Linux 3.11-rc3
[cris-mirror.git] / drivers / net / ethernet / intel / igb / e1000_phy.c
blob60461946f98c5ad64bb6d62bf7beefe81e39464e
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
38 static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] = {
42 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 (sizeof(e1000_m88_cable_length_table) / \
45 sizeof(e1000_m88_cable_length_table[0]))
47 static const u16 e1000_igp_2_cable_length_table[] = {
48 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 (sizeof(e1000_igp_2_cable_length_table) / \
58 sizeof(e1000_igp_2_cable_length_table[0]))
60 /**
61 * igb_check_reset_block - Check if PHY reset is blocked
62 * @hw: pointer to the HW structure
64 * Read the PHY management control register and check whether a PHY reset
65 * is blocked. If a reset is not blocked return 0, otherwise
66 * return E1000_BLK_PHY_RESET (12).
67 **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
70 u32 manc;
72 manc = rd32(E1000_MANC);
74 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
77 /**
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
83 **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
86 struct e1000_phy_info *phy = &hw->phy;
87 s32 ret_val = 0;
88 u16 phy_id;
90 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 if (ret_val)
92 goto out;
94 phy->id = (u32)(phy_id << 16);
95 udelay(20);
96 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 if (ret_val)
98 goto out;
100 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
103 out:
104 return ret_val;
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
111 * Reset the digital signal processor.
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
115 s32 ret_val = 0;
117 if (!(hw->phy.ops.write_reg))
118 goto out;
120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 if (ret_val)
122 goto out;
124 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126 out:
127 return ret_val;
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141 struct e1000_phy_info *phy = &hw->phy;
142 u32 i, mdic = 0;
143 s32 ret_val = 0;
145 if (offset > MAX_PHY_REG_ADDRESS) {
146 hw_dbg("PHY Address %d is out of range\n", offset);
147 ret_val = -E1000_ERR_PARAM;
148 goto out;
151 /* Set up Op-code, Phy Address, and register offset in the MDI
152 * Control register. The MAC will take care of interfacing with the
153 * PHY to retrieve the desired data.
155 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 (phy->addr << E1000_MDIC_PHY_SHIFT) |
157 (E1000_MDIC_OP_READ));
159 wr32(E1000_MDIC, mdic);
161 /* Poll the ready bit to see if the MDI read completed
162 * Increasing the time out as testing showed failures with
163 * the lower time out
165 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 udelay(50);
167 mdic = rd32(E1000_MDIC);
168 if (mdic & E1000_MDIC_READY)
169 break;
171 if (!(mdic & E1000_MDIC_READY)) {
172 hw_dbg("MDI Read did not complete\n");
173 ret_val = -E1000_ERR_PHY;
174 goto out;
176 if (mdic & E1000_MDIC_ERROR) {
177 hw_dbg("MDI Error\n");
178 ret_val = -E1000_ERR_PHY;
179 goto out;
181 *data = (u16) mdic;
183 out:
184 return ret_val;
188 * igb_write_phy_reg_mdic - Write MDI control register
189 * @hw: pointer to the HW structure
190 * @offset: register offset to write to
191 * @data: data to write to register at offset
193 * Writes data to MDI control register in the PHY at offset.
195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
197 struct e1000_phy_info *phy = &hw->phy;
198 u32 i, mdic = 0;
199 s32 ret_val = 0;
201 if (offset > MAX_PHY_REG_ADDRESS) {
202 hw_dbg("PHY Address %d is out of range\n", offset);
203 ret_val = -E1000_ERR_PARAM;
204 goto out;
207 /* Set up Op-code, Phy Address, and register offset in the MDI
208 * Control register. The MAC will take care of interfacing with the
209 * PHY to retrieve the desired data.
211 mdic = (((u32)data) |
212 (offset << E1000_MDIC_REG_SHIFT) |
213 (phy->addr << E1000_MDIC_PHY_SHIFT) |
214 (E1000_MDIC_OP_WRITE));
216 wr32(E1000_MDIC, mdic);
218 /* Poll the ready bit to see if the MDI read completed
219 * Increasing the time out as testing showed failures with
220 * the lower time out
222 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 udelay(50);
224 mdic = rd32(E1000_MDIC);
225 if (mdic & E1000_MDIC_READY)
226 break;
228 if (!(mdic & E1000_MDIC_READY)) {
229 hw_dbg("MDI Write did not complete\n");
230 ret_val = -E1000_ERR_PHY;
231 goto out;
233 if (mdic & E1000_MDIC_ERROR) {
234 hw_dbg("MDI Error\n");
235 ret_val = -E1000_ERR_PHY;
236 goto out;
239 out:
240 return ret_val;
244 * igb_read_phy_reg_i2c - Read PHY register using i2c
245 * @hw: pointer to the HW structure
246 * @offset: register offset to be read
247 * @data: pointer to the read data
249 * Reads the PHY register at offset using the i2c interface and stores the
250 * retrieved information in data.
252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
254 struct e1000_phy_info *phy = &hw->phy;
255 u32 i, i2ccmd = 0;
257 /* Set up Op-code, Phy Address, and register address in the I2CCMD
258 * register. The MAC will take care of interfacing with the
259 * PHY to retrieve the desired data.
261 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
262 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 (E1000_I2CCMD_OPCODE_READ));
265 wr32(E1000_I2CCMD, i2ccmd);
267 /* Poll the ready bit to see if the I2C read completed */
268 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 udelay(50);
270 i2ccmd = rd32(E1000_I2CCMD);
271 if (i2ccmd & E1000_I2CCMD_READY)
272 break;
274 if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 hw_dbg("I2CCMD Read did not complete\n");
276 return -E1000_ERR_PHY;
278 if (i2ccmd & E1000_I2CCMD_ERROR) {
279 hw_dbg("I2CCMD Error bit set\n");
280 return -E1000_ERR_PHY;
283 /* Need to byte-swap the 16-bit value. */
284 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
286 return 0;
290 * igb_write_phy_reg_i2c - Write PHY register using i2c
291 * @hw: pointer to the HW structure
292 * @offset: register offset to write to
293 * @data: data to write at register offset
295 * Writes the data to PHY register at the offset using the i2c interface.
297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
299 struct e1000_phy_info *phy = &hw->phy;
300 u32 i, i2ccmd = 0;
301 u16 phy_data_swapped;
303 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 hw_dbg("PHY I2C Address %d is out of range.\n",
306 hw->phy.addr);
307 return -E1000_ERR_CONFIG;
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
313 /* Set up Op-code, Phy Address, and register address in the I2CCMD
314 * register. The MAC will take care of interfacing with the
315 * PHY to retrieve the desired data.
317 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
318 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 E1000_I2CCMD_OPCODE_WRITE |
320 phy_data_swapped);
322 wr32(E1000_I2CCMD, i2ccmd);
324 /* Poll the ready bit to see if the I2C read completed */
325 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 udelay(50);
327 i2ccmd = rd32(E1000_I2CCMD);
328 if (i2ccmd & E1000_I2CCMD_READY)
329 break;
331 if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 hw_dbg("I2CCMD Write did not complete\n");
333 return -E1000_ERR_PHY;
335 if (i2ccmd & E1000_I2CCMD_ERROR) {
336 hw_dbg("I2CCMD Error bit set\n");
337 return -E1000_ERR_PHY;
340 return 0;
344 * igb_read_sfp_data_byte - Reads SFP module data.
345 * @hw: pointer to the HW structure
346 * @offset: byte location offset to be read
347 * @data: read data buffer pointer
349 * Reads one byte from SFP module data stored
350 * in SFP resided EEPROM memory or SFP diagnostic area.
