1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/pci.h>
22 #include <linux/ptp_classify.h>
26 #define INCVALUE_MASK 0x7fffffff
27 #define ISGN 0x80000000
29 /* The 82580 timesync updates the system timer every 8ns by 8ns,
30 * and this update value cannot be reprogrammed.
32 * Neither the 82576 nor the 82580 offer registers wide enough to hold
33 * nanoseconds time values for very long. For the 82580, SYSTIM always
34 * counts nanoseconds, but the upper 24 bits are not availible. The
35 * frequency is adjusted by changing the 32 bit fractional nanoseconds
38 * For the 82576, the SYSTIM register time unit is affect by the
39 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
40 * field are needed to provide the nominal 16 nanosecond period,
41 * leaving 19 bits for fractional nanoseconds.
43 * We scale the NIC clock cycle by a large factor so that relatively
44 * small clock corrections can be added or subtracted at each clock
45 * tick. The drawbacks of a large factor are a) that the clock
46 * register overflows more quickly (not such a big deal) and b) that
47 * the increment per tick has to fit into 24 bits. As a result we
48 * need to use a shift of 19 so we can fit a value of 16 into the
53 * +--------------+ +---+---+------+
54 * 82576 | 32 | | 8 | 5 | 19 |
55 * +--------------+ +---+---+------+
56 * \________ 45 bits _______/ fract
58 * +----------+---+ +--------------+
59 * 82580 | 24 | 8 | | 32 |
60 * +----------+---+ +--------------+
61 * reserved \______ 40 bits _____/
64 * The 45 bit 82576 SYSTIM overflows every
65 * 2^45 * 10^-9 / 3600 = 9.77 hours.
67 * The 40 bit 82580 SYSTIM overflows every
68 * 2^40 * 10^-9 / 60 = 18.3 minutes.
71 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
72 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
73 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580 40
78 /* SYSTIM read access for the 82576 */
79 static cycle_t
igb_ptp_read_82576(const struct cyclecounter
*cc
)
81 struct igb_adapter
*igb
= container_of(cc
, struct igb_adapter
, cc
);
82 struct e1000_hw
*hw
= &igb
->hw
;
86 lo
= rd32(E1000_SYSTIML
);
87 hi
= rd32(E1000_SYSTIMH
);
89 val
= ((u64
) hi
) << 32;
95 /* SYSTIM read access for the 82580 */
96 static cycle_t
igb_ptp_read_82580(const struct cyclecounter
*cc
)
98 struct igb_adapter
*igb
= container_of(cc
, struct igb_adapter
, cc
);
99 struct e1000_hw
*hw
= &igb
->hw
;
103 /* The timestamp latches on lowest register read. For the 82580
104 * the lowest register is SYSTIMR instead of SYSTIML. However we only
105 * need to provide nanosecond resolution, so we just ignore it.
107 jk
= rd32(E1000_SYSTIMR
);
108 lo
= rd32(E1000_SYSTIML
);
109 hi
= rd32(E1000_SYSTIMH
);
111 val
= ((u64
) hi
) << 32;
117 /* SYSTIM read access for I210/I211 */
118 static void igb_ptp_read_i210(struct igb_adapter
*adapter
, struct timespec
*ts
)
120 struct e1000_hw
*hw
= &adapter
->hw
;
123 /* The timestamp latches on lowest register read. For I210/I211, the
124 * lowest register is SYSTIMR. Since we only need to provide nanosecond
125 * resolution, we can ignore it.
127 jk
= rd32(E1000_SYSTIMR
);
128 nsec
= rd32(E1000_SYSTIML
);
129 sec
= rd32(E1000_SYSTIMH
);
135 static void igb_ptp_write_i210(struct igb_adapter
*adapter
,
136 const struct timespec
*ts
)
138 struct e1000_hw
*hw
= &adapter
->hw
;
140 /* Writing the SYSTIMR register is not necessary as it only provides
141 * sub-nanosecond resolution.
143 wr32(E1000_SYSTIML
, ts
->tv_nsec
);
144 wr32(E1000_SYSTIMH
, ts
->tv_sec
);
148 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
149 * @adapter: board private structure
150 * @hwtstamps: timestamp structure to update
151 * @systim: unsigned 64bit system time value.
