 * ignore e1000e MSI messages, which means we need to test our MSI
4308 * interrupt now
4310 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4311 err = e1000_test_msi(adapter);
4312 if (err) {
4313 e_err("Interrupt allocation failed\n");
4314 goto err_req_irq;
4318 /* From here on the code is the same as e1000e_up() */
4319 clear_bit(__E1000_DOWN, &adapter->state);
4321 napi_enable(&adapter->napi);
4323 e1000_irq_enable(adapter);
4325 adapter->tx_hang_recheck = false;
4326 netif_start_queue(netdev);
4328 adapter->idle_check = true;
4329 hw->mac.get_link_status = true;
4330 pm_runtime_put(&pdev->dev);
4332 /* fire a link status change interrupt to start the watchdog */
4333 if (adapter->msix_entries)
4334 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4335 else
4336 ew32(ICS, E1000_ICS_LSC);
4338 return 0;
4340 err_req_irq:
4341 e1000e_release_hw_control(adapter);
4342 e1000_power_down_phy(adapter);
4343 e1000e_free_rx_resources(adapter->rx_ring);
4344 err_setup_rx:
4345 e1000e_free_tx_resources(adapter->tx_ring);
4346 err_setup_tx:
4347 e1000e_reset(adapter);
4348 pm_runtime_put_sync(&pdev->dev);
4350 return err;
4354 * e1000_close - Disables a network interface
4355 * @netdev: network interface device structure
4357 * Returns 0, this is not allowed to fail
4359 * The close entry point is called when an interface is de-activated
4360 * by the OS. The hardware is still under the drivers control, but
4361 * needs to be disabled. A global MAC reset is issued to stop the
4362 * hardware, and all transmit and receive resources are freed.
4364 static int e1000_close(struct net_device *netdev)
4366 struct e1000_adapter *adapter = netdev_priv(netdev);
4367 struct pci_dev *pdev = adapter->pdev;
4368 int count = E1000_CHECK_RESET_COUNT;
4370 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4371 usleep_range(10000, 20000);
4373 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4375 pm_runtime_get_sync(&pdev->dev);
4377 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4378 e1000e_down(adapter);
4379 e1000_free_irq(adapter);
4382 napi_disable(&adapter->napi);
4384 e1000_power_down_phy(adapter);
4386 e1000e_free_tx_resources(adapter->tx_ring);
4387 e1000e_free_rx_resources(adapter->rx_ring);
4389 /* kill manageability vlan ID if supported, but not if a vlan with
4390 * the same ID is registered on the host OS (let 8021q kill it)
4392 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4393 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4394 adapter->mng_vlan_id);
4396 /* If AMT is enabled, let the firmware know that the network
4397 * interface is now closed
4399 if ((adapter->flags & FLAG_HAS_AMT) &&
4400 !test_bit(__E1000_TESTING, &adapter->state))
4401 e1000e_release_hw_control(adapter);
4403 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4405 pm_runtime_put_sync(&pdev->dev);
4407 return 0;
4411 * e1000_set_mac - Change the Ethernet Address of the NIC
4412 * @netdev: network interface device structure
4413 * @p: pointer to an address structure
4415 * Returns 0 on success, negative on failure
4417 static int e1000_set_mac(struct net_device *netdev, void *p)
4419 struct e1000_adapter *adapter = netdev_priv(netdev);
4420 struct e1000_hw *hw = &adapter->hw;
4421 struct sockaddr *addr = p;
4423 if (!is_valid_ether_addr(addr->sa_data))
4424 return -EADDRNOTAVAIL;
4426 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4427 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4429 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4431 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4432 /* activate the work around */
4433 e1000e_set_laa_state_82571(&adapter->hw, 1);
4435 /* Hold a copy of the LAA in RAR[14] This is done so that
4436 * between the time RAR[0] gets clobbered and the time it
4437 * gets fixed (in e1000_watchdog), the actual LAA is in one
4438 * of the RARs and no incoming packets directed to this port
4439 * are dropped. Eventually the LAA will be in RAR[0] and
4440 * RAR[14]
4442 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4443 adapter->hw.mac.rar_entry_count - 1);
4446 return 0;
4450 * e1000e_update_phy_task - work thread to update phy
4451 * @work: pointer to our work struct
4453 * this worker thread exists because we must acquire a
4454 * semaphore to read the phy, which we could msleep while
4455 * waiting for it, and we can't msleep in a timer.
4457 static void e1000e_update_phy_task(struct work_struct *work)
4459 struct e1000_adapter *adapter = container_of(work,
4460 struct e1000_adapter,
4461 update_phy_task);
4463 if (test_bit(__E1000_DOWN, &adapter->state))
4464 return;
4466 e1000_get_phy_info(&adapter->hw);
4470 * e1000_update_phy_info - timre call-back to update PHY info
4471 * @data: pointer to adapter cast into an unsigned long
4473 * Need to wait a few seconds after link up to get diagnostic information from
4474 * the phy
4476 static void e1000_update_phy_info(unsigned long data)
4478 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4480 if (test_bit(__E1000_DOWN, &adapter->state))
4481 return;
4483 schedule_work(&adapter->update_phy_task);
4487 * e1000e_update_phy_stats - Update the PHY statistics counters
4488 * @adapter: board private structure
4490 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4492 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4494 struct e1000_hw *hw = &adapter->hw;
4495 s32 ret_val;
4496 u16 phy_data;
4498 ret_val = hw->phy.ops.acquire(hw);
4499 if (ret_val)
4500 return;
4502 /* A page set is expensive so check if already on desired page.
4503 * If not, set to the page with the PHY status registers.
4505 hw->phy.addr = 1;
4506 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4507 &phy_data);
4508 if (ret_val)
4509 goto release;
4510 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4511 ret_val = hw->phy.ops.set_page(hw,
4512 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4513 if (ret_val)
4514 goto release;
4517 /* Single Collision Count */
4518 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4519 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4520 if (!ret_val)
4521 adapter->stats.scc += phy_data;
4523 /* Excessive Collision Count */
4524 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4525 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4526 if (!ret_val)
4527 adapter->stats.ecol += phy_data;
4529 /* Multiple Collision Count */
4530 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4531 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4532 if (!ret_val)
4533 adapter->stats.mcc += phy_data;
4535 /* Late Collision Count */
4536 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4537 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4538 if (!ret_val)
4539 adapter->stats.latecol += phy_data;
4541 /* Collision Count - also used for adaptive IFS */
4542 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4543 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4544 if (!ret_val)
4545 hw->mac.collision_delta = phy_data;
4547 /* Defer Count */
4548 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4549 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4550 if (!ret_val)
4551 adapter->stats.dc += phy_data;
4553 /* Transmit with no CRS */
4554 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4555 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4556 if (!ret_val)
4557 adapter->stats.tncrs += phy_data;
4559 release:
4560 hw->phy.ops.release(hw);
4564 * e1000e_update_stats - Update the board statistics counters
4565 * @adapter: board private structure
4567 static void e1000e_update_stats(struct e1000_adapter *adapter)
4569 struct net_device *netdev = adapter->netdev;
4570 struct e1000_hw *hw = &adapter->hw;
4571 struct pci_dev *pdev = adapter->pdev;
4573 /* Prevent stats update while adapter is being reset, or if the pci
4574 * connection is down.