351 * Function should be called with
352 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
353 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
354 * access
356 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
358 u32 i = 0;
359 u32 i2ccmd = 0;
360 u32 data_local = 0;
362 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
363 hw_dbg("I2CCMD command address exceeds upper limit\n");
364 return -E1000_ERR_PHY;
367 /* Set up Op-code, EEPROM Address,in the I2CCMD
368 * register. The MAC will take care of interfacing with the
369 * EEPROM to retrieve the desired data.
371 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
372 E1000_I2CCMD_OPCODE_READ);
374 wr32(E1000_I2CCMD, i2ccmd);
376 /* Poll the ready bit to see if the I2C read completed */
377 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
378 udelay(50);
379 data_local = rd32(E1000_I2CCMD);
380 if (data_local & E1000_I2CCMD_READY)
381 break;
383 if (!(data_local & E1000_I2CCMD_READY)) {
384 hw_dbg("I2CCMD Read did not complete\n");
385 return -E1000_ERR_PHY;
387 if (data_local & E1000_I2CCMD_ERROR) {
388 hw_dbg("I2CCMD Error bit set\n");
389 return -E1000_ERR_PHY;
391 *data = (u8) data_local & 0xFF;
393 return 0;
397 * e1000_write_sfp_data_byte - Writes SFP module data.
398 * @hw: pointer to the HW structure
399 * @offset: byte location offset to write to
400 * @data: data to write
402 * Writes one byte to SFP module data stored
403 * in SFP resided EEPROM memory or SFP diagnostic area.
404 * Function should be called with
405 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
406 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
407 * access
409 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
411 u32 i = 0;
412 u32 i2ccmd = 0;
413 u32 data_local = 0;
415 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
416 hw_dbg("I2CCMD command address exceeds upper limit\n");
417 return -E1000_ERR_PHY;
419 /* The programming interface is 16 bits wide
420 * so we need to read the whole word first
421 * then update appropriate byte lane and write
422 * the updated word back.
424 /* Set up Op-code, EEPROM Address,in the I2CCMD
425 * register. The MAC will take care of interfacing
426 * with an EEPROM to write the data given.
428 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
429 E1000_I2CCMD_OPCODE_READ);
430 /* Set a command to read single word */
431 wr32(E1000_I2CCMD, i2ccmd);
432 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
433 udelay(50);
434 /* Poll the ready bit to see if lastly
435 * launched I2C operation completed
437 i2ccmd = rd32(E1000_I2CCMD);
438 if (i2ccmd & E1000_I2CCMD_READY) {
439 /* Check if this is READ or WRITE phase */
440 if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
441 E1000_I2CCMD_OPCODE_READ) {
442 /* Write the selected byte
443 * lane and update whole word
445 data_local = i2ccmd & 0xFF00;
446 data_local |= data;
447 i2ccmd = ((offset <<
448 E1000_I2CCMD_REG_ADDR_SHIFT) |
449 E1000_I2CCMD_OPCODE_WRITE | data_local);
450 wr32(E1000_I2CCMD, i2ccmd);
451 } else {
452 break;
456 if (!(i2ccmd & E1000_I2CCMD_READY)) {
457 hw_dbg("I2CCMD Write did not complete\n");
458 return -E1000_ERR_PHY;
460 if (i2ccmd & E1000_I2CCMD_ERROR) {
461 hw_dbg("I2CCMD Error bit set\n");
462 return -E1000_ERR_PHY;
464 return 0;
468 * igb_read_phy_reg_igp - Read igp PHY register
469 * @hw: pointer to the HW structure
470 * @offset: register offset to be read
471 * @data: pointer to the read data
473 * Acquires semaphore, if necessary, then reads the PHY register at offset
474 * and storing the retrieved information in data. Release any acquired
475 * semaphores before exiting.
477 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
479 s32 ret_val = 0;
481 if (!(hw->phy.ops.acquire))
482 goto out;
484 ret_val = hw->phy.ops.acquire(hw);
485 if (ret_val)
486 goto out;
488 if (offset > MAX_PHY_MULTI_PAGE_REG) {
489 ret_val = igb_write_phy_reg_mdic(hw,
490 IGP01E1000_PHY_PAGE_SELECT,
491 (u16)offset);
492 if (ret_val) {
493 hw->phy.ops.release(hw);
494 goto out;
498 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
499 data);
501 hw->phy.ops.release(hw);
503 out:
504 return ret_val;
508 * igb_write_phy_reg_igp - Write igp PHY register
509 * @hw: pointer to the HW structure
510 * @offset: register offset to write to
511 * @data: data to write at register offset
513 * Acquires semaphore, if necessary, then writes the data to PHY register
514 * at the offset. Release any acquired semaphores before exiting.
516 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
518 s32 ret_val = 0;
520 if (!(hw->phy.ops.acquire))
521 goto out;
523 ret_val = hw->phy.ops.acquire(hw);
524 if (ret_val)
525 goto out;
527 if (offset > MAX_PHY_MULTI_PAGE_REG) {
528 ret_val = igb_write_phy_reg_mdic(hw,
529 IGP01E1000_PHY_PAGE_SELECT,
530 (u16)offset);
531 if (ret_val) {
532 hw->phy.ops.release(hw);
533 goto out;
537 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
538 data);
540 hw->phy.ops.release(hw);
542 out:
543 return ret_val;
547 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
548 * @hw: pointer to the HW structure
550 * Sets up Carrier-sense on Transmit and downshift values.
552 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
554 struct e1000_phy_info *phy = &hw->phy;
555 s32 ret_val;
556 u16 phy_data;
558 if (phy->reset_disable) {
559 ret_val = 0;
560 goto out;
563 if (phy->type == e1000_phy_82580) {
564 ret_val = hw->phy.ops.reset(hw);
565 if (ret_val) {
566 hw_dbg("Error resetting the PHY.\n");
567 goto out;
571 /* Enable CRS on TX. This must be set for half-duplex operation. */
572 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
573 if (ret_val)
574 goto out;
576 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
578 /* Enable downshift */
579 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
581 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
582 if (ret_val)
583 goto out;
585 /* Set MDI/MDIX mode */
586 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
587 if (ret_val)
588 goto out;
589 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
590 /* Options:
591 * 0 - Auto (default)
592 * 1 - MDI mode
593 * 2 - MDI-X mode
595 switch (hw->phy.mdix) {
596 case 1:
597 break;
598 case 2:
599 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
600 break;
601 case 0:
602 default:
603 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
604 break;
606 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
608 out:
609 return ret_val;
613 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
614 * @hw: pointer to the HW structure
616 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
617 * and downshift values are set also.
619 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
621 struct e1000_phy_info *phy = &hw->phy;
622 s32 ret_val;
623 u16 phy_data;
625 if (phy->reset_disable) {
626 ret_val = 0;
627 goto out;
630 /* Enable CRS on TX. This must be set for half-duplex operation. */
631 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
632 if (ret_val)
633 goto out;
635 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
637 /* Options:
638 * MDI/MDI-X = 0 (default)
639 * 0 - Auto for all speeds
640 * 1 - MDI mode
641 * 2 - MDI-X mode
642 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
644 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
646 switch (phy->mdix) {
647 case 1:
648 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
649 break;
650 case 2:
651 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
652 break;
653 case 3:
654 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
655 break;
656 case 0:
657 default:
658 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
659 break;
662 /* Options:
663 * disable_polarity_correction = 0 (default)
664 * Automatic Correction for Reversed Cable Polarity
665 * 0 - Disabled
666 * 1 - Enabled
668 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
669 if (phy->disable_polarity_correction == 1)
670 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
672 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
673 if (ret_val)
674 goto out;
676 if (phy->revision < E1000_REVISION_4) {
677 /* Force TX_CLK in the Extended PHY Specific Control Register
678 * to 25MHz clock.