153 * We need to convert the system time value stored in the RX/TXSTMP registers
154 * into a hwtstamp which can be used by the upper level timestamping functions.
156 * The 'tmreg_lock' spinlock is used to protect the consistency of the
157 * system time value. This is needed because reading the 64 bit time
158 * value involves reading two (or three) 32 bit registers. The first
159 * read latches the value. Ditto for writing.
161 * In addition, here have extended the system time with an overflow
162 * counter in software.
164 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter
*adapter
,
165 struct skb_shared_hwtstamps
*hwtstamps
,
171 switch (adapter
->hw
.mac
.type
) {
176 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
178 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
180 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
182 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
183 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
187 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
188 /* Upper 32 bits contain s, lower 32 bits contain ns. */
189 hwtstamps
->hwtstamp
= ktime_set(systim
>> 32,
190 systim
& 0xFFFFFFFF);
197 /* PTP clock operations */
198 static int igb_ptp_adjfreq_82576(struct ptp_clock_info
*ptp
, s32 ppb
)
200 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
202 struct e1000_hw
*hw
= &igb
->hw
;
213 rate
= div_u64(rate
, 1953125);
215 incvalue
= 16 << IGB_82576_TSYNC_SHIFT
;
222 wr32(E1000_TIMINCA
, INCPERIOD_82576
| (incvalue
& INCVALUE_82576_MASK
));
227 static int igb_ptp_adjfreq_82580(struct ptp_clock_info
*ptp
, s32 ppb
)
229 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
231 struct e1000_hw
*hw
= &igb
->hw
;
242 rate
= div_u64(rate
, 1953125);
244 inca
= rate
& INCVALUE_MASK
;
248 wr32(E1000_TIMINCA
, inca
);
253 static int igb_ptp_adjtime_82576(struct ptp_clock_info
*ptp
, s64 delta
)
255 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
260 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
262 now
= timecounter_read(&igb
->tc
);
264 timecounter_init(&igb
->tc
, &igb
->cc
, now
);
266 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
271 static int igb_ptp_adjtime_i210(struct ptp_clock_info
*ptp
, s64 delta
)
273 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
276 struct timespec now
, then
= ns_to_timespec(delta
);
278 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
280 igb_ptp_read_i210(igb
, &now
);
281 now
= timespec_add(now
, then
);
282 igb_ptp_write_i210(igb
, (const struct timespec
*)&now
);
284 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
289 static int igb_ptp_gettime_82576(struct ptp_clock_info
*ptp
,
292 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
298 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
300 ns
= timecounter_read(&igb
->tc
);
302 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
304 ts
->tv_sec
= div_u64_rem(ns
, 1000000000, &remainder
);
305 ts
->tv_nsec
= remainder
;
310 static int igb_ptp_gettime_i210(struct ptp_clock_info
*ptp
,
313 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
317 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
319 igb_ptp_read_i210(igb
, ts
);
321 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
326 static int igb_ptp_settime_82576(struct ptp_clock_info
*ptp
,
327 const struct timespec
*ts
)
329 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
334 ns
= ts
->tv_sec
* 1000000000ULL;
337 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
339 timecounter_init(&igb
->tc
, &igb
->cc
, ns
);
341 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
346 static int igb_ptp_settime_i210(struct ptp_clock_info
*ptp
,
347 const struct timespec
*ts
)
349 struct igb_adapter
*igb
= container_of(ptp
, struct igb_adapter
,
353 spin_lock_irqsave(&igb
->tmreg_lock
, flags
);
355 igb_ptp_write_i210(igb
, ts
);
357 spin_unlock_irqrestore(&igb
->tmreg_lock
, flags
);
362 static int igb_ptp_enable(struct ptp_clock_info
*ptp
,
363 struct ptp_clock_request
*rq
, int on
)
370 * @work: pointer to work struct
372 * This work function polls the TSYNCTXCTL valid bit to determine when a
373 * timestamp has been taken for the current stored skb.
