2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/ieee80211_radiotap.h>
61 #include <asm/unaligned.h>
63 #include <net/mac80211.h>
71 #define CREATE_TRACE_POINTS
74 bool ath5k_modparam_nohwcrypt
;
75 module_param_named(nohwcrypt
, ath5k_modparam_nohwcrypt
, bool, S_IRUGO
);
76 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
78 static bool modparam_fastchanswitch
;
79 module_param_named(fastchanswitch
, modparam_fastchanswitch
, bool, S_IRUGO
);
80 MODULE_PARM_DESC(fastchanswitch
, "Enable fast channel switching for AR2413/AR5413 radios.");
82 static bool ath5k_modparam_no_hw_rfkill_switch
;
83 module_param_named(no_hw_rfkill_switch
, ath5k_modparam_no_hw_rfkill_switch
,
85 MODULE_PARM_DESC(no_hw_rfkill_switch
, "Ignore the GPIO RFKill switch state");
89 MODULE_AUTHOR("Jiri Slaby");
90 MODULE_AUTHOR("Nick Kossifidis");
91 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
92 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
93 MODULE_LICENSE("Dual BSD/GPL");
95 static int ath5k_init(struct ieee80211_hw
*hw
);
96 static int ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
100 static const struct ath5k_srev_name srev_names
[] = {
101 #ifdef CONFIG_ATHEROS_AR231X
102 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R2
},
103 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R7
},
104 { "2313", AR5K_VERSION_MAC
, AR5K_SREV_AR2313_R8
},
105 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R6
},
106 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R7
},
107 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R1
},
108 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R2
},
110 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
111 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
112 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
113 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
114 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
115 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
116 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
117 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
118 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
119 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
120 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
121 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
122 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
123 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
124 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
125 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
126 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
127 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
129 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
130 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
131 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
132 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
133 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
134 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
135 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
136 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
137 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
138 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
139 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
140 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
141 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
142 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
143 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
144 #ifdef CONFIG_ATHEROS_AR231X
145 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
146 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
148 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
151 static const struct ieee80211_rate ath5k_rates
[] = {
153 .hw_value
= ATH5K_RATE_CODE_1M
, },
155 .hw_value
= ATH5K_RATE_CODE_2M
,
156 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
157 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
159 .hw_value
= ATH5K_RATE_CODE_5_5M
,
160 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
161 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
163 .hw_value
= ATH5K_RATE_CODE_11M
,
164 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
165 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
167 .hw_value
= ATH5K_RATE_CODE_6M
,
170 .hw_value
= ATH5K_RATE_CODE_9M
,
173 .hw_value
= ATH5K_RATE_CODE_12M
,
176 .hw_value
= ATH5K_RATE_CODE_18M
,
179 .hw_value
= ATH5K_RATE_CODE_24M
,
182 .hw_value
= ATH5K_RATE_CODE_36M
,
185 .hw_value
= ATH5K_RATE_CODE_48M
,
188 .hw_value
= ATH5K_RATE_CODE_54M
,
192 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
194 u64 tsf
= ath5k_hw_get_tsf64(ah
);
196 if ((tsf
& 0x7fff) < rstamp
)
199 return (tsf
& ~0x7fff) | rstamp
;
203 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
205 const char *name
= "xxxxx";
208 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
209 if (srev_names
[i
].sr_type
!= type
)
212 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
213 name
= srev_names
[i
].sr_name
;
215 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
216 name
= srev_names
[i
].sr_name
;
223 static unsigned int ath5k_ioread32(void *hw_priv
, u32 reg_offset
)
225 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
226 return ath5k_hw_reg_read(ah
, reg_offset
);
229 static void ath5k_iowrite32(void *hw_priv
, u32 val
, u32 reg_offset
)
231 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
232 ath5k_hw_reg_write(ah
, val
, reg_offset
);
235 static const struct ath_ops ath5k_common_ops
= {
236 .read
= ath5k_ioread32
,
237 .write
= ath5k_iowrite32
,
240 /***********************\
241 * Driver Initialization *
242 \***********************/
244 static void ath5k_reg_notifier(struct wiphy
*wiphy
,
245 struct regulatory_request
*request
)
247 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
248 struct ath5k_hw
*ah
= hw
->priv
;
249 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
251 ath_reg_notifier_apply(wiphy
, request
, regulatory
);
254 /********************\
255 * Channel/mode setup *
256 \********************/
259 * Returns true for the channel numbers used.
261 #ifdef CONFIG_ATH5K_TEST_CHANNELS
262 static bool ath5k_is_standard_channel(short chan
, enum ieee80211_band band
)
268 static bool ath5k_is_standard_channel(short chan
, enum ieee80211_band band
)
270 if (band
== IEEE80211_BAND_2GHZ
&& chan
<= 14)
273 return /* UNII 1,2 */
274 (((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
276 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
278 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165) ||
279 /* 802.11j 5.030-5.080 GHz (20MHz) */
280 (chan
== 8 || chan
== 12 || chan
== 16) ||
281 /* 802.11j 4.9GHz (20MHz) */
282 (chan
== 184 || chan
== 188 || chan
== 192 || chan
== 196));
287 ath5k_setup_channels(struct ath5k_hw
*ah
, struct ieee80211_channel
*channels
,
288 unsigned int mode
, unsigned int max
)
290 unsigned int count
, size
, freq
, ch
;
291 enum ieee80211_band band
;
295 /* 1..220, but 2GHz frequencies are filtered by check_channel */
297 band
= IEEE80211_BAND_5GHZ
;
302 band
= IEEE80211_BAND_2GHZ
;
305 ATH5K_WARN(ah
, "bad mode, not copying channels\n");
310 for (ch
= 1; ch
<= size
&& count
< max
; ch
++) {
311 freq
= ieee80211_channel_to_frequency(ch
, band
);
313 if (freq
== 0) /* mapping failed - not a standard channel */
316 /* Write channel info, needed for ath5k_channel_ok() */
317 channels
[count
].center_freq
= freq
;
318 channels
[count
].band
= band
;
319 channels
[count
].hw_value
= mode
;
321 /* Check if channel is supported by the chipset */
322 if (!ath5k_channel_ok(ah
, &channels
[count
]))
325 if (!ath5k_is_standard_channel(ch
, band
))
335 ath5k_setup_rate_idx(struct ath5k_hw
*ah
, struct ieee80211_supported_band
*b
)
339 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
340 ah
->rate_idx
[b
->band
][i
] = -1;
342 for (i
= 0; i
< b
->n_bitrates
; i
++) {
343 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
344 if (b
->bitrates
[i
].hw_value_short
)
345 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
350 ath5k_setup_bands(struct ieee80211_hw
*hw
)
352 struct ath5k_hw
*ah
= hw
->priv
;
353 struct ieee80211_supported_band
*sband
;
354 int max_c
, count_c
= 0;
357 BUILD_BUG_ON(ARRAY_SIZE(ah
->sbands
) < IEEE80211_NUM_BANDS
);
358 max_c
= ARRAY_SIZE(ah
->channels
);
361 sband
= &ah
->sbands
[IEEE80211_BAND_2GHZ
];
362 sband
->band
= IEEE80211_BAND_2GHZ
;
363 sband
->bitrates
= &ah
->rates
[IEEE80211_BAND_2GHZ
][0];
365 if (test_bit(AR5K_MODE_11G
, ah
->ah_capabilities
.cap_mode
)) {
367 memcpy(sband
->bitrates
, &ath5k_rates
[0],
368 sizeof(struct ieee80211_rate
) * 12);
369 sband
->n_bitrates
= 12;
371 sband
->channels
= ah
->channels
;
372 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
373 AR5K_MODE_11G
, max_c
);
375 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
376 count_c
= sband
->n_channels
;
378 } else if (test_bit(AR5K_MODE_11B
, ah
->ah_capabilities
.cap_mode
)) {
380 memcpy(sband
->bitrates
, &ath5k_rates
[0],
381 sizeof(struct ieee80211_rate
) * 4);
382 sband
->n_bitrates
= 4;
384 /* 5211 only supports B rates and uses 4bit rate codes
385 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
388 if (ah
->ah_version
== AR5K_AR5211
) {
389 for (i
= 0; i
< 4; i
++) {
390 sband
->bitrates
[i
].hw_value
=
391 sband
->bitrates
[i
].hw_value
& 0xF;
392 sband
->bitrates
[i
].hw_value_short
=
393 sband
->bitrates
[i
].hw_value_short
& 0xF;
397 sband
->channels
= ah
->channels
;
398 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
399 AR5K_MODE_11B
, max_c
);
401 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
402 count_c
= sband
->n_channels
;
405 ath5k_setup_rate_idx(ah
, sband
);
407 /* 5GHz band, A mode */
408 if (test_bit(AR5K_MODE_11A
, ah
->ah_capabilities
.cap_mode
)) {
409 sband
= &ah
->sbands
[IEEE80211_BAND_5GHZ
];
410 sband
->band
= IEEE80211_BAND_5GHZ
;
411 sband
->bitrates
= &ah
->rates
[IEEE80211_BAND_5GHZ
][0];
413 memcpy(sband
->bitrates
, &ath5k_rates
[4],
414 sizeof(struct ieee80211_rate
) * 8);
415 sband
->n_bitrates
= 8;
417 sband
->channels
= &ah
->channels
[count_c
];
418 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
419 AR5K_MODE_11A
, max_c
);
421 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = sband
;
423 ath5k_setup_rate_idx(ah
, sband
);
425 ath5k_debug_dump_bands(ah
);
431 * Set/change channels. We always reset the chip.
432 * To accomplish this we must first cleanup any pending DMA,
433 * then restart stuff after a la ath5k_init.
435 * Called with ah->lock.
438 ath5k_chan_set(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
)
440 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
441 "channel set, resetting (%u -> %u MHz)\n",
442 ah
->curchan
->center_freq
, chan
->center_freq
);
445 * To switch channels clear any pending DMA operations;
446 * wait long enough for the RX fifo to drain, reset the
447 * hardware at the new frequency, and then re-enable
448 * the relevant bits of the h/w.
450 return ath5k_reset(ah
, chan
, true);
453 void ath5k_vif_iter(void *data
, u8
*mac
, struct ieee80211_vif
*vif
)
455 struct ath5k_vif_iter_data
*iter_data
= data
;
457 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
459 if (iter_data
->hw_macaddr
)
460 for (i
= 0; i
< ETH_ALEN
; i
++)
461 iter_data
->mask
[i
] &=
462 ~(iter_data
->hw_macaddr
[i
] ^ mac
[i
]);
464 if (!iter_data
->found_active
) {
465 iter_data
->found_active
= true;
466 memcpy(iter_data
->active_mac
, mac
, ETH_ALEN
);
469 if (iter_data
->need_set_hw_addr
&& iter_data
->hw_macaddr
)
470 if (ether_addr_equal(iter_data
->hw_macaddr
, mac
))
471 iter_data
->need_set_hw_addr
= false;
473 if (!iter_data
->any_assoc
) {
475 iter_data
->any_assoc
= true;
478 /* Calculate combined mode - when APs are active, operate in AP mode.