680 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
681 &phy_data);
682 if (ret_val)
683 goto out;
685 phy_data |= M88E1000_EPSCR_TX_CLK_25;
687 if ((phy->revision == E1000_REVISION_2) &&
688 (phy->id == M88E1111_I_PHY_ID)) {
689 /* 82573L PHY - set the downshift counter to 5x. */
690 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
691 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
692 } else {
693 /* Configure Master and Slave downshift values */
694 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
695 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
696 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
697 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
699 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
700 phy_data);
701 if (ret_val)
702 goto out;
705 /* Commit the changes. */
706 ret_val = igb_phy_sw_reset(hw);
707 if (ret_val) {
708 hw_dbg("Error committing the PHY changes\n");
709 goto out;
711 if (phy->type == e1000_phy_i210) {
712 ret_val = igb_set_master_slave_mode(hw);
713 if (ret_val)
714 return ret_val;
717 out:
718 return ret_val;
722 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
723 * @hw: pointer to the HW structure
725 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
726 * Also enables and sets the downshift parameters.
728 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
730 struct e1000_phy_info *phy = &hw->phy;
731 s32 ret_val;
732 u16 phy_data;
734 if (phy->reset_disable) {
735 ret_val = 0;
736 goto out;
739 /* Enable CRS on Tx. This must be set for half-duplex operation. */
740 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
741 if (ret_val)
742 goto out;
744 /* Options:
745 * MDI/MDI-X = 0 (default)
746 * 0 - Auto for all speeds
747 * 1 - MDI mode
748 * 2 - MDI-X mode
749 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
751 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
753 switch (phy->mdix) {
754 case 1:
755 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
756 break;
757 case 2:
758 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
759 break;
760 case 3:
761 /* M88E1112 does not support this mode) */
762 if (phy->id != M88E1112_E_PHY_ID) {
763 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
764 break;
766 case 0:
767 default:
768 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
769 break;
772 /* Options:
773 * disable_polarity_correction = 0 (default)
774 * Automatic Correction for Reversed Cable Polarity
775 * 0 - Disabled
776 * 1 - Enabled
778 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
779 if (phy->disable_polarity_correction == 1)
780 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
782 /* Enable downshift and setting it to X6 */
783 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
784 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
785 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
787 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
788 if (ret_val)
789 goto out;
791 /* Commit the changes. */
792 ret_val = igb_phy_sw_reset(hw);
793 if (ret_val) {
794 hw_dbg("Error committing the PHY changes\n");
795 goto out;
798 out:
799 return ret_val;
803 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
804 * @hw: pointer to the HW structure
806 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
807 * igp PHY's.
809 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
811 struct e1000_phy_info *phy = &hw->phy;
812 s32 ret_val;
813 u16 data;
815 if (phy->reset_disable) {
816 ret_val = 0;
817 goto out;
820 ret_val = phy->ops.reset(hw);
821 if (ret_val) {
822 hw_dbg("Error resetting the PHY.\n");
823 goto out;
826 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
827 * timeout issues when LFS is enabled.
829 msleep(100);
831 /* The NVM settings will configure LPLU in D3 for
832 * non-IGP1 PHYs.
834 if (phy->type == e1000_phy_igp) {
835 /* disable lplu d3 during driver init */
836 if (phy->ops.set_d3_lplu_state)
837 ret_val = phy->ops.set_d3_lplu_state(hw, false);
838 if (ret_val) {
839 hw_dbg("Error Disabling LPLU D3\n");
840 goto out;
844 /* disable lplu d0 during driver init */
845 ret_val = phy->ops.set_d0_lplu_state(hw, false);
846 if (ret_val) {
847 hw_dbg("Error Disabling LPLU D0\n");
848 goto out;
850 /* Configure mdi-mdix settings */
851 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
852 if (ret_val)
853 goto out;
855 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
857 switch (phy->mdix) {
858 case 1:
859 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
860 break;
861 case 2:
862 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
863 break;
864 case 0:
865 default:
866 data |= IGP01E1000_PSCR_AUTO_MDIX;
867 break;
869 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
870 if (ret_val)
871 goto out;
873 /* set auto-master slave resolution settings */
874 if (hw->mac.autoneg) {
875 /* when autonegotiation advertisement is only 1000Mbps then we
876 * should disable SmartSpeed and enable Auto MasterSlave
877 * resolution as hardware default.
879 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
880 /* Disable SmartSpeed */
881 ret_val = phy->ops.read_reg(hw,
882 IGP01E1000_PHY_PORT_CONFIG,
883 &data);
884 if (ret_val)
885 goto out;
887 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
888 ret_val = phy->ops.write_reg(hw,
889 IGP01E1000_PHY_PORT_CONFIG,
890 data);
891 if (ret_val)
892 goto out;
894 /* Set auto Master/Slave resolution process */
895 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
896 if (ret_val)
897 goto out;
899 data &= ~CR_1000T_MS_ENABLE;
900 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
901 if (ret_val)
902 goto out;
905 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
906 if (ret_val)
907 goto out;
909 /* load defaults for future use */
910 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
911 ((data & CR_1000T_MS_VALUE) ?
912 e1000_ms_force_master :
913 e1000_ms_force_slave) :
914 e1000_ms_auto;
916 switch (phy->ms_type) {
917 case e1000_ms_force_master:
918 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
919 break;
920 case e1000_ms_force_slave:
921 data |= CR_1000T_MS_ENABLE;
922 data &= ~(CR_1000T_MS_VALUE);
923 break;
924 case e1000_ms_auto:
925 data &= ~CR_1000T_MS_ENABLE;
926 default:
927 break;
929 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
930 if (ret_val)
931 goto out;
934 out:
935 return ret_val;
939 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
940 * @hw: pointer to the HW structure
942 * Performs initial bounds checking on autoneg advertisement parameter, then
943 * configure to advertise the full capability. Setup the PHY to autoneg
944 * and restart the negotiation process between the link partner. If
945 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
947 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
949 struct e1000_phy_info *phy = &hw->phy;
950 s32 ret_val;
951 u16 phy_ctrl;
953 /* Perform some bounds checking on the autoneg advertisement
954 * parameter.
956 phy->autoneg_advertised &= phy->autoneg_mask;
958 /* If autoneg_advertised is zero, we assume it was not defaulted
959 * by the calling code so we set to advertise full capability.
961 if (phy->autoneg_advertised == 0)
962 phy->autoneg_advertised = phy->autoneg_mask;
964 hw_dbg("Reconfiguring auto-neg advertisement params\n");
965 ret_val = igb_phy_setup_autoneg(hw);
966 if (ret_val) {
967 hw_dbg("Error Setting up Auto-Negotiation\n");
968 goto out;
970 hw_dbg("Restarting Auto-Neg\n");
972 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
973 * the Auto Neg Restart bit in the PHY control register.
975 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
976 if (ret_val)
977 goto out;
979 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
980 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
981 if (ret_val)
982 goto out;
984 /* Does the user want to wait for Auto-Neg to complete here, or
985 * check at a later time (for example, callback routine).
987 if (phy->autoneg_wait_to_complete) {
988 ret_val = igb_wait_autoneg(hw);
989 if (ret_val) {
990 hw_dbg("Error while waiting for "
991 "autoneg to complete\n");
992 goto out;
996 hw->mac.get_link_status = true;
998 out:
999 return ret_val;
1003 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
1004 * @hw: pointer to the HW structure
1006 * Reads the MII auto-neg advertisement register and/or the 1000T control
1007 * register and if the PHY is already setup for auto-negotiation, then
1008 * return successful. Otherwise, setup advertisement and flow control to
1009 * the appropriate values for the wanted auto-negotiation.