375 void igb_ptp_tx_work(struct work_struct
*work
)
377 struct igb_adapter
*adapter
= container_of(work
, struct igb_adapter
,
379 struct e1000_hw
*hw
= &adapter
->hw
;
382 if (!adapter
->ptp_tx_skb
)
385 if (time_is_before_jiffies(adapter
->ptp_tx_start
+
386 IGB_PTP_TX_TIMEOUT
)) {
387 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
388 adapter
->ptp_tx_skb
= NULL
;
389 adapter
->tx_hwtstamp_timeouts
++;
390 dev_warn(&adapter
->pdev
->dev
, "clearing Tx timestamp hang");
394 tsynctxctl
= rd32(E1000_TSYNCTXCTL
);
395 if (tsynctxctl
& E1000_TSYNCTXCTL_VALID
)
396 igb_ptp_tx_hwtstamp(adapter
);
398 /* reschedule to check later */
399 schedule_work(&adapter
->ptp_tx_work
);
402 static void igb_ptp_overflow_check(struct work_struct
*work
)
404 struct igb_adapter
*igb
=
405 container_of(work
, struct igb_adapter
, ptp_overflow_work
.work
);
408 igb
->ptp_caps
.gettime(&igb
->ptp_caps
, &ts
);
410 pr_debug("igb overflow check at %ld.%09lu\n", ts
.tv_sec
, ts
.tv_nsec
);
412 schedule_delayed_work(&igb
->ptp_overflow_work
,
413 IGB_SYSTIM_OVERFLOW_PERIOD
);
417 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
418 * @adapter: private network adapter structure
420 * This watchdog task is scheduled to detect error case where hardware has
421 * dropped an Rx packet that was timestamped when the ring is full. The
422 * particular error is rare but leaves the device in a state unable to timestamp
423 * any future packets.
425 void igb_ptp_rx_hang(struct igb_adapter
*adapter
)
427 struct e1000_hw
*hw
= &adapter
->hw
;
428 struct igb_ring
*rx_ring
;
429 u32 tsyncrxctl
= rd32(E1000_TSYNCRXCTL
);
430 unsigned long rx_event
;
433 if (hw
->mac
.type
!= e1000_82576
)
436 /* If we don't have a valid timestamp in the registers, just update the
437 * timeout counter and exit
439 if (!(tsyncrxctl
& E1000_TSYNCRXCTL_VALID
)) {
440 adapter
->last_rx_ptp_check
= jiffies
;
444 /* Determine the most recent watchdog or rx_timestamp event */
445 rx_event
= adapter
->last_rx_ptp_check
;
446 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
447 rx_ring
= adapter
->rx_ring
[n
];
448 if (time_after(rx_ring
->last_rx_timestamp
, rx_event
))
449 rx_event
= rx_ring
->last_rx_timestamp
;
452 /* Only need to read the high RXSTMP register to clear the lock */
453 if (time_is_before_jiffies(rx_event
+ 5 * HZ
)) {
455 adapter
->last_rx_ptp_check
= jiffies
;
456 adapter
->rx_hwtstamp_cleared
++;
457 dev_warn(&adapter
->pdev
->dev
, "clearing Rx timestamp hang");
462 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
463 * @adapter: Board private structure.
465 * If we were asked to do hardware stamping and such a time stamp is
466 * available, then it must have been for this skb here because we only
467 * allow only one such packet into the queue.
469 void igb_ptp_tx_hwtstamp(struct igb_adapter
*adapter
)
471 struct e1000_hw
*hw
= &adapter
->hw
;
472 struct skb_shared_hwtstamps shhwtstamps
;
475 regval
= rd32(E1000_TXSTMPL
);
476 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
478 igb_ptp_systim_to_hwtstamp(adapter
, &shhwtstamps
, regval
);
479 skb_tstamp_tx(adapter
->ptp_tx_skb
, &shhwtstamps
);
480 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
481 adapter
->ptp_tx_skb
= NULL
;
485 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
486 * @q_vector: Pointer to interrupt specific structure
487 * @va: Pointer to address containing Rx buffer
488 * @skb: Buffer containing timestamp and packet
490 * This function is meant to retrieve a timestamp from the first buffer of an
491 * incoming frame. The value is stored in little endian format starting on
494 void igb_ptp_rx_pktstamp(struct igb_q_vector
*q_vector
,
498 __le64
*regval
= (__le64
*)va
;
500 /* The timestamp is recorded in little endian format.
