1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
31 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
32 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
33 u16
*data
, bool read
, bool page_set
);
34 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
35 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
36 u16
*data
, bool read
);
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table
[] = {
40 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 ARRAY_SIZE(e1000_m88_cable_length_table)
46 static const u16 e1000_igp_2_cable_length_table
[] = {
47 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
48 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
49 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
50 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
51 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
52 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
53 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 ARRAY_SIZE(e1000_igp_2_cable_length_table)
61 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
62 * @hw: pointer to the HW structure
64 * Read the PHY management control register and check whether a PHY reset
65 * is blocked. If a reset is not blocked return 0, otherwise
66 * return E1000_BLK_PHY_RESET (12).
68 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
74 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ? E1000_BLK_PHY_RESET
: 0;
78 * e1000e_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
84 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
86 struct e1000_phy_info
*phy
= &hw
->phy
;
91 if (!phy
->ops
.read_reg
)
94 while (retry_count
< 2) {
95 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
99 phy
->id
= (u32
)(phy_id
<< 16);
100 usleep_range(20, 40);
101 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
105 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
106 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
108 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
118 * e1000e_phy_reset_dsp - Reset PHY DSP
119 * @hw: pointer to the HW structure
121 * Reset the digital signal processor.
123 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
127 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
131 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
135 * e1000e_read_phy_reg_mdic - Read MDI control register
136 * @hw: pointer to the HW structure
137 * @offset: register offset to be read
138 * @data: pointer to the read data
140 * Reads the MDI control register in the PHY at offset and stores the
141 * information read to data.
143 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
145 struct e1000_phy_info
*phy
= &hw
->phy
;
148 if (offset
> MAX_PHY_REG_ADDRESS
) {
149 e_dbg("PHY Address %d is out of range\n", offset
);
150 return -E1000_ERR_PARAM
;
153 /* Set up Op-code, Phy Address, and register offset in the MDI
154 * Control register. The MAC will take care of interfacing with the
155 * PHY to retrieve the desired data.
157 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
158 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
159 (E1000_MDIC_OP_READ
));
163 /* Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
167 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
170 if (mdic
& E1000_MDIC_READY
)
173 if (!(mdic
& E1000_MDIC_READY
)) {
174 e_dbg("MDI Read did not complete\n");
175 return -E1000_ERR_PHY
;
177 if (mdic
& E1000_MDIC_ERROR
) {
178 e_dbg("MDI Error\n");
179 return -E1000_ERR_PHY
;
181 if (((mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
) != offset
) {
182 e_dbg("MDI Read offset error - requested %d, returned %d\n",
184 (mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
185 return -E1000_ERR_PHY
;
189 /* Allow some time after each MDIC transaction to avoid
190 * reading duplicate data in the next MDIC transaction.
192 if (hw
->mac
.type
== e1000_pch2lan
)
199 * e1000e_write_phy_reg_mdic - Write MDI control register
200 * @hw: pointer to the HW structure
201 * @offset: register offset to write to
202 * @data: data to write to register at offset
204 * Writes data to MDI control register in the PHY at offset.
206 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
208 struct e1000_phy_info
*phy
= &hw
->phy
;
211 if (offset
> MAX_PHY_REG_ADDRESS
) {
212 e_dbg("PHY Address %d is out of range\n", offset
);
213 return -E1000_ERR_PARAM
;
216 /* Set up Op-code, Phy Address, and register offset in the MDI
217 * Control register. The MAC will take care of interfacing with the
218 * PHY to retrieve the desired data.
220 mdic
= (((u32
)data
) |
221 (offset
<< E1000_MDIC_REG_SHIFT
) |
222 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
223 (E1000_MDIC_OP_WRITE
));
227 /* Poll the ready bit to see if the MDI read completed
228 * Increasing the time out as testing showed failures with
231 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
234 if (mdic
& E1000_MDIC_READY
)
237 if (!(mdic
& E1000_MDIC_READY
)) {
238 e_dbg("MDI Write did not complete\n");
239 return -E1000_ERR_PHY
;
241 if (mdic
& E1000_MDIC_ERROR
) {
242 e_dbg("MDI Error\n");
243 return -E1000_ERR_PHY
;
245 if (((mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
) != offset
) {
246 e_dbg("MDI Write offset error - requested %d, returned %d\n",
248 (mdic
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
249 return -E1000_ERR_PHY
;
252 /* Allow some time after each MDIC transaction to avoid
253 * reading duplicate data in the next MDIC transaction.
255 if (hw
->mac
.type
== e1000_pch2lan
)
262 * e1000e_read_phy_reg_m88 - Read m88 PHY register
263 * @hw: pointer to the HW structure
264 * @offset: register offset to be read
265 * @data: pointer to the read data
267 * Acquires semaphore, if necessary, then reads the PHY register at offset
268 * and storing the retrieved information in data. Release any acquired
269 * semaphores before exiting.
271 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
275 ret_val
= hw
->phy
.ops
.acquire(hw
);
279 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
282 hw
->phy
.ops
.release(hw
);
288 * e1000e_write_phy_reg_m88 - Write m88 PHY register
289 * @hw: pointer to the HW structure
290 * @offset: register offset to write to
291 * @data: data to write at register offset
293 * Acquires semaphore, if necessary, then writes the data to PHY register
294 * at the offset. Release any acquired semaphores before exiting.
296 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
300 ret_val
= hw
->phy
.ops
.acquire(hw
);
304 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
307 hw
->phy
.ops
.release(hw
);
313 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
314 * @hw: pointer to the HW structure
315 * @page: page to set (shifted left when necessary)
317 * Sets PHY page required for PHY register access. Assumes semaphore is
318 * already acquired. Note, this function sets phy.addr to 1 so the caller
319 * must set it appropriately (if necessary) after this function returns.
321 s32
e1000_set_page_igp(struct e1000_hw
*hw
, u16 page
)
323 e_dbg("Setting page 0x%x\n", page
);
327 return e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, page
);
331 * __e1000e_read_phy_reg_igp - Read igp PHY register
332 * @hw: pointer to the HW structure
333 * @offset: register offset to be read
334 * @data: pointer to the read data
335 * @locked: semaphore has already been acquired or not
337 * Acquires semaphore, if necessary, then reads the PHY register at offset
338 * and stores the retrieved information in data. Release any acquired
339 * semaphores before exiting.
341 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
347 if (!hw
->phy
.ops
.acquire
)
350 ret_val
= hw
->phy
.ops
.acquire(hw
);
355 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
356 ret_val
= e1000e_write_phy_reg_mdic(hw
,
357 IGP01E1000_PHY_PAGE_SELECT
,
360 ret_val
= e1000e_read_phy_reg_mdic(hw
,
361 MAX_PHY_REG_ADDRESS
& offset
,
364 hw
->phy
.ops
.release(hw
);
370 * e1000e_read_phy_reg_igp - Read igp PHY register
371 * @hw: pointer to the HW structure
372 * @offset: register offset to be read
373 * @data: pointer to the read data
375 * Acquires semaphore then reads the PHY register at offset and stores the
376 * retrieved information in data.
377 * Release the acquired semaphore before exiting.
379 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
381 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
385 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
386 * @hw: pointer to the HW structure
387 * @offset: register offset to be read
388 * @data: pointer to the read data
390 * Reads the PHY register at offset and stores the retrieved information
391 * in data. Assumes semaphore already acquired.
393 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
395 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
399 * e1000e_write_phy_reg_igp - Write igp PHY register
400 * @hw: pointer to the HW structure
401 * @offset: register offset to write to
402 * @data: data to write at register offset
403 * @locked: semaphore has already been acquired or not
405 * Acquires semaphore, if necessary, then writes the data to PHY register
406 * at the offset. Release any acquired semaphores before exiting.
408 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
414 if (!hw
->phy
.ops
.acquire
)
417 ret_val
= hw
->phy
.ops
.acquire(hw
);
422 if (offset
> MAX_PHY_MULTI_PAGE_REG
)
423 ret_val
= e1000e_write_phy_reg_mdic(hw
,
424 IGP01E1000_PHY_PAGE_SELECT
,
427 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
&
430 hw
->phy
.ops
.release(hw
);
436 * e1000e_write_phy_reg_igp - Write igp PHY register
437 * @hw: pointer to the HW structure
438 * @offset: register offset to write to
439 * @data: data to write at register offset
441 * Acquires semaphore then writes the data to PHY register
442 * at the offset. Release any acquired semaphores before exiting.