1011 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
1013 struct e1000_phy_info *phy = &hw->phy;
1014 s32 ret_val;
1015 u16 mii_autoneg_adv_reg;
1016 u16 mii_1000t_ctrl_reg = 0;
1018 phy->autoneg_advertised &= phy->autoneg_mask;
1020 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1021 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1022 if (ret_val)
1023 goto out;
1025 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1026 /* Read the MII 1000Base-T Control Register (Address 9). */
1027 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1028 &mii_1000t_ctrl_reg);
1029 if (ret_val)
1030 goto out;
1033 /* Need to parse both autoneg_advertised and fc and set up
1034 * the appropriate PHY registers. First we will parse for
1035 * autoneg_advertised software override. Since we can advertise
1036 * a plethora of combinations, we need to check each bit
1037 * individually.
1040 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1041 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1042 * the 1000Base-T Control Register (Address 9).
1044 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1045 NWAY_AR_100TX_HD_CAPS |
1046 NWAY_AR_10T_FD_CAPS |
1047 NWAY_AR_10T_HD_CAPS);
1048 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1050 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1052 /* Do we want to advertise 10 Mb Half Duplex? */
1053 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1054 hw_dbg("Advertise 10mb Half duplex\n");
1055 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1058 /* Do we want to advertise 10 Mb Full Duplex? */
1059 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1060 hw_dbg("Advertise 10mb Full duplex\n");
1061 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1064 /* Do we want to advertise 100 Mb Half Duplex? */
1065 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1066 hw_dbg("Advertise 100mb Half duplex\n");
1067 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1070 /* Do we want to advertise 100 Mb Full Duplex? */
1071 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1072 hw_dbg("Advertise 100mb Full duplex\n");
1073 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1076 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1077 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1078 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1080 /* Do we want to advertise 1000 Mb Full Duplex? */
1081 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1082 hw_dbg("Advertise 1000mb Full duplex\n");
1083 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1086 /* Check for a software override of the flow control settings, and
1087 * setup the PHY advertisement registers accordingly. If
1088 * auto-negotiation is enabled, then software will have to set the
1089 * "PAUSE" bits to the correct value in the Auto-Negotiation
1090 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1091 * negotiation.
1093 * The possible values of the "fc" parameter are:
1094 * 0: Flow control is completely disabled
1095 * 1: Rx flow control is enabled (we can receive pause frames
1096 * but not send pause frames).
1097 * 2: Tx flow control is enabled (we can send pause frames
1098 * but we do not support receiving pause frames).
1099 * 3: Both Rx and TX flow control (symmetric) are enabled.
1100 * other: No software override. The flow control configuration
1101 * in the EEPROM is used.
1103 switch (hw->fc.current_mode) {
1104 case e1000_fc_none:
1105 /* Flow control (RX & TX) is completely disabled by a
1106 * software over-ride.
1108 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1109 break;
1110 case e1000_fc_rx_pause:
1111 /* RX Flow control is enabled, and TX Flow control is
1112 * disabled, by a software over-ride.
1114 * Since there really isn't a way to advertise that we are
1115 * capable of RX Pause ONLY, we will advertise that we
1116 * support both symmetric and asymmetric RX PAUSE. Later
1117 * (in e1000_config_fc_after_link_up) we will disable the
1118 * hw's ability to send PAUSE frames.
1120 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1121 break;
1122 case e1000_fc_tx_pause:
1123 /* TX Flow control is enabled, and RX Flow control is
1124 * disabled, by a software over-ride.
1126 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1127 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1128 break;
1129 case e1000_fc_full:
1130 /* Flow control (both RX and TX) is enabled by a software
1131 * over-ride.
1133 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1134 break;
1135 default:
1136 hw_dbg("Flow control param set incorrectly\n");
1137 ret_val = -E1000_ERR_CONFIG;
1138 goto out;
1141 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1142 if (ret_val)
1143 goto out;
1145 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1147 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1148 ret_val = phy->ops.write_reg(hw,
1149 PHY_1000T_CTRL,
1150 mii_1000t_ctrl_reg);
1151 if (ret_val)
1152 goto out;
1155 out:
1156 return ret_val;
1160 * igb_setup_copper_link - Configure copper link settings
1161 * @hw: pointer to the HW structure
1163 * Calls the appropriate function to configure the link for auto-neg or forced
1164 * speed and duplex. Then we check for link, once link is established calls
1165 * to configure collision distance and flow control are called. If link is
1166 * not established, we return -E1000_ERR_PHY (-2).
1168 s32 igb_setup_copper_link(struct e1000_hw *hw)
1170 s32 ret_val;
1171 bool link;
1173 if (hw->mac.autoneg) {
1174 /* Setup autoneg and flow control advertisement and perform
1175 * autonegotiation.
1177 ret_val = igb_copper_link_autoneg(hw);
1178 if (ret_val)
1179 goto out;
1180 } else {
1181 /* PHY will be set to 10H, 10F, 100H or 100F
1182 * depending on user settings.
1184 hw_dbg("Forcing Speed and Duplex\n");
1185 ret_val = hw->phy.ops.force_speed_duplex(hw);
1186 if (ret_val) {
1187 hw_dbg("Error Forcing Speed and Duplex\n");
1188 goto out;
1192 /* Check link status. Wait up to 100 microseconds for link to become
1193 * valid.
1195 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1196 if (ret_val)
1197 goto out;
1199 if (link) {
1200 hw_dbg("Valid link established!!!\n");
1201 igb_config_collision_dist(hw);
1202 ret_val = igb_config_fc_after_link_up(hw);
1203 } else {
1204 hw_dbg("Unable to establish link!!!\n");
1207 out:
1208 return ret_val;
1212 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1213 * @hw: pointer to the HW structure
1215 * Calls the PHY setup function to force speed and duplex. Clears the
1216 * auto-crossover to force MDI manually. Waits for link and returns
1217 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1219 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1221 struct e1000_phy_info *phy = &hw->phy;
1222 s32 ret_val;
1223 u16 phy_data;
1224 bool link;
1226 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1227 if (ret_val)
1228 goto out;
1230 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1232 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1233 if (ret_val)
1234 goto out;
1236 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1237 * forced whenever speed and duplex are forced.
1239 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1240 if (ret_val)
1241 goto out;
1243 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1244 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1246 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1247 if (ret_val)
1248 goto out;
1250 hw_dbg("IGP PSCR: %X\n", phy_data);
1252 udelay(1);
1254 if (phy->autoneg_wait_to_complete) {
1255 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1257 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1258 if (ret_val)
1259 goto out;
1261 if (!link)
1262 hw_dbg("Link taking longer than expected.\n");
1264 /* Try once more */
1265 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1266 if (ret_val)
1267 goto out;
1270 out:
1271 return ret_val;
1275 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1276 * @hw: pointer to the HW structure
1278 * Calls the PHY setup function to force speed and duplex. Clears the
1279 * auto-crossover to force MDI manually. Resets the PHY to commit the
1280 * changes. If time expires while waiting for link up, we reset the DSP.
1281 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1282 * successful completion, else return corresponding error code.
1284 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1286 struct e1000_phy_info *phy = &hw->phy;
1287 s32 ret_val;
1288 u16 phy_data;
1289 bool link;
1291 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1292 if (phy->type != e1000_phy_i210) {
1293 /* Clear Auto-Crossover to force MDI manually. M88E1000
1294 * requires MDI forced whenever speed and duplex are forced.
1296 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1297 &phy_data);
1298 if (ret_val)
1299 goto out;
1301 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1302 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1303 phy_data);
1304 if (ret_val)
1305 goto out;
1307 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1310 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1311 if (ret_val)
1312 goto out;
1314 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1316 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1317 if (ret_val)
1318 goto out;
1320 /* Reset the phy to commit changes. */
1321 ret_val = igb_phy_sw_reset(hw);
1322 if (ret_val)
1323 goto out;
1325 if (phy->autoneg_wait_to_complete) {
1326 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1328 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1329 if (ret_val)
1330 goto out;
1332 if (!link) {
1333 bool reset_dsp = true;
1335 switch (hw->phy.id) {
1336 case I347AT4_E_PHY_ID:
1337 case M88E1112_E_PHY_ID:
1338 case I210_I_PHY_ID:
1339 reset_dsp = false;
1340 break;
1341 default:
1342 if (hw->phy.type != e1000_phy_m88)
1343 reset_dsp = false;
1344 break;
1346 if (!reset_dsp)
1347 hw_dbg("Link taking longer than expected.\n");
1348 else {
1349 /* We didn't get link.