502 * Field: Reserved Reserved SYSTIML SYSTIMH
504 igb_ptp_systim_to_hwtstamp(q_vector
->adapter
, skb_hwtstamps(skb
),
505 le64_to_cpu(regval
[1]));
509 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
510 * @q_vector: Pointer to interrupt specific structure
511 * @skb: Buffer containing timestamp and packet
513 * This function is meant to retrieve a timestamp from the internal registers
514 * of the adapter and store it in the skb.
516 void igb_ptp_rx_rgtstamp(struct igb_q_vector
*q_vector
,
519 struct igb_adapter
*adapter
= q_vector
->adapter
;
520 struct e1000_hw
*hw
= &adapter
->hw
;
523 /* If this bit is set, then the RX registers contain the time stamp. No
524 * other packet will be time stamped until we read these registers, so
525 * read the registers to make them available again. Because only one
526 * packet can be time stamped at a time, we know that the register
527 * values must belong to this one here and therefore we don't need to
528 * compare any of the additional attributes stored for it.
530 * If nothing went wrong, then it should have a shared tx_flags that we
531 * can turn into a skb_shared_hwtstamps.
533 if (!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
536 regval
= rd32(E1000_RXSTMPL
);
537 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
539 igb_ptp_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), regval
);
543 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
548 * Outgoing time stamping can be enabled and disabled. Play nice and
549 * disable it when requested, although it shouldn't case any overhead
550 * when no packet needs it. At most one packet in the queue may be
551 * marked for time stamping, otherwise it would be impossible to tell
552 * for sure to which packet the hardware time stamp belongs.
554 * Incoming time stamping has to be configured via the hardware
555 * filters. Not all combinations are supported, in particular event
556 * type has to be specified. Matching the kind of event packet is
557 * not supported, with the exception of "all V2 events regardless of
560 int igb_ptp_hwtstamp_ioctl(struct net_device
*netdev
,
561 struct ifreq
*ifr
, int cmd
)
563 struct igb_adapter
*adapter
= netdev_priv(netdev
);
564 struct e1000_hw
*hw
= &adapter
->hw
;
565 struct hwtstamp_config config
;
566 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
567 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
568 u32 tsync_rx_cfg
= 0;
573 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
576 /* reserved for future extensions */
580 switch (config
.tx_type
) {
581 case HWTSTAMP_TX_OFF
:
589 switch (config
.rx_filter
) {
590 case HWTSTAMP_FILTER_NONE
:
593 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
594 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
595 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
598 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
599 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
600 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
603 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
604 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
605 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
606 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
607 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
608 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
609 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
610 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
611 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
612 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
613 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
617 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
618 case HWTSTAMP_FILTER_ALL
:
619 /* 82576 cannot timestamp all packets, which it needs to do to
620 * support both V1 Sync and Delay_Req messages
622 if (hw
->mac
.type