479 * Otherwise use the mode of the new interface. This can currently
480 * only deal with combinations of APs and STAs. Only one ad-hoc
481 * interfaces is allowed.
483 if (avf
->opmode
== NL80211_IFTYPE_AP
)
484 iter_data
->opmode
= NL80211_IFTYPE_AP
;
486 if (avf
->opmode
== NL80211_IFTYPE_STATION
)
488 if (iter_data
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
489 iter_data
->opmode
= avf
->opmode
;
494 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw
*ah
,
495 struct ieee80211_vif
*vif
)
497 struct ath_common
*common
= ath5k_hw_common(ah
);
498 struct ath5k_vif_iter_data iter_data
;
502 * Use the hardware MAC address as reference, the hardware uses it
503 * together with the BSSID mask when matching addresses.
505 iter_data
.hw_macaddr
= common
->macaddr
;
506 memset(&iter_data
.mask
, 0xff, ETH_ALEN
);
507 iter_data
.found_active
= false;
508 iter_data
.need_set_hw_addr
= true;
509 iter_data
.opmode
= NL80211_IFTYPE_UNSPECIFIED
;
510 iter_data
.n_stas
= 0;
513 ath5k_vif_iter(&iter_data
, vif
->addr
, vif
);
515 /* Get list of all active MAC addresses */
516 ieee80211_iterate_active_interfaces_atomic(
517 ah
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
518 ath5k_vif_iter
, &iter_data
);
519 memcpy(ah
->bssidmask
, iter_data
.mask
, ETH_ALEN
);
521 ah
->opmode
= iter_data
.opmode
;
522 if (ah
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
523 /* Nothing active, default to station mode */
524 ah
->opmode
= NL80211_IFTYPE_STATION
;
526 ath5k_hw_set_opmode(ah
, ah
->opmode
);
527 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode setup opmode %d (%s)\n",
528 ah
->opmode
, ath_opmode_to_string(ah
->opmode
));
530 if (iter_data
.need_set_hw_addr
&& iter_data
.found_active
)
531 ath5k_hw_set_lladdr(ah
, iter_data
.active_mac
);
533 if (ath5k_hw_hasbssidmask(ah
))
534 ath5k_hw_set_bssid_mask(ah
, ah
->bssidmask
);
536 /* Set up RX Filter */
537 if (iter_data
.n_stas
> 1) {
538 /* If you have multiple STA interfaces connected to
539 * different APs, ARPs are not received (most of the time?)
540 * Enabling PROMISC appears to fix that problem.
542 ah
->filter_flags
|= AR5K_RX_FILTER_PROM
;
545 rfilt
= ah
->filter_flags
;
546 ath5k_hw_set_rx_filter(ah
, rfilt
);
547 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
551 ath5k_hw_to_driver_rix(struct ath5k_hw
*ah
, int hw_rix
)
555 /* return base rate on errors */
556 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
557 "hw_rix out of bounds: %x\n", hw_rix
))
560 rix
= ah
->rate_idx
[ah
->curchan
->band
][hw_rix
];
561 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
572 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_hw
*ah
, dma_addr_t
*skb_addr
)
574 struct ath_common
*common
= ath5k_hw_common(ah
);
578 * Allocate buffer with headroom_needed space for the
579 * fake physical layer header at the start.
581 skb
= ath_rxbuf_alloc(common
,
586 ATH5K_ERR(ah
, "can't alloc skbuff of size %u\n",
591 *skb_addr
= dma_map_single(ah
->dev
,
592 skb
->data
, common
->rx_bufsize
,
595 if (unlikely(dma_mapping_error(ah
->dev
, *skb_addr
))) {
596 ATH5K_ERR(ah
, "%s: DMA mapping failed\n", __func__
);
604 ath5k_rxbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
606 struct sk_buff
*skb
= bf
->skb
;
607 struct ath5k_desc
*ds
;
611 skb
= ath5k_rx_skb_alloc(ah
, &bf
->skbaddr
);
618 * Setup descriptors. For receive we always terminate
619 * the descriptor list with a self-linked entry so we'll
620 * not get overrun under high load (as can happen with a
621 * 5212 when ANI processing enables PHY error frames).
623 * To ensure the last descriptor is self-linked we create
624 * each descriptor as self-linked and add it to the end. As
625 * each additional descriptor is added the previous self-linked
626 * entry is "fixed" naturally. This should be safe even
627 * if DMA is happening. When processing RX interrupts we
628 * never remove/process the last, self-linked, entry on the
629 * descriptor list. This ensures the hardware always has
630 * someplace to write a new frame.
633 ds
->ds_link
= bf
->daddr
; /* link to self */
634 ds
->ds_data
= bf
->skbaddr
;
635 ret
= ath5k_hw_setup_rx_desc(ah
, ds
, ah
->common
.rx_bufsize
, 0);
637 ATH5K_ERR(ah
, "%s: could not setup RX desc\n", __func__
);
641 if (ah
->rxlink
!= NULL
)
642 *ah
->rxlink
= bf
->daddr
;
643 ah
->rxlink
= &ds
->ds_link
;
647 static enum ath5k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
649 struct ieee80211_hdr
*hdr
;
650 enum ath5k_pkt_type htype
;
653 hdr
= (struct ieee80211_hdr
*)skb
->data
;
654 fc
= hdr
->frame_control
;
656 if (ieee80211_is_beacon(fc
))
657 htype
= AR5K_PKT_TYPE_BEACON
;
658 else if (ieee80211_is_probe_resp(fc
))
659 htype
= AR5K_PKT_TYPE_PROBE_RESP
;
660 else if (ieee80211_is_atim(fc
))
661 htype
= AR5K_PKT_TYPE_ATIM
;
662 else if (ieee80211_is_pspoll(fc
))
663 htype
= AR5K_PKT_TYPE_PSPOLL
;
665 htype
= AR5K_PKT_TYPE_NORMAL
;
670 static struct ieee80211_rate
*
671 ath5k_get_rate(const struct ieee80211_hw
*hw
,
672 const struct ieee80211_tx_info
*info
,
673 struct ath5k_buf
*bf
, int idx
)
676 * convert a ieee80211_tx_rate RC-table entry to
677 * the respective ieee80211_rate struct
679 if (bf
->rates
[idx
].idx
< 0) {
683 return &hw
->wiphy
->bands
[info
->band
]->bitrates
[ bf
->rates
[idx
].idx
];
687 ath5k_get_rate_hw_value(const struct ieee80211_hw
*hw
,
688 const struct ieee80211_tx_info
*info
,
689 struct ath5k_buf
*bf
, int idx
)
691 struct ieee80211_rate
*rate
;
695 rate
= ath5k_get_rate(hw
, info
, bf
, idx
);
699 rc_flags
= bf
->rates
[idx
].flags
;
700 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
701 rate
->hw_value_short
: rate
->hw_value
;
707 ath5k_txbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
,
708 struct ath5k_txq
*txq
, int padsize
,
709 struct ieee80211_tx_control
*control
)
711 struct ath5k_desc
*ds
= bf
->desc
;
712 struct sk_buff
*skb
= bf
->skb
;
713 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
714 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
715 struct ieee80211_rate
*rate
;
716 unsigned int mrr_rate
[3], mrr_tries
[3];
723 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
726 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
729 ieee80211_get_tx_rates(info
->control
.vif
, (control
) ? control
->sta
: NULL
, skb
, bf
->rates
,
730 ARRAY_SIZE(bf
->rates
));
732 rate
= ath5k_get_rate(ah
->hw
, info
, bf
, 0);
739 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
740 flags
|= AR5K_TXDESC_NOACK
;
742 rc_flags
= info
->control
.rates
[0].flags
;
744 hw_rate
= ath5k_get_rate_hw_value(ah
->hw
, info
, bf
, 0);
748 /* FIXME: If we are in g mode and rate is a CCK rate
749 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
750 * from tx power (value is in dB units already) */
751 if (info
->control
.hw_key
) {
752 keyidx
= info
->control
.hw_key
->hw_key_idx
;
753 pktlen
+= info
->control
.hw_key
->icv_len
;
755 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
756 flags
|= AR5K_TXDESC_RTSENA
;
757 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
758 duration
= le16_to_cpu(ieee80211_rts_duration(ah
->hw
,
759 info
->control
.vif
, pktlen
, info
));
761 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
762 flags
|= AR5K_TXDESC_CTSENA
;
763 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
764 duration
= le16_to_cpu(ieee80211_ctstoself_duration(ah
->hw
,
765 info
->control
.vif
, pktlen
, info
));
768 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
769 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
770 get_hw_packet_type(skb
),
771 (ah
->ah_txpower
.txp_requested
* 2),
773 bf
->rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
778 /* Set up MRR descriptor */
779 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
780 memset(mrr_rate
, 0, sizeof(mrr_rate
));
781 memset(mrr_tries
, 0, sizeof(mrr_tries
));
783 for (i
= 0; i
< 3; i
++) {
785 rate
= ath5k_get_rate(ah
->hw
, info
, bf
, i
);
789 mrr_rate
[i
] = ath5k_get_rate_hw_value(ah
->hw
, info
, bf
, i
);
790 mrr_tries
[i
] = bf
->rates
[i
].count
;
793 ath5k_hw_setup_mrr_tx_desc(ah
, ds
,
794 mrr_rate
[0], mrr_tries
[0],
795 mrr_rate
[1], mrr_tries
[1],
796 mrr_rate
[2], mrr_tries
[2]);
800 ds
->ds_data
= bf
->skbaddr
;
802 spin_lock_bh(&txq
->lock
);
803 list_add_tail(&bf
->list
, &txq
->q
);
805 if (txq
->link
== NULL
) /* is this first packet? */
806 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
807 else /* no, so only link it */
808 *txq
->link
= bf
->daddr
;
810 txq
->link
= &ds
->ds_link
;
811 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
813 spin_unlock_bh(&txq
->lock
);
817 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
821 /*******************\
822 * Descriptors setup *
823 \*******************/
826 ath5k_desc_alloc(struct ath5k_hw
*ah
)
828 struct ath5k_desc
*ds
;
829 struct ath5k_buf
*bf
;
834 /* allocate descriptors */
835 ah
->desc_len
= sizeof(struct ath5k_desc
) *
836 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
838 ah
->desc
= dma_alloc_coherent(ah
->dev
, ah
->desc_len
,
839 &ah
->desc_daddr
, GFP_KERNEL
);
840 if (ah
->desc
== NULL
) {
841 ATH5K_ERR(ah
, "can't allocate descriptors\n");
847 ATH5K_DBG(ah
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
848 ds
, ah
->desc_len
, (unsigned long long)ah
->desc_daddr
);
850 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
851 sizeof(struct ath5k_buf
), GFP_KERNEL
);
853 ATH5K_ERR(ah
, "can't allocate bufptr\n");
859 INIT_LIST_HEAD(&ah
->rxbuf
);
860 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
863 list_add_tail(&bf
->list
, &ah
->rxbuf
);
866 INIT_LIST_HEAD(&ah
->txbuf
);
867 ah
->txbuf_len
= ATH_TXBUF
;
868 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
871 list_add_tail(&bf
->list
, &ah
->txbuf
);
875 INIT_LIST_HEAD(&ah
->bcbuf
);
876 for (i
= 0; i
< ATH_BCBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
879 list_add_tail(&bf
->list
, &ah
->bcbuf
);
884 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
891 ath5k_txbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
896 dma_unmap_single(ah
->dev
, bf
->skbaddr
, bf
->skb
->len
,
898 ieee80211_free_txskb(ah
->hw
, bf
->skb
);
901 bf
->desc
->ds_data
= 0;
905 ath5k_rxbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
907 struct ath_common
*common
= ath5k_hw_common(ah
);
912 dma_unmap_single(ah
->dev
, bf
->skbaddr
, common
->rx_bufsize
,
914 dev_kfree_skb_any(bf
->skb
);
917 bf
->desc
->ds_data
= 0;
921 ath5k_desc_free(struct ath5k_hw
*ah
)
923 struct ath5k_buf
*bf
;
925 list_for_each_entry(bf
, &ah
->txbuf
, list
)
926 ath5k_txbuf_free_skb(ah
, bf
);
927 list_for_each_entry(bf
, &ah
->rxbuf
, list
)
928 ath5k_rxbuf_free_skb(ah
, bf
);
929 list_for_each_entry(bf
, &ah
->bcbuf
, list
)
930 ath5k_txbuf_free_skb(ah
, bf
);
932 /* Free memory associated with all descriptors */
933 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
946 static struct ath5k_txq
*
947 ath5k_txq_setup(struct ath5k_hw
*ah
,
948 int qtype
, int subtype
)
950 struct ath5k_txq
*txq
;
951 struct ath5k_txq_info qi
= {
952 .tqi_subtype
= subtype
,
953 /* XXX: default values not correct for B and XR channels,
955 .tqi_aifs
= AR5K_TUNE_AIFS
,
956 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
957 .tqi_cw_max
= AR5K_TUNE_CWMAX
962 * Enable interrupts only for EOL and DESC conditions.