1350 * Reset the DSP and cross our fingers.
1352 ret_val = phy->ops.write_reg(hw,
1353 M88E1000_PHY_PAGE_SELECT,
1354 0x001d);
1355 if (ret_val)
1356 goto out;
1357 ret_val = igb_phy_reset_dsp(hw);
1358 if (ret_val)
1359 goto out;
1363 /* Try once more */
1364 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1365 100000, &link);
1366 if (ret_val)
1367 goto out;
1370 if (hw->phy.type != e1000_phy_m88 ||
1371 hw->phy.id == I347AT4_E_PHY_ID ||
1372 hw->phy.id == M88E1112_E_PHY_ID ||
1373 hw->phy.id == I210_I_PHY_ID)
1374 goto out;
1376 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1377 if (ret_val)
1378 goto out;
1380 /* Resetting the phy means we need to re-force TX_CLK in the
1381 * Extended PHY Specific Control Register to 25MHz clock from
1382 * the reset value of 2.5MHz.
1384 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1385 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1386 if (ret_val)
1387 goto out;
1389 /* In addition, we must re-enable CRS on Tx for both half and full
1390 * duplex.
1392 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1393 if (ret_val)
1394 goto out;
1396 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1397 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1399 out:
1400 return ret_val;
1404 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1405 * @hw: pointer to the HW structure
1406 * @phy_ctrl: pointer to current value of PHY_CONTROL
1408 * Forces speed and duplex on the PHY by doing the following: disable flow
1409 * control, force speed/duplex on the MAC, disable auto speed detection,
1410 * disable auto-negotiation, configure duplex, configure speed, configure
1411 * the collision distance, write configuration to CTRL register. The
1412 * caller must write to the PHY_CONTROL register for these settings to
1413 * take affect.
1415 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1416 u16 *phy_ctrl)
1418 struct e1000_mac_info *mac = &hw->mac;
1419 u32 ctrl;
1421 /* Turn off flow control when forcing speed/duplex */
1422 hw->fc.current_mode = e1000_fc_none;
1424 /* Force speed/duplex on the mac */
1425 ctrl = rd32(E1000_CTRL);
1426 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1427 ctrl &= ~E1000_CTRL_SPD_SEL;
1429 /* Disable Auto Speed Detection */
1430 ctrl &= ~E1000_CTRL_ASDE;
1432 /* Disable autoneg on the phy */
1433 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1435 /* Forcing Full or Half Duplex? */
1436 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1437 ctrl &= ~E1000_CTRL_FD;
1438 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1439 hw_dbg("Half Duplex\n");
1440 } else {
1441 ctrl |= E1000_CTRL_FD;
1442 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1443 hw_dbg("Full Duplex\n");
1446 /* Forcing 10mb or 100mb? */
1447 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1448 ctrl |= E1000_CTRL_SPD_100;
1449 *phy_ctrl |= MII_CR_SPEED_100;
1450 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1451 hw_dbg("Forcing 100mb\n");
1452 } else {
1453 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1454 *phy_ctrl |= MII_CR_SPEED_10;
1455 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1456 hw_dbg("Forcing 10mb\n");
1459 igb_config_collision_dist(hw);
1461 wr32(E1000_CTRL, ctrl);
1465 * igb_set_d3_lplu_state - Sets low power link up state for D3
1466 * @hw: pointer to the HW structure
1467 * @active: boolean used to enable/disable lplu
1469 * Success returns 0, Failure returns 1
1471 * The low power link up (lplu) state is set to the power management level D3
1472 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1473 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1474 * is used during Dx states where the power conservation is most important.
1475 * During driver activity, SmartSpeed should be enabled so performance is
1476 * maintained.
1478 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480 struct e1000_phy_info *phy = &hw->phy;
1481 s32 ret_val = 0;
1482 u16 data;
1484 if (!(hw->phy.ops.read_reg))
1485 goto out;
1487 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1488 if (ret_val)
1489 goto out;
1491 if (!active) {
1492 data &= ~IGP02E1000_PM_D3_LPLU;
1493 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1494 data);
1495 if (ret_val)
1496 goto out;
1497 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1498 * during Dx states where the power conservation is most
1499 * important. During driver activity we should enable
1500 * SmartSpeed, so performance is maintained.
1502 if (phy->smart_speed == e1000_smart_speed_on) {
1503 ret_val = phy->ops.read_reg(hw,
1504 IGP01E1000_PHY_PORT_CONFIG,
1505 &data);
1506 if (ret_val)
1507 goto out;
1509 data |= IGP01E1000_PSCFR_SMART_SPEED;
1510 ret_val = phy->ops.write_reg(hw,
1511 IGP01E1000_PHY_PORT_CONFIG,
1512 data);
1513 if (ret_val)
1514 goto out;
1515 } else if (phy->smart_speed == e1000_smart_speed_off) {
1516 ret_val = phy->ops.read_reg(hw,
1517 IGP01E1000_PHY_PORT_CONFIG,
1518 &data);
1519 if (ret_val)
1520 goto out;
1522 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1523 ret_val = phy->ops.write_reg(hw,
1524 IGP01E1000_PHY_PORT_CONFIG,
1525 data);
1526 if (ret_val)
1527 goto out;
1529 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1530 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1531 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1532 data |= IGP02E1000_PM_D3_LPLU;
1533 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1534 data);
1535 if (ret_val)
1536 goto out;
1538 /* When LPLU is enabled, we should disable SmartSpeed */
1539 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1540 &data);
1541 if (ret_val)
1542 goto out;
1544 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1545 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1546 data);
1549 out:
1550 return ret_val;
1554 * igb_check_downshift - Checks whether a downshift in speed occurred
1555 * @hw: pointer to the HW structure
1557 * Success returns 0, Failure returns 1
1559 * A downshift is detected by querying the PHY link health.
1561 s32 igb_check_downshift(struct e1000_hw *hw)
1563 struct e1000_phy_info *phy = &hw->phy;
1564 s32 ret_val;
1565 u16 phy_data, offset, mask;
1567 switch (phy->type) {
1568 case e1000_phy_i210:
1569 case e1000_phy_m88:
1570 case e1000_phy_gg82563:
1571 offset = M88E1000_PHY_SPEC_STATUS;
1572 mask = M88E1000_PSSR_DOWNSHIFT;
1573 break;
1574 case e1000_phy_igp_2:
1575 case e1000_phy_igp:
1576 case e1000_phy_igp_3:
1577 offset = IGP01E1000_PHY_LINK_HEALTH;
1578 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1579 break;
1580 default:
1581 /* speed downshift not supported */
1582 phy->speed_downgraded = false;
1583 ret_val = 0;
1584 goto out;
1587 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1589 if (!ret_val)
1590 phy->speed_downgraded = (phy_data & mask) ? true : false;
1592 out:
1593 return ret_val;
1597 * igb_check_polarity_m88 - Checks the polarity.
1598 * @hw: pointer to the HW structure
1600 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1602 * Polarity is determined based on the PHY specific status register.
1604 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1606 struct e1000_phy_info *phy = &hw->phy;
1607 s32 ret_val;
1608 u16 data;
1610 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1612 if (!ret_val)
1613 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1614 ? e1000_rev_polarity_reversed
1615 : e1000_rev_polarity_normal;
1617 return ret_val;
1621 * igb_check_polarity_igp - Checks the polarity.
