Linux 3.11-rc3
[cris-mirror.git] / drivers / net / wireless / ath / ath5k / base.c
blobce67ab791eae9d008ed4c3d318b8c8949c30f428
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/ieee80211_radiotap.h>
61 #include <asm/unaligned.h>
63 #include <net/mac80211.h>
64 #include "base.h"
65 #include "reg.h"
66 #include "debug.h"
67 #include "ani.h"
68 #include "ath5k.h"
69 #include "../regd.h"
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
74 bool ath5k_modparam_nohwcrypt;
75 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
76 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78 static bool modparam_fastchanswitch;
79 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
80 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 static bool ath5k_modparam_no_hw_rfkill_switch;
83 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
84 bool, S_IRUGO);
85 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
88 /* Module info */
89 MODULE_AUTHOR("Jiri Slaby");
90 MODULE_AUTHOR("Nick Kossifidis");
91 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
92 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
93 MODULE_LICENSE("Dual BSD/GPL");
95 static int ath5k_init(struct ieee80211_hw *hw);
96 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
97 bool skip_pcu);
99 /* Known SREVs */
100 static const struct ath5k_srev_name srev_names[] = {
101 #ifdef CONFIG_ATHEROS_AR231X
102 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
104 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
105 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
107 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
109 #else
110 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
111 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
112 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
113 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
114 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
115 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
116 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
117 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
118 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
119 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
120 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
121 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
122 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
123 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
124 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
125 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
126 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
127 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
128 #endif
129 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
130 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
131 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
132 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
133 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
134 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
135 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
136 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
137 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
138 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
139 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
140 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
141 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
142 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
143 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
144 #ifdef CONFIG_ATHEROS_AR231X
145 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
146 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
147 #endif
148 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
151 static const struct ieee80211_rate ath5k_rates[] = {
152 { .bitrate = 10,
153 .hw_value = ATH5K_RATE_CODE_1M, },
154 { .bitrate = 20,
155 .hw_value = ATH5K_RATE_CODE_2M,
156 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 { .bitrate = 55,
159 .hw_value = ATH5K_RATE_CODE_5_5M,
160 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 { .bitrate = 110,
163 .hw_value = ATH5K_RATE_CODE_11M,
164 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
166 { .bitrate = 60,
167 .hw_value = ATH5K_RATE_CODE_6M,
168 .flags = 0 },
169 { .bitrate = 90,
170 .hw_value = ATH5K_RATE_CODE_9M,
171 .flags = 0 },
172 { .bitrate = 120,
173 .hw_value = ATH5K_RATE_CODE_12M,
174 .flags = 0 },
175 { .bitrate = 180,
176 .hw_value = ATH5K_RATE_CODE_18M,
177 .flags = 0 },
178 { .bitrate = 240,
179 .hw_value = ATH5K_RATE_CODE_24M,
180 .flags = 0 },
181 { .bitrate = 360,
182 .hw_value = ATH5K_RATE_CODE_36M,
183 .flags = 0 },
184 { .bitrate = 480,
185 .hw_value = ATH5K_RATE_CODE_48M,
186 .flags = 0 },
187 { .bitrate = 540,
188 .hw_value = ATH5K_RATE_CODE_54M,
189 .flags = 0 },
192 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
194 u64 tsf = ath5k_hw_get_tsf64(ah);
196 if ((tsf & 0x7fff) < rstamp)
197 tsf -= 0x8000;
199 return (tsf & ~0x7fff) | rstamp;
202 const char *
203 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
205 const char *name = "xxxxx";
206 unsigned int i;
208 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
209 if (srev_names[i].sr_type != type)
210 continue;
212 if ((val & 0xf0) == srev_names[i].sr_val)
213 name = srev_names[i].sr_name;
215 if ((val & 0xff) == srev_names[i].sr_val) {
216 name = srev_names[i].sr_name;
217 break;
221 return name;
223 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
225 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
226 return ath5k_hw_reg_read(ah, reg_offset);
229 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
231 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
232 ath5k_hw_reg_write(ah, val, reg