963 * We mark tx descriptors to receive a DESC interrupt
964 * when a tx queue gets deep; otherwise we wait for the
965 * EOL to reap descriptors. Note that this is done to
966 * reduce interrupt load and this only defers reaping
967 * descriptors, never transmitting frames. Aside from
968 * reducing interrupts this also permits more concurrency.
969 * The only potential downside is if the tx queue backs
970 * up in which case the top half of the kernel may backup
971 * due to a lack of tx descriptors.
973 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
974 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
975 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
978 * NB: don't print a message, this happens
979 * normally on parts with too few tx queues
981 return ERR_PTR(qnum
);
983 txq
= &ah
->txqs
[qnum
];
987 INIT_LIST_HEAD(&txq
->q
);
988 spin_lock_init(&txq
->lock
);
991 txq
->txq_max
= ATH5K_TXQ_LEN_MAX
;
992 txq
->txq_poll_mark
= false;
995 return &ah
->txqs
[qnum
];
999 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
1001 struct ath5k_txq_info qi
= {
1002 /* XXX: default values not correct for B and XR channels,
1004 .tqi_aifs
= AR5K_TUNE_AIFS
,
1005 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
1006 .tqi_cw_max
= AR5K_TUNE_CWMAX
,
1007 /* NB: for dynamic turbo, don't enable any other interrupts */
1008 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1011 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
1015 ath5k_beaconq_config(struct ath5k_hw
*ah
)
1017 struct ath5k_txq_info qi
;
1020 ret
= ath5k_hw_get_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1024 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1025 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1027 * Always burst out beacon and CAB traffic
1028 * (aifs = cwmin = cwmax = 0)
1033 } else if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
1035 * Adhoc mode; backoff between 0 and (2 * cw_min).
1039 qi
.tqi_cw_max
= 2 * AR5K_TUNE_CWMIN
;
1042 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1043 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1044 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1046 ret
= ath5k_hw_set_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1048 ATH5K_ERR(ah
, "%s: unable to update parameters for beacon "
1049 "hardware queue!\n", __func__
);
1052 ret
= ath5k_hw_reset_tx_queue(ah
, ah
->bhalq
); /* push to h/w */
1056 /* reconfigure cabq with ready time to 80% of beacon_interval */
1057 ret
= ath5k_hw_get_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1061 qi
.tqi_ready_time
= (ah
->bintval
* 80) / 100;
1062 ret
= ath5k_hw_set_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1066 ret
= ath5k_hw_reset_tx_queue(ah
, AR5K_TX_QUEUE_ID_CAB
);
1072 * ath5k_drain_tx_buffs - Empty tx buffers
1074 * @ah The &struct ath5k_hw
1076 * Empty tx buffers from all queues in preparation
1077 * of a reset or during shutdown.
1079 * NB: this assumes output has been stopped and
1080 * we do not need to block ath5k_tx_tasklet
1083 ath5k_drain_tx_buffs(struct ath5k_hw
*ah
)
1085 struct ath5k_txq
*txq
;
1086 struct ath5k_buf
*bf
, *bf0
;
1089 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
1090 if (ah
->txqs
[i
].setup
) {
1092 spin_lock_bh(&txq
->lock
);
1093 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1094 ath5k_debug_printtxbuf(ah
, bf
);
1096 ath5k_txbuf_free_skb(ah
, bf
);
1098 spin_lock(&ah
->txbuflock
);
1099 list_move_tail(&bf
->list
, &ah
->txbuf
);
1102 spin_unlock(&ah
->txbuflock
);
1105 txq
->txq_poll_mark
= false;
1106 spin_unlock_bh(&txq
->lock
);
1112 ath5k_txq_release(struct ath5k_hw
*ah
)
1114 struct ath5k_txq
*txq
= ah
->txqs
;
1117 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++, txq
++)
1119 ath5k_hw_release_tx_queue(ah
, txq
->qnum
);
1130 * Enable the receive h/w following a reset.
1133 ath5k_rx_start(struct ath5k_hw
*ah
)
1135 struct ath_common
*common
= ath5k_hw_common(ah
);
1136 struct ath5k_buf
*bf
;
1139 common
->rx_bufsize
= roundup(IEEE80211_MAX_FRAME_LEN
, common
->cachelsz
);
1141 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "cachelsz %u rx_bufsize %u\n",
1142 common
->cachelsz
, common
->rx_bufsize
);
1144 spin_lock_bh(&ah
->rxbuflock
);
1146 list_for_each_entry(bf
, &ah
->rxbuf
, list
) {
1147 ret
= ath5k_rxbuf_setup(ah
, bf
);
1149 spin_unlock_bh(&ah
->rxbuflock
);
1153 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1154 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1155 spin_unlock_bh(&ah
->rxbuflock
);
1157 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1158 ath5k_update_bssid_mask_and_opmode(ah
, NULL
); /* set filters, etc. */
1159 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1167 * Disable the receive logic on PCU (DRU)
1168 * In preparation for a shutdown.
1170 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1174 ath5k_rx_stop(struct ath5k_hw
*ah
)
1177 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1178 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1180 ath5k_debug_printrxbuffs(ah
);
1184 ath5k_rx_decrypted(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1185 struct ath5k_rx_status
*rs
)
1187 struct ath_common
*common
= ath5k_hw_common(ah
);
1188 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1189 unsigned int keyix
, hlen
;
1191 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1192 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1193 return RX_FLAG_DECRYPTED
;
1195 /* Apparently when a default key is used to decrypt the packet
1196 the hw does not set the index used to decrypt. In such cases
1197 get the index from the packet. */
1198 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1199 if (ieee80211_has_protected(hdr
->frame_control
) &&
1200 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1201 skb
->len
>= hlen
+ 4) {
1202 keyix
= skb
->data
[hlen
+ 3] >> 6;
1204 if (test_bit(keyix
, common
->keymap
))
1205 return RX_FLAG_DECRYPTED
;
1213 ath5k_check_ibss_tsf(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1214 struct ieee80211_rx_status
*rxs
)
1216 struct ath_common
*common
= ath5k_hw_common(ah
);
1219 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1221 if (ieee80211_is_beacon(mgmt
->frame_control
) &&
1222 le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
&&
1223 ether_addr_equal(mgmt
->bssid
, common
->curbssid
)) {
1225 * Received an IBSS beacon with the same BSSID. Hardware *must*
1226 * have updated the local TSF. We have to work around various
1227 * hardware bugs, though...
1229 tsf
= ath5k_hw_get_tsf64(ah
);
1230 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1231 hw_tu
= TSF_TO_TU(tsf
);
1233 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1234 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1235 (unsigned long long)bc_tstamp
,
1236 (unsigned long long)rxs
->mactime
,
1237 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1238 (unsigned long long)tsf
);
1241 * Sometimes the HW will give us a wrong tstamp in the rx
1242 * status, causing the timestamp extension to go wrong.
1243 * (This seems to happen especially with beacon frames bigger
1244 * than 78 byte (incl. FCS))
1245 * But we know that the receive timestamp must be later than the
1246 * timestamp of the beacon since HW must have synced to that.
1248 * NOTE: here we assume mactime to be after the frame was
1249 * received, not like mac80211 which defines it at the start.
1251 if (bc_tstamp
> rxs
->mactime
) {
1252 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1253 "fixing mactime from %llx to %llx\n",
1254 (unsigned long long)rxs
->mactime
,
1255 (unsigned long long)tsf
);
1260 * Local TSF might have moved higher than our beacon timers,
1261 * in that case we have to update them to continue sending
1262 * beacons. This also takes care of synchronizing beacon sending
1263 * times with other stations.