444 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
446 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
450 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
451 * @hw: pointer to the HW structure
452 * @offset: register offset to write to
453 * @data: data to write at register offset
455 * Writes the data to PHY register at the offset.
456 * Assumes semaphore already acquired.
458 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
460 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
464 * __e1000_read_kmrn_reg - Read kumeran register
465 * @hw: pointer to the HW structure
466 * @offset: register offset to be read
467 * @data: pointer to the read data
468 * @locked: semaphore has already been acquired or not
470 * Acquires semaphore, if necessary. Then reads the PHY register at offset
471 * using the kumeran interface. The information retrieved is stored in data.
472 * Release any acquired semaphores before exiting.
474 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
482 if (!hw
->phy
.ops
.acquire
)
485 ret_val
= hw
->phy
.ops
.acquire(hw
);
490 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
491 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
492 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
497 kmrnctrlsta
= er32(KMRNCTRLSTA
);
498 *data
= (u16
)kmrnctrlsta
;
501 hw
->phy
.ops
.release(hw
);
507 * e1000e_read_kmrn_reg - Read kumeran register
508 * @hw: pointer to the HW structure
509 * @offset: register offset to be read
510 * @data: pointer to the read data
512 * Acquires semaphore then reads the PHY register at offset using the
513 * kumeran interface. The information retrieved is stored in data.
514 * Release the acquired semaphore before exiting.
516 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
518 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
522 * e1000e_read_kmrn_reg_locked - Read kumeran register
523 * @hw: pointer to the HW structure
524 * @offset: register offset to be read
525 * @data: pointer to the read data
527 * Reads the PHY register at offset using the kumeran interface. The
528 * information retrieved is stored in data.
529 * Assumes semaphore already acquired.
531 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
533 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
537 * __e1000_write_kmrn_reg - Write kumeran register
538 * @hw: pointer to the HW structure
539 * @offset: register offset to write to
540 * @data: data to write at register offset
541 * @locked: semaphore has already been acquired or not
543 * Acquires semaphore, if necessary. Then write the data to PHY register
544 * at the offset using the kumeran interface. Release any acquired semaphores
547 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
555 if (!hw
->phy
.ops
.acquire
)
558 ret_val
= hw
->phy
.ops
.acquire(hw
);
563 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
564 E1000_KMRNCTRLSTA_OFFSET
) | data
;
565 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
571 hw
->phy
.ops
.release(hw
);
577 * e1000e_write_kmrn_reg - Write kumeran register
578 * @hw: pointer to the HW structure
579 * @offset: register offset to write to
580 * @data: data to write at register offset
582 * Acquires semaphore then writes the data to the PHY register at the offset
583 * using the kumeran interface. Release the acquired semaphore before exiting.
585 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
587 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
591 * e1000e_write_kmrn_reg_locked - Write kumeran register
592 * @hw: pointer to the HW structure
593 * @offset: register offset to write to
594 * @data: data to write at register offset
596 * Write the data to PHY register at the offset using the kumeran interface.
597 * Assumes semaphore already acquired.
599 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
601 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
605 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
606 * @hw: pointer to the HW structure
608 * Sets up Master/slave mode
610 static s32
e1000_set_master_slave_mode(struct e1000_hw
*hw
)
615 /* Resolve Master/Slave mode */
616 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &phy_data
);
620 /* load defaults for future use */
621 hw
->phy
.original_ms_type
= (phy_data
& CTL1000_ENABLE_MASTER
) ?
622 ((phy_data
& CTL1000_AS_MASTER
) ?
623 e1000_ms_force_master
: e1000_ms_force_slave
) : e1000_ms_auto
;
625 switch (hw
->phy
.ms_type
) {
626 case e1000_ms_force_master
:
627 phy_data
|= (CTL1000_ENABLE_MASTER
| CTL1000_AS_MASTER
);
629 case e1000_ms_force_slave
:
630 phy_data
|= CTL1000_ENABLE_MASTER
;
631 phy_data
&= ~(CTL1000_AS_MASTER
);
634 phy_data
&= ~CTL1000_ENABLE_MASTER
;
640 return e1e_wphy(hw
, MII_CTRL1000
, phy_data
);
644 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
645 * @hw: pointer to the HW structure
647 * Sets up Carrier-sense on Transmit and downshift values.
649 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
654 /* Enable CRS on Tx. This must be set for half-duplex operation. */
655 ret_val
= e1e_rphy(hw
, I82577_CFG_REG
, &phy_data
);
659 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
661 /* Enable downshift */
662 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
664 ret_val
= e1e_wphy(hw
, I82577_CFG_REG
, phy_data
);
668 /* Set MDI/MDIX mode */
669 ret_val
= e1e_rphy(hw
, I82577_PHY_CTRL_2
, &phy_data
);
672 phy_data
&= ~I82577_PHY_CTRL2_MDIX_CFG_MASK
;
678 switch (hw
->phy
.mdix
) {
682 phy_data
|= I82577_PHY_CTRL2_MANUAL_MDIX
;
686 phy_data
|= I82577_PHY_CTRL2_AUTO_MDI_MDIX
;
689 ret_val
= e1e_wphy(hw
, I82577_PHY_CTRL_2
, phy_data
);
693 return e1000_set_master_slave_mode(hw
);
697 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
698 * @hw: pointer to the HW structure
700 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
701 * and downshift values are set also.
703 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
705 struct e1000_phy_info
*phy
= &hw
->phy
;
709 /* Enable CRS on Tx. This must be set for half-duplex operation. */
710 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
714 /* For BM PHY this bit is downshift enable */
715 if (phy
->type
!= e1000_phy_bm
)
716 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
719 * MDI/MDI-X = 0 (default)
720 * 0 - Auto for all speeds
723 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
725 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
729 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
732 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
735 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
739 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
744 * disable_polarity_correction = 0 (default)
745 * Automatic Correction for Reversed Cable Polarity
749 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
750 if (phy
->disable_polarity_correction
)
751 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
753 /* Enable downshift on BM (disabled by default) */
754 if (phy
->type
== e1000_phy_bm
) {
755 /* For 82574/82583, first disable then enable downshift */
756 if (phy
->id
== BME1000_E_PHY_ID_R2
) {
757 phy_data
&= ~BME1000_PSCR_ENABLE_DOWNSHIFT
;
758 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
,
762 /* Commit the changes. */
763 ret_val
= phy
->ops
.commit(hw
);
765 e_dbg("Error committing the PHY changes\n");
770 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
773 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
777 if ((phy
->type
== e1000_phy_m88
) &&
778 (phy
->revision
< E1000_REVISION_4
) &&
779 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
780 /* Force TX_CLK in the Extended PHY Specific Control Register
783 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
787 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
789 if ((phy
->revision
== 2) && (phy
->id
== M88E1111_I_PHY_ID
)) {
790 /* 82573L PHY - set the downshift counter to 5x. */
791 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
792 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
794 /* Configure Master and Slave downshift values */
795 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
796 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
797 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
798 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
800 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
805 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
806 /* Set PHY page 0, register 29 to 0x0003 */
807 ret_val
= e1e_wphy(hw
, 29, 0x0003);
811 /* Set PHY page 0, register 30 to 0x0000 */
812 ret_val
= e1e_wphy(hw
, 30, 0x0000);
817 /* Commit the changes. */
818 if (phy
->ops
.commit
) {
819 ret_val
= phy
->ops
.commit(hw
);
821 e_dbg("Error committing the PHY changes\n");
826 if (phy
->type
== e1000_phy_82578
) {
827 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
831 /* 82578 PHY - set the downshift count to 1x. */
832 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
833 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
834 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
843 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
844 * @hw: pointer to the HW structure
846 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
849 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
851 struct e1000_phy_info
*phy
= &hw
->phy
;
855 ret_val
= e1000_phy_hw_reset(hw
);
857 e_dbg("Error resetting the PHY.\n");
861 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
862 * timeout issues when LFS is enabled.
866 /* disable lplu d0 during driver init */
867 if (hw
->phy
.ops
.set_d0_lplu_state
) {
868 ret_val
= hw
->phy
.ops
.set_d0_lplu_state(hw
, false);
870 e_dbg("Error Disabling LPLU D0\n");
874 /* Configure mdi-mdix settings */
875 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
879 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
883 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
886 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
890 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
893 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
897 /* set auto-master slave resolution settings */
898 if (hw
->mac
.autoneg
) {
899 /* when autonegotiation advertisement is only 1000Mbps then we
900 * should disable SmartSpeed and enable Auto MasterSlave
901 * resolution as hardware default.