1622 * @hw: pointer to the HW structure
1624 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1626 * Polarity is determined based on the PHY port status register, and the
1627 * current speed (since there is no polarity at 100Mbps).
1629 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1631 struct e1000_phy_info *phy = &hw->phy;
1632 s32 ret_val;
1633 u16 data, offset, mask;
1635 /* Polarity is determined based on the speed of
1636 * our connection.
1638 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1639 if (ret_val)
1640 goto out;
1642 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1643 IGP01E1000_PSSR_SPEED_1000MBPS) {
1644 offset = IGP01E1000_PHY_PCS_INIT_REG;
1645 mask = IGP01E1000_PHY_POLARITY_MASK;
1646 } else {
1647 /* This really only applies to 10Mbps since
1648 * there is no polarity for 100Mbps (always 0).
1650 offset = IGP01E1000_PHY_PORT_STATUS;
1651 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1654 ret_val = phy->ops.read_reg(hw, offset, &data);
1656 if (!ret_val)
1657 phy->cable_polarity = (data & mask)
1658 ? e1000_rev_polarity_reversed
1659 : e1000_rev_polarity_normal;
1661 out:
1662 return ret_val;
1666 * igb_wait_autoneg - Wait for auto-neg completion
1667 * @hw: pointer to the HW structure
1669 * Waits for auto-negotiation to complete or for the auto-negotiation time
1670 * limit to expire, which ever happens first.
1672 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1674 s32 ret_val = 0;
1675 u16 i, phy_status;
1677 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1678 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1679 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1680 if (ret_val)
1681 break;
1682 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1683 if (ret_val)
1684 break;
1685 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1686 break;
1687 msleep(100);
1690 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1691 * has completed.
1693 return ret_val;
1697 * igb_phy_has_link - Polls PHY for link
1698 * @hw: pointer to the HW structure
1699 * @iterations: number of times to poll for link
1700 * @usec_interval: delay between polling attempts
1701 * @success: pointer to whether polling was successful or not
1703 * Polls the PHY status register for link, 'iterations' number of times.
1705 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1706 u32 usec_interval, bool *success)
1708 s32 ret_val = 0;
1709 u16 i, phy_status;
1711 for (i = 0; i < iterations; i++) {
1712 /* Some PHYs require the PHY_STATUS register to be read
1713 * twice due to the link bit being sticky. No harm doing
1714 * it across the board.
1716 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1717 if (ret_val && usec_interval > 0) {
1718 /* If the first read fails, another entity may have
1719 * ownership of the resources, wait and try again to
1720 * see if they have relinquished the resources yet.
1722 udelay(usec_interval);
1724 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1725 if (ret_val)
1726 break;
1727 if (phy_status & MII_SR_LINK_STATUS)
1728 break;
1729 if (usec_interval >= 1000)
1730 mdelay(usec_interval/1000);
1731 else
1732 udelay(usec_interval);
1735 *success = (i < iterations) ? true : false;
1737 return ret_val;
1741 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1742 * @hw: pointer to the HW structure
1744 * Reads the PHY specific status register to retrieve the cable length
1745 * information. The cable length is determined by averaging the minimum and
1746 * maximum values to get the "average" cable length. The m88 PHY has four
1747 * possible cable length values, which are:
1748 * Register Value Cable Length
1749 * 0 < 50 meters
1750 * 1 50 - 80 meters
1751 * 2 80 - 110 meters
1752 * 3 110 - 140 meters
1753 * 4 > 140 meters
1755 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1757 struct e1000_phy_info *phy = &hw->phy;
1758 s32 ret_val;
1759 u16 phy_data, index;
1761 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1762 if (ret_val)
1763 goto out;
1765 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1766 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1767 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1768 ret_val = -E1000_ERR_PHY;
1769 goto out;
1772 phy->min_cable_length = e1000_m88_cable_length_table[index];
1773 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1775 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1777 out:
1778 return ret_val;
1781 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1783 struct e1000_phy_info *phy = &hw->phy;
1784 s32 ret_val;
1785 u16 phy_data, phy_data2, index, default_page, is_cm;
1787 switch (hw->phy.id) {
1788 case I210_I_PHY_ID:
1789 /* Get cable length from PHY Cable Diagnostics Control Reg */
1790 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1791 (I347AT4_PCDL + phy->addr),
1792 &phy_data);
1793 if (ret_val)
1794 return ret_val;
1796 /* Check if the unit of cable length is meters or cm */
1797 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1798 I347AT4_PCDC, &phy_data2);
1799 if (ret_val)
1800 return ret_val;
1802 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1804 /* Populate the phy structure with cable length in meters */
1805 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1806 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1807 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1808 break;
1809 case M88E1545_E_PHY_ID:
1810 case I347AT4_E_PHY_ID:
1811 /* Remember the original page select and set it to 7 */
1812 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1813 &default_page);
1814 if (ret_val)
1815 goto out;
1817 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1818 if (ret_val)
1819 goto out;
1821 /* Get cable length from PHY Cable Diagnostics Control Reg */
1822 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1823 &phy_data);
1824 if (ret_val)
1825 goto out;
1827 /* Check if the unit of cable length is meters or cm */
1828 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1829 if (ret_val)
1830 goto out;
1832 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1834 /* Populate the phy structure with cable length in meters */
1835 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1836 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1837 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1839 /* Reset the page selec to its original value */
1840 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1841 default_page);
1842 if (ret_val)
1843 goto out;
1844 break;
1845 case M88E1112_E_PHY_ID:
1846 /* Remember the original page select and set it to 5 */
1847 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1848 &default_page);
1849 if (ret_val)
1850 goto out;
1852 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1853 if (ret_val)
1854 goto out;
1856 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1857 &phy_data);
1858 if (ret_val)
1859 goto out;
1861 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1862 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1863 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1864 ret_val = -E1000_ERR_PHY;
1865 goto out;
1868 phy->min_cable_length = e1000_m88_cable_length_table[index];
1869 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1871 phy->cable_length = (phy->min_cable_length +
1872 phy->max_cable_length) / 2;
1874 /* Reset the page select to its original value */
1875 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1876 default_page);
1877 if (ret_val)
1878 goto out;
1880 break;
1881 default:
1882 ret_val = -E1000_ERR_PHY;
1883 goto out;
1886 out:
1887 return ret_val;
1891 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1892 * @hw: pointer to the HW structure
1894 * The automatic gain control (agc) normalizes the amplitude of the
1895 * received signal, adjusting for the attenuation produced by the
1896 * cable. By reading the AGC registers, which represent the
1897 * combination of coarse and fine gain value, the value can be put
1898 * into a lookup table to obtain the approximate cable length
1899 * for each channel.
1901 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1903 struct e1000_phy_info *phy = &hw->phy;
1904 s32 ret_val = 0;
1905 u16 phy_data, i, agc_value = 0;
1906 u16 cur_agc_index, max_agc_index = 0;
1907 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1908 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1909 IGP02E1000_PHY_AGC_A,
1910 IGP02E1000_PHY_AGC_B,
1911 IGP02E1000_PHY_AGC_C,
1912 IGP02E1000_PHY_AGC_D
1915 /* Read the AGC registers for all channels */
1916 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1917 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1918 if (ret_val)
1919 goto out;
1921 /* Getting bits 15:9, which represent the combination of
1922 * coarse and fine gain values. The result is a number
1923 * that can be put into the lookup table to obtain the
1924 * approximate cable length.