1265 if (hw_tu
>= ah
->nexttbtt
)
1266 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1268 /* Check if the beacon timers are still correct, because a TSF
1269 * update might have created a window between them - for a
1270 * longer description see the comment of this function: */
1271 if (!ath5k_hw_check_beacon_timers(ah
, ah
->bintval
)) {
1272 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1273 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1274 "fixed beacon timers after beacon receive\n");
1280 ath5k_update_beacon_rssi(struct ath5k_hw
*ah
, struct sk_buff
*skb
, int rssi
)
1282 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1283 struct ath_common
*common
= ath5k_hw_common(ah
);
1285 /* only beacons from our BSSID */
1286 if (!ieee80211_is_beacon(mgmt
->frame_control
) ||
1287 !ether_addr_equal(mgmt
->bssid
, common
->curbssid
))
1290 ewma_add(&ah
->ah_beacon_rssi_avg
, rssi
);
1292 /* in IBSS mode we should keep RSSI statistics per neighbour */
1293 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1297 * Compute padding position. skb must contain an IEEE 802.11 frame
1299 static int ath5k_common_padpos(struct sk_buff
*skb
)
1301 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1302 __le16 frame_control
= hdr
->frame_control
;
1305 if (ieee80211_has_a4(frame_control
))
1308 if (ieee80211_is_data_qos(frame_control
))
1309 padpos
+= IEEE80211_QOS_CTL_LEN
;
1315 * This function expects an 802.11 frame and returns the number of
1316 * bytes added, or -1 if we don't have enough header room.
1318 static int ath5k_add_padding(struct sk_buff
*skb
)
1320 int padpos
= ath5k_common_padpos(skb
);
1321 int padsize
= padpos
& 3;
1323 if (padsize
&& skb
->len
> padpos
) {
1325 if (skb_headroom(skb
) < padsize
)
1328 skb_push(skb
, padsize
);
1329 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
1337 * The MAC header is padded to have 32-bit boundary if the
1338 * packet payload is non-zero. The general calculation for
1339 * padsize would take into account odd header lengths:
1340 * padsize = 4 - (hdrlen & 3); however, since only
1341 * even-length headers are used, padding can only be 0 or 2
1342 * bytes and we can optimize this a bit. We must not try to
1343 * remove padding from short control frames that do not have a
1346 * This function expects an 802.11 frame and returns the number of
1349 static int ath5k_remove_padding(struct sk_buff
*skb
)
1351 int padpos
= ath5k_common_padpos(skb
);
1352 int padsize
= padpos
& 3;
1354 if (padsize
&& skb
->len
>= padpos
+ padsize
) {
1355 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1356 skb_pull(skb
, padsize
);
1364 ath5k_receive_frame(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1365 struct ath5k_rx_status
*rs
)
1367 struct ieee80211_rx_status
*rxs
;
1369 ath5k_remove_padding(skb
);
1371 rxs
= IEEE80211_SKB_RXCB(skb
);
1374 if (unlikely(rs
->rs_status
& AR5K_RXERR_MIC
))
1375 rxs
->flag
|= RX_FLAG_MMIC_ERROR
;
1378 * always extend the mac timestamp, since this information is
1379 * also needed for proper IBSS merging.
1381 * XXX: it might be too late to do it here, since rs_tstamp is
1382 * 15bit only. that means TSF extension has to be done within
1383 * 32768usec (about 32ms). it might be necessary to move this to
1384 * the interrupt handler, like it is done in madwifi.
1386 rxs
->mactime
= ath5k_extend_tsf(ah
, rs
->rs_tstamp
);
1387 rxs
->flag
|= RX_FLAG_MACTIME_END
;
1389 rxs
->freq
= ah
->curchan
->center_freq
;
1390 rxs
->band
= ah
->curchan
->band
;
1392 rxs
->signal
= ah
->ah_noise_floor
+ rs
->rs_rssi
;
1394 rxs
->antenna
= rs
->rs_antenna
;
1396 if (rs
->rs_antenna
> 0 && rs
->rs_antenna
< 5)
1397 ah
->stats
.antenna_rx
[rs
->rs_antenna
]++;
1399 ah
->stats
.antenna_rx
[0]++; /* invalid */
1401 rxs
->rate_idx
= ath5k_hw_to_driver_rix(ah
, rs
->rs_rate
);
1402 rxs
->flag
|= ath5k_rx_decrypted(ah
, skb
, rs
);
1404 if (rxs
->rate_idx
>= 0 && rs
->rs_rate
==
1405 ah
->sbands
[ah
->curchan
->band
].bitrates
[rxs
->rate_idx
].hw_value_short
)
1406 rxs
->flag
|= RX_FLAG_SHORTPRE
;
1408 trace_ath5k_rx(ah
, skb
);
1410 ath5k_update_beacon_rssi(ah
, skb
, rs
->rs_rssi
);
1412 /* check beacons in IBSS mode */
1413 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
)
1414 ath5k_check_ibss_tsf(ah
, skb
, rxs
);
1416 ieee80211_rx(ah
->hw
, skb
);
1419 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1421 * Check if we want to further process this frame or not. Also update
1422 * statistics. Return true if we want this frame, false if not.
1425 ath5k_receive_frame_ok(struct ath5k_hw
*ah
, struct ath5k_rx_status
*rs
)
1427 ah
->stats
.rx_all_count
++;
1428 ah
->stats
.rx_bytes_count
+= rs
->rs_datalen
;
1430 if (unlikely(rs
->rs_status
)) {
1431 if (rs
->rs_status
& AR5K_RXERR_CRC
)
1432 ah
->stats
.rxerr_crc
++;
1433 if (rs
->rs_status
& AR5K_RXERR_FIFO
)
1434 ah
->stats
.rxerr_fifo
++;
1435 if (rs
->rs_status
& AR5K_RXERR_PHY
) {
1436 ah
->stats
.rxerr_phy
++;
1437 if (rs
->rs_phyerr
> 0 && rs
->rs_phyerr
< 32)
1438 ah
->stats
.rxerr_phy_code
[rs
->rs_phyerr
]++;
1441 if (rs
->rs_status
& AR5K_RXERR_DECRYPT
) {
1443 * Decrypt error. If the error occurred
1444 * because there was no hardware key, then
1445 * let the frame through so the upper layers
1446 * can process it. This is necessary for 5210
1447 * parts which have no way to setup a ``clear''
1450 * XXX do key cache faulting
1452 ah
->stats
.rxerr_decrypt
++;
1453 if (rs
->rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1454 !(rs
->rs_status
& AR5K_RXERR_CRC
))
1457 if (rs
->rs_status
& AR5K_RXERR_MIC
) {
1458 ah
->stats
.rxerr_mic
++;
1462 /* reject any frames with non-crypto errors */
1463 if (rs
->rs_status
& ~(AR5K_RXERR_DECRYPT
))
1467 if (unlikely(rs
->rs_more
)) {
1468 ah
->stats
.rxerr_jumbo
++;
1475 ath5k_set_current_imask(struct ath5k_hw
*ah
)
1477 enum ath5k_int imask
;
1478 unsigned long flags
;
1480 spin_lock_irqsave(&ah
->irqlock
, flags
);
1483 imask
&= ~AR5K_INT_RX_ALL
;
1485 imask
&= ~AR5K_INT_TX_ALL
;
1486 ath5k_hw_set_imr(ah
, imask
);
1487 spin_unlock_irqrestore(&ah
->irqlock
, flags
);
1491 ath5k_tasklet_rx(unsigned long data
)
1493 struct ath5k_rx_status rs
= {};
1494 struct sk_buff
*skb
, *next_skb
;
1495 dma_addr_t next_skb_addr
;
1496 struct ath5k_hw
*ah
= (void *)data
;
1497 struct ath_common
*common
= ath5k_hw_common(ah
);
1498 struct ath5k_buf
*bf
;
1499 struct ath5k_desc
*ds
;
1502 spin_lock(&ah
->rxbuflock
);
1503 if (list_empty(&ah
->rxbuf
)) {
1504 ATH5K_WARN(ah
, "empty rx buf pool\n");
1508 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1509 BUG_ON(bf
->skb
== NULL
);
1513 /* bail if HW is still using self-linked descriptor */
1514 if (ath5k_hw_get_rxdp(ah
) == bf
->daddr
)
1517 ret
= ah
->ah_proc_rx_desc(ah
, ds
, &rs
);
1518 if (unlikely(ret
== -EINPROGRESS
))
1520 else if (unlikely(ret
)) {
1521 ATH5K_ERR(ah
, "error in processing rx descriptor\n");
1522 ah
->stats
.rxerr_proc
++;
1526 if (ath5k_receive_frame_ok(ah
, &rs
)) {
1527 next_skb
= ath5k_rx_skb_alloc(ah
, &next_skb_addr
);
1530 * If we can't replace bf->skb with a new skb under
1531 * memory pressure, just skip this packet
1536 dma_unmap_single(ah
->dev
, bf
->skbaddr
,
1540 skb_put(skb
, rs
.rs_datalen
);
1542 ath5k_receive_frame(ah
, skb
, &rs
);
1545 bf
->skbaddr
= next_skb_addr
;
1548 list_move_tail(&bf
->list
, &ah
->rxbuf
);
1549 } while (ath5k_rxbuf_setup(ah
, bf
) == 0);
1551 spin_unlock(&ah
->rxbuflock
);
1552 ah
->rx_pending
= false;
1553 ath5k_set_current_imask(ah
);
1562 ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1563 struct ath5k_txq
*txq
, struct ieee80211_tx_control
*control
)
1565 struct ath5k_hw
*ah
= hw
->priv
;
1566 struct ath5k_buf
*bf
;
1567 unsigned long flags
;
1570 trace_ath5k_tx(ah
, skb
, txq
);
1573 * The hardware expects the header padded to 4 byte boundaries.
1574 * If this is not the case, we add the padding after the header.