4576 if (adapter->link_speed == 0)
4577 return;
4578 if (pci_channel_offline(pdev))
4579 return;
4581 adapter->stats.crcerrs += er32(CRCERRS);
4582 adapter->stats.gprc += er32(GPRC);
4583 adapter->stats.gorc += er32(GORCL);
4584 er32(GORCH); /* Clear gorc */
4585 adapter->stats.bprc += er32(BPRC);
4586 adapter->stats.mprc += er32(MPRC);
4587 adapter->stats.roc += er32(ROC);
4589 adapter->stats.mpc += er32(MPC);
4591 /* Half-duplex statistics */
4592 if (adapter->link_duplex == HALF_DUPLEX) {
4593 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4594 e1000e_update_phy_stats(adapter);
4595 } else {
4596 adapter->stats.scc += er32(SCC);
4597 adapter->stats.ecol += er32(ECOL);
4598 adapter->stats.mcc += er32(MCC);
4599 adapter->stats.latecol += er32(LATECOL);
4600 adapter->stats.dc += er32(DC);
4602 hw->mac.collision_delta = er32(COLC);
4604 if ((hw->mac.type != e1000_82574) &&
4605 (hw->mac.type != e1000_82583))
4606 adapter->stats.tncrs += er32(TNCRS);
4608 adapter->stats.colc += hw->mac.collision_delta;
4611 adapter->stats.xonrxc += er32(XONRXC);
4612 adapter->stats.xontxc += er32(XONTXC);
4613 adapter->stats.xoffrxc += er32(XOFFRXC);
4614 adapter->stats.xofftxc += er32(XOFFTXC);
4615 adapter->stats.gptc += er32(GPTC);
4616 adapter->stats.gotc += er32(GOTCL);
4617 er32(GOTCH); /* Clear gotc */
4618 adapter->stats.rnbc += er32(RNBC);
4619 adapter->stats.ruc += er32(RUC);
4621 adapter->stats.mptc += er32(MPTC);
4622 adapter->stats.bptc += er32(BPTC);
4624 /* used for adaptive IFS */
4626 hw->mac.tx_packet_delta = er32(TPT);
4627 adapter->stats.tpt += hw->mac.tx_packet_delta;
4629 adapter->stats.algnerrc += er32(ALGNERRC);
4630 adapter->stats.rxerrc += er32(RXERRC);
4631 adapter->stats.cexterr += er32(CEXTERR);
4632 adapter->stats.tsctc += er32(TSCTC);
4633 adapter->stats.tsctfc += er32(TSCTFC);
4635 /* Fill out the OS statistics structure */
4636 netdev->stats.multicast = adapter->stats.mprc;
4637 netdev->stats.collisions = adapter->stats.colc;
4639 /* Rx Errors */
4641 /* RLEC on some newer hardware can be incorrect so build
4642 * our own version based on RUC and ROC
4644 netdev->stats.rx_errors = adapter->stats.rxerrc +
4645 adapter->stats.crcerrs + adapter->stats.algnerrc +
4646 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4647 netdev->stats.rx_length_errors = adapter->stats.ruc +
4648 adapter->stats.roc;
4649 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4650 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4651 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4653 /* Tx Errors */
4654 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4655 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4656 netdev->stats.tx_window_errors = adapter->stats.latecol;
4657 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4659 /* Tx Dropped needs to be maintained elsewhere */
4661 /* Management Stats */
4662 adapter->stats.mgptc += er32(MGTPTC);
4663 adapter->stats.mgprc += er32(MGTPRC);
4664 adapter->stats.mgpdc += er32(MGTPDC);
4666 /* Correctable ECC Errors */
4667 if (hw->mac.type == e1000_pch_lpt) {
4668 u32 pbeccsts = er32(PBECCSTS);
4669 adapter->corr_errors +=
4670 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4671 adapter->uncorr_errors +=
4672 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4673 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4678 * e1000_phy_read_status - Update the PHY register status snapshot
4679 * @adapter: board private structure
4681 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4683 struct e1000_hw *hw = &adapter->hw;
4684 struct e1000_phy_regs *phy = &adapter->phy_regs;
4686 if ((er32(STATUS) & E1000_STATUS_LU) &&
4687 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4688 int ret_val;
4690 pm_runtime_get_sync(&adapter->pdev->dev);
4691 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4692 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4693 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4694 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4695 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4696 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4697 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4698 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4699 if (ret_val)
4700 e_warn("Error reading PHY register\n");
4701 pm_runtime_put_sync(&adapter->pdev->dev);
4702 } else {
4703 /* Do not read PHY registers if link is not up
4704 * Set values to typical power-on defaults
4706 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4707 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4708 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4709 BMSR_ERCAP);
4710 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4711 ADVERTISE_ALL | ADVERTISE_CSMA);
4712 phy->lpa = 0;
4713 phy->expansion = EXPANSION_ENABLENPAGE;
4714 phy->ctrl1000 = ADVERTISE_1000FULL;
4715 phy->stat1000 = 0;
4716 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4720 static void e1000_print_link_info(struct e1000_adapter *adapter)
4722 struct e1000_hw *hw = &adapter->hw;
4723 u32 ctrl = er32(CTRL);
4725 /* Link status message must follow this format for user tools */
4726 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4727 adapter->netdev->name, adapter->link_speed,
4728 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4729 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4730 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4731 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4734 static bool e1000e_has_link(struct e1000_adapter *adapter)
4736 struct e1000_hw *hw = &adapter->hw;
4737 bool link_active = false;
4738 s32 ret_val = 0;
4740 /* get_link_status is set on LSC (link status) interrupt or
4741 * Rx sequence error interrupt. get_link_status will stay
4742 * false until the check_for_link establishes link
4743 * for copper adapters ONLY
4745 switch (hw->phy.media_type) {
4746 case e1000_media_type_copper:
4747 if (hw->mac.get_link_status) {
4748 ret_val = hw->mac.ops.check_for_link(hw);
4749 link_active = !hw->mac.get_link_status;
4750 } else {
4751 link_active = true;
4753 break;
4754 case e1000_media_type_fiber:
4755 ret_val = hw->mac.ops.check_for_link(hw);
4756 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4757 break;
4758 case e1000_media_type_internal_serdes:
4759 ret_val = hw->mac.ops.check_for_link(hw);
4760 link_active = adapter->hw.mac.serdes_has_link;
4761 break;
4762 default:
4763 case e1000_media_type_unknown:
4764 break;
4767 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4768 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4769 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4770 e_info("Gigabit has been disabled, downgrading speed\n");
4773 return link_active;
4776 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4778 /* make sure the receive unit is started */
4779 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4780 (adapter->flags & FLAG_RESTART_NOW)) {
4781 struct e1000_hw *hw = &adapter->hw;
4782 u32 rctl = er32(RCTL);
4783 ew32(RCTL, rctl | E1000_RCTL_EN);
4784 adapter->flags &= ~FLAG_RESTART_NOW;
4788 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4790 struct e1000_hw *hw = &adapter->hw;
4792 /* With 82574 controllers, PHY needs to be checked periodically
4793 * for hung state and reset, if two calls return true
4795 if (e1000_check_phy_82574(hw))
4796 adapter->phy_hang_count++;
4797 else
4798 adapter->phy_hang_count = 0;
4800 if (adapter->phy_hang_count > 1) {
4801 adapter->phy_hang_count = 0;
4802 schedule_work(&adapter->reset_task);
4807 * e1000_watchdog - Timer Call-back
4808 * @data: pointer to adapter cast into an unsigned long
4810 static void e1000_watchdog(unsigned long data)
4812 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4814 /* Do the rest outside of interrupt context */
4815 schedule_work(&adapter->watchdog_task);
4817 /* TODO: make this use queue_delayed_work() */
4820 static void e1000_watchdog_task(struct work_struct *work)
4822 struct e1000_adapter *adapter = container_of(work,
4823 struct e1000_adapter,
4824 watchdog_task);
4825 struct net_device *netdev = adapter->netdev;
4826 struct e1000_mac_info *mac = &adapter->hw.mac;
4827 struct e1000_phy_info *phy = &adapter->hw.phy;
4828 struct e1000_ring *tx_ring = adapter->tx_ring;
4829 struct e1000_hw *hw = &adapter->hw;
4830 u32 link, tctl;
4832 if (test_bit(__E1000_DOWN, &adapter->state))
4833 return;
4835 link = e1000e_has_link(adapter);
4836 if ((netif_carrier_ok(netdev)) && link) {
4837 /* Cancel scheduled suspend requests. */
4838 pm_runtime_resume(netdev->dev.parent);
4840 e1000e_enable_receives(adapter);
4841 goto link_up;
4844 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4845 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4846 e1000_update_mng_vlan(adapter);
4848 if (link) {
4849 if (!netif_carrier_ok(netdev)) {
4850 bool txb2b = true;
4852 /* Cancel scheduled suspend requests. */
4853 pm_runtime_resume(netdev->dev.parent);
4855 /* update snapshot of PHY registers on LSC */
4856 e1000_phy_read_status(adapter);
4857 mac->ops.get_link_up_info(&adapter->hw,
4858 &adapter->link_speed,
4859 &adapter->link_duplex);
4860 e1000_print_link_info(adapter);
4862 /* check if SmartSpeed worked */
4863 e1000e_check_downshift(hw);
4864 if (phy->speed_downgraded)
4865 netdev_warn(netdev,
4866 "Link Speed was downgraded by SmartSpeed\n");
4868 /* On supported PHYs, check for duplex mismatch only
4869 * if link has autonegotiated at 10/100 half
4871 if ((hw->phy.type == e1000_phy_igp_3 ||
4872 hw->phy.type == e1000_phy_bm) &&
4873 (hw->mac.autoneg == true) &&
4874 (adapter->link_speed == SPEED_10 ||
4875 adapter->link_speed == SPEED_100) &&
4876 (adapter->link_duplex == HALF_DUPLEX)) {
4877 u16 autoneg_exp;
4879 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4881 if (!(autoneg_exp & EXPANSION_NWAY))
4882 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4885 /* adjust timeout factor according to speed/duplex */
4886 adapter->tx_timeout_factor = 1;
4887 switch (adapter->link_speed) {
4888 case SPEED_10:
4889 txb2b = false;
4890 adapter->tx_timeout_factor = 16;
4891 break;
4892 case SPEED_100:
4893 txb2b = false;
4894 adapter->tx_timeout_factor = 10;
4895 break;
4898 /* workaround: re-program speed mode bit after
4899 * link-up event
4901 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4902 !txb2b) {
4903 u32 tarc0;
4904 tarc0 = er32(TARC(0));
4905 tarc0 &= ~SPEED_MODE_BIT;
4906 ew32(TARC(0), tarc0);
4909 /* disable TSO for pcie and 10/100 speeds, to avoid
4910 * some hardware issues
4912 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4913 switch (adapter->link_speed) {
4914 case SPEED_10:
4915 case SPEED_100:
4916 e_info("10/100 speed: disabling TSO\n");
4917 netdev->features &= ~NETIF_F_TSO;
4918 netdev->features &= ~NETIF_F_TSO6;
4919 break;
4920 case SPEED_1000:
4921 netdev->features |= NETIF_F_TSO;
4922 netdev->features |= NETIF_F_TSO6;
4923 break;
4924 default:
4925 /* oops */
4926 break;
4930 /* enable transmits in the hardware, need to do this
4931 * after setting TARC(0)
4933 tctl = er32(TCTL);
4934 tctl |= E1000_TCTL_EN;
4935 ew32(TCTL, tctl);
4937 /* Perform any post-link-up configuration before
4938 * reporting link up.
4940 if (phy->ops.cfg_on_link_up)
4941 phy->ops.cfg_on_link_up(hw);
4943 netif_carrier_on(netdev);
4945 if (!test_bit(__E1000_DOWN, &adapter->state))
4946 mod_timer(&adapter->phy_info_timer,
4947 round_jiffies(jiffies + 2 * HZ));
4949 } else {
4950 if (netif_carrier_ok(netdev)) {
4951 adapter->link_speed = 0;
4952 adapter->link_duplex = 0;
4953 /* Link status message must follow this format */
4954 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4955 netif_carrier_off(netdev);
4956 if (!test_bit(__E1000_DOWN, &adapter->state))
4957 mod_timer(&adapter->phy_info_timer,
4958 round_jiffies(jiffies + 2 * HZ));
4960 /* The link is lost so the controller stops DMA.
4961 * If there is queued Tx work that cannot be done
4962 * or if on an 8000ES2LAN which requires a Rx packet
4963 * buffer work-around on link down event, reset the
4964 * controller to flush the Tx/Rx packet buffers.