903 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
904 /* Disable SmartSpeed */
905 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
910 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
911 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
916 /* Set auto Master/Slave resolution process */
917 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &data
);
921 data
&= ~CTL1000_ENABLE_MASTER
;
922 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, data
);
927 ret_val
= e1000_set_master_slave_mode(hw
);
934 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
935 * @hw: pointer to the HW structure
937 * Reads the MII auto-neg advertisement register and/or the 1000T control
938 * register and if the PHY is already setup for auto-negotiation, then
939 * return successful. Otherwise, setup advertisement and flow control to
940 * the appropriate values for the wanted auto-negotiation.
942 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
944 struct e1000_phy_info
*phy
= &hw
->phy
;
946 u16 mii_autoneg_adv_reg
;
947 u16 mii_1000t_ctrl_reg
= 0;
949 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
951 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
952 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_autoneg_adv_reg
);
956 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
957 /* Read the MII 1000Base-T Control Register (Address 9). */
958 ret_val
= e1e_rphy(hw
, MII_CTRL1000
, &mii_1000t_ctrl_reg
);
963 /* Need to parse both autoneg_advertised and fc and set up
964 * the appropriate PHY registers. First we will parse for
965 * autoneg_advertised software override. Since we can advertise
966 * a plethora of combinations, we need to check each bit
970 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
971 * Advertisement Register (Address 4) and the 1000 mb speed bits in
972 * the 1000Base-T Control Register (Address 9).
974 mii_autoneg_adv_reg
&= ~(ADVERTISE_100FULL
|
976 ADVERTISE_10FULL
| ADVERTISE_10HALF
);
977 mii_1000t_ctrl_reg
&= ~(ADVERTISE_1000HALF
| ADVERTISE_1000FULL
);
979 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
981 /* Do we want to advertise 10 Mb Half Duplex? */
982 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
983 e_dbg("Advertise 10mb Half duplex\n");
984 mii_autoneg_adv_reg
|= ADVERTISE_10HALF
;
987 /* Do we want to advertise 10 Mb Full Duplex? */
988 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
989 e_dbg("Advertise 10mb Full duplex\n");
990 mii_autoneg_adv_reg
|= ADVERTISE_10FULL
;
993 /* Do we want to advertise 100 Mb Half Duplex? */
994 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
995 e_dbg("Advertise 100mb Half duplex\n");
996 mii_autoneg_adv_reg
|= ADVERTISE_100HALF
;
999 /* Do we want to advertise 100 Mb Full Duplex? */
1000 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
1001 e_dbg("Advertise 100mb Full duplex\n");
1002 mii_autoneg_adv_reg
|= ADVERTISE_100FULL
;
1005 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1006 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
1007 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1009 /* Do we want to advertise 1000 Mb Full Duplex? */
1010 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
1011 e_dbg("Advertise 1000mb Full duplex\n");
1012 mii_1000t_ctrl_reg
|= ADVERTISE_1000FULL
;
1015 /* Check for a software override of the flow control settings, and
1016 * setup the PHY advertisement registers accordingly. If
1017 * auto-negotiation is enabled, then software will have to set the
1018 * "PAUSE" bits to the correct value in the Auto-Negotiation
1019 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1022 * The possible values of the "fc" parameter are:
1023 * 0: Flow control is completely disabled
1024 * 1: Rx flow control is enabled (we can receive pause frames
1025 * but not send pause frames).
1026 * 2: Tx flow control is enabled (we can send pause frames
1027 * but we do not support receiving pause frames).
1028 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1029 * other: No software override. The flow control configuration
1030 * in the EEPROM is used.
1032 switch (hw
->fc
.current_mode
) {
1034 /* Flow control (Rx & Tx) is completely disabled by a
1035 * software over-ride.
1037 mii_autoneg_adv_reg
&=
1038 ~(ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1040 case e1000_fc_rx_pause
:
1041 /* Rx Flow control is enabled, and Tx Flow control is
1042 * disabled, by a software over-ride.
1044 * Since there really isn't a way to advertise that we are
1045 * capable of Rx Pause ONLY, we will advertise that we
1046 * support both symmetric and asymmetric Rx PAUSE. Later
1047 * (in e1000e_config_fc_after_link_up) we will disable the
1048 * hw's ability to send PAUSE frames.
1050 mii_autoneg_adv_reg
|=
1051 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1053 case e1000_fc_tx_pause
:
1054 /* Tx Flow control is enabled, and Rx Flow control is
1055 * disabled, by a software over-ride.
1057 mii_autoneg_adv_reg
|= ADVERTISE_PAUSE_ASYM
;
1058 mii_autoneg_adv_reg
&= ~ADVERTISE_PAUSE_CAP
;
1061 /* Flow control (both Rx and Tx) is enabled by a software
1064 mii_autoneg_adv_reg
|=
1065 (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
);
1068 e_dbg("Flow control param set incorrectly\n");
1069 return -E1000_ERR_CONFIG
;
1072 ret_val
= e1e_wphy(hw
, MII_ADVERTISE
, mii_autoneg_adv_reg
);
1076 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1078 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
)
1079 ret_val
= e1e_wphy(hw
, MII_CTRL1000
, mii_1000t_ctrl_reg
);
1085 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1086 * @hw: pointer to the HW structure
1088 * Performs initial bounds checking on autoneg advertisement parameter, then
1089 * configure to advertise the full capability. Setup the PHY to autoneg
1090 * and restart the negotiation process between the link partner. If
1091 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1093 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1095 struct e1000_phy_info
*phy
= &hw
->phy
;
1099 /* Perform some bounds checking on the autoneg advertisement
1102 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1104 /* If autoneg_advertised is zero, we assume it was not defaulted
1105 * by the calling code so we set to advertise full capability.
1107 if (!phy
->autoneg_advertised
)
1108 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1110 e_dbg("Reconfiguring auto-neg advertisement params\n");
1111 ret_val
= e1000_phy_setup_autoneg(hw
);
1113 e_dbg("Error Setting up Auto-Negotiation\n");
1116 e_dbg("Restarting Auto-Neg\n");
1118 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1119 * the Auto Neg Restart bit in the PHY control register.
1121 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
1125 phy_ctrl
|= (BMCR_ANENABLE
| BMCR_ANRESTART
);
1126 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
1130 /* Does the user want to wait for Auto-Neg to complete here, or
1131 * check at a later time (for example, callback routine).
1133 if (phy
->autoneg_wait_to_complete
) {
1134 ret_val
= e1000_wait_autoneg(hw
);
1136 e_dbg("Error while waiting for autoneg to complete\n");
1141 hw
->mac
.get_link_status
= true;
1147 * e1000e_setup_copper_link - Configure copper link settings
1148 * @hw: pointer to the HW structure
1150 * Calls the appropriate function to configure the link for auto-neg or forced
1151 * speed and duplex. Then we check for link, once link is established calls
1152 * to configure collision distance and flow control are called. If link is
1153 * not established, we return -E1000_ERR_PHY (-2).
1155 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1160 if (hw
->mac
.autoneg
) {
1161 /* Setup autoneg and flow control advertisement and perform
1164 ret_val
= e1000_copper_link_autoneg(hw
);
1168 /* PHY will be set to 10H, 10F, 100H or 100F
1169 * depending on user settings.
1171 e_dbg("Forcing Speed and Duplex\n");
1172 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1174 e_dbg("Error Forcing Speed and Duplex\n");
1179 /* Check link status. Wait up to 100 microseconds for link to become
1182 ret_val
= e1000e_phy_has_link_generic(hw
, COPPER_LINK_UP_LIMIT
, 10,
1188 e_dbg("Valid link established!!!\n");
1189 hw
->mac
.ops
.config_collision_dist(hw
);
1190 ret_val
= e1000e_config_fc_after_link_up(hw
);
1192 e_dbg("Unable to establish link!!!\n");
1199 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1200 * @hw: pointer to the HW structure
1202 * Calls the PHY setup function to force speed and duplex. Clears the
1203 * auto-crossover to force MDI manually. Waits for link and returns
1204 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1206 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1208 struct e1000_phy_info
*phy
= &hw
->phy
;
1213 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1217 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1219 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1223 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1224 * forced whenever speed and duplex are forced.