1576 padsize
= ath5k_add_padding(skb
);
1578 ATH5K_ERR(ah
, "tx hdrlen not %%4: not enough"
1579 " headroom to pad");
1583 if (txq
->txq_len
>= txq
->txq_max
&&
1584 txq
->qnum
<= AR5K_TX_QUEUE_ID_DATA_MAX
)
1585 ieee80211_stop_queue(hw
, txq
->qnum
);
1587 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1588 if (list_empty(&ah
->txbuf
)) {
1589 ATH5K_ERR(ah
, "no further txbuf available, dropping packet\n");
1590 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1591 ieee80211_stop_queues(hw
);
1594 bf
= list_first_entry(&ah
->txbuf
, struct ath5k_buf
, list
);
1595 list_del(&bf
->list
);
1597 if (list_empty(&ah
->txbuf
))
1598 ieee80211_stop_queues(hw
);
1599 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1603 if (ath5k_txbuf_setup(ah
, bf
, txq
, padsize
, control
)) {
1605 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1606 list_add_tail(&bf
->list
, &ah
->txbuf
);
1608 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1614 ieee80211_free_txskb(hw
, skb
);
1618 ath5k_tx_frame_completed(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1619 struct ath5k_txq
*txq
, struct ath5k_tx_status
*ts
,
1620 struct ath5k_buf
*bf
)
1622 struct ieee80211_tx_info
*info
;
1627 ah
->stats
.tx_all_count
++;
1628 ah
->stats
.tx_bytes_count
+= skb
->len
;
1629 info
= IEEE80211_SKB_CB(skb
);
1631 tries
[0] = info
->status
.rates
[0].count
;
1632 tries
[1] = info
->status
.rates
[1].count
;
1633 tries
[2] = info
->status
.rates
[2].count
;
1635 ieee80211_tx_info_clear_status(info
);
1637 size
= min_t(int, sizeof(info
->status
.rates
), sizeof(bf
->rates
));
1638 memcpy(info
->status
.rates
, bf
->rates
, size
);
1640 for (i
= 0; i
< ts
->ts_final_idx
; i
++) {
1641 struct ieee80211_tx_rate
*r
=
1642 &info
->status
.rates
[i
];
1644 r
->count
= tries
[i
];
1647 info
->status
.rates
[ts
->ts_final_idx
].count
= ts
->ts_final_retry
;
1648 info
->status
.rates
[ts
->ts_final_idx
+ 1].idx
= -1;
1650 if (unlikely(ts
->ts_status
)) {
1651 ah
->stats
.ack_fail
++;
1652 if (ts
->ts_status
& AR5K_TXERR_FILT
) {
1653 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1654 ah
->stats
.txerr_filt
++;
1656 if (ts
->ts_status
& AR5K_TXERR_XRETRY
)
1657 ah
->stats
.txerr_retry
++;
1658 if (ts
->ts_status
& AR5K_TXERR_FIFO
)
1659 ah
->stats
.txerr_fifo
++;
1661 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1662 info
->status
.ack_signal
= ts
->ts_rssi
;
1664 /* count the successful attempt as well */
1665 info
->status
.rates
[ts
->ts_final_idx
].count
++;
1669 * Remove MAC header padding before giving the frame
1672 ath5k_remove_padding(skb
);
1674 if (ts
->ts_antenna
> 0 && ts
->ts_antenna
< 5)
1675 ah
->stats
.antenna_tx
[ts
->ts_antenna
]++;
1677 ah
->stats
.antenna_tx
[0]++; /* invalid */
1679 trace_ath5k_tx_complete(ah
, skb
, txq
, ts
);
1680 ieee80211_tx_status(ah
->hw
, skb
);
1684 ath5k_tx_processq(struct ath5k_hw
*ah
, struct ath5k_txq
*txq
)
1686 struct ath5k_tx_status ts
= {};
1687 struct ath5k_buf
*bf
, *bf0
;
1688 struct ath5k_desc
*ds
;
1689 struct sk_buff
*skb
;
1692 spin_lock(&txq
->lock
);
1693 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1695 txq
->txq_poll_mark
= false;
1697 /* skb might already have been processed last time. */
1698 if (bf
->skb
!= NULL
) {
1701 ret
= ah
->ah_proc_tx_desc(ah
, ds
, &ts
);
1702 if (unlikely(ret
== -EINPROGRESS
))
1704 else if (unlikely(ret
)) {
1706 "error %d while processing "
1707 "queue %u\n", ret
, txq
->qnum
);
1714 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
,
1716 ath5k_tx_frame_completed(ah
, skb
, txq
, &ts
, bf
);
1720 * It's possible that the hardware can say the buffer is
1721 * completed when it hasn't yet loaded the ds_link from
1722 * host memory and moved on.
1723 * Always keep the last descriptor to avoid HW races...
1725 if (ath5k_hw_get_txdp(ah
, txq
->qnum
) != bf
->daddr
) {
1726 spin_lock(&ah
->txbuflock
);
1727 list_move_tail(&bf
->list
, &ah
->txbuf
);
1730 spin_unlock(&ah
->txbuflock
);
1733 spin_unlock(&txq
->lock
);
1734 if (txq
->txq_len
< ATH5K_TXQ_LEN_LOW
&& txq
->qnum
< 4)
1735 ieee80211_wake_queue(ah
->hw
, txq
->qnum
);
1739 ath5k_tasklet_tx(unsigned long data
)
1742 struct ath5k_hw
*ah
= (void *)data
;
1744 for (i
= 0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1745 if (ah
->txqs
[i
].setup
&& (ah
->ah_txq_isr_txok_all
& BIT(i
)))
1746 ath5k_tx_processq(ah
, &ah
->txqs
[i
]);
1748 ah
->tx_pending
= false;
1749 ath5k_set_current_imask(ah
);
1758 * Setup the beacon frame for transmit.
1761 ath5k_beacon_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
1763 struct sk_buff
*skb
= bf
->skb
;
1764 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1765 struct ath5k_desc
*ds
;
1769 const int padsize
= 0;
1771 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
1773 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1774 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1775 (unsigned long long)bf
->skbaddr
);
1777 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
)) {
1778 ATH5K_ERR(ah
, "beacon DMA mapping failed\n");
1779 dev_kfree_skb_any(skb
);
1785 antenna
= ah
->ah_tx_ant
;
1787 flags
= AR5K_TXDESC_NOACK
;
1788 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
1789 ds
->ds_link
= bf
->daddr
; /* self-linked */
1790 flags
|= AR5K_TXDESC_VEOL
;
1795 * If we use multiple antennas on AP and use
1796 * the Sectored AP scenario, switch antenna every
1797 * 4 beacons to make sure everybody hears our AP.
1798 * When a client tries to associate, hw will keep
1799 * track of the tx antenna to be used for this client
1800 * automatically, based on ACKed packets.
1802 * Note: AP still listens and transmits RTS on the
1803 * default antenna which is supposed to be an omni.
1805 * Note2: On sectored scenarios it's possible to have
1806 * multiple antennas (1 omni -- the default -- and 14
1807 * sectors), so if we choose to actually support this
1808 * mode, we need to allow the user to set how many antennas
1809 * we have and tweak the code below to send beacons
1812 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
1813 antenna
= ah
->bsent
& 4 ? 2 : 1;
1816 /* FIXME: If we are in g mode and rate is a CCK rate
1817 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1818 * from tx power (value is in dB units already) */
1819 ds
->ds_data
= bf
->skbaddr
;
1820 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
1821 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
1822 AR5K_PKT_TYPE_BEACON
,
1823 (ah
->ah_txpower
.txp_requested
* 2),
1824 ieee80211_get_tx_rate(ah
->hw
, info
)->hw_value
,
1825 1, AR5K_TXKEYIX_INVALID
,
1826 antenna
, flags
, 0, 0);
1832 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
1837 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1838 * this is called only once at config_bss time, for AP we do it every
1839 * SWBA interrupt so that the TIM will reflect buffered frames.
1841 * Called with the beacon lock.
1844 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1847 struct ath5k_hw
*ah
= hw
->priv
;
1848 struct ath5k_vif
*avf
;
1849 struct sk_buff
*skb
;
1851 if (WARN_ON(!vif
)) {
1856 skb
= ieee80211_beacon_get(hw
, vif
);
1863 avf
= (void *)vif
->drv_priv
;
1864 ath5k_txbuf_free_skb(ah
, avf
->bbuf
);
1865 avf
->bbuf
->skb
= skb
;
1866 ret
= ath5k_beacon_setup(ah
, avf
->bbuf
);
1872 * Transmit a beacon frame at SWBA. Dynamic updates to the
1873 * frame contents are done as needed and the slot time is
1874 * also adjusted based on current state.
1876 * This is called from software irq context (beacontq tasklets)
1877 * or user context from ath5k_beacon_config.
1880 ath5k_beacon_send(struct ath5k_hw
*ah
)
1882 struct ieee80211_vif
*vif
;
1883 struct ath5k_vif
*avf
;
1884 struct ath5k_buf
*bf
;
1885 struct sk_buff
*skb
;
1888 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1891 * Check if the previous beacon has gone out. If
1892 * not, don't don't try to post another: skip this
1893 * period and wait for the next. Missed beacons
1894 * indicate a problem and should not occur. If we
1895 * miss too many consecutive beacons reset the device.
1897 if (unlikely(ath5k_hw_num_tx_pending(ah
, ah
->bhalq
) != 0)) {
1899 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1900 "missed %u consecutive beacons\n", ah
->bmisscount
);
1901 if (ah
->bmisscount
> 10) { /* NB: 10 is a guess */
1902 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1903 "stuck beacon time (%u missed)\n",
1905 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1906 "stuck beacon, resetting\n");
1907 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
1911 if (unlikely(ah
->bmisscount
!= 0)) {
1912 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1913 "resume beacon xmit after %u misses\n",
1918 if ((ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
+
1919 ah
->num_mesh_vifs
> 1) ||
1920 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1921 u64 tsf
= ath5k_hw_get_tsf64(ah
);
1922 u32 tsftu
= TSF_TO_TU(tsf
);
1923 int slot
= ((tsftu
% ah
->bintval
) * ATH_BCBUF
) / ah
->bintval
;
1924 vif
= ah
->bslot
[(slot
+ 1) % ATH_BCBUF
];
1925 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1926 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1927 (unsigned long long)tsf
, tsftu
, ah
->bintval
, slot
, vif
);
1928 } else /* only one interface */
1934 avf
= (void *)vif
->drv_priv
;
1938 * Stop any current dma and put the new frame on the queue.
1939 * This should never fail since we check above that no frames
1940 * are still pending on the queue.
1942 if (unlikely(ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
))) {
1943 ATH5K_WARN(ah
, "beacon queue %u didn't start/stop ?\n", ah
->bhalq
);
1944 /* NB: hw still stops DMA, so proceed */
1947 /* refresh the beacon for AP or MESH mode */
1948 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1949 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1950 err
= ath5k_beacon_update(ah
->hw
, vif
);
1955 if (unlikely(bf
->skb
== NULL
|| ah
->opmode
== NL80211_IFTYPE_STATION
||
1956 ah
->opmode
== NL80211_IFTYPE_MONITOR
)) {
1957 ATH5K_WARN(ah
, "bf=%p bf_skb=%p\n", bf
, bf
->skb
);
1961 trace_ath5k_tx(ah
, bf
->skb
, &ah
->txqs
[ah
->bhalq
]);
1963 ath5k_hw_set_txdp(ah
, ah
->bhalq
, bf
->daddr
);
1964 ath5k_hw_start_tx_dma(ah
, ah
->bhalq
);
1965 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
1966 ah
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
1968 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
1970 ath5k_tx_queue(ah
->hw
, skb
, ah
->cabq
, NULL
);
1972 if (ah
->cabq
->txq_len
>= ah
->cabq
->txq_max
)
1975 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
1982 * ath5k_beacon_update_timers - update beacon timers
1984 * @ah: struct ath5k_hw pointer we are operating on
1985 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1986 * beacon timer update based on the current HW TSF.
1988 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1989 * of a received beacon or the current local hardware TSF and write it to the
1990 * beacon timer registers.