1926 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1927 IGP02E1000_AGC_LENGTH_MASK;
1929 /* Array index bound check. */
1930 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1931 (cur_agc_index == 0)) {
1932 ret_val = -E1000_ERR_PHY;
1933 goto out;
1936 /* Remove min & max AGC values from calculation. */
1937 if (e1000_igp_2_cable_length_table[min_agc_index] >
1938 e1000_igp_2_cable_length_table[cur_agc_index])
1939 min_agc_index = cur_agc_index;
1940 if (e1000_igp_2_cable_length_table[max_agc_index] <
1941 e1000_igp_2_cable_length_table[cur_agc_index])
1942 max_agc_index = cur_agc_index;
1944 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1947 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1948 e1000_igp_2_cable_length_table[max_agc_index]);
1949 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1951 /* Calculate cable length with the error range of +/- 10 meters. */
1952 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1953 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1954 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1956 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1958 out:
1959 return ret_val;
1963 * igb_get_phy_info_m88 - Retrieve PHY information
1964 * @hw: pointer to the HW structure
1966 * Valid for only copper links. Read the PHY status register (sticky read)
1967 * to verify that link is up. Read the PHY special control register to
1968 * determine the polarity and 10base-T extended distance. Read the PHY
1969 * special status register to determine MDI/MDIx and current speed. If
1970 * speed is 1000, then determine cable length, local and remote receiver.
1972 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1974 struct e1000_phy_info *phy = &hw->phy;
1975 s32 ret_val;
1976 u16 phy_data;
1977 bool link;
1979 if (phy->media_type != e1000_media_type_copper) {
1980 hw_dbg("Phy info is only valid for copper media\n");
1981 ret_val = -E1000_ERR_CONFIG;
1982 goto out;
1985 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1986 if (ret_val)
1987 goto out;
1989 if (!link) {
1990 hw_dbg("Phy info is only valid if link is up\n");
1991 ret_val = -E1000_ERR_CONFIG;
1992 goto out;
1995 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1996 if (ret_val)
1997 goto out;
1999 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
2000 ? true : false;
2002 ret_val = igb_check_polarity_m88(hw);
2003 if (ret_val)
2004 goto out;
2006 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2007 if (ret_val)
2008 goto out;
2010 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
2012 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2013 ret_val = phy->ops.get_cable_length(hw);
2014 if (ret_val)
2015 goto out;
2017 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2018 if (ret_val)
2019 goto out;
2021 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2022 ? e1000_1000t_rx_status_ok
2023 : e1000_1000t_rx_status_not_ok;
2025 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2026 ? e1000_1000t_rx_status_ok
2027 : e1000_1000t_rx_status_not_ok;
2028 } else {
2029 /* Set values to "undefined" */
2030 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2031 phy->local_rx = e1000_1000t_rx_status_undefined;
2032 phy->remote_rx = e1000_1000t_rx_status_undefined;
2035 out:
2036 return ret_val;
2040 * igb_get_phy_info_igp - Retrieve igp PHY information
2041 * @hw: pointer to the HW structure
2043 * Read PHY status to determine if link is up. If link is up, then
2044 * set/determine 10base-T extended distance and polarity correction. Read
2045 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2046 * determine on the cable length, local and remote receiver.
2048 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2050 struct e1000_phy_info *phy = &hw->phy;
2051 s32 ret_val;
2052 u16 data;
2053 bool link;
2055 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2056 if (ret_val)
2057 goto out;
2059 if (!link) {
2060 hw_dbg("Phy info is only valid if link is up\n");
2061 ret_val = -E1000_ERR_CONFIG;
2062 goto out;
2065 phy->polarity_correction = true;
2067 ret_val = igb_check_polarity_igp(hw);
2068 if (ret_val)
2069 goto out;
2071 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2072 if (ret_val)
2073 goto out;
2075 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2077 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2078 IGP01E1000_PSSR_SPEED_1000MBPS) {
2079 ret_val = phy->ops.get_cable_length(hw);
2080 if (ret_val)
2081 goto out;
2083 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2084 if (ret_val)
2085 goto out;
2087 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2088 ? e1000_1000t_rx_status_ok
2089 : e1000_1000t_rx_status_not_ok;
2091 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2092 ? e1000_1000t_rx_status_ok
2093 : e1000_1000t_rx_status_not_ok;
2094 } else {
2095 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2096 phy->local_rx = e1000_1000t_rx_status_undefined;
2097 phy->remote_rx = e1000_1000t_rx_status_undefined;
2100 out:
2101 return ret_val;
2105 * igb_phy_sw_reset - PHY software reset
2106 * @hw: pointer to the HW structure
2108 * Does a software reset of the PHY by reading the PHY control register and
2109 * setting/write the control register reset bit to the PHY.
2111 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2113 s32 ret_val = 0;
2114 u16 phy_ctrl;
2116 if (!(hw->phy.ops.read_reg))
2117 goto out;
2119 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2120 if (ret_val)
2121 goto out;
2123 phy_ctrl |= MII_CR_RESET;
2124 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2125 if (ret_val)
2126 goto out;
2128 udelay(1);
2130 out:
2131 return ret_val;
2135 * igb_phy_hw_reset - PHY hardware reset
2136 * @hw: pointer to the HW structure
2138 * Verify the reset block is not blocking us from resetting. Acquire
2139 * semaphore (if necessary) and read/set/write the device control reset
2140 * bit in the PHY. Wait the appropriate delay time for the device to
2141 * reset and release the semaphore (if necessary).
2143 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2145 struct e1000_phy_info *phy = &hw->phy;
2146 s32 ret_val;
2147 u32 ctrl;
2149 ret_val = igb_check_reset_block(hw);
2150 if (ret_val) {
2151 ret_val = 0;
2152 goto out;
2155 ret_val = phy->ops.acquire(hw);
2156 if (ret_val)
2157 goto out;
2159 ctrl = rd32(E1000_CTRL);
2160 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2161 wrfl();
2163 udelay(phy->reset_delay_us);
2165 wr32(E1000_CTRL, ctrl);
2166 wrfl();
2168 udelay(150);
2170 phy->ops.release(hw);
2172 ret_val = phy->ops.get_cfg_done(hw);
2174 out:
2175 return ret_val;
2179 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2180 * @hw: pointer to the HW structure
2182 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2184 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2186 hw_dbg("Running IGP 3 PHY init script\n");
2188 /* PHY init IGP 3 */
2189 /* Enable rise/fall, 10-mode work in class-A */
2190 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2191 /* Remove all caps from Replica path filter */
2192 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2193 /* Bias trimming for ADC, AFE and Driver (Default) */
2194 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2195 /* Increase Hybrid poly bias */
2196 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2197 /* Add 4% to TX amplitude in Giga mode */
2198 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2199 /* Disable trimming (TTT) */
2200 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2201 /* Poly DC correction to 94.6% + 2% for all channels */
2202 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2203 /* ABS DC correction to 95.9% */
2204 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2205 /* BG temp curve trim */
2206 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2207 /* Increasing ADC OPAMP stage 1 currents to max */
2208 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2209 /* Force 1000 ( required for enabling PHY regs configuration) */
2210 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2211 /* Set upd_freq to 6 */
2212 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2213 /* Disable NPDFE */
2214 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2215 /* Disable adaptive fixed FFE (Default) */
2216 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2217 /* Enable FFE hysteresis */
2218 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2219 /* Fixed FFE for short cable lengths */
2220 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2221 /* Fixed FFE for medium cable lengths */
2222 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2223 /* Fixed FFE for long cable lengths */
2224 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2225 /* Enable Adaptive Clip Threshold */
2226 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2227 /* AHT reset limit to 1 */
2228 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2229 /* Set AHT master delay to 127 msec */
2230 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2231 /* Set scan bits for AHT */
2232 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2233 /* Set AHT Preset bits */
2234 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2235 /* Change integ_factor of channel A to 3 */
2236 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2237 /* Change prop_factor of channels BCD to 8 */
2238 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2239 /* Change cg_icount + enable integbp for channels BCD */
2240 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2241 /* Change cg_icount + enable integbp + change prop_factor_master
2242 * to 8 for channel A
2244 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2245 /* Disable AHT in Slave mode on channel A */
2246 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2247 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2248 * Enable SPD+B2B
2250 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2251 /* Enable restart AN on an1000_dis change */
2252 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2253 /* Enable wh_fifo read clock in 10/100 modes */
2254 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2255 /* Restart AN, Speed selection is 1000 */
2256 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2258 return 0;
2262 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2263 * @hw: pointer to the HW structure
2265 * In the case of a PHY power down to save power, or to turn off link during a
2266 * driver unload, restore the link to previous settings.