1226 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1230 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1231 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1233 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1237 e_dbg("IGP PSCR: %X\n", phy_data
);
1241 if (phy
->autoneg_wait_to_complete
) {
1242 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1244 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1250 e_dbg("Link taking longer than expected.\n");
1253 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1261 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1262 * @hw: pointer to the HW structure
1264 * Calls the PHY setup function to force speed and duplex. Clears the
1265 * auto-crossover to force MDI manually. Resets the PHY to commit the
1266 * changes. If time expires while waiting for link up, we reset the DSP.
1267 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1268 * successful completion, else return corresponding error code.
1270 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1272 struct e1000_phy_info
*phy
= &hw
->phy
;
1277 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1278 * forced whenever speed and duplex are forced.
1280 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1284 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1285 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1289 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1291 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
1295 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1297 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
1301 /* Reset the phy to commit changes. */
1302 if (hw
->phy
.ops
.commit
) {
1303 ret_val
= hw
->phy
.ops
.commit(hw
);
1308 if (phy
->autoneg_wait_to_complete
) {
1309 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1311 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1317 if (hw
->phy
.type
!= e1000_phy_m88
) {
1318 e_dbg("Link taking longer than expected.\n");
1320 /* We didn't get link.
1321 * Reset the DSP and cross our fingers.
1323 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1327 ret_val
= e1000e_phy_reset_dsp(hw
);
1334 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1340 if (hw
->phy
.type
!= e1000_phy_m88
)
1343 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1347 /* Resetting the phy means we need to re-force TX_CLK in the
1348 * Extended PHY Specific Control Register to 25MHz clock from
1349 * the reset value of 2.5MHz.
1351 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1352 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1356 /* In addition, we must re-enable CRS on Tx for both half and full
1359 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1363 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1364 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1370 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1371 * @hw: pointer to the HW structure
1373 * Forces the speed and duplex settings of the PHY.
1374 * This is a function pointer entry point only called by
1375 * PHY setup routines.
1377 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1379 struct e1000_phy_info
*phy
= &hw
->phy
;
1384 ret_val
= e1e_rphy(hw
, MII_BMCR
, &data
);
1388 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1390 ret_val
= e1e_wphy(hw
, MII_BMCR
, data
);
1394 /* Disable MDI-X support for 10/100 */
1395 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1399 data
&= ~IFE_PMC_AUTO_MDIX
;
1400 data
&= ~IFE_PMC_FORCE_MDIX
;
1402 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1406 e_dbg("IFE PMC: %X\n", data
);
1410 if (phy
->autoneg_wait_to_complete
) {
1411 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1413 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1419 e_dbg("Link taking longer than expected.\n");
1422 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1432 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1433 * @hw: pointer to the HW structure
1434 * @phy_ctrl: pointer to current value of MII_BMCR
1436 * Forces speed and duplex on the PHY by doing the following: disable flow
1437 * control, force speed/duplex on the MAC, disable auto speed detection,
1438 * disable auto-negotiation, configure duplex, configure speed, configure
1439 * the collision distance, write configuration to CTRL register. The
1440 * caller must write to the MII_BMCR register for these settings to
1443 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1445 struct e1000_mac_info
*mac
= &hw
->mac
;
1448 /* Turn off flow control when forcing speed/duplex */
1449 hw
->fc
.current_mode
= e1000_fc_none
;
1451 /* Force speed/duplex on the mac */
1453 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1454 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1456 /* Disable Auto Speed Detection */
1457 ctrl
&= ~E1000_CTRL_ASDE
;
1459 /* Disable autoneg on the phy */
1460 *phy_ctrl
&= ~BMCR_ANENABLE
;
1462 /* Forcing Full or Half Duplex? */
1463 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1464 ctrl
&= ~E1000_CTRL_FD
;
1465 *phy_ctrl
&= ~BMCR_FULLDPLX
;
1466 e_dbg("Half Duplex\n");
1468 ctrl
|= E1000_CTRL_FD
;
1469 *phy_ctrl
|= BMCR_FULLDPLX
;
1470 e_dbg("Full Duplex\n");
1473 /* Forcing 10mb or 100mb? */
1474 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1475 ctrl
|= E1000_CTRL_SPD_100
;
1476 *phy_ctrl
|= BMCR_SPEED100
;
1477 *phy_ctrl
&= ~BMCR_SPEED1000
;
1478 e_dbg("Forcing 100mb\n");
1480 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1481 *phy_ctrl
&= ~(BMCR_SPEED1000
| BMCR_SPEED100
);
1482 e_dbg("Forcing 10mb\n");
1485 hw
->mac
.ops
.config_collision_dist(hw
);
1491 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1492 * @hw: pointer to the HW structure
1493 * @active: boolean used to enable/disable lplu
1495 * Success returns 0, Failure returns 1
1497 * The low power link up (lplu) state is set to the power management level D3
1498 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1499 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1500 * is used during Dx states where the power conservation is most important.
1501 * During driver activity, SmartSpeed should be enabled so performance is
1504 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1506 struct e1000_phy_info
*phy
= &hw
->phy
;
1510 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1515 data
&= ~IGP02E1000_PM_D3_LPLU
;
1516 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1519 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1520 * during Dx states where the power conservation is most
1521 * important. During driver activity we should enable
1522 * SmartSpeed, so performance is maintained.
1524 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1525 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1530 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1531 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1535 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1536 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1541 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1542 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1547 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1548 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1549 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1550 data
|= IGP02E1000_PM_D3_LPLU
;
1551 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1555 /* When LPLU is enabled, we should disable SmartSpeed */
1556 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1560 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1561 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1568 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1569 * @hw: pointer to the HW structure
1571 * Success returns 0, Failure returns 1
1573 * A downshift is detected by querying the PHY link health.
1575 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1577 struct e1000_phy_info
*phy
= &hw
->phy
;
1579 u16 phy_data
, offset
, mask
;
1581 switch (phy
->type
) {
1583 case e1000_phy_gg82563
:
1585 case e1000_phy_82578
:
1586 offset
= M88E1000_PHY_SPEC_STATUS
;
1587 mask
= M88E1000_PSSR_DOWNSHIFT
;
1589 case e1000_phy_igp_2
:
1590 case e1000_phy_igp_3
:
1591 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1592 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1595 /* speed downshift not supported */
1596 phy
->speed_downgraded
= false;
1600 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1603 phy
->speed_downgraded
= !!(phy_data
& mask
);
1609 * e1000_check_polarity_m88 - Checks the polarity.
1610 * @hw: pointer to the HW structure
1612 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1614 * Polarity is determined based on the PHY specific status register.
1616 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1618 struct e1000_phy_info
*phy
= &hw
->phy
;
1622 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1625 phy
->cable_polarity
= ((data
& M88E1000_PSSR_REV_POLARITY
)
1626 ? e1000_rev_polarity_reversed
1627 : e1000_rev_polarity_normal
);
1633 * e1000_check_polarity_igp - Checks the polarity.
1634 * @hw: pointer to the HW structure
1636 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638 * Polarity is determined based on the PHY port status register, and the
1639 * current speed (since there is no polarity at 100Mbps).
1641 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1643 struct e1000_phy_info
*phy
= &hw
->phy
;
1645 u16 data
, offset
, mask
;
1647 /* Polarity is determined based on the speed of
1650 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1654 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1655 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1656 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1657 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1659 /* This really only applies to 10Mbps since
1660 * there is no polarity for 100Mbps (always 0).
1662 offset
= IGP01E1000_PHY_PORT_STATUS
;
1663 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1666 ret_val
= e1e_rphy(hw
, offset
, &data
);
1669 phy
->cable_polarity
= ((data
& mask
)
1670 ? e1000_rev_polarity_reversed
1671 : e1000_rev_polarity_normal
);
1677 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1678 * @hw: pointer to the HW structure
1680 * Polarity is determined on the polarity reversal feature being enabled.
1682 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1684 struct e1000_phy_info
*phy
= &hw
->phy
;
1686 u16 phy_data
, offset
, mask
;
1688 /* Polarity is determined based on the reversal feature being enabled.