1992 * This is called in a variety of situations, e.g. when a beacon is received,
1993 * when a TSF update has been detected, but also when an new IBSS is created or
1994 * when we otherwise know we have to update the timers, but we keep it in this
1995 * function to have it all together in one place.
1998 ath5k_beacon_update_timers(struct ath5k_hw
*ah
, u64 bc_tsf
)
2000 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
2003 intval
= ah
->bintval
& AR5K_BEACON_PERIOD
;
2004 if (ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
2005 + ah
->num_mesh_vifs
> 1) {
2006 intval
/= ATH_BCBUF
; /* staggered multi-bss beacons */
2008 ATH5K_WARN(ah
, "intval %u is too low, min 15\n",
2011 if (WARN_ON(!intval
))
2014 /* beacon TSF converted to TU */
2015 bc_tu
= TSF_TO_TU(bc_tsf
);
2017 /* current TSF converted to TU */
2018 hw_tsf
= ath5k_hw_get_tsf64(ah
);
2019 hw_tu
= TSF_TO_TU(hw_tsf
);
2021 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2022 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2023 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2024 * configuration we need to make sure it is bigger than that. */
2028 * no beacons received, called internally.
2029 * just need to refresh timers based on HW TSF.
2031 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
2032 } else if (bc_tsf
== 0) {
2034 * no beacon received, probably called by ath5k_reset_tsf().
2035 * reset TSF to start with 0.
2038 intval
|= AR5K_BEACON_RESET_TSF
;
2039 } else if (bc_tsf
> hw_tsf
) {
2041 * beacon received, SW merge happened but HW TSF not yet updated.
2042 * not possible to reconfigure timers yet, but next time we
2043 * receive a beacon with the same BSSID, the hardware will
2044 * automatically update the TSF and then we need to reconfigure
2047 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2048 "need to wait for HW TSF sync\n");
2052 * most important case for beacon synchronization between STA.
2054 * beacon received and HW TSF has been already updated by HW.
2055 * update next TBTT based on the TSF of the beacon, but make
2056 * sure it is ahead of our local TSF timer.
2058 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2062 ah
->nexttbtt
= nexttbtt
;
2064 intval
|= AR5K_BEACON_ENA
;
2065 ath5k_hw_init_beacon_timers(ah
, nexttbtt
, intval
);
2068 * debugging output last in order to preserve the time critical aspect
2072 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2073 "reconfigured timers based on HW TSF\n");
2074 else if (bc_tsf
== 0)
2075 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2076 "reset HW TSF and timers\n");
2078 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2079 "updated timers based on beacon TSF\n");
2081 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2082 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2083 (unsigned long long) bc_tsf
,
2084 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2085 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2086 intval
& AR5K_BEACON_PERIOD
,
2087 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2088 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2092 * ath5k_beacon_config - Configure the beacon queues and interrupts
2094 * @ah: struct ath5k_hw pointer we are operating on
2096 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2097 * interrupts to detect TSF updates only.
2100 ath5k_beacon_config(struct ath5k_hw
*ah
)
2102 spin_lock_bh(&ah
->block
);
2104 ah
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2106 if (ah
->enable_beacon
) {
2108 * In IBSS mode we use a self-linked tx descriptor and let the
2109 * hardware send the beacons automatically. We have to load it
2111 * We use the SWBA interrupt only to keep track of the beacon
2112 * timers in order to detect automatic TSF updates.
2114 ath5k_beaconq_config(ah
);
2116 ah
->imask
|= AR5K_INT_SWBA
;
2118 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2119 if (ath5k_hw_hasveol(ah
))
2120 ath5k_beacon_send(ah
);
2122 ath5k_beacon_update_timers(ah
, -1);
2124 ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
);
2127 ath5k_hw_set_imr(ah
, ah
->imask
);
2129 spin_unlock_bh(&ah
->block
);
2132 static void ath5k_tasklet_beacon(unsigned long data
)
2134 struct ath5k_hw
*ah
= (struct ath5k_hw
*) data
;
2137 * Software beacon alert--time to send a beacon.
2139 * In IBSS mode we use this interrupt just to
2140 * keep track of the next TBTT (target beacon
2141 * transmission time) in order to detect whether
2142 * automatic TSF updates happened.
2144 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2145 /* XXX: only if VEOL supported */
2146 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2147 ah
->nexttbtt
+= ah
->bintval
;
2148 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2149 "SWBA nexttbtt: %x hw_tu: %x "
2153 (unsigned long long) tsf
);
2155 spin_lock(&ah
->block
);
2156 ath5k_beacon_send(ah
);
2157 spin_unlock(&ah
->block
);
2162 /********************\
2163 * Interrupt handling *
2164 \********************/
2167 ath5k_intr_calibration_poll(struct ath5k_hw
*ah
)
2169 if (time_is_before_eq_jiffies(ah
->ah_cal_next_ani
) &&
2170 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2171 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2173 /* Run ANI only when calibration is not active */
2175 ah
->ah_cal_next_ani
= jiffies
+
2176 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2177 tasklet_schedule(&ah
->ani_tasklet
);
2179 } else if (time_is_before_eq_jiffies(ah
->ah_cal_next_short
) &&
2180 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2181 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2183 /* Run calibration only when another calibration
2186 * Note: This is for both full/short calibration,
2187 * if it's time for a full one, ath5k_calibrate_work will deal
2190 ah
->ah_cal_next_short
= jiffies
+
2191 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2192 ieee80211_queue_work(ah
->hw
, &ah
->calib_work
);
2194 /* we could use SWI to generate enough interrupts to meet our
2195 * calibration interval requirements, if necessary:
2196 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2200 ath5k_schedule_rx(struct ath5k_hw
*ah
)
2202 ah
->rx_pending
= true;
2203 tasklet_schedule(&ah
->rxtq
);
2207 ath5k_schedule_tx(struct ath5k_hw
*ah
)
2209 ah
->tx_pending
= true;
2210 tasklet_schedule(&ah
->txtq
);
2214 ath5k_intr(int irq
, void *dev_id
)
2216 struct ath5k_hw
*ah
= dev_id
;
2217 enum ath5k_int status
;
2218 unsigned int counter
= 1000;
2222 * If hw is not ready (or detached) and we get an
2223 * interrupt, or if we have no interrupts pending
2224 * (that means it's not for us) skip it.
2226 * NOTE: Group 0/1 PCI interface registers are not
2227 * supported on WiSOCs, so we can't check for pending
2228 * interrupts (ISR belongs to another register group
2231 if (unlikely(test_bit(ATH_STAT_INVALID
, ah
->status
) ||
2232 ((ath5k_get_bus_type(ah
) != ATH_AHB
) &&
2233 !ath5k_hw_is_intr_pending(ah
))))
2238 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2240 ATH5K_DBG(ah
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2244 * Fatal hw error -> Log and reset
2246 * Fatal errors are unrecoverable so we have to
2247 * reset the card. These errors include bus and
2250 if (unlikely(status
& AR5K_INT_FATAL
)) {
2252 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2253 "fatal int, resetting\n");
2254 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2257 * RX Overrun -> Count and reset if needed
2259 * Receive buffers are full. Either the bus is busy or
2260 * the CPU is not fast enough to process all received
2263 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2266 * Older chipsets need a reset to come out of this
2267 * condition, but we treat it as RX for newer chips.
2268 * We don't know exactly which versions need a reset
2269 * this guess is copied from the HAL.
2271 ah
->stats
.rxorn_intr
++;
2273 if (ah
->ah_mac_srev
< AR5K_SREV_AR5212
) {
2274 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2275 "rx overrun, resetting\n");
2276 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2278 ath5k_schedule_rx(ah
);
2282 /* Software Beacon Alert -> Schedule beacon tasklet */
2283 if (status
& AR5K_INT_SWBA
)
2284 tasklet_hi_schedule(&ah
->beacontq
);
2287 * No more RX descriptors -> Just count
2289 * NB: the hardware should re-read the link when
2290 * RXE bit is written, but it doesn't work at
2291 * least on older hardware revs.
2293 if (status
& AR5K_INT_RXEOL
)
2294 ah
->stats
.rxeol_intr
++;
2297 /* TX Underrun -> Bump tx trigger level */
2298 if (status
& AR5K_INT_TXURN
)
2299 ath5k_hw_update_tx_triglevel(ah
, true);
2301 /* RX -> Schedule rx tasklet */
2302 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2303 ath5k_schedule_rx(ah
);
2305 /* TX -> Schedule tx tasklet */
2306 if (status
& (AR5K_INT_TXOK
2310 ath5k_schedule_tx(ah
);
2312 /* Missed beacon -> TODO
2313 if (status & AR5K_INT_BMISS)
2316 /* MIB event -> Update counters and notify ANI */
2317 if (status
& AR5K_INT_MIB
) {
2318 ah
->stats
.mib_intr
++;
2319 ath5k_hw_update_mib_counters(ah
);
2320 ath5k_ani_mib_intr(ah
);
2323 /* GPIO -> Notify RFKill layer */
2324 if (status
& AR5K_INT_GPIO
)
2325 tasklet_schedule(&ah
->rf_kill
.toggleq
);
2329 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
2332 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2335 * Until we handle rx/tx interrupts mask them on IMR
2337 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2338 * and unset after we 've handled the interrupts.
2340 if (ah
->rx_pending
|| ah
->tx_pending
)
2341 ath5k_set_current_imask(ah
);
2343 if (unlikely(!counter
))
2344 ATH5K_WARN(ah
, "too many interrupts, giving up for now\n");
2346 /* Fire up calibration poll */
2347 ath5k_intr_calibration_poll(ah
);
2353 * Periodically recalibrate the PHY to account
2354 * for temperature/environment changes.
2357 ath5k_calibrate_work(struct work_struct
*work
)
2359 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2362 /* Should we run a full calibration ? */
2363 if (time_is_before_eq_jiffies(ah
->ah_cal_next_full
)) {
2365 ah
->ah_cal_next_full
= jiffies
+
2366 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2367 ah
->ah_cal_mask
|= AR5K_CALIBRATION_FULL
;
2369 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
2370 "running full calibration\n");
2372 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2374 * Rfgain is out of bounds, reset the chip
2375 * to load new gain values.