2268 void igb_power_up_phy_copper(struct e1000_hw *hw)
2270 u16 mii_reg = 0;
2271 u16 power_reg = 0;
2273 /* The PHY will retain its settings across a power down/up cycle */
2274 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2275 mii_reg &= ~MII_CR_POWER_DOWN;
2276 if (hw->phy.type == e1000_phy_i210) {
2277 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2278 power_reg &= ~GS40G_CS_POWER_DOWN;
2279 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2281 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2285 * igb_power_down_phy_copper - Power down copper PHY
2286 * @hw: pointer to the HW structure
2288 * Power down PHY to save power when interface is down and wake on lan
2289 * is not enabled.
2291 void igb_power_down_phy_copper(struct e1000_hw *hw)
2293 u16 mii_reg = 0;
2294 u16 power_reg = 0;
2296 /* The PHY will retain its settings across a power down/up cycle */
2297 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2298 mii_reg |= MII_CR_POWER_DOWN;
2300 /* i210 Phy requires an additional bit for power up/down */
2301 if (hw->phy.type == e1000_phy_i210) {
2302 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2303 power_reg |= GS40G_CS_POWER_DOWN;
2304 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2306 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2307 msleep(1);
2311 * igb_check_polarity_82580 - Checks the polarity.
2312 * @hw: pointer to the HW structure
2314 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2316 * Polarity is determined based on the PHY specific status register.
2318 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2320 struct e1000_phy_info *phy = &hw->phy;
2321 s32 ret_val;
2322 u16 data;
2325 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2327 if (!ret_val)
2328 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2329 ? e1000_rev_polarity_reversed
2330 : e1000_rev_polarity_normal;
2332 return ret_val;
2336 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2337 * @hw: pointer to the HW structure
2339 * Calls the PHY setup function to force speed and duplex. Clears the
2340 * auto-crossover to force MDI manually. Waits for link and returns
2341 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2343 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2345 struct e1000_phy_info *phy = &hw->phy;
2346 s32 ret_val;
2347 u16 phy_data;
2348 bool link;
2350 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2351 if (ret_val)
2352 goto out;
2354 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2356 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2357 if (ret_val)
2358 goto out;
2360 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2361 * forced whenever speed and duplex are forced.
2363 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2364 if (ret_val)
2365 goto out;
2367 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2369 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2370 if (ret_val)
2371 goto out;
2373 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2375 udelay(1);
2377 if (phy->autoneg_wait_to_complete) {
2378 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2380 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2381 if (ret_val)
2382 goto out;
2384 if (!link)
2385 hw_dbg("Link taking longer than expected.\n");
2387 /* Try once more */
2388 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2389 if (ret_val)
2390 goto out;
2393 out:
2394 return ret_val;
2398 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2399 * @hw: pointer to the HW structure
2401 * Read PHY status to determine if link is up. If link is up, then
2402 * set/determine 10base-T extended distance and polarity correction. Read
2403 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2404 * determine on the cable length, local and remote receiver.
2406 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2408 struct e1000_phy_info *phy = &hw->phy;
2409 s32 ret_val;
2410 u16 data;
2411 bool link;
2413 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2414 if (ret_val)
2415 goto out;
2417 if (!link) {
2418 hw_dbg("Phy info is only valid if link is up\n");
2419 ret_val = -E1000_ERR_CONFIG;
2420 goto out;
2423 phy->polarity_correction = true;
2425 ret_val = igb_check_polarity_82580(hw);
2426 if (ret_val)
2427 goto out;
2429 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2430 if (ret_val)
2431 goto out;
2433 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2435 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2436 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2437 ret_val = hw->phy.ops.get_cable_length(hw);
2438 if (ret_val)
2439 goto out;
2441 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2442 if (ret_val)
2443 goto out;
2445 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2446 ? e1000_1000t_rx_status_ok
2447 : e1000_1000t_rx_status_not_ok;
2449 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2450 ? e1000_1000t_rx_status_ok
2451 : e1000_1000t_rx_status_not_ok;
2452 } else {
2453 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2454 phy->local_rx = e1000_1000t_rx_status_undefined;
2455 phy->remote_rx = e1000_1000t_rx_status_undefined;
2458 out:
2459 return ret_val;
2463 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2464 * @hw: pointer to the HW structure
2466 * Reads the diagnostic status register and verifies result is valid before
2467 * placing it in the phy_cable_length field.
2469 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2471 struct e1000_phy_info *phy = &hw->phy;
2472 s32 ret_val;
2473 u16 phy_data, length;
2475 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2476 if (ret_val)
2477 goto out;
2479 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2480 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2482 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2483 ret_val = -E1000_ERR_PHY;
2485 phy->cable_length = length;
2487 out:
2488 return ret_val;
2492 * igb_write_phy_reg_gs40g - Write GS40G PHY register
2493 * @hw: pointer to the HW structure
2494 * @offset: lower half is register offset to write to
2495 * upper half is page to use.
2496 * @data: data to write at register offset
2498 * Acquires semaphore, if necessary, then writes the data to PHY register
2499 * at the offset. Release any acquired semaphores before exiting.
2501 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2503 s32 ret_val;
2504 u16 page = offset >> GS40G_PAGE_SHIFT;
2506 offset = offset & GS40G_OFFSET_MASK;
2507 ret_val = hw->phy.ops.acquire(hw);
2508 if (ret_val)
2509 return ret_val;
2511 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2512 if (ret_val)
2513 goto release;
2514 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2516 release:
2517 hw->phy.ops.release(hw);
2518 return ret_val;
2522 * igb_read_phy_reg_gs40g - Read GS40G PHY register
2523 * @hw: pointer to the HW structure
2524 * @offset: lower half is register offset to read to
2525 * upper half is page to use.
2526 * @data: data to read at register offset
2528 * Acquires semaphore, if necessary, then reads the data in the PHY register
2529 * at the offset. Release any acquired semaphores before exiting.
2531 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2533 s32 ret_val;
2534 u16 page = offset >> GS40G_PAGE_SHIFT;
2536 offset = offset & GS40G_OFFSET_MASK;
2537 ret_val = hw->phy.ops.acquire(hw);
2538 if (ret_val)
2539 return ret_val;
2541 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2542 if (ret_val)
2543 goto release;
2544 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2546 release:
2547 hw->phy.ops.release(hw);
2548 return ret_val;
2552 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2553 * @hw: pointer to the HW structure
2555 * Sets up Master/slave mode
2557 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2559 s32 ret_val;
2560 u16 phy_data;
2562 /* Resolve Master/Slave mode */
2563 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2564 if (ret_val)
2565 return ret_val;
2567 /* load defaults for future use */
2568 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2569 ((phy_data & CR_1000T_MS_VALUE) ?
2570 e1000_ms_force_master :
2571 e1000_ms_force_slave) : e1000_ms_auto;
2573 switch (hw->phy.ms_type) {
2574 case e1000_ms_force_master:
2575 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2576 break;
2577 case e1000_ms_force_slave:
2578 phy_data |= CR_1000T_MS_ENABLE;
2579 phy_data &= ~(CR_1000T_MS_VALUE);
2580 break;
2581 case e1000_ms_auto:
2582 phy_data &= ~CR_1000T_MS_ENABLE;
2583 /* fall-through */
2584 default:
2585 break;
2588 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);