!= e1000_82576
) {
623 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
624 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
629 config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
633 if (hw
->mac
.type
== e1000_82575
) {
634 if (tsync_rx_ctl
| tsync_tx_ctl
)
639 /* Per-packet timestamping only works if all packets are
640 * timestamped, so enable timestamping in all packets as
641 * long as one Rx filter was configured.
643 if ((hw
->mac
.type
>= e1000_82580
) && tsync_rx_ctl
) {
644 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
645 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
646 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
650 if ((hw
->mac
.type
== e1000_i210
) ||
651 (hw
->mac
.type
== e1000_i211
)) {
652 regval
= rd32(E1000_RXPBS
);
653 regval
|= E1000_RXPBS_CFG_TS_EN
;
654 wr32(E1000_RXPBS
, regval
);
658 /* enable/disable TX */
659 regval
= rd32(E1000_TSYNCTXCTL
);
660 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
661 regval
|= tsync_tx_ctl
;
662 wr32(E1000_TSYNCTXCTL
, regval
);
664 /* enable/disable RX */
665 regval
= rd32(E1000_TSYNCRXCTL
);
666 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
667 regval
|= tsync_rx_ctl
;
668 wr32(E1000_TSYNCRXCTL
, regval
);
670 /* define which PTP packets are time stamped */
671 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
673 /* define ethertype filter for timestamped packets */
676 (E1000_ETQF_FILTER_ENABLE
| /* enable filter */
677 E1000_ETQF_1588
| /* enable timestamping */
678 ETH_P_1588
)); /* 1588 eth protocol type */
680 wr32(E1000_ETQF(3), 0);
682 /* L4 Queue Filter[3]: filter by destination port and protocol */
684 u32 ftqf
= (IPPROTO_UDP
/* UDP */
685 | E1000_FTQF_VF_BP
/* VF not compared */
686 | E1000_FTQF_1588_TIME_STAMP
/* Enable Timestamping */
687 | E1000_FTQF_MASK
); /* mask all inputs */
688 ftqf
&= ~E1000_FTQF_MASK_PROTO_BP
; /* enable protocol check */
690 wr32(E1000_IMIR(3), htons(PTP_EV_PORT
));
691 wr32(E1000_IMIREXT(3),
692 (E1000_IMIREXT_SIZE_BP
| E1000_IMIREXT_CTRL_BP
));
693 if (hw
->mac
.type
== e1000_82576
) {
694 /* enable source port check */
695 wr32(E1000_SPQF(3), htons(PTP_EV_PORT
));
696 ftqf
&= ~E1000_FTQF_MASK_SOURCE_PORT_BP
;
698 wr32(E1000_FTQF(3), ftqf
);
700 wr32(E1000_FTQF(3), E1000_FTQF_MASK
);
704 /* clear TX/RX time stamp registers, just to be sure */
705 regval
= rd32(E1000_TXSTMPL
);
706 regval
= rd32(E1000_TXSTMPH
);
707 regval
= rd32(E1000_RXSTMPL
);
708 regval
= rd32(E1000_RXSTMPH
);
710 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
714 void igb_ptp_init(struct igb_adapter
*adapter
)
716 struct e1000_hw
*hw
= &adapter
->hw
;
717 struct net_device
*netdev
= adapter
->netdev
;
719 switch (hw
->mac
.type
) {
721 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
722 adapter
->ptp_caps
.owner
= THIS_MODULE
;
723 adapter
->ptp_caps
.max_adj
= 999999881;
724 adapter
->ptp_caps
.n_ext_ts
= 0;
725 adapter
->ptp_caps
.pps
= 0;
726 adapter
->ptp_caps
.adjfreq
= igb_ptp_adjfreq_82576
;
727 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_82576
;
728 adapter
->ptp_caps
.gettime
= igb_ptp_gettime_82576
;
729 adapter
->ptp_caps
.settime
= igb_ptp_settime_82576
;
730 adapter
->ptp_caps
.enable
= igb_ptp_enable
;
731 adapter
->cc
.read
= igb_ptp_read_82576
;
732 adapter
->cc
.mask
= CLOCKSOURCE_MASK(64);
733 adapter
->cc
.mult
= 1;
734 adapter
->cc
.shift
= IGB_82576_TSYNC_SHIFT
;
735 /* Dial the nominal frequency. */
736 wr32(E1000_TIMINCA
, INCPERIOD_82576
| INCVALUE_82576
);
741 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
742 adapter
->ptp_caps
.owner
= THIS_MODULE
;
743 adapter
->ptp_caps
.max_adj
= 62499999;
744 adapter
->ptp_caps
.n_ext_ts
= 0;
745 adapter
->ptp_caps
.pps
= 0;
746 adapter
->ptp_caps
.adjfreq
= igb_ptp_adjfreq_82580
;
747 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_82576
;
748 adapter
->ptp_caps