1690 if (phy
->polarity_correction
) {
1691 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1692 mask
= IFE_PESC_POLARITY_REVERSED
;
1694 offset
= IFE_PHY_SPECIAL_CONTROL
;
1695 mask
= IFE_PSC_FORCE_POLARITY
;
1698 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1701 phy
->cable_polarity
= ((phy_data
& mask
)
1702 ? e1000_rev_polarity_reversed
1703 : e1000_rev_polarity_normal
);
1709 * e1000_wait_autoneg - Wait for auto-neg completion
1710 * @hw: pointer to the HW structure
1712 * Waits for auto-negotiation to complete or for the auto-negotiation time
1713 * limit to expire, which ever happens first.
1715 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1720 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1721 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1722 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1725 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1728 if (phy_status
& BMSR_ANEGCOMPLETE
)
1733 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1740 * e1000e_phy_has_link_generic - Polls PHY for link
1741 * @hw: pointer to the HW structure
1742 * @iterations: number of times to poll for link
1743 * @usec_interval: delay between polling attempts
1744 * @success: pointer to whether polling was successful or not
1746 * Polls the PHY status register for link, 'iterations' number of times.
1748 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1749 u32 usec_interval
, bool *success
)
1754 for (i
= 0; i
< iterations
; i
++) {
1755 /* Some PHYs require the MII_BMSR register to be read
1756 * twice due to the link bit being sticky. No harm doing
1757 * it across the board.
1759 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1761 /* If the first read fails, another entity may have
1762 * ownership of the resources, wait and try again to
1763 * see if they have relinquished the resources yet.
1765 udelay(usec_interval
);
1766 ret_val
= e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1769 if (phy_status
& BMSR_LSTATUS
)
1771 if (usec_interval
>= 1000)
1772 mdelay(usec_interval
/ 1000);
1774 udelay(usec_interval
);
1777 *success
= (i
< iterations
);
1783 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1784 * @hw: pointer to the HW structure
1786 * Reads the PHY specific status register to retrieve the cable length
1787 * information. The cable length is determined by averaging the minimum and
1788 * maximum values to get the "average" cable length. The m88 PHY has four
1789 * possible cable length values, which are:
1790 * Register Value Cable Length
1794 * 3 110 - 140 meters
1797 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1799 struct e1000_phy_info
*phy
= &hw
->phy
;
1801 u16 phy_data
, index
;
1803 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1807 index
= ((phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1808 M88E1000_PSSR_CABLE_LENGTH_SHIFT
);
1810 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1)
1811 return -E1000_ERR_PHY
;
1813 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1814 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1816 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1822 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1823 * @hw: pointer to the HW structure
1825 * The automatic gain control (agc) normalizes the amplitude of the
1826 * received signal, adjusting for the attenuation produced by the
1827 * cable. By reading the AGC registers, which represent the
1828 * combination of coarse and fine gain value, the value can be put
1829 * into a lookup table to obtain the approximate cable length
1832 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1834 struct e1000_phy_info
*phy
= &hw
->phy
;
1836 u16 phy_data
, i
, agc_value
= 0;
1837 u16 cur_agc_index
, max_agc_index
= 0;
1838 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1839 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1840 IGP02E1000_PHY_AGC_A
,
1841 IGP02E1000_PHY_AGC_B
,
1842 IGP02E1000_PHY_AGC_C
,
1843 IGP02E1000_PHY_AGC_D
1846 /* Read the AGC registers for all channels */
1847 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1848 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1852 /* Getting bits 15:9, which represent the combination of
1853 * coarse and fine gain values. The result is a number
1854 * that can be put into the lookup table to obtain the
1855 * approximate cable length.
1857 cur_agc_index
= ((phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1858 IGP02E1000_AGC_LENGTH_MASK
);
1860 /* Array index bound check. */
1861 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1862 (cur_agc_index
== 0))
1863 return -E1000_ERR_PHY
;
1865 /* Remove min & max AGC values from calculation. */
1866 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1867 e1000_igp_2_cable_length_table
[cur_agc_index
])
1868 min_agc_index
= cur_agc_index
;
1869 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1870 e1000_igp_2_cable_length_table
[cur_agc_index
])
1871 max_agc_index
= cur_agc_index
;
1873 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1876 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1877 e1000_igp_2_cable_length_table
[max_agc_index
]);
1878 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1880 /* Calculate cable length with the error range of +/- 10 meters. */
1881 phy
->min_cable_length
= (((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1882 (agc_value
- IGP02E1000_AGC_RANGE
) : 0);
1883 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1885 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1891 * e1000e_get_phy_info_m88 - Retrieve PHY information
1892 * @hw: pointer to the HW structure
1894 * Valid for only copper links. Read the PHY status register (sticky read)
1895 * to verify that link is up. Read the PHY special control register to
1896 * determine the polarity and 10base-T extended distance. Read the PHY
1897 * special status register to determine MDI/MDIx and current speed. If
1898 * speed is 1000, then determine cable length, local and remote receiver.
1900 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1902 struct e1000_phy_info
*phy
= &hw
->phy
;
1907 if (phy
->media_type
!= e1000_media_type_copper
) {
1908 e_dbg("Phy info is only valid for copper media\n");
1909 return -E1000_ERR_CONFIG
;
1912 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1917 e_dbg("Phy info is only valid if link is up\n");
1918 return -E1000_ERR_CONFIG
;
1921 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1925 phy
->polarity_correction
= !!(phy_data
&
1926 M88E1000_PSCR_POLARITY_REVERSAL
);
1928 ret_val
= e1000_check_polarity_m88(hw
);
1932 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1936 phy
->is_mdix
= !!(phy_data
& M88E1000_PSSR_MDIX
);
1938 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1939 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1943 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
1947 phy
->local_rx
= (phy_data
& LPA_1000LOCALRXOK
)
1948 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1950 phy
->remote_rx
= (phy_data
& LPA_1000REMRXOK
)
1951 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
1953 /* Set values to "undefined" */
1954 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1955 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1956 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1963 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1964 * @hw: pointer to the HW structure
1966 * Read PHY status to determine if link is up. If link is up, then
1967 * set/determine 10base-T extended distance and polarity correction. Read
1968 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1969 * determine on the cable length, local and remote receiver.
1971 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1973 struct e1000_phy_info
*phy
= &hw
->phy
;
1978 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1983 e_dbg("Phy info is only valid if link is up\n");
1984 return -E1000_ERR_CONFIG
;
1987 phy
->polarity_correction
= true;
1989 ret_val
= e1000_check_polarity_igp(hw
);
1993 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1997 phy
->is_mdix
= !!(data
& IGP01E1000_PSSR_MDIX
);
1999 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2000 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2001 ret_val
= phy
->ops
.get_cable_length(hw
);
2005 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
2009 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
2010 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2012 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
2013 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
2015 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2016 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2017 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2024 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2025 * @hw: pointer to the HW structure
2027 * Populates "phy" structure with various feature states.
2029 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2031 struct e1000_phy_info
*phy
= &hw
->phy
;
2036 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2041 e_dbg("Phy info is only valid if link is up\n");
2042 return -E1000_ERR_CONFIG
;
2045 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2048 phy
->polarity_correction
= !(data
& IFE_PSC_AUTO_POLARITY_DISABLE
);
2050 if (phy
->polarity_correction
) {
2051 ret_val
= e1000_check_polarity_ife(hw
);
2055 /* Polarity is forced */
2056 phy
->cable_polarity
= ((data
& IFE_PSC_FORCE_POLARITY
)
2057 ? e1000_rev_polarity_reversed
2058 : e1000_rev_polarity_normal
);
2061 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2065 phy
->is_mdix
= !!(data
& IFE_PMC_MDIX_STATUS
);
2067 /* The following parameters are undefined for 10/100 operation. */
2068 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2069 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2070 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2076 * e1000e_phy_sw_reset - PHY software reset
2077 * @hw: pointer to the HW structure
2079 * Does a software reset of the PHY by reading the PHY control register and
2080 * setting/write the control register reset bit to the PHY.
2082 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2087 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_ctrl
);
2091 phy_ctrl
|= BMCR_RESET
;
2092 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_ctrl
);
2102 * e1000e_phy_hw_reset_generic - PHY hardware reset
2103 * @hw: pointer to the HW structure
2105 * Verify the reset block is not blocking us from resetting. Acquire
2106 * semaphore (if necessary) and read/set/write the device control reset
2107 * bit in the PHY. Wait the appropriate delay time for the device to
2108 * reset and release the semaphore (if necessary).