4965 * (Do the reset outside of interrupt context).
4967 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4968 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4969 adapter->flags |= FLAG_RESTART_NOW;
4970 else
4971 pm_schedule_suspend(netdev->dev.parent,
4972 LINK_TIMEOUT);
4976 link_up:
4977 spin_lock(&adapter->stats64_lock);
4978 e1000e_update_stats(adapter);
4980 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4981 adapter->tpt_old = adapter->stats.tpt;
4982 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4983 adapter->colc_old = adapter->stats.colc;
4985 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4986 adapter->gorc_old = adapter->stats.gorc;
4987 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4988 adapter->gotc_old = adapter->stats.gotc;
4989 spin_unlock(&adapter->stats64_lock);
4991 if (adapter->flags & FLAG_RESTART_NOW) {
4992 schedule_work(&adapter->reset_task);
4993 /* return immediately since reset is imminent */
4994 return;
4997 e1000e_update_adaptive(&adapter->hw);
4999 /* Simple mode for Interrupt Throttle Rate (ITR) */
5000 if (adapter->itr_setting == 4) {
5001 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5002 * Total asymmetrical Tx or Rx gets ITR=8000;
5003 * everyone else is between 2000-8000.
5005 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5006 u32 dif = (adapter->gotc > adapter->gorc ?
5007 adapter->gotc - adapter->gorc :
5008 adapter->gorc - adapter->gotc) / 10000;
5009 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5011 e1000e_write_itr(adapter, itr);
5014 /* Cause software interrupt to ensure Rx ring is cleaned */
5015 if (adapter->msix_entries)
5016 ew32(ICS, adapter->rx_ring->ims_val);
5017 else
5018 ew32(ICS, E1000_ICS_RXDMT0);
5020 /* flush pending descriptors to memory before detecting Tx hang */
5021 e1000e_flush_descriptors(adapter);
5023 /* Force detection of hung controller every watchdog period */
5024 adapter->detect_tx_hung = true;
5026 /* With 82571 controllers, LAA may be overwritten due to controller
5027 * reset from the other port. Set the appropriate LAA in RAR[0]
5029 if (e1000e_get_laa_state_82571(hw))
5030 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5032 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5033 e1000e_check_82574_phy_workaround(adapter);
5035 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5036 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5037 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5038 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5039 er32(RXSTMPH);
5040 adapter->rx_hwtstamp_cleared++;
5041 } else {
5042 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5046 /* Reset the timer */
5047 if (!test_bit(__E1000_DOWN, &adapter->state))
5048 mod_timer(&adapter->watchdog_timer,
5049 round_jiffies(jiffies + 2 * HZ));
5052 #define E1000_TX_FLAGS_CSUM 0x00000001
5053 #define E1000_TX_FLAGS_VLAN 0x00000002
5054 #define E1000_TX_FLAGS_TSO 0x00000004
5055 #define E1000_TX_FLAGS_IPV4 0x00000008
5056 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5057 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5058 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5059 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5061 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5063 struct e1000_context_desc *context_desc;
5064 struct e1000_buffer *buffer_info;
5065 unsigned int i;
5066 u32 cmd_length = 0;
5067 u16 ipcse = 0, mss;
5068 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5070 if (!skb_is_gso(skb))
5071 return 0;
5073 if (skb_header_cloned(skb)) {
5074 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5076 if (err)
5077 return err;
5080 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5081 mss = skb_shinfo(skb)->gso_size;
5082 if (skb->protocol == htons(ETH_P_IP)) {
5083 struct iphdr *iph = ip_hdr(skb);
5084 iph->tot_len = 0;
5085 iph->check = 0;
5086 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5087 0, IPPROTO_TCP, 0);
5088 cmd_length = E1000_TXD_CMD_IP;
5089 ipcse = skb_transport_offset(skb) - 1;
5090 } else if (skb_is_gso_v6(skb)) {
5091 ipv6_hdr(skb)->payload_len = 0;
5092 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5093 &ipv6_hdr(skb)->daddr,
5094 0, IPPROTO_TCP, 0);
5095 ipcse = 0;
5097 ipcss = skb_network_offset(skb);
5098 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5099 tucss = skb_transport_offset(skb);
5100 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5102 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5103 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5105 i = tx_ring->next_to_use;
5106 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5107 buffer_info = &tx_ring->buffer_info[i];
5109 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5110 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5111 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5112 context_desc->upper_setup.tcp_fields.tucss = tucss;
5113 context_desc->upper_setup.tcp_fields.tucso = tucso;
5114 context_desc->upper_setup.tcp_fields.tucse = 0;
5115 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5116 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5117 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5119 buffer_info->time_stamp = jiffies;
5120 buffer_info->next_to_watch = i;
5122 i++;
5123 if (i == tx_ring->count)
5124 i = 0;
5125 tx_ring->next_to_use = i;
5127 return 1;
5130 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5132 struct e1000_adapter *adapter = tx_ring->adapter;
5133 struct e1000_context_desc *context_desc;
5134 struct e1000_buffer *buffer_info;
5135 unsigned int i;
5136 u8 css;
5137 u32 cmd_len = E1000_TXD_CMD_DEXT;
5138 __be16 protocol;
5140 if (skb->ip_summed != CHECKSUM_PARTIAL)
5141 return 0;
5143 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5144 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5145 else
5146 protocol = skb->protocol;
5148 switch (protocol) {
5149 case cpu_to_be16(ETH_P_IP):
5150 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5151 cmd_len |= E1000_TXD_CMD_TCP;
5152 break;
5153 case cpu_to_be16(ETH_P_IPV6):
5154 /* XXX not handling all IPV6 headers */
5155 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5156 cmd_len |= E1000_TXD_CMD_TCP;
5157 break;
5158 default:
5159 if (unlikely(net_ratelimit()))
5160 e_warn("checksum_partial proto=%x!\n",
5161 be16_to_cpu(protocol));
5162 break;
5165 css = skb_checksum_start_offset(skb);
5167 i = tx_ring->next_to_use;
5168 buffer_info = &tx_ring->buffer_info[i];
5169 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5171 context_desc->lower_setup.ip_config = 0;
5172 context_desc->upper_setup.tcp_fields.tucss = css;
5173 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5174 context_desc->upper_setup.tcp_fields.tucse = 0;
5175 context_desc->tcp_seg_setup.data = 0;
5176 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5178 buffer_info->time_stamp = jiffies;
5179 buffer_info->next_to_watch = i;
5181 i++;
5182 if (i == tx_ring->count)
5183 i = 0;
5184 tx_ring->next_to_use = i;
5186 return 1;
5189 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190 unsigned int first, unsigned int max_per_txd,
5191 unsigned int nr_frags)
5193 struct e1000_adapter *adapter = tx_ring->adapter;
5194 struct pci_dev *pdev = adapter->pdev;
5195 struct e1000_buffer *buffer_info;
5196 unsigned int len = skb_headlen(skb);
5197 unsigned int offset = 0, size, count = 0, i;
5198 unsigned int f, bytecount, segs;
5200 i = tx_ring->next_to_use;
5202 while (len) {
5203 buffer_info = &tx_ring->buffer_info[i];
5204 size = min(len, max_per_txd);
5206 buffer_info->length = size;
5207 buffer_info->time_stamp = jiffies;
5208 buffer_info->next_to_watch = i;
5209 buffer_info->dma = dma_map_single(&pdev->dev,
5210 skb->data + offset,
5211 size, DMA_TO_DEVICE);
5212 buffer_info->mapped_as_page = false;
5213 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5214 goto dma_error;
5216 len -= size;
5217 offset += size;
5218 count++;
5220 if (len) {
5221 i++;
5222 if (i == tx_ring->count)
5223 i = 0;
5227 for (f = 0; f < nr_frags; f++) {
5228 const struct skb_frag_struct *frag;
5230 frag = &skb_shinfo(skb)->frags[f];
5231 len = skb_frag_size(frag);
5232 offset = 0;
5234 while (len) {
5235 i++;
5236 if (i == tx_ring->count)
5237 i = 0;
5239 buffer_info = &tx_ring->buffer_info[i];
5240 size = min(len, max_per_txd);
5242 buffer_info->length = size;
5243 buffer_info->time_stamp = jiffies;
5244 buffer_info->next_to_watch = i;
5245 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5246 offset, size,
5247 DMA_TO_DEVICE);
5248 buffer_info->mapped_as_page = true;
5249 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5250 goto dma_error;
5252 len -= size;
5253 offset += size;
5254 count++;
5258 segs = skb_shinfo(skb)->gso_segs ? : 1;
5259 /* multiply data chunks by size of headers */
5260 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5262 tx_ring->buffer_info[i].skb = skb;
5263 tx_ring->buffer_info[i].segs = segs;
5264 tx_ring->buffer_info[i].bytecount = bytecount;
5265 tx_ring->buffer_info[first].next_to_watch = i;
5267 return count;
5269 dma_error:
5270 dev_err(&pdev->dev, "Tx DMA map failed\n");
5271 buffer_info->dma = 0;
5272 if (count)
5273 count--;
5275 while (count--) {
5276 if (i == 0)
5277 i += tx_ring->count;
5278 i--;
5279 buffer_info = &tx_ring->buffer_info[i];
5280 e1000_put_txbuf(tx_ring, buffer_info);
5283 return 0;
5286 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5288 struct e1000_adapter *adapter = tx_ring->adapter;
5289 struct e1000_tx_desc *tx_desc = NULL;
5290 struct e1000_buffer *buffer_info;
5291 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5292 unsigned int i;
5294 if (tx_flags & E1000_TX_FLAGS_TSO) {
5295 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5296 E1000_TXD_CMD_TSE;
5297 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5299 if (tx_flags & E1000_TX_FLAGS_IPV4)
5300 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5303 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5304 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5305 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5308 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5309 txd_lower |= E1000_TXD_CMD_VLE;
5310 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5313 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5314 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5316 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5317 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5318 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5321 i = tx_ring->next_to_use;
5323 do {
5324 buffer_info = &tx_ring->buffer_info[i];
5325 tx_desc = E1000_TX_DESC(*tx_ring, i);
5326 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5327 tx_desc->lower.data = cpu_to_le32(txd_lower |
5328 buffer_info->length);
5329 tx_desc->upper.data = cpu_to_le32(txd_upper);
5331 i++;
5332 if (i == tx_ring->count)
5333 i = 0;
5334 } while (--count > 0);
5336 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5338 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5339 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5340 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5342 /* Force memory writes to complete before letting h/w
5343 * know there are new descriptors to fetch. (Only
5344 * applicable for weak-ordered memory model archs,
5345 * such as IA-64).