.gettime
= igb_ptp_gettime_82576
;
749 adapter
->ptp_caps
.settime
= igb_ptp_settime_82576
;
750 adapter
->ptp_caps
.enable
= igb_ptp_enable
;
751 adapter
->cc
.read
= igb_ptp_read_82580
;
752 adapter
->cc
.mask
= CLOCKSOURCE_MASK(IGB_NBITS_82580
);
753 adapter
->cc
.mult
= 1;
754 adapter
->cc
.shift
= 0;
755 /* Enable the timer functions by clearing bit 31. */
756 wr32(E1000_TSAUXC
, 0x0);
760 snprintf(adapter
->ptp_caps
.name
, 16, "%pm", netdev
->dev_addr
);
761 adapter
->ptp_caps
.owner
= THIS_MODULE
;
762 adapter
->ptp_caps
.max_adj
= 62499999;
763 adapter
->ptp_caps
.n_ext_ts
= 0;
764 adapter
->ptp_caps
.pps
= 0;
765 adapter
->ptp_caps
.adjfreq
= igb_ptp_adjfreq_82580
;
766 adapter
->ptp_caps
.adjtime
= igb_ptp_adjtime_i210
;
767 adapter
->ptp_caps
.gettime
= igb_ptp_gettime_i210
;
768 adapter
->ptp_caps
.settime
= igb_ptp_settime_i210
;
769 adapter
->ptp_caps
.enable
= igb_ptp_enable
;
770 /* Enable the timer functions by clearing bit 31. */
771 wr32(E1000_TSAUXC
, 0x0);
774 adapter
->ptp_clock
= NULL
;
780 spin_lock_init(&adapter
->tmreg_lock
);
781 INIT_WORK(&adapter
->ptp_tx_work
, igb_ptp_tx_work
);
783 /* Initialize the clock and overflow work for devices that need it. */
784 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
)) {
785 struct timespec ts
= ktime_to_timespec(ktime_get_real());
787 igb_ptp_settime_i210(&adapter
->ptp_caps
, &ts
);
789 timecounter_init(&adapter
->tc
, &adapter
->cc
,
790 ktime_to_ns(ktime_get_real()));
792 INIT_DELAYED_WORK(&adapter
->ptp_overflow_work
,
793 igb_ptp_overflow_check
);
795 schedule_delayed_work(&adapter
->ptp_overflow_work
,
796 IGB_SYSTIM_OVERFLOW_PERIOD
);
799 /* Initialize the time sync interrupts for devices that support it. */
800 if (hw
->mac
.type
>= e1000_82580
) {
801 wr32(E1000_TSIM
, E1000_TSIM_TXTS
);
802 wr32(E1000_IMS
, E1000_IMS_TS
);
805 adapter
->ptp_clock
= ptp_clock_register(&adapter
->ptp_caps
,
806 &adapter
->pdev
->dev
);
807 if (IS_ERR(adapter
->ptp_clock
)) {
808 adapter
->ptp_clock
= NULL
;
809 dev_err(&adapter
->pdev
->dev
, "ptp_clock_register failed\n");
811 dev_info(&adapter
->pdev
->dev
, "added PHC on %s\n",
812 adapter
->netdev
->name
);
813 adapter
->flags
|= IGB_FLAG_PTP
;
818 * igb_ptp_stop - Disable PTP device and stop the overflow check.
819 * @adapter: Board private structure.
821 * This function stops the PTP support and cancels the delayed work.
823 void igb_ptp_stop(struct igb_adapter
*adapter
)
825 switch (adapter
->hw
.mac
.type
) {
830 cancel_delayed_work_sync(&adapter
->ptp_overflow_work
);
834 /* No delayed work to cancel. */
840 cancel_work_sync(&adapter
->ptp_tx_work
);
841 if (adapter
->ptp_tx_skb
) {
842 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
843 adapter
->ptp_tx_skb
= NULL
;
846 if (adapter
->ptp_clock
) {
847 ptp_clock_unregister(adapter
->ptp_clock
);
848 dev_info(&adapter
->pdev
->dev
, "removed PHC on %s\n",
849 adapter
->netdev
->name
);
850 adapter
->flags
&= ~IGB_FLAG_PTP
;
855 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
856 * @adapter: Board private structure.
858 * This function handles the reset work required to re-enable the PTP device.
860 void igb_ptp_reset(struct igb_adapter
*adapter
)
862 struct e1000_hw
*hw
= &adapter
->hw
;
864 if (!(adapter
->flags
& IGB_FLAG_PTP
))
867 switch (adapter
->hw
.mac
.type
) {
869 /* Dial the nominal frequency. */
870 wr32(E1000_TIMINCA
, INCPERIOD_82576
| INCVALUE_82576
);
877 /* Enable the timer functions and interrupts. */
878 wr32(E1000_TSAUXC
, 0x0);
879 wr32(E1000_TSIM
, E1000_TSIM_TXTS
);
880 wr32(E1000_IMS
, E1000_IMS_TS
);
887 /* Re-initialize the timer. */
888 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
)) {
889 struct timespec ts
= ktime_to_timespec(ktime_get_real());
891 igb_ptp_settime_i210(&adapter
->ptp_caps
, &ts
);
893 timecounter_init(&adapter
->tc
, &adapter
->cc
,
894 ktime_to_ns(ktime_get_real()));