2110 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2112 struct e1000_phy_info
*phy
= &hw
->phy
;
2116 if (phy
->ops
.check_reset_block
) {
2117 ret_val
= phy
->ops
.check_reset_block(hw
);
2122 ret_val
= phy
->ops
.acquire(hw
);
2127 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2130 udelay(phy
->reset_delay_us
);
2135 usleep_range(150, 300);
2137 phy
->ops
.release(hw
);
2139 return phy
->ops
.get_cfg_done(hw
);
2143 * e1000e_get_cfg_done_generic - Generic configuration done
2144 * @hw: pointer to the HW structure
2146 * Generic function to wait 10 milli-seconds for configuration to complete
2147 * and return success.
2149 s32
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused
*hw
)
2157 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2158 * @hw: pointer to the HW structure
2160 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2162 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2164 e_dbg("Running IGP 3 PHY init script\n");
2166 /* PHY init IGP 3 */
2167 /* Enable rise/fall, 10-mode work in class-A */
2168 e1e_wphy(hw
, 0x2F5B, 0x9018);
2169 /* Remove all caps from Replica path filter */
2170 e1e_wphy(hw
, 0x2F52, 0x0000);
2171 /* Bias trimming for ADC, AFE and Driver (Default) */
2172 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2173 /* Increase Hybrid poly bias */
2174 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2175 /* Add 4% to Tx amplitude in Gig mode */
2176 e1e_wphy(hw
, 0x2010, 0x10B0);
2177 /* Disable trimming (TTT) */
2178 e1e_wphy(hw
, 0x2011, 0x0000);
2179 /* Poly DC correction to 94.6% + 2% for all channels */
2180 e1e_wphy(hw
, 0x20DD, 0x249A);
2181 /* ABS DC correction to 95.9% */
2182 e1e_wphy(hw
, 0x20DE, 0x00D3);
2183 /* BG temp curve trim */
2184 e1e_wphy(hw
, 0x28B4, 0x04CE);
2185 /* Increasing ADC OPAMP stage 1 currents to max */
2186 e1e_wphy(hw
, 0x2F70, 0x29E4);
2187 /* Force 1000 ( required for enabling PHY regs configuration) */
2188 e1e_wphy(hw
, 0x0000, 0x0140);
2189 /* Set upd_freq to 6 */
2190 e1e_wphy(hw
, 0x1F30, 0x1606);
2192 e1e_wphy(hw
, 0x1F31, 0xB814);
2193 /* Disable adaptive fixed FFE (Default) */
2194 e1e_wphy(hw
, 0x1F35, 0x002A);
2195 /* Enable FFE hysteresis */
2196 e1e_wphy(hw
, 0x1F3E, 0x0067);
2197 /* Fixed FFE for short cable lengths */
2198 e1e_wphy(hw
, 0x1F54, 0x0065);
2199 /* Fixed FFE for medium cable lengths */
2200 e1e_wphy(hw
, 0x1F55, 0x002A);
2201 /* Fixed FFE for long cable lengths */
2202 e1e_wphy(hw
, 0x1F56, 0x002A);
2203 /* Enable Adaptive Clip Threshold */
2204 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2205 /* AHT reset limit to 1 */
2206 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2207 /* Set AHT master delay to 127 msec */
2208 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2209 /* Set scan bits for AHT */
2210 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2211 /* Set AHT Preset bits */
2212 e1e_wphy(hw
, 0x1F79, 0x0210);
2213 /* Change integ_factor of channel A to 3 */
2214 e1e_wphy(hw
, 0x1895, 0x0003);
2215 /* Change prop_factor of channels BCD to 8 */
2216 e1e_wphy(hw
, 0x1796, 0x0008);
2217 /* Change cg_icount + enable integbp for channels BCD */
2218 e1e_wphy(hw
, 0x1798, 0xD008);
2219 /* Change cg_icount + enable integbp + change prop_factor_master
2220 * to 8 for channel A
2222 e1e_wphy(hw
, 0x1898, 0xD918);
2223 /* Disable AHT in Slave mode on channel A */
2224 e1e_wphy(hw
, 0x187A, 0x0800);
2225 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2228 e1e_wphy(hw
, 0x0019, 0x008D);
2229 /* Enable restart AN on an1000_dis change */
2230 e1e_wphy(hw
, 0x001B, 0x2080);
2231 /* Enable wh_fifo read clock in 10/100 modes */
2232 e1e_wphy(hw
, 0x0014, 0x0045);
2233 /* Restart AN, Speed selection is 1000 */
2234 e1e_wphy(hw
, 0x0000, 0x1340);
2240 * e1000e_get_phy_type_from_id - Get PHY type from id
2241 * @phy_id: phy_id read from the phy
2243 * Returns the phy type from the id.
2245 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2247 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2250 case M88E1000_I_PHY_ID
:
2251 case M88E1000_E_PHY_ID
:
2252 case M88E1111_I_PHY_ID
:
2253 case M88E1011_I_PHY_ID
:
2254 phy_type
= e1000_phy_m88
;
2256 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2257 phy_type
= e1000_phy_igp_2
;
2259 case GG82563_E_PHY_ID
:
2260 phy_type
= e1000_phy_gg82563
;
2262 case IGP03E1000_E_PHY_ID
:
2263 phy_type
= e1000_phy_igp_3
;
2266 case IFE_PLUS_E_PHY_ID
:
2267 case IFE_C_E_PHY_ID
:
2268 phy_type
= e1000_phy_ife
;
2270 case BME1000_E_PHY_ID
:
2271 case BME1000_E_PHY_ID_R2
:
2272 phy_type
= e1000_phy_bm
;
2274 case I82578_E_PHY_ID
:
2275 phy_type
= e1000_phy_82578
;
2277 case I82577_E_PHY_ID
:
2278 phy_type
= e1000_phy_82577
;
2280 case I82579_E_PHY_ID
:
2281 phy_type
= e1000_phy_82579
;
2284 phy_type
= e1000_phy_i217
;
2287 phy_type
= e1000_phy_unknown
;
2294 * e1000e_determine_phy_address - Determines PHY address.
2295 * @hw: pointer to the HW structure
2297 * This uses a trial and error method to loop through possible PHY
2298 * addresses. It tests each by reading the PHY ID registers and
2299 * checking for a match.
2301 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2305 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2307 hw
->phy
.id
= phy_type
;
2309 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2310 hw
->phy
.addr
= phy_addr
;
2314 e1000e_get_phy_id(hw
);
2315 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2317 /* If phy_type is valid, break - we found our
2320 if (phy_type
!= e1000_phy_unknown
)
2323 usleep_range(1000, 2000);
2328 return -E1000_ERR_PHY_TYPE
;
2332 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2333 * @page: page to access
2335 * Returns the phy address for the page requested.
2337 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2341 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2348 * e1000e_write_phy_reg_bm - Write BM PHY register
2349 * @hw: pointer to the HW structure
2350 * @offset: register offset to write to
2351 * @data: data to write at register offset
2353 * Acquires semaphore, if necessary, then writes the data to PHY register
2354 * at the offset. Release any acquired semaphores before exiting.
2356 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2359 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2361 ret_val
= hw
->phy
.ops
.acquire(hw
);
2365 /* Page 800 works differently than the rest so it has its own func */
2366 if (page
== BM_WUC_PAGE
) {
2367 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2372 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2374 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2375 u32 page_shift
, page_select
;
2377 /* Page select is register 31 for phy address 1 and 22 for
2378 * phy address 2 and 3. Page select is shifted only for
2381 if (hw
->phy
.addr
== 1) {
2382 page_shift
= IGP_PAGE_SHIFT
;
2383 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2386 page_select
= BM_PHY_PAGE_SELECT
;
2389 /* Page is shifted left, PHY expects (page x 32) */
2390 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2391 (page
<< page_shift
));
2396 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2400 hw
->phy
.ops
.release(hw
);
2405 * e1000e_read_phy_reg_bm - Read BM PHY register
2406 * @hw: pointer to the HW structure
2407 * @offset: register offset to be read
2408 * @data: pointer to the read data
2410 * Acquires semaphore, if necessary, then reads the PHY register at offset
2411 * and storing the retrieved information in data. Release any acquired
2412 * semaphores before exiting.