5347 wmb();
5349 tx_ring->next_to_use = i;
5351 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5352 e1000e_update_tdt_wa(tx_ring, i);
5353 else
5354 writel(i, tx_ring->tail);
5356 /* we need this if more than one processor can write to our tail
5357 * at a time, it synchronizes IO on IA64/Altix systems
5359 mmiowb();
5362 #define MINIMUM_DHCP_PACKET_SIZE 282
5363 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5364 struct sk_buff *skb)
5366 struct e1000_hw *hw = &adapter->hw;
5367 u16 length, offset;
5369 if (vlan_tx_tag_present(skb) &&
5370 !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5371 (adapter->hw.mng_cookie.status &
5372 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5373 return 0;
5375 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5376 return 0;
5378 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5379 return 0;
5382 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5383 struct udphdr *udp;
5385 if (ip->protocol != IPPROTO_UDP)
5386 return 0;
5388 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5389 if (ntohs(udp->dest) != 67)
5390 return 0;
5392 offset = (u8 *)udp + 8 - skb->data;
5393 length = skb->len - offset;
5394 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5397 return 0;
5400 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5402 struct e1000_adapter *adapter = tx_ring->adapter;
5404 netif_stop_queue(adapter->netdev);
5405 /* Herbert's original patch had:
5406 * smp_mb__after_netif_stop_queue();
5407 * but since that doesn't exist yet, just open code it.
5409 smp_mb();
5411 /* We need to check again in a case another CPU has just
5412 * made room available.
5414 if (e1000_desc_unused(tx_ring) < size)
5415 return -EBUSY;
5417 /* A reprieve! */
5418 netif_start_queue(adapter->netdev);
5419 ++adapter->restart_queue;
5420 return 0;
5423 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5425 BUG_ON(size > tx_ring->count);
5427 if (e1000_desc_unused(tx_ring) >= size)
5428 return 0;
5429 return __e1000_maybe_stop_tx(tx_ring, size);
5432 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5433 struct net_device *netdev)
5435 struct e1000_adapter *adapter = netdev_priv(netdev);
5436 struct e1000_ring *tx_ring = adapter->tx_ring;
5437 unsigned int first;
5438 unsigned int tx_flags = 0;
5439 unsigned int len = skb_headlen(skb);
5440 unsigned int nr_frags;
5441 unsigned int mss;
5442 int count = 0;
5443 int tso;
5444 unsigned int f;
5446 if (test_bit(__E1000_DOWN, &adapter->state)) {
5447 dev_kfree_skb_any(skb);
5448 return NETDEV_TX_OK;
5451 if (skb->len <= 0) {
5452 dev_kfree_skb_any(skb);
5453 return NETDEV_TX_OK;
5456 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5457 * pad skb in order to meet this minimum size requirement
5459 if (unlikely(skb->len < 17)) {
5460 if (skb_pad(skb, 17 - skb->len))
5461 return NETDEV_TX_OK;
5462 skb->len = 17;
5463 skb_set_tail_pointer(skb, 17);
5466 mss = skb_shinfo(skb)->gso_size;
5467 if (mss) {
5468 u8 hdr_len;
5470 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5471 * points to just header, pull a few bytes of payload from
5472 * frags into skb->data
5474 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5475 /* we do this workaround for ES2LAN, but it is un-necessary,
5476 * avoiding it could save a lot of cycles
5478 if (skb->data_len && (hdr_len == len)) {
5479 unsigned int pull_size;
5481 pull_size = min_t(unsigned int, 4, skb->data_len);
5482 if (!__pskb_pull_tail(skb, pull_size)) {
5483 e_err("__pskb_pull_tail failed.\n");
5484 dev_kfree_skb_any(skb);
5485 return NETDEV_TX_OK;
5487 len = skb_headlen(skb);
5491 /* reserve a descriptor for the offload context */
5492 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5493 count++;
5494 count++;
5496 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5498 nr_frags = skb_shinfo(skb)->nr_frags;
5499 for (f = 0; f < nr_frags; f++)
5500 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5501 adapter->tx_fifo_limit);
5503 if (adapter->hw.mac.tx_pkt_filtering)
5504 e1000_transfer_dhcp_info(adapter, skb);
5506 /* need: count + 2 desc gap to keep tail from touching
5507 * head, otherwise try next time
5509 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5510 return NETDEV_TX_BUSY;
5512 if (vlan_tx_tag_present(skb)) {
5513 tx_flags |= E1000_TX_FLAGS_VLAN;
5514 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5517 first = tx_ring->next_to_use;
5519 tso = e1000_tso(tx_ring, skb);
5520 if (tso < 0) {
5521 dev_kfree_skb_any(skb);
5522 return NETDEV_TX_OK;
5525 if (tso)
5526 tx_flags |= E1000_TX_FLAGS_TSO;
5527 else if (e1000_tx_csum(tx_ring, skb))
5528 tx_flags |= E1000_TX_FLAGS_CSUM;
5530 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5531 * 82571 hardware supports TSO capabilities for IPv6 as well...
5532 * no longer assume, we must.
5534 if (skb->protocol == htons(ETH_P_IP))
5535 tx_flags |= E1000_TX_FLAGS_IPV4;
5537 if (unlikely(skb->no_fcs))
5538 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5540 /* if count is 0 then mapping error has occurred */
5541 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5542 nr_frags);
5543 if (count) {
5544 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5545 !adapter->tx_hwtstamp_skb)) {
5546 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5547 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5548 adapter->tx_hwtstamp_skb = skb_get(skb);
5549 schedule_work(&adapter->tx_hwtstamp_work);
5550 } else {
5551 skb_tx_timestamp(skb);
5554 netdev_sent_queue(netdev, skb->len);
5555 e1000_tx_queue(tx_ring, tx_flags, count);
5556 /* Make sure there is space in the ring for the next send. */
5557 e1000_maybe_stop_tx(tx_ring,
5558 (MAX_SKB_FRAGS *
5559 DIV_ROUND_UP(PAGE_SIZE,
5560 adapter->tx_fifo_limit) + 2));
5561 } else {
5562 dev_kfree_skb_any(skb);
5563 tx_ring->buffer_info[first].time_stamp = 0;
5564 tx_ring->next_to_use = first;
5567 return NETDEV_TX_OK;
5571 * e1000_tx_timeout - Respond to a Tx Hang
5572 * @netdev: network interface device structure
5574 static void e1000_tx_timeout(struct net_device *netdev)
5576 struct e1000_adapter *adapter = netdev_priv(netdev);
5578 /* Do the reset outside of interrupt context */
5579 adapter->tx_timeout_count++;
5580 schedule_work(&adapter->reset_task);
5583 static void e1000_reset_task(struct work_struct *work)
5585 struct e1000_adapter *adapter;
5586 adapter = container_of(work, struct e1000_adapter, reset_task);
5588 /* don't run the task if already down */
5589 if (test_bit(__E1000_DOWN, &adapter->state))
5590 return;
5592 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5593 e1000e_dump(adapter);
5594 e_err("Reset adapter unexpectedly\n");
5596 e1000e_reinit_locked(adapter);
5600 * e1000_get_stats64 - Get System Network Statistics
5601 * @netdev: network interface device structure
5602 * @stats: rtnl_link_stats64 pointer
5604 * Returns the address of the device statistics structure.
5606 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5607 struct rtnl_link_stats64 *stats)
5609 struct e1000_adapter *adapter = netdev_priv(netdev);
5611 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5612 spin_lock(&adapter->stats64_lock);
5613 e1000e_update_stats(adapter);
5614 /* Fill out the OS statistics structure */
5615 stats->rx_bytes = adapter->stats.gorc;
5616 stats->rx_packets = adapter->stats.gprc;
5617 stats->tx_bytes = adapter->stats.gotc;
5618 stats->tx_packets = adapter->stats.gptc;
5619 stats->multicast = adapter->stats.mprc;
5620 stats->collisions = adapter->stats.colc;
5622 /* Rx Errors */
5624 /* RLEC on some newer hardware can be incorrect so build
5625 * our own version based on RUC and ROC
5627 stats->rx_errors = adapter->stats.rxerrc +
5628 adapter->stats.crcerrs + adapter->stats.algnerrc +
5629 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5630 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5631 stats->rx_crc_errors = adapter->stats.crcerrs;
5632 stats->rx_frame_errors = adapter->stats.algnerrc;
5633 stats->rx_missed_errors = adapter->stats.mpc;
5635 /* Tx Errors */
5636 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5637 stats->tx_aborted_errors = adapter->stats.ecol;
5638 stats->tx_window_errors = adapter->stats.latecol;
5639 stats->tx_carrier_errors = adapter->stats.tncrs;
5641 /* Tx Dropped needs to be maintained elsewhere */
5643 spin_unlock(&adapter->stats64_lock);
5644 return stats;
5648 * e1000_change_mtu - Change the Maximum Transfer Unit
5649 * @netdev: network interface device structure
5650 * @new_mtu: new value for maximum frame size
5652 * Returns 0 on success, negative on failure
5654 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5656 struct e1000_adapter *adapter = netdev_priv(netdev);
5657 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5659 /* Jumbo frame support */
5660 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5661 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5662 e_err("Jumbo Frames not supported.\n");
5663 return -EINVAL;
5666 /* Supported frame sizes */
5667 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5668 (max_frame > adapter->max_hw_frame_size)) {
5669 e_err("Unsupported MTU setting\n");
5670 return -EINVAL;
5673 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5674 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5675 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5676 (new_mtu > ETH_DATA_LEN)) {
5677 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5678 return -EINVAL;
5681 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5682 usleep_range(1000, 2000);
5683 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5684 adapter->max_frame_size = max_frame;
5685 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5686 netdev->mtu = new_mtu;
5687 if (netif_running(netdev))
5688 e1000e_down(adapter);
5690 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5691 * means we reserve 2 more, this pushes us to allocate from the next
5692 * larger slab size.