2377 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2378 "got new rfgain, resetting\n");
2379 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2382 ah
->ah_cal_mask
|= AR5K_CALIBRATION_SHORT
;
2385 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2386 ieee80211_frequency_to_channel(ah
->curchan
->center_freq
),
2387 ah
->curchan
->hw_value
);
2389 if (ath5k_hw_phy_calibrate(ah
, ah
->curchan
))
2390 ATH5K_ERR(ah
, "calibration of channel %u failed\n",
2391 ieee80211_frequency_to_channel(
2392 ah
->curchan
->center_freq
));
2394 /* Clear calibration flags */
2395 if (ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
)
2396 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_FULL
;
2397 else if (ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)
2398 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_SHORT
;
2403 ath5k_tasklet_ani(unsigned long data
)
2405 struct ath5k_hw
*ah
= (void *)data
;
2407 ah
->ah_cal_mask
|= AR5K_CALIBRATION_ANI
;
2408 ath5k_ani_calibration(ah
);
2409 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_ANI
;
2414 ath5k_tx_complete_poll_work(struct work_struct
*work
)
2416 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2417 tx_complete_work
.work
);
2418 struct ath5k_txq
*txq
;
2420 bool needreset
= false;
2422 if (!test_bit(ATH_STAT_STARTED
, ah
->status
))
2425 mutex_lock(&ah
->lock
);
2427 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
2428 if (ah
->txqs
[i
].setup
) {
2430 spin_lock_bh(&txq
->lock
);
2431 if (txq
->txq_len
> 1) {
2432 if (txq
->txq_poll_mark
) {
2433 ATH5K_DBG(ah
, ATH5K_DEBUG_XMIT
,
2434 "TX queue stuck %d\n",
2438 spin_unlock_bh(&txq
->lock
);
2441 txq
->txq_poll_mark
= true;
2444 spin_unlock_bh(&txq
->lock
);
2449 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2450 "TX queues stuck, resetting\n");
2451 ath5k_reset(ah
, NULL
, true);
2454 mutex_unlock(&ah
->lock
);
2456 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2457 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2461 /*************************\
2462 * Initialization routines *
2463 \*************************/
2465 static const struct ieee80211_iface_limit if_limits
[] = {
2466 { .max
= 2048, .types
= BIT(NL80211_IFTYPE_STATION
) },
2467 { .max
= 4, .types
=
2468 #ifdef CONFIG_MAC80211_MESH
2469 BIT(NL80211_IFTYPE_MESH_POINT
) |
2471 BIT(NL80211_IFTYPE_AP
) },
2474 static const struct ieee80211_iface_combination if_comb
= {
2475 .limits
= if_limits
,
2476 .n_limits
= ARRAY_SIZE(if_limits
),
2477 .max_interfaces
= 2048,
2478 .num_different_channels
= 1,
2482 ath5k_init_ah(struct ath5k_hw
*ah
, const struct ath_bus_ops
*bus_ops
)
2484 struct ieee80211_hw
*hw
= ah
->hw
;
2485 struct ath_common
*common
;
2489 /* Initialize driver private data */
2490 SET_IEEE80211_DEV(hw
, ah
->dev
);
2491 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
2492 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2493 IEEE80211_HW_SIGNAL_DBM
|
2494 IEEE80211_HW_MFP_CAPABLE
|
2495 IEEE80211_HW_REPORTS_TX_ACK_STATUS
|
2496 IEEE80211_HW_SUPPORTS_RC_TABLE
;
2498 hw
->wiphy
->interface_modes
=
2499 BIT(NL80211_IFTYPE_AP
) |
2500 BIT(NL80211_IFTYPE_STATION
) |
2501 BIT(NL80211_IFTYPE_ADHOC
) |
2502 BIT(NL80211_IFTYPE_MESH_POINT
);
2504 hw
->wiphy
->iface_combinations
= &if_comb
;
2505 hw
->wiphy
->n_iface_combinations
= 1;
2507 /* SW support for IBSS_RSN is provided by mac80211 */
2508 hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
2510 /* both antennas can be configured as RX or TX */
2511 hw
->wiphy
->available_antennas_tx
= 0x3;
2512 hw
->wiphy
->available_antennas_rx
= 0x3;
2514 hw
->extra_tx_headroom
= 2;
2515 hw
->channel_change_time
= 5000;
2518 * Mark the device as detached to avoid processing
2519 * interrupts until setup is complete.
2521 __set_bit(ATH_STAT_INVALID
, ah
->status
);
2523 ah
->opmode
= NL80211_IFTYPE_STATION
;
2525 mutex_init(&ah
->lock
);
2526 spin_lock_init(&ah
->rxbuflock
);
2527 spin_lock_init(&ah
->txbuflock
);
2528 spin_lock_init(&ah
->block
);
2529 spin_lock_init(&ah
->irqlock
);
2531 /* Setup interrupt handler */
2532 ret
= request_irq(ah
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", ah
);
2534 ATH5K_ERR(ah
, "request_irq failed\n");
2538 common
= ath5k_hw_common(ah
);
2539 common
->ops
= &ath5k_common_ops
;
2540 common
->bus_ops
= bus_ops
;
2544 common
->clockrate
= 40;
2547 * Cache line size is used to size and align various
2548 * structures used to communicate with the hardware.
2550 ath5k_read_cachesize(common
, &csz
);
2551 common
->cachelsz
= csz
<< 2; /* convert to bytes */
2553 spin_lock_init(&common
->cc_lock
);
2555 /* Initialize device */
2556 ret
= ath5k_hw_init(ah
);
2560 /* Set up multi-rate retry capabilities */
2561 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
2563 hw
->max_rate_tries
= max(AR5K_INIT_RETRY_SHORT
,
2564 AR5K_INIT_RETRY_LONG
);
2567 hw
->vif_data_size
= sizeof(struct ath5k_vif
);
2569 /* Finish private driver data initialization */
2570 ret
= ath5k_init(hw
);
2574 ATH5K_INFO(ah
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2575 ath5k_chip_name(AR5K_VERSION_MAC
, ah
->ah_mac_srev
),
2577 ah
->ah_phy_revision
);
2579 if (!ah
->ah_single_chip
) {
2580 /* Single chip radio (!RF5111) */
2581 if (ah
->ah_radio_5ghz_revision
&&
2582 !ah
->ah_radio_2ghz_revision
) {
2583 /* No 5GHz support -> report 2GHz radio */
2584 if (!test_bit(AR5K_MODE_11A
,
2585 ah
->ah_capabilities
.cap_mode
)) {
2586 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2587 ath5k_chip_name(AR5K_VERSION_RAD
,
2588 ah
->ah_radio_5ghz_revision
),
2589 ah
->ah_radio_5ghz_revision
);
2590 /* No 2GHz support (5110 and some
2591 * 5GHz only cards) -> report 5GHz radio */
2592 } else if (!test_bit(AR5K_MODE_11B
,
2593 ah
->ah_capabilities
.cap_mode
)) {
2594 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2595 ath5k_chip_name(AR5K_VERSION_RAD
,
2596 ah
->ah_radio_5ghz_revision
),
2597 ah
->ah_radio_5ghz_revision
);
2598 /* Multiband radio */
2600 ATH5K_INFO(ah
, "RF%s multiband radio found"
2602 ath5k_chip_name(AR5K_VERSION_RAD
,
2603 ah
->ah_radio_5ghz_revision
),
2604 ah
->ah_radio_5ghz_revision
);
2607 /* Multi chip radio (RF5111 - RF2111) ->
2608 * report both 2GHz/5GHz radios */
2609 else if (ah
->ah_radio_5ghz_revision
&&
2610 ah
->ah_radio_2ghz_revision
) {
2611 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2612 ath5k_chip_name(AR5K_VERSION_RAD
,
2613 ah
->ah_radio_5ghz_revision
),
2614 ah
->ah_radio_5ghz_revision
);
2615 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2616 ath5k_chip_name(AR5K_VERSION_RAD
,
2617 ah
->ah_radio_2ghz_revision
),
2618 ah
->ah_radio_2ghz_revision
);
2622 ath5k_debug_init_device(ah
);
2624 /* ready to process interrupts */
2625 __clear_bit(ATH_STAT_INVALID
, ah
->status
);
2629 ath5k_hw_deinit(ah
);
2631 free_irq(ah
->irq
, ah
);
2637 ath5k_stop_locked(struct ath5k_hw
*ah
)
2640 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2641 test_bit(ATH_STAT_INVALID
, ah
->status
));
2644 * Shutdown the hardware and driver:
2645 * stop output from above
2646 * disable interrupts
2648 * turn off the radio
2649 * clear transmit machinery
2650 * clear receive machinery
2651 * drain and release tx queues
2652 * reclaim beacon resources
2653 * power down hardware
2655 * Note that some of this work is not possible if the
2656 * hardware is gone (invalid).
2658 ieee80211_stop_queues(ah
->hw
);
2660 if (!test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2662 ath5k_hw_set_imr(ah
, 0);
2663 synchronize_irq(ah
->irq
);
2665 ath5k_hw_dma_stop(ah
);
2666 ath5k_drain_tx_buffs(ah
);
2667 ath5k_hw_phy_disable(ah
);
2673 int ath5k_start(struct ieee80211_hw
*hw
)
2675 struct ath5k_hw
*ah
= hw
->priv
;
2676 struct ath_common
*common
= ath5k_hw_common(ah
);
2679 mutex_lock(&ah
->lock
);
2681 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "mode %d\n", ah
->opmode
);
2684 * Stop anything previously setup. This is safe
2685 * no matter this is the first time through or not.
2687 ath5k_stop_locked(ah
);
2690 * The basic interface to setting the hardware in a good
2691 * state is ``reset''. On return the hardware is known to
2692 * be powered up and with interrupts disabled. This must
2693 * be followed by initialization of the appropriate bits
2694 * and then setup of the interrupt mask.
2696 ah
->curchan
= ah
->hw
->conf
.chandef
.chan
;
2697 ah
->imask
= AR5K_INT_RXOK
2707 ret
= ath5k_reset(ah
, NULL
, false);
2711 if (!ath5k_modparam_no_hw_rfkill_switch
)
2712 ath5k_rfkill_hw_start(ah
);
2715 * Reset the key cache since some parts do not reset the
2716 * contents on initial power up or resume from suspend.
2718 for (i
= 0; i
< common
->keymax
; i
++)
2719 ath_hw_keyreset(common
, (u16
) i
);
2721 /* Use higher rates for acks instead of base
2723 ah
->ah_ack_bitrate_high
= true;
2725 for (i
= 0; i
< ARRAY_SIZE(ah
->bslot
); i
++)
2726 ah
->bslot
[i
] = NULL
;
2731 mutex_unlock(&ah
->lock
);
2733 set_bit(ATH_STAT_STARTED
, ah
->status
);
2734 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2735 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2740 static void ath5k_stop_tasklets(struct ath5k_hw
*ah
)
2742 ah
->rx_pending
= false;
2743 ah
->tx_pending
= false;
2744 tasklet_kill(&ah
->rxtq
);
2745 tasklet_kill(&ah
->txtq
);
2746 tasklet_kill(&ah
->beacontq
);
2747 tasklet_kill(&ah
->ani_tasklet
);
2751 * Stop the device, grabbing the top-level lock to protect
2752 * against concurrent entry through ath5k_init (which can happen
2753 * if another thread does a system call and the thread doing the
2754 * stop is preempted).