2414 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2417 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2419 ret_val
= hw
->phy
.ops
.acquire(hw
);
2423 /* Page 800 works differently than the rest so it has its own func */
2424 if (page
== BM_WUC_PAGE
) {
2425 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2430 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2432 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2433 u32 page_shift
, page_select
;
2435 /* Page select is register 31 for phy address 1 and 22 for
2436 * phy address 2 and 3. Page select is shifted only for
2439 if (hw
->phy
.addr
== 1) {
2440 page_shift
= IGP_PAGE_SHIFT
;
2441 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2444 page_select
= BM_PHY_PAGE_SELECT
;
2447 /* Page is shifted left, PHY expects (page x 32) */
2448 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2449 (page
<< page_shift
));
2454 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2457 hw
->phy
.ops
.release(hw
);
2462 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2463 * @hw: pointer to the HW structure
2464 * @offset: register offset to be read
2465 * @data: pointer to the read data
2467 * Acquires semaphore, if necessary, then reads the PHY register at offset
2468 * and storing the retrieved information in data. Release any acquired
2469 * semaphores before exiting.
2471 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2474 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2476 ret_val
= hw
->phy
.ops
.acquire(hw
);
2480 /* Page 800 works differently than the rest so it has its own func */
2481 if (page
== BM_WUC_PAGE
) {
2482 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2489 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2490 /* Page is shifted left, PHY expects (page x 32) */
2491 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2498 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2501 hw
->phy
.ops
.release(hw
);
2506 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2507 * @hw: pointer to the HW structure
2508 * @offset: register offset to write to
2509 * @data: data to write at register offset
2511 * Acquires semaphore, if necessary, then writes the data to PHY register
2512 * at the offset. Release any acquired semaphores before exiting.
2514 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2517 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2519 ret_val
= hw
->phy
.ops
.acquire(hw
);
2523 /* Page 800 works differently than the rest so it has its own func */
2524 if (page
== BM_WUC_PAGE
) {
2525 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2532 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2533 /* Page is shifted left, PHY expects (page x 32) */
2534 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2541 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2545 hw
->phy
.ops
.release(hw
);
2550 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2551 * @hw: pointer to the HW structure
2552 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2554 * Assumes semaphore already acquired and phy_reg points to a valid memory
2555 * address to store contents of the BM_WUC_ENABLE_REG register.
2557 s32
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2562 /* All page select, port ctrl and wakeup registers use phy address 1 */
2565 /* Select Port Control Registers page */
2566 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2568 e_dbg("Could not set Port Control page\n");
2572 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2574 e_dbg("Could not read PHY register %d.%d\n",
2575 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2579 /* Enable both PHY wakeup mode and Wakeup register page writes.
2580 * Prevent a power state change by disabling ME and Host PHY wakeup.
2583 temp
|= BM_WUC_ENABLE_BIT
;
2584 temp
&= ~(BM_WUC_ME_WU_BIT
| BM_WUC_HOST_WU_BIT
);
2586 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, temp
);
2588 e_dbg("Could not write PHY register %d.%d\n",
2589 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2593 /* Select Host Wakeup Registers page - caller now able to write
2594 * registers on the Wakeup registers page
2596 return e1000_set_page_igp(hw
, (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2600 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2601 * @hw: pointer to the HW structure
2602 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2604 * Restore BM_WUC_ENABLE_REG to its original value.
2606 * Assumes semaphore already acquired and *phy_reg is the contents of the
2607 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2610 s32
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw
*hw
, u16
*phy_reg
)
2614 /* Select Port Control Registers page */
2615 ret_val
= e1000_set_page_igp(hw
, (BM_PORT_CTRL_PAGE
<< IGP_PAGE_SHIFT
));
2617 e_dbg("Could not set Port Control page\n");
2621 /* Restore 769.17 to its original value */
2622 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, *phy_reg
);
2624 e_dbg("Could not restore PHY register %d.%d\n",
2625 BM_PORT_CTRL_PAGE
, BM_WUC_ENABLE_REG
);
2631 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2632 * @hw: pointer to the HW structure
2633 * @offset: register offset to be read or written
2634 * @data: pointer to the data to read or write
2635 * @read: determines if operation is read or write
2636 * @page_set: BM_WUC_PAGE already set and access enabled
2638 * Read the PHY register at offset and store the retrieved information in
2639 * data, or write data to PHY register at offset. Note the procedure to
2640 * access the PHY wakeup registers is different than reading the other PHY
2641 * registers. It works as such:
2642 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2643 * 2) Set page to 800 for host (801 if we were manageability)
2644 * 3) Write the address using the address opcode (0x11)
2645 * 4) Read or write the data using the data opcode (0x12)
2646 * 5) Restore 769.17.2 to its original value
2648 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2649 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2651 * Assumes semaphore is already acquired. When page_set==true, assumes
2652 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2653 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2655 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2656 u16
*data
, bool read
, bool page_set
)
2659 u16 reg
= BM_PHY_REG_NUM(offset
);
2660 u16 page
= BM_PHY_REG_PAGE(offset
);
2663 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2664 if ((hw
->mac
.type
== e1000_pchlan
) &&
2665 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2666 e_dbg("Attempting to access page %d while gig enabled.\n",
2670 /* Enable access to PHY wakeup registers */
2671 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2673 e_dbg("Could not enable PHY wakeup reg access\n");
2678 e_dbg("Accessing PHY page %d reg 0x%x\n", page
, reg
);
2680 /* Write the Wakeup register page offset value using opcode 0x11 */
2681 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2683 e_dbg("Could not write address opcode to page %d\n", page
);
2688 /* Read the Wakeup register page value using opcode 0x12 */
2689 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2692 /* Write the Wakeup register page value using opcode 0x12 */
2693 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2698 e_dbg("Could not access PHY reg %d.%d\n", page
, reg
);
2703 ret_val
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2709 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2710 * @hw: pointer to the HW structure
2712 * In the case of a PHY power down to save power, or to turn off link during a
2713 * driver unload, or wake on lan is not enabled, restore the link to previous
2716 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2720 /* The PHY will retain its settings across a power down/up cycle */
2721 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2722 mii_reg
&= ~BMCR_PDOWN
;
2723 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2727 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2728 * @hw: pointer to the HW structure
2730 * In the case of a PHY power down to save power, or to turn off link during a
2731 * driver unload, or wake on lan is not enabled, restore the link to previous
2734 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2738 /* The PHY will retain its settings across a power down/up cycle */
2739 e1e_rphy(hw
, MII_BMCR
, &mii_reg
);
2740 mii_reg
|= BMCR_PDOWN
;
2741 e1e_wphy(hw
, MII_BMCR
, mii_reg
);
2742 usleep_range(1000, 2000);
2746 * __e1000_read_phy_reg_hv - Read HV PHY register
2747 * @hw: pointer to the HW structure
2748 * @offset: register offset to be read
2749 * @data: pointer to the read data
2750 * @locked: semaphore has already been acquired or not
2752 * Acquires semaphore, if necessary, then reads the PHY register at offset
2753 * and stores the retrieved information in data. Release any acquired
2754 * semaphore before exiting.
2756 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2757 bool locked
, bool page_set
)
2760 u16 page
= BM_PHY_REG_PAGE(offset
);
2761 u16 reg
= BM_PHY_REG_NUM(offset
);
2762 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2765 ret_val
= hw
->phy
.ops
.acquire(hw
);
2770 /* Page 800 works differently than the rest so it has its own func */
2771 if (page
== BM_WUC_PAGE
) {
2772 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2777 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2778 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2784 if (page
== HV_INTC_FC_PAGE_START
)
2787 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2788 /* Page is shifted left, PHY expects (page x 32) */
2789 ret_val
= e1000_set_page_igp(hw
,
2790 (page
<< IGP_PAGE_SHIFT
));
2792 hw
->phy
.addr
= phy_addr
;
2799 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2800 page
<< IGP_PAGE_SHIFT
, reg
);
2802 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
, data
);
2805 hw
->phy
.ops
.release(hw
);
2811 * e1000_read_phy_reg_hv - Read HV PHY register
2812 * @hw: pointer to the HW structure
2813 * @offset: register offset to be read
2814 * @data: pointer to the read data
2816 * Acquires semaphore then reads the PHY register at offset and stores
2817 * the retrieved information in data. Release the acquired semaphore
2820 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2822 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false, false);
2826 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2827 * @hw: pointer to the HW structure
2828 * @offset: register offset to be read
2829 * @data: pointer to the read data
2831 * Reads the PHY register at offset and stores the retrieved information
2832 * in data. Assumes semaphore already acquired.