5693 * i.e. RXBUFFER_2048 --> size-4096 slab
5694 * However with the new *_jumbo_rx* routines, jumbo receives will use
5695 * fragmented skbs
5698 if (max_frame <= 2048)
5699 adapter->rx_buffer_len = 2048;
5700 else
5701 adapter->rx_buffer_len = 4096;
5703 /* adjust allocation if LPE protects us, and we aren't using SBP */
5704 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5705 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5706 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5707 + ETH_FCS_LEN;
5709 if (netif_running(netdev))
5710 e1000e_up(adapter);
5711 else
5712 e1000e_reset(adapter);
5714 clear_bit(__E1000_RESETTING, &adapter->state);
5716 return 0;
5719 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5720 int cmd)
5722 struct e1000_adapter *adapter = netdev_priv(netdev);
5723 struct mii_ioctl_data *data = if_mii(ifr);
5725 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5726 return -EOPNOTSUPP;
5728 switch (cmd) {
5729 case SIOCGMIIPHY:
5730 data->phy_id = adapter->hw.phy.addr;
5731 break;
5732 case SIOCGMIIREG:
5733 e1000_phy_read_status(adapter);
5735 switch (data->reg_num & 0x1F) {
5736 case MII_BMCR:
5737 data->val_out = adapter->phy_regs.bmcr;
5738 break;
5739 case MII_BMSR:
5740 data->val_out = adapter->phy_regs.bmsr;
5741 break;
5742 case MII_PHYSID1:
5743 data->val_out = (adapter->hw.phy.id >> 16);
5744 break;
5745 case MII_PHYSID2:
5746 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5747 break;
5748 case MII_ADVERTISE:
5749 data->val_out = adapter->phy_regs.advertise;
5750 break;
5751 case MII_LPA:
5752 data->val_out = adapter->phy_regs.lpa;
5753 break;
5754 case MII_EXPANSION:
5755 data->val_out = adapter->phy_regs.expansion;
5756 break;
5757 case MII_CTRL1000:
5758 data->val_out = adapter->phy_regs.ctrl1000;
5759 break;
5760 case MII_STAT1000:
5761 data->val_out = adapter->phy_regs.stat1000;
5762 break;
5763 case MII_ESTATUS:
5764 data->val_out = adapter->phy_regs.estatus;
5765 break;
5766 default:
5767 return -EIO;
5769 break;
5770 case SIOCSMIIREG:
5771 default:
5772 return -EOPNOTSUPP;
5774 return 0;
5778 * e1000e_hwtstamp_ioctl - control hardware time stamping
5779 * @netdev: network interface device structure
5780 * @ifreq: interface request
5782 * Outgoing time stamping can be enabled and disabled. Play nice and
5783 * disable it when requested, although it shouldn't cause any overhead
5784 * when no packet needs it. At most one packet in the queue may be
5785 * marked for time stamping, otherwise it would be impossible to tell
5786 * for sure to which packet the hardware time stamp belongs.
5788 * Incoming time stamping has to be configured via the hardware filters.
5789 * Not all combinations are supported, in particular event type has to be
5790 * specified. Matching the kind of event packet is not supported, with the
5791 * exception of "all V2 events regardless of level 2 or 4".
5793 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5795 struct e1000_adapter *adapter = netdev_priv(netdev);
5796 struct hwtstamp_config config;
5797 int ret_val;
5799 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5800 return -EFAULT;
5802 adapter->hwtstamp_config = config;
5804 ret_val = e1000e_config_hwtstamp(adapter);
5805 if (ret_val)
5806 return ret_val;
5808 config = adapter->hwtstamp_config;
5810 switch (config.rx_filter) {
5811 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5812 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5813 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5814 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5815 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5816 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5817 /* With V2 type filters which specify a Sync or Delay Request,
5818 * Path Delay Request/Response messages are also time stamped
5819 * by hardware so notify the caller the requested packets plus
5820 * some others are time stamped.
5822 config.rx_filter = HWTSTAMP_FILTER_SOME;
5823 break;
5824 default:
5825 break;
5828 return copy_to_user(ifr->ifr_data, &config,
5829 sizeof(config)) ? -EFAULT : 0;
5832 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5834 switch (cmd) {
5835 case SIOCGMIIPHY:
5836 case SIOCGMIIREG:
5837 case SIOCSMIIREG:
5838 return e1000_mii_ioctl(netdev, ifr, cmd);
5839 case SIOCSHWTSTAMP:
5840 return e1000e_hwtstamp_ioctl(netdev, ifr);
5841 default:
5842 return -EOPNOTSUPP;
5846 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5848 struct e1000_hw *hw = &adapter->hw;
5849 u32 i, mac_reg;
5850 u16 phy_reg, wuc_enable;
5851 int retval;
5853 /* copy MAC RARs to PHY RARs */
5854 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5856 retval = hw->phy.ops.acquire(hw);
5857 if (retval) {
5858 e_err("Could not acquire PHY\n");
5859 return retval;
5862 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5863 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5864 if (retval)
5865 goto release;
5867 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5868 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5869 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5870 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5871 (u16)(mac_reg & 0xFFFF));
5872 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5873 (u16)((mac_reg >> 16) & 0xFFFF));
5876 /* configure PHY Rx Control register */
5877 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5878 mac_reg = er32(RCTL);
5879 if (mac_reg & E1000_RCTL_UPE)
5880 phy_reg |= BM_RCTL_UPE;
5881 if (mac_reg & E1000_RCTL_MPE)
5882 phy_reg |= BM_RCTL_MPE;
5883 phy_reg &= ~(BM_RCTL_MO_MASK);
5884 if (mac_reg & E1000_RCTL_MO_3)
5885 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5886 << BM_RCTL_MO_SHIFT);
5887 if (mac_reg & E1000_RCTL_BAM)
5888 phy_reg |= BM_RCTL_BAM;
5889 if (mac_reg & E1000_RCTL_PMCF)
5890 phy_reg |= BM_RCTL_PMCF;
5891 mac_reg = er32(CTRL);
5892 if (mac_reg & E1000_CTRL_RFCE)
5893 phy_reg |= BM_RCTL_RFCE;
5894 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5896 /* enable PHY wakeup in MAC register */
5897 ew32(WUFC, wufc);
5898 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5900 /* configure and enable PHY wakeup in PHY registers */
5901 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5902 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5904 /* activate PHY wakeup */
5905 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5906 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5907 if (retval)
5908 e_err("Could not set PHY Host Wakeup bit\n");
5909 release:
5910 hw->phy.ops.release(hw);
5912 return retval;
5915 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5917 struct net_device *netdev = pci_get_drvdata(pdev);
5918 struct e1000_adapter *adapter = netdev_priv(netdev);
5919 struct e1000_hw *hw = &adapter->hw;
5920 u32 ctrl, ctrl_ext, rctl, status;
5921 /* Runtime suspend should only enable wakeup for link changes */
5922 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5923 int retval = 0;
5925 netif_device_detach(netdev);
5927 if (netif_running(netdev)) {
5928 int count = E1000_CHECK_RESET_COUNT;
5930 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5931 usleep_range(10000, 20000);
5933 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5934 e1000e_down(adapter);
5935 e1000_free_irq(adapter);
5937 e1000e_reset_interrupt_capability(adapter);
5939 status = er32(STATUS);
5940 if (status & E1000_STATUS_LU)
5941 wufc &= ~E1000_WUFC_LNKC;
5943 if (wufc) {
5944 e1000_setup_rctl(adapter);
5945 e1000e_set_rx_mode(netdev);
5947 /* turn on all-multi mode if wake on multicast is enabled */
5948 if (wufc & E1000_WUFC_MC) {
5949 rctl = er32(RCTL);
5950 rctl |= E1000_RCTL_MPE;
5951 ew32(RCTL, rctl);
5954 ctrl = er32(CTRL);
5955 ctrl |= E1000_CTRL_ADVD3WUC;
5956 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5957 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5958 ew32(CTRL, ctrl);
5960 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5961 adapter->hw.phy.media_type ==
5962 e1000_media_type_internal_serdes) {
5963 /* keep the laser running in D3 */
5964 ctrl_ext = er32(CTRL_EXT);
5965 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5966 ew32(CTRL_EXT, ctrl_ext);
5969 if (adapter->flags & FLAG_IS_ICH)
5970 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5972 /* Allow time for pending master requests to run */
5973 e1000e_disable_pcie_master(&adapter->hw);
5975 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5976 /* enable wakeup by the PHY */
5977 retval = e1000_init_phy_wakeup(adapter, wufc);
5978 if (retval)
5979 return retval;
5980 } else {
5981 /* enable wakeup by the MAC */
5982 ew32(WUFC, wufc);
5983 ew32(WUC, E1000_WUC_PME_EN);
5985 } else {
5986 ew32(WUC, 0);
5987 ew32(WUFC, 0);
5990 if (adapter->hw.phy.type == e1000_phy_igp_3)
5991 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5993 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5994 * would have already happened in close and is redundant.
5996 e1000e_release_hw_control(adapter);
5998 /* The pci-e switch on some quad port adapters will report a
5999 * correctable error when the MAC transitions from D0 to D3. To
6000 * prevent this we need to mask off the correctable errors on the
6001 * downstream port of the pci-e switch.
6003 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6004 struct pci_dev *us_dev = pdev->bus->self;
6005 u16 devctl;
6007 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6008 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6009 (devctl & ~PCI_EXP_DEVCTL_CERE));
6011 pci_save_state(pdev);
6012 pci_prepare_to_sleep(pdev);
6014 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6017 return 0;
6020 #ifdef CONFIG_PCIEASPM
6021 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6023 pci_disable_link_state_locked(pdev, state);
6025 #else
6026 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6028 u16 aspm_ctl = 0;
6030 if (state & PCIE_LINK_STATE_L0S)
6031 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6032 if (state & PCIE_LINK_STATE_L1)
6033 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6035 /* Both device and parent should have the same ASPM setting.
6036 * Disable ASPM in downstream component first and then upstream.
6038 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6040 if (pdev->bus->self)
6041 pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6042 aspm_ctl);
6044 #endif
6045 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6047 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6048 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6049 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6051 __e1000e_disable_aspm(pdev, state);
6054 #ifdef CONFIG_PM
6055 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6057 return !!adapter->tx_ring->buffer_info;
6060 static int __e1000_resume(struct pci_dev *pdev)
6062 struct net_device *netdev = pci_get_drvdata(pdev);
6063 struct e1000_adapter *adapter = netdev_priv(netdev);
6064 struct e1000_hw *hw = &adapter->hw;
6065 u16 aspm_disable_flag = 0;
6066 u32 err;
6068 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6069 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6070 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6071 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6072 if (aspm_disable_flag)
6073 e1000e_disable_aspm(pdev, aspm_disable_flag);
6075 pci_set_master(pdev);
6077 e1000e_set_interrupt_capability(adapter);
6078 if (netif_running(netdev)) {
6079 err = e1000_request_irq(adapter);
6080 if (err)
6081 return err;
6084 if (hw->mac.type >= e1000_pch2lan)
6085 e1000_resume_workarounds_pchlan(&adapter->hw);
6087 e1000e_power_up_phy(adapter);
6089 /* report the system wakeup cause from S3/S4 */
6090 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6091 u16 phy_data;
6093 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6094 if (phy_data) {
6095 e_info("PHY Wakeup cause - %s\n",
6096 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6097 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6098 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6099 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6100 phy_data & E1000_WUS_LNKC ?
6101 "Link Status Change" : "other");
6103 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6104 } else {
6105 u32 wus = er32(WUS);
6106 if (wus) {
6107 e_info("MAC Wakeup cause - %s\n",
6108 wus & E1000_WUS_EX ? "Unicast Packet" :
6109 wus & E1000_WUS_MC ? "Multicast Packet" :
6110 wus & E1000_WUS_BC ? "Broadcast Packet" :
6111 wus & E1000_WUS_MAG ? "Magic Packet" :
6112 wus & E1000_WUS_LNKC ? "Link Status Change" :
6113 "other");
6115 ew32(WUS, ~0);
6118 e1000e_reset(adapter);
6120 e1000_init_manageability_pt(adapter);
6122 if (netif_running(netdev))
6123 e1000e_up(adapter);
6125 netif_device_attach(netdev);
6127 /* If the controller has AMT, do not set DRV_LOAD until the interface
6128 * is up. For all other cases, let the f/w know that the h/w is now
6129 * under the control of the driver.
6131 if (!(adapter->flags & FLAG_HAS_AMT))
6132 e1000e_get_hw_control(adapter);
6134 return 0;
6137 #ifdef CONFIG_PM_SLEEP
6138 static int e1000_suspend(struct device *dev)
6140 struct pci_dev *pdev = to_pci_dev(dev);
6142 return __e1000_shutdown(pdev, false);
6145 static int e1000_resume(struct device *dev)
6147 struct pci_dev *pdev = to_pci_dev(dev);
6148 struct net_device *netdev = pci_get_drvdata(pdev);
6149 struct e1000_adapter *adapter = netdev_priv(netdev);
6151 if (e1000e_pm_ready(adapter))
6152 adapter->idle_check = true;
6154 return __e1000_resume(pdev);
6156 #endif /* CONFIG_PM_SLEEP */
6158 #ifdef CONFIG_PM_RUNTIME
6159 static int e1000_runtime_suspend(struct device *dev)
6161 struct pci_dev *pdev = to_pci_dev(dev);
6162 struct net_device *netdev = pci_get_drvdata(pdev);
6163 struct e1000_adapter *adapter = netdev_priv(netdev);
6165 if (!e1000e_pm_ready(adapter))
6166 return 0;
6168 return __e1000_shutdown(pdev, true);
6171 static int e1000_idle(struct device *dev)
6173 struct pci_dev *pdev = to_pci_dev(dev);
6174 struct net_device *netdev = pci_get_drvdata(pdev);
6175 struct e1000_adapter *adapter = netdev_priv(netdev);
6177 if (!e1000e_pm_ready(adapter))
6178 return 0;
6180 if (adapter->idle_check) {
6181 adapter->idle_check = false;
6182 if (!e1000e_has_link(adapter))
6183 pm_schedule_suspend(dev, MSEC_PER_SEC);
6186 return -EBUSY;
6189 static int e1000_runtime_resume(struct device *dev)
6191 struct pci_dev *pdev = to_pci_dev(dev);
6192 struct net_device *netdev = pci_get_drvdata(pdev);
6193 struct e1000_adapter *adapter = netdev_priv(netdev);
6195 if (!e1000e_pm_ready(adapter))
6196 return 0;
6198 adapter->idle_check = !dev->power.runtime_auto;
6199 return __e1000_resume(pdev);
6201 #endif /* CONFIG_PM_RUNTIME */
6202 #endif /* CONFIG_PM */
6204 static void e1000_shutdown(struct pci_dev *pdev)
6206 __e1000_shutdown(pdev, false);
6209 #ifdef CONFIG_NET_POLL_CONTROLLER
6211 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6213 struct net_device *netdev = data;
6214 struct e1000_adapter *adapter = netdev_priv(netdev);
6216 if (adapter->msix_entries) {
6217 int vector, msix_irq;
6219 vector = 0;
6220 msix_irq = adapter->msix_entries[vector].vector;
6221 disable_irq(msix_irq);
6222 e1000_intr_msix_rx(msix_irq, netdev);
6223 enable_irq(msix_irq);
6225 vector++;
6226 msix_irq = adapter->msix_entries[vector].vector;
6227 disable_irq(msix_irq);
6228 e1000_intr_msix_tx(msix_irq, netdev);
6229 enable_irq(msix_irq);
6231 vector++;
6232 msix_irq = adapter->msix_entries[vector].vector;
6233 disable_irq(msix_irq);
6234 e1000_msix_other(msix_irq, netdev);
6235 enable_irq(msix_irq);
6238 return IRQ_HANDLED;
6242 * e1000_netpoll
6243 * @netdev: network interface device structure
6245 * Polling 'interrupt' - used by things like netconsole to send skbs
6246 * without having to re-enable interrupts. It's not called while
6247 * the interrupt routine is executing.
6249 static void e1000_netpoll(struct net_device *netdev)
6251 struct e1000_adapter *adapter = netdev_priv(netdev);
6253 switch (adapter->int_mode) {
6254 case E1000E_INT_MODE_MSIX:
6255 e1000_intr_msix(adapter->pdev->irq, netdev);
6256 break;
6257 case E1000E_INT_MODE_MSI:
6258 disable_irq(adapter->pdev->irq);
6259 e1000_intr_msi(adapter->pdev->irq, netdev);
6260 enable_irq(adapter->pdev->irq);
6261 break;
6262 default: /* E1000E_INT_MODE_LEGACY */
6263 disable_irq(adapter->pdev->irq);
6264 e1000_intr(adapter->pdev->irq, netdev);
6265 enable_irq(adapter->pdev->irq);
6266 break;
6269 #endif
6272 * e1000_io_error_detected - called when PCI error is detected
6273 * @pdev: Pointer to PCI device
6274 * @state: The current pci connection state
6276 * This function is called after a PCI bus error affecting
6277 * this device has been detected.
6279 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6280 pci_channel_state_t state)
6282 struct net_device *netdev = pci_get_drvdata(pdev);
6283 struct e1000_adapter *adapter = netdev_priv(netdev);
6285 netif_device_detach(netdev);
6287 if (state == pci_channel_io_perm_failure)
6288 return PCI_ERS_RESULT_DISCONNECT;
6290 if (netif_running(netdev))
6291 e1000e_down(adapter);
6292 pci_disable_device(pdev);
6294 /* Request a slot slot reset. */
6295 return PCI_ERS_RESULT_NEED_RESET;
6299 * e1000_io_slot_reset - called after the pci bus has been reset.
6300 * @pdev: Pointer to PCI device
6302 * Restart the card from scratch, as if from a cold-boot. Implementation
6303 * resembles the first-half of the e1000_resume routine.
6305 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6307 struct net_device *netdev = pci_get_drvdata(pdev);
6308 struct e1000_adapter *adapter = netdev_priv(netdev);
6309 struct e1000_hw *hw = &adapter->hw;
6310 u16 aspm_disable_flag = 0;
6311 int err;
6312 pci_ers_result_t result;
6314 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6315 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6316 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6317 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6318 if (aspm_disable_flag)
6319 e1000e_disable_aspm(pdev, aspm_disable_flag);
6321 err = pci_enable_device_mem(pdev);
6322 if (err) {
6323 dev_err(&pdev->dev,
6324 "Cannot re-enable PCI device after reset.\n");
6325 result = PCI_ERS_RESULT_DISCONNECT;
6326 } else {
6327 pdev->state_saved = true;
6328 pci_restore_state(pdev);
6329 pci_set_master(pdev);
6331 pci_enable_wake(pdev, PCI_D3hot, 0);
6332 pci_enable_wake(pdev, PCI_D3cold, 0);
6334 e1000e_reset(adapter);
6335 ew32(WUS, ~0);
6336 result = PCI_ERS_RESULT_RECOVERED;
6339 pci_cleanup_aer_uncorrect_error_status(pdev);
6341 return result;
6345 * e1000_io_resume - called when traffic can start flowing again.
6346 * @pdev: Pointer to PCI device
6348 * This callback is called when the error recovery driver tells us that
6349 * its OK to resume normal operation. Implementation resembles the
6350 * second-half of the e1000_resume routine.
6352 static void e1000_io_resume(struct pci_dev *pdev)
6354 struct net_device *netdev = pci_get_drvdata(pdev);
6355 struct e1000_adapter *adapter = netdev_priv(netdev);
6357 e1000_init_manageability_pt(adapter);
6359 if (netif_running(netdev)) {
6360 if (e1000e_up(adapter)) {
6361 dev_err(&pdev->dev,
6362 "can't bring device back up after reset\n");
6363 return;
6367 netif_device_attach(netdev);
6369 /* If the controller has AMT, do not set DRV_LOAD until the interface
6370 * is up. For all other cases, let the f/w know that the h/w is now
6371 * under the control of the driver.
6373 if (!(adapter->flags & FLAG_HAS_AMT))
6374 e1000e_get_hw_control(adapter);
6377 static void e1000_print_device_info(struct e1000_adapter *adapter)
6379 struct e1000_hw *hw = &adapter->hw;
6380 struct net_device *netdev = adapter->netdev;
6381 u32 ret_val;
6382 u8 pba_str[E1000_PBANUM_LENGTH];
6384 /* print bus type/speed/width info */
6385 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6386 /* bus width */
6387 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6388 "Width x1"),
6389 /* MAC address */
6390 netdev->dev_addr);
6391 e_info("Intel(R) PRO/%s Network Connection\n",
6392 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6393 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6394 E1000_PBANUM_LENGTH);
6395 if (ret_val)
6396 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6397 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6398 hw->mac.type, hw->phy.type, pba_str);
6401 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6403 struct e1000_hw *hw = &adapter->hw;
6404 int ret_val;
6405 u16 buf = 0;
6407 if (hw->mac.type != e1000_82573)
6408 return;
6410 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6411 le16_to_cpus(&buf);
6412 if (!ret_val && (!(buf & (1 << 0)))) {
6413 /* Deep Smart Power Down (DSPD) */
6414 dev_warn(&adapter->pdev->dev,
6415 "Warning: detected DSPD enabled in EEPROM\n");
6419 static int e1000_set_features(struct net_device *netdev,
6420 netdev_features_t features)
6422 struct e1000_adapter *adapter = netdev_priv(netdev);
6423 netdev_features_t changed = features ^ netdev->features;
6425 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6426 adapter->flags |= FLAG_TSO_FORCE;
6428 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6429 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6430 NETIF_F_RXALL)))
6431 return 0;
6433 if (changed & NETIF_F_RXFCS) {
6434 if (features & NETIF_F_RXFCS) {
6435 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6436 } else {
6437 /* We need to take it back to defaults, which might mean
6438 * stripping is still disabled at the adapter level.
6440 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6441 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6442 else
6443 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6447 netdev->features = features;
6449 if (netif_running(netdev))
6450 e1000e_reinit_locked(adapter);
6451 else
6452 e1000e_reset(adapter);
6454 return 0;
6457 static const struct net_device_ops e1000e_netdev_ops = {
6458 .ndo_open = e1000_open,
6459 .ndo_stop = e1000_close,
6460 .ndo_start_xmit = e1000_xmit_frame,
6461 .ndo_get_stats64 = e1000e_get_stats64,
6462 .ndo_set_rx_mode = e1000e_set_rx_mode,
6463 .ndo_set_mac_address = e1000_set_mac,
6464 .ndo_change_mtu = e1000_change_mtu,
6465 .ndo_do_ioctl = e1000_ioctl,
6466 .ndo_tx_timeout = e1000_tx_timeout,
6467 .ndo_validate_addr = eth_validate_addr,
6469 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6470 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6471 #ifdef CONFIG_NET_POLL_CONTROLLER
6472 .ndo_poll_controller = e1000_netpoll,
6473 #endif
6474 .ndo_set_features = e1000_set_features,
6478 * e1000_probe - Device Initialization Routine
6479 * @pdev: PCI device information struct
6480 * @ent: entry in e1000_pci_tbl
6482 * Returns 0 on success, negative on failure
6484 * e1000_probe initializes an adapter identified by a pci_dev structure.
6485 * The OS initialization, configuring of the adapter private structure,
6486 * and a hardware reset occur.
6488 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6490 struct net_device *netdev;
6491 struct e1000_adapter *adapter;
6492 struct e1000_hw *hw;
6493 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6494 resource_size_t mmio_start, mmio_len;
6495 resource_size_t flash_start, flash_len;
6496 static int cards_found;
6497 u16 aspm_disable_flag = 0;
6498 int bars, i, err, pci_using_dac;
6499 u16 eeprom_data = 0;
6500 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6502 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6503 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6504 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6505 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6506 if (aspm_disable_flag)
6507 e1000e_disable_aspm(pdev, aspm_disable_flag);
6509 err = pci_enable_device_mem(pdev);
6510 if (err)
6511 return err;
6513 pci_using_dac = 0;
6514 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6515 if (!err) {
6516 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6517 if (!err)
6518 pci_using_dac = 1;
6519 } else {
6520 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6521 if (err) {
6522 err = dma_set_coherent_mask(&pdev->dev,
6523 DMA_BIT_MASK(32));
6524 if (err) {
6525 dev_err(&pdev->dev,
6526 "No usable DMA configuration, aborting\n");
6527 goto err_dma;
6532 bars = pci_select_bars(pdev, IORESOURCE_MEM);
6533 err = pci_request_selected_regions_exclusive(pdev, bars,
6534 e1000e_driver_name);
6535 if (err)
6536 goto err_pci_reg;
6538 /* AER (Advanced Error Reporting) hooks */
6539 pci_enable_pcie_error_reporting(pdev);
6541 pci_set_master(pdev);
6542 /* PCI config space info */
6543 err = pci_save_state(pdev);
6544 if (err)
6545 goto err_alloc_etherdev;
6547 err = -ENOMEM;
6548 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6549 if (!netdev)
6550 goto err_alloc_etherdev;
6552 SET_NETDEV_DEV(netdev, &pdev->dev);
6554 netdev->irq = pdev->irq;
6556 pci_set_drvdata(pdev, netdev);
6557 adapter = netdev_priv(netdev);
6558 hw = &adapter->hw;
6559 adapter->netdev = netdev;
6560 adapter->pdev = pdev;
6561 adapter->ei = ei;
6562 adapter->pba = ei->pba;
6563 adapter->flags = ei->flags;
6564 adapter->flags2 = ei->flags2;
6565 adapter->hw.adapter = adapter;
6566 adapter->hw.mac.type = ei->mac;
6567 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6568 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6570 mmio_start = pci_resource_start(pdev, 0);
6571 mmio_len = pci_resource_len(pdev, 0);
6573 err = -EIO;
6574 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6575 if (!adapter->hw.hw_addr)
6576 goto err_ioremap;
6578 if ((adapter->flags & FLAG_HAS_FLASH) &&
6579 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6580 flash_start = pci_resource_start(pdev, 1);
6581 flash_len = pci_resource_len(pdev, 1);
6582 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6583 if (!adapter->hw.flash_address)
6584 goto err_flashmap;
6587 /* Set default EEE advertisement */
6588 if (adapter->flags2 & FLAG2_HAS_EEE)
6589 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6591 /* construct the net_device struct */
6592 netdev->netdev_ops = &e1000e_netdev_ops;
6593 e1000e_set_ethtool_ops(netdev);
6594 netdev->watchdog_timeo = 5 * HZ;
6595 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6596 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6598 netdev->mem_start = mmio_start;
6599 netdev->mem_end = mmio_start + mmio_len;
6601 adapter->bd_number = cards_found++;
6603 e1000e_check_options(adapter);
6605 /* setup adapter struct */
6606 err = e1000_sw_init(adapter);
6607 if (err)
6608 goto err_sw_init;
6610 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6611 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6612 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6614 err = ei->get_variants(adapter);
6615 if (err)
6616 goto err_hw_init;
6618 if ((adapter->flags & FLAG_IS_ICH) &&
6619 (adapter->flags & FLAG_READ_ONLY_NVM))
6620 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6622 hw->mac.ops.get_bus_info(&adapter->hw);
6624 adapter->hw.phy.autoneg_wait_to_complete = 0;
6626 /* Copper options */
6627 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6628 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6629 adapter->hw.phy.disable_polarity_correction = 0;
6630 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6633 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6634 dev_info(&pdev->dev,
6635 "PHY reset is blocked due to SOL/IDER session.\n");
6637 /* Set initial default active device features */
6638 netdev->features = (NETIF_F_SG |
6639 NETIF_F_HW_VLAN_CTAG_RX |
6640 NETIF_F_HW_VLAN_CTAG_TX |
6641 NETIF_F_TSO |
6642 NETIF_F_TSO6 |
6643 NETIF_F_RXHASH |
6644 NETIF_F_RXCSUM |
6645 NETIF_F_HW_CSUM);
6647 /* Set user-changeable features (subset of all device features) */
6648 netdev->hw_features = netdev->features;
6649 netdev->hw_features |= NETIF_F_RXFCS;
6650 netdev->priv_flags |= IFF_SUPP_NOFCS;
6651 netdev->hw_features |= NETIF_F_RXALL;
6653 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6654 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6656 netdev->vlan_features |= (NETIF_F_SG |
6657 NETIF_F_TSO |
6658 NETIF_F_TSO6 |
6659 NETIF_F_HW_CSUM);
6661 netdev->priv_flags |= IFF_UNICAST_FLT;
6663 if (pci_using_dac) {
6664 netdev->features |= NETIF_F_HIGHDMA;
6665 netdev->vlan_features |= NETIF_F_HIGHDMA;
6668 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6669 adapter->flags |= FLAG_MNG_PT_ENABLED;
6671 /* before reading the NVM, reset the controller to
6672 * put the device in a known good starting state
6674 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6676 /* systems with ASPM and others may see the checksum fail on the first
6677 * attempt. Let's give it a few tries
6679 for (i = 0;; i++) {
6680 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6681 break;
6682 if (i == 2) {
6683 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6684 err = -EIO;
6685 goto err_eeprom;
6689 e1000_eeprom_checks(adapter);
6691 /* copy the MAC address */
6692 if (e1000e_read_mac_addr(&adapter->hw))
6693 dev_err(&pdev->dev,
6694 "NVM Read Error while reading MAC address\n");
6696 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6698 if (!is_valid_ether_addr(netdev->dev_addr)) {
6699 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6700 netdev->dev_addr);
6701 err = -EIO;
6702 goto err_eeprom;
6705 init_timer(&adapter->watchdog_timer);
6706 adapter->watchdog_timer.function = e1000_watchdog;
6707 adapter->watchdog_timer.data = (unsigned long)adapter;
6709 init_timer(&adapter->phy_info_timer);
6710 adapter->phy_info_timer.function = e1000_update_phy_info;
6711 adapter->phy_info_timer.data = (unsigned long)adapter;
6713 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6714 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6715 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6716 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6717 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6719 /* Initialize link parameters. User can change them with ethtool */
6720 adapter->hw.mac.autoneg = 1;
6721 adapter->fc_autoneg = true;
6722 adapter->hw.fc.requested_mode = e1000_fc_default;
6723 adapter->hw.fc.current_mode = e1000_fc_default;
6724 adapter->hw.phy.autoneg_advertised = 0x2f;
6726 /* ring size defaults */
6727 adapter->rx_ring->count = E1000_DEFAULT_RXD;
6728 adapter->tx_ring->count = E1000_DEFAULT_TXD;
6730 /* Initial Wake on LAN setting - If APM wake is enabled in
6731 * the EEPROM, enable the ACPI Magic Packet filter
6733 if (adapter->flags & FLAG_APME_IN_WUC) {
6734 /* APME bit in EEPROM is mapped to WUC.APME */
6735 eeprom_data = er32(WUC);
6736 eeprom_apme_mask = E1000_WUC_APME;
6737 if ((hw->mac.type > e1000_ich10lan) &&
6738 (eeprom_data & E1000_WUC_PHY_WAKE))
6739 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6740 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6741 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6742 (adapter->hw.bus.func == 1))
6743 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6744 1, &eeprom_data);
6745 else
6746 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6747 1, &eeprom_data);
6750 /* fetch WoL from EEPROM */
6751 if (eeprom_data & eeprom_apme_mask)
6752 adapter->eeprom_wol |= E1000_WUFC_MAG;
6754 /* now that we have the eeprom settings, apply the special cases
6755 * where the eeprom may be wrong or the board simply won't support
6756 * wake on lan on a particular port
6758 if (!(adapter->flags & FLAG_HAS_WOL))
6759 adapter->eeprom_wol = 0;
6761 /* initialize the wol settings based on the eeprom settings */
6762 adapter->wol = adapter->eeprom_wol;
6764 /* make sure adapter isn't asleep if manageability is enabled */
6765 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6766 (hw->mac.ops.check_mng_mode(hw)))
6767 device_wakeup_enable(&pdev->dev);
6769 /* save off EEPROM version number */
6770 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6772 /* reset the hardware with the new settings */
6773 e1000e_reset(adapter);
6775 /* If the controller has AMT, do not set DRV_LOAD until the interface
6776 * is up. For all other cases, let the f/w know that the h/w is now
6777 * under the control of the driver.
6779 if (!(adapter->flags & FLAG_HAS_AMT))
6780 e1000e_get_hw_control(adapter);
6782 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6783 err = register_netdev(netdev);
6784 if (err)
6785 goto err_register;
6787 /* carrier off reporting is important to ethtool even BEFORE open */
6788 netif_carrier_off(netdev);
6790 /* init PTP hardware clock */
6791 e1000e_ptp_init(adapter);
6793 e1000_print_device_info(adapter);
6795 if (pci_dev_run_wake(pdev))
6796 pm_runtime_put_noidle(&pdev->dev);
6798 return 0;
6800 err_register:
6801 if (!(adapter->flags & FLAG_HAS_AMT))
6802 e1000e_release_hw_control(adapter);
6803 err_eeprom:
6804 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6805 e1000_phy_hw_reset(&adapter->hw);
6806 err_hw_init:
6807 kfree(adapter->tx_ring);
6808 kfree(adapter->rx_ring);
6809 err_sw_init:
6810 if (adapter->hw.flash_address)
6811 iounmap(adapter->hw.flash_address);
6812 e1000e_reset_interrupt_capability(adapter);
6813 err_flashmap:
6814 iounmap(adapter->hw.hw_addr);
6815 err_ioremap:
6816 free_netdev(netdev);
6817 err_alloc_etherdev:
6818 pci_release_selected_regions(pdev,
6819 pci_select_bars(pdev, IORESOURCE_MEM));
6820 err_pci_reg:
6821 err_dma:
6822 pci_disable_device(pdev);
6823 return err;
6827 * e1000_remove - Device Removal Routine
6828 * @pdev: PCI device information struct
6830 * e1000_remove is called by the PCI subsystem to alert the driver
6831 * that it should release a PCI device. The could be caused by a
6832 * Hot-Plug event, or because the driver is going to be removed from
6833 * memory.
6835 static void e1000_remove(struct pci_dev *pdev)
6837 struct net_device *netdev = pci_get_drvdata(pdev);
6838 struct e1000_adapter *adapter = netdev_priv(netdev);
6839 bool down = test_bit(__E1000_DOWN, &adapter->state);
6841 e1000e_ptp_remove(adapter);
6843 /* The timers may be rescheduled, so explicitly disable them
6844 * from being rescheduled.
6846 if (!down)
6847 set_bit(__E1000_DOWN, &adapter->state);
6848 del_timer_sync(&adapter->watchdog_timer);
6849 del_timer_sync(&adapter->phy_info_timer);
6851 cancel_work_sync(&adapter->reset_task);
6852 cancel_work_sync(&adapter->watchdog_task);
6853 cancel_work_sync(&adapter->downshift_task);
6854 cancel_work_sync(&adapter->update_phy_task);
6855 cancel_work_sync(&adapter->print_hang_task);
6857 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6858 cancel_work_sync(&adapter->tx_hwtstamp_work);
6859 if (adapter->tx_hwtstamp_skb) {
6860 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6861 adapter->tx_hwtstamp_skb = NULL;
6865 if (!(netdev->flags & IFF_UP))
6866 e1000_power_down_phy(adapter);
6868 /* Don't lie to e1000_close() down the road. */
6869 if (!down)
6870 clear_bit(__E1000_DOWN, &adapter->state);
6871 unregister_netdev(netdev);
6873 if (pci_dev_run_wake(pdev))
6874 pm_runtime_get_noresume(&pdev->dev);
6876 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6877 * would have already happened in close and is redundant.
6879 e1000e_release_hw_control(adapter);
6881 e1000e_reset_interrupt_capability(adapter);
6882 kfree(adapter->tx_ring);
6883 kfree(adapter->rx_ring);
6885 iounmap(adapter->hw.hw_addr);
6886 if (adapter->hw.flash_address)
6887 iounmap(adapter->hw.flash_address);
6888 pci_release_selected_regions(pdev,
6889 pci_select_bars(pdev, IORESOURCE_MEM));
6891 free_netdev(netdev);
6893 /* AER disable */
6894 pci_disable_pcie_error_reporting(pdev);
6896 pci_disable_device(pdev);
6899 /* PCI Error Recovery (ERS) */
6900 static const struct pci_error_handlers e1000_err_handler = {
6901 .error_detected = e1000_io_error_detected,
6902 .slot_reset = e1000_io_slot_reset,
6903 .resume = e1000_io_resume,
6906 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
6911 board_82571 },
6912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6916 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6918 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6919 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6920 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6921 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6923 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6924 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6925 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6927 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6928 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6929 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6931 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6932 board_80003es2lan },
6933 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6934 board_80003es2lan },
6935 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6936 board_80003es2lan },
6937 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6938 board_80003es2lan },
6940 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6941 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6942 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6943 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6944 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6945 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6946 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6947 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6952 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6953 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6954 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6956 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6957 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6961 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6963 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6964 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6965 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6967 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6968 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6969 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6970 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6972 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6973 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6975 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6976 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6977 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6978 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6980 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6982 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6984 #ifdef CONFIG_PM
6985 static const struct dev_pm_ops e1000_pm_ops = {
6986 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6987 SET_RUNTIME_PM_OPS(e1000_runtime_suspend, e1000_runtime_resume,
6988 e1000_idle)
6990 #endif
6992 /* PCI Device API Driver */
6993 static struct pci_driver e1000_driver = {
6994 .name = e1000e_driver_name,
6995 .id_table = e1000_pci_tbl,
6996 .probe = e1000_probe,
6997 .remove = e1000_remove,
6998 #ifdef CONFIG_PM
6999 .driver = {
7000 .pm = &e1000_pm_ops,
7002 #endif
7003 .shutdown = e1000_shutdown,
7004 .err_handler = &e1000_err_handler
7008 * e1000_init_module - Driver Registration Routine
7010 * e1000_init_module is the first routine called when the driver is
7011 * loaded. All it does is register with the PCI subsystem.
7013 static int __init e1000_init_module(void)
7015 int ret;
7016 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7017 e1000e_driver_version);
7018 pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7019 ret = pci_register_driver(&e1000_driver);
7021 return ret;
7023 module_init(e1000_init_module);
7026 * e1000_exit_module - Driver Exit Cleanup Routine
7028 * e1000_exit_module is called just before the driver is removed
7029 * from memory.
7031 static void __exit e1000_exit_module(void)
7033 pci_unregister_driver(&e1000_driver);
7035 module_exit(e1000_exit_module);
7037 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7038 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7039 MODULE_LICENSE("GPL");
7040 MODULE_VERSION(DRV_VERSION);
7042 /* netdev.c */