2756 void ath5k_stop(struct ieee80211_hw
*hw
)
2758 struct ath5k_hw
*ah
= hw
->priv
;
2761 mutex_lock(&ah
->lock
);
2762 ret
= ath5k_stop_locked(ah
);
2763 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2765 * Don't set the card in full sleep mode!
2767 * a) When the device is in this state it must be carefully
2768 * woken up or references to registers in the PCI clock
2769 * domain may freeze the bus (and system). This varies
2770 * by chip and is mostly an issue with newer parts
2771 * (madwifi sources mentioned srev >= 0x78) that go to
2772 * sleep more quickly.
2774 * b) On older chips full sleep results a weird behaviour
2775 * during wakeup. I tested various cards with srev < 0x78
2776 * and they don't wake up after module reload, a second
2777 * module reload is needed to bring the card up again.
2779 * Until we figure out what's going on don't enable
2780 * full chip reset on any chip (this is what Legacy HAL
2781 * and Sam's HAL do anyway). Instead Perform a full reset
2782 * on the device (same as initial state after attach) and
2783 * leave it idle (keep MAC/BB on warm reset) */
2784 ret
= ath5k_hw_on_hold(ah
);
2786 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2787 "putting device to sleep\n");
2791 mutex_unlock(&ah
->lock
);
2793 ath5k_stop_tasklets(ah
);
2795 clear_bit(ATH_STAT_STARTED
, ah
->status
);
2796 cancel_delayed_work_sync(&ah
->tx_complete_work
);
2798 if (!ath5k_modparam_no_hw_rfkill_switch
)
2799 ath5k_rfkill_hw_stop(ah
);
2803 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2804 * and change to the given channel.
2806 * This should be called with ah->lock.
2809 ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
2812 struct ath_common
*common
= ath5k_hw_common(ah
);
2816 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "resetting\n");
2818 ath5k_hw_set_imr(ah
, 0);
2819 synchronize_irq(ah
->irq
);
2820 ath5k_stop_tasklets(ah
);
2822 /* Save ani mode and disable ANI during
2823 * reset. If we don't we might get false
2824 * PHY error interrupts. */
2825 ani_mode
= ah
->ani_state
.ani_mode
;
2826 ath5k_ani_init(ah
, ATH5K_ANI_MODE_OFF
);
2828 /* We are going to empty hw queues
2829 * so we should also free any remaining
2831 ath5k_drain_tx_buffs(ah
);
2835 fast
= ((chan
!= NULL
) && modparam_fastchanswitch
) ? 1 : 0;
2837 ret
= ath5k_hw_reset(ah
, ah
->opmode
, ah
->curchan
, fast
, skip_pcu
);
2839 ATH5K_ERR(ah
, "can't reset hardware (%d)\n", ret
);
2843 ret
= ath5k_rx_start(ah
);
2845 ATH5K_ERR(ah
, "can't start recv logic\n");
2849 ath5k_ani_init(ah
, ani_mode
);
2852 * Set calibration intervals
2854 * Note: We don't need to run calibration imediately
2855 * since some initial calibration is done on reset
2856 * even for fast channel switching. Also on scanning
2857 * this will get set again and again and it won't get
2858 * executed unless we connect somewhere and spend some
2859 * time on the channel (that's what calibration needs
2860 * anyway to be accurate).
2862 ah
->ah_cal_next_full
= jiffies
+
2863 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2864 ah
->ah_cal_next_ani
= jiffies
+
2865 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2866 ah
->ah_cal_next_short
= jiffies
+
2867 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2869 ewma_init(&ah
->ah_beacon_rssi_avg
, 1024, 8);
2871 /* clear survey data and cycle counters */
2872 memset(&ah
->survey
, 0, sizeof(ah
->survey
));
2873 spin_lock_bh(&common
->cc_lock
);
2874 ath_hw_cycle_counters_update(common
);
2875 memset(&common
->cc_survey
, 0, sizeof(common
->cc_survey
));
2876 memset(&common
->cc_ani
, 0, sizeof(common
->cc_ani
));
2877 spin_unlock_bh(&common
->cc_lock
);
2880 * Change channels and update the h/w rate map if we're switching;
2881 * e.g. 11a to 11b/g.
2883 * We may be doing a reset in response to an ioctl that changes the
2884 * channel so update any state that might change as a result.
2888 /* ath5k_chan_change(ah, c); */
2890 ath5k_beacon_config(ah
);
2891 /* intrs are enabled by ath5k_beacon_config */
2893 ieee80211_wake_queues(ah
->hw
);
2900 static void ath5k_reset_work(struct work_struct
*work
)
2902 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2905 mutex_lock(&ah
->lock
);
2906 ath5k_reset(ah
, NULL
, true);
2907 mutex_unlock(&ah
->lock
);
2911 ath5k_init(struct ieee80211_hw
*hw
)
2914 struct ath5k_hw
*ah
= hw
->priv
;
2915 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2916 struct ath5k_txq
*txq
;
2917 u8 mac
[ETH_ALEN
] = {};
2922 * Collect the channel list. The 802.11 layer
2923 * is responsible for filtering this list based
2924 * on settings like the phy mode and regulatory
2925 * domain restrictions.
2927 ret
= ath5k_setup_bands(hw
);
2929 ATH5K_ERR(ah
, "can't get channels\n");
2934 * Allocate tx+rx descriptors and populate the lists.
2936 ret
= ath5k_desc_alloc(ah
);
2938 ATH5K_ERR(ah
, "can't allocate descriptors\n");
2943 * Allocate hardware transmit queues: one queue for
2944 * beacon frames and one data queue for each QoS
2945 * priority. Note that hw functions handle resetting
2946 * these queues at the needed time.
2948 ret
= ath5k_beaconq_setup(ah
);
2950 ATH5K_ERR(ah
, "can't setup a beacon xmit queue\n");
2954 ah
->cabq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_CAB
, 0);
2955 if (IS_ERR(ah
->cabq
)) {
2956 ATH5K_ERR(ah
, "can't setup cab queue\n");
2957 ret
= PTR_ERR(ah
->cabq
);
2961 /* 5211 and 5212 usually support 10 queues but we better rely on the
2962 * capability information */
2963 if (ah
->ah_capabilities
.cap_queues
.q_tx_num
>= 6) {
2964 /* This order matches mac80211's queue priority, so we can
2965 * directly use the mac80211 queue number without any mapping */
2966 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VO
);
2968 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2972 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VI
);
2974 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2978 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2980 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2984 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
2986 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2992 /* older hardware (5210) can only support one data queue */
2993 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2995 ATH5K_ERR(ah
, "can't setup xmit queue\n");
3002 tasklet_init(&ah
->rxtq
, ath5k_tasklet_rx
, (unsigned long)ah
);
3003 tasklet_init(&ah
->txtq
, ath5k_tasklet_tx
, (unsigned long)ah
);
3004 tasklet_init(&ah
->beacontq
, ath5k_tasklet_beacon
, (unsigned long)ah
);
3005 tasklet_init(&ah
->ani_tasklet
, ath5k_tasklet_ani
, (unsigned long)ah
);
3007 INIT_WORK(&ah
->reset_work
, ath5k_reset_work
);
3008 INIT_WORK(&ah
->calib_work
, ath5k_calibrate_work
);
3009 INIT_DELAYED_WORK(&ah
->tx_complete_work
, ath5k_tx_complete_poll_work
);
3011 ret
= ath5k_hw_common(ah
)->bus_ops
->eeprom_read_mac(ah
, mac
);
3013 ATH5K_ERR(ah
, "unable to read address from EEPROM\n");
3017 SET_IEEE80211_PERM_ADDR(hw
, mac
);
3018 /* All MAC address bits matter for ACKs */
3019 ath5k_update_bssid_mask_and_opmode(ah
, NULL
);
3021 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
3022 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
3024 ATH5K_ERR(ah
, "can't initialize regulatory system\n");
3028 ret
= ieee80211_register_hw(hw
);
3030 ATH5K_ERR(ah
, "can't register ieee80211 hw\n");
3034 if (!ath_is_world_regd(regulatory
))
3035 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
3037 ath5k_init_leds(ah
);
3039 ath5k_sysfs_register(ah
);
3043 ath5k_txq_release(ah
);
3045 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3047 ath5k_desc_free(ah
);
3053 ath5k_deinit_ah(struct ath5k_hw
*ah
)
3055 struct ieee80211_hw
*hw
= ah
->hw
;
3058 * NB: the order of these is important:
3059 * o call the 802.11 layer before detaching ath5k_hw to
3060 * ensure callbacks into the driver to delete global
3061 * key cache entries can be handled
3062 * o reclaim the tx queue data structures after calling
3063 * the 802.11 layer as we'll get called back to reclaim
3064 * node state and potentially want to use them
3065 * o to cleanup the tx queues the hal is called, so detach
3067 * XXX: ??? detach ath5k_hw ???
3068 * Other than that, it's straightforward...
3070 ieee80211_unregister_hw(hw
);
3071 ath5k_desc_free(ah
);
3072 ath5k_txq_release(ah
);
3073 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3074 ath5k_unregister_leds(ah
);
3076 ath5k_sysfs_unregister(ah
);
3078 * NB: can't reclaim these until after ieee80211_ifdetach
3079 * returns because we'll get called back to reclaim node
3080 * state and potentially want to use them.
3082 ath5k_hw_deinit(ah
);
3083 free_irq(ah
->irq
, ah
);
3087 ath5k_any_vif_assoc(struct ath5k_hw
*ah
)
3089 struct ath5k_vif_iter_data iter_data
;
3090 iter_data
.hw_macaddr
= NULL
;
3091 iter_data
.any_assoc
= false;
3092 iter_data
.need_set_hw_addr
= false;
3093 iter_data
.found_active
= true;
3095 ieee80211_iterate_active_interfaces_atomic(
3096 ah
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
3097 ath5k_vif_iter
, &iter_data
);
3098 return iter_data
.any_assoc
;
3102 ath5k_set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
3104 struct ath5k_hw
*ah
= hw
->priv
;
3106 rfilt
= ath5k_hw_get_rx_filter(ah
);
3108 rfilt
|= AR5K_RX_FILTER_BEACON
;
3110 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
3111 ath5k_hw_set_rx_filter(ah
, rfilt
);
3112 ah
->filter_flags
= rfilt
;
3115 void _ath5k_printk(const struct ath5k_hw
*ah
, const char *level
,
3116 const char *fmt
, ...)
3118 struct va_format vaf
;
3121 va_start(args
, fmt
);
3127 printk("%s" pr_fmt("%s: %pV"),
3128 level
, wiphy_name(ah
->hw
->wiphy
), &vaf
);
3130 printk("%s" pr_fmt("%pV"), level
, &vaf
);