2834 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2836 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, false);
2840 * e1000_read_phy_reg_page_hv - Read HV PHY register
2841 * @hw: pointer to the HW structure
2842 * @offset: register offset to write to
2843 * @data: data to write at register offset
2845 * Reads the PHY register at offset and stores the retrieved information
2846 * in data. Assumes semaphore already acquired and page already set.
2848 s32
e1000_read_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2850 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true, true);
2854 * __e1000_write_phy_reg_hv - Write HV PHY register
2855 * @hw: pointer to the HW structure
2856 * @offset: register offset to write to
2857 * @data: data to write at register offset
2858 * @locked: semaphore has already been acquired or not
2860 * Acquires semaphore, if necessary, then writes the data to PHY register
2861 * at the offset. Release any acquired semaphores before exiting.
2863 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2864 bool locked
, bool page_set
)
2867 u16 page
= BM_PHY_REG_PAGE(offset
);
2868 u16 reg
= BM_PHY_REG_NUM(offset
);
2869 u32 phy_addr
= hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2872 ret_val
= hw
->phy
.ops
.acquire(hw
);
2877 /* Page 800 works differently than the rest so it has its own func */
2878 if (page
== BM_WUC_PAGE
) {
2879 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2884 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2885 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2891 if (page
== HV_INTC_FC_PAGE_START
)
2894 /* Workaround MDIO accesses being disabled after entering IEEE
2895 * Power Down (when bit 11 of the PHY Control register is set)
2897 if ((hw
->phy
.type
== e1000_phy_82578
) &&
2898 (hw
->phy
.revision
>= 1) &&
2899 (hw
->phy
.addr
== 2) &&
2900 !(MAX_PHY_REG_ADDRESS
& reg
) && (data
& (1 << 11))) {
2902 ret_val
= e1000_access_phy_debug_regs_hv(hw
,
2909 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2910 /* Page is shifted left, PHY expects (page x 32) */
2911 ret_val
= e1000_set_page_igp(hw
,
2912 (page
<< IGP_PAGE_SHIFT
));
2914 hw
->phy
.addr
= phy_addr
;
2921 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page
,
2922 page
<< IGP_PAGE_SHIFT
, reg
);
2924 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2929 hw
->phy
.ops
.release(hw
);
2935 * e1000_write_phy_reg_hv - Write HV PHY register
2936 * @hw: pointer to the HW structure
2937 * @offset: register offset to write to
2938 * @data: data to write at register offset
2940 * Acquires semaphore then writes the data to PHY register at the offset.
2941 * Release the acquired semaphores before exiting.
2943 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2945 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false, false);
2949 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2950 * @hw: pointer to the HW structure
2951 * @offset: register offset to write to
2952 * @data: data to write at register offset
2954 * Writes the data to PHY register at the offset. Assumes semaphore
2957 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2959 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, false);
2963 * e1000_write_phy_reg_page_hv - Write HV PHY register
2964 * @hw: pointer to the HW structure
2965 * @offset: register offset to write to
2966 * @data: data to write at register offset
2968 * Writes the data to PHY register at the offset. Assumes semaphore
2969 * already acquired and page already set.
2971 s32
e1000_write_phy_reg_page_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2973 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true, true);
2977 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2978 * @page: page to be accessed
2980 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
2984 if (page
>= HV_INTC_FC_PAGE_START
)
2991 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2992 * @hw: pointer to the HW structure
2993 * @offset: register offset to be read or written
2994 * @data: pointer to the data to be read or written
2995 * @read: determines if operation is read or write
2997 * Reads the PHY register at offset and stores the retreived information
2998 * in data. Assumes semaphore already acquired. Note that the procedure
2999 * to access these regs uses the address port and data port to read/write.
3000 * These accesses done with PHY address 2 and without using pages.
3002 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
3003 u16
*data
, bool read
)
3009 /* This takes care of the difference with desktop vs mobile phy */
3010 addr_reg
= ((hw
->phy
.type
== e1000_phy_82578
) ?
3011 I82578_ADDR_REG
: I82577_ADDR_REG
);
3012 data_reg
= addr_reg
+ 1;
3014 /* All operations in this function are phy address 2 */
3017 /* masking with 0x3F to remove the page from offset */
3018 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3020 e_dbg("Could not write the Address Offset port register\n");
3024 /* Read or write the data value next */
3026 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3028 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3031 e_dbg("Could not access the Data port register\n");
3037 * e1000_link_stall_workaround_hv - Si workaround
3038 * @hw: pointer to the HW structure
3040 * This function works around a Si bug where the link partner can get
3041 * a link up indication before the PHY does. If small packets are sent
3042 * by the link partner they can be placed in the packet buffer without
3043 * being properly accounted for by the PHY and will stall preventing
3044 * further packets from being received. The workaround is to clear the
3045 * packet buffer after the PHY detects link up.
3047 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3052 if (hw
->phy
.type
!= e1000_phy_82578
)
3055 /* Do not apply workaround if in PHY loopback bit 14 set */
3056 e1e_rphy(hw
, MII_BMCR
, &data
);
3057 if (data
& BMCR_LOOPBACK
)
3060 /* check if link is up and at 1Gbps */
3061 ret_val
= e1e_rphy(hw
, BM_CS_STATUS
, &data
);
3065 data
&= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3066 BM_CS_STATUS_SPEED_MASK
);
3068 if (data
!= (BM_CS_STATUS_LINK_UP
| BM_CS_STATUS_RESOLVED
|
3069 BM_CS_STATUS_SPEED_1000
))
3074 /* flush the packets in the fifo buffer */
3075 ret_val
= e1e_wphy(hw
, HV_MUX_DATA_CTRL
,
3076 (HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3077 HV_MUX_DATA_CTRL_FORCE_SPEED
));
3081 return e1e_wphy(hw
, HV_MUX_DATA_CTRL
, HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3085 * e1000_check_polarity_82577 - Checks the polarity.
3086 * @hw: pointer to the HW structure
3088 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3090 * Polarity is determined based on the PHY specific status register.
3092 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3094 struct e1000_phy_info
*phy
= &hw
->phy
;
3098 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3101 phy
->cable_polarity
= ((data
& I82577_PHY_STATUS2_REV_POLARITY
)
3102 ? e1000_rev_polarity_reversed
3103 : e1000_rev_polarity_normal
);
3109 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3110 * @hw: pointer to the HW structure
3112 * Calls the PHY setup function to force speed and duplex.
3114 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3116 struct e1000_phy_info
*phy
= &hw
->phy
;
3121 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy_data
);
3125 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3127 ret_val
= e1e_wphy(hw
, MII_BMCR
, phy_data
);
3133 if (phy
->autoneg_wait_to_complete
) {
3134 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3136 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3142 e_dbg("Link taking longer than expected.\n");
3145 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
3153 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3154 * @hw: pointer to the HW structure
3156 * Read PHY status to determine if link is up. If link is up, then
3157 * set/determine 10base-T extended distance and polarity correction. Read
3158 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3159 * determine on the cable length, local and remote receiver.
3161 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3163 struct e1000_phy_info
*phy
= &hw
->phy
;
3168 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3173 e_dbg("Phy info is only valid if link is up\n");
3174 return -E1000_ERR_CONFIG
;
3177 phy
->polarity_correction
= true;
3179 ret_val
= e1000_check_polarity_82577(hw
);
3183 ret_val
= e1e_rphy(hw
, I82577_PHY_STATUS_2
, &data
);
3187 phy
->is_mdix
= !!(data
& I82577_PHY_STATUS2_MDIX
);
3189 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3190 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3191 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3195 ret_val
= e1e_rphy(hw
, MII_STAT1000
, &data
);
3199 phy
->local_rx
= (data
& LPA_1000LOCALRXOK
)
3200 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3202 phy
->remote_rx
= (data
& LPA_1000REMRXOK
)
3203 ? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok
;
3205 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3206 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3207 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3214 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3215 * @hw: pointer to the HW structure
3217 * Reads the diagnostic status register and verifies result is valid before
3218 * placing it in the phy_cable_length field.
3220 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3222 struct e1000_phy_info
*phy
= &hw
->phy
;
3224 u16 phy_data
, length
;
3226 ret_val
= e1e_rphy(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3230 length
= ((phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3231 I82577_DSTATUS_CABLE_LENGTH_SHIFT
);
3233 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3234 return -E1000_ERR_PHY
;
3236 phy
->cable_length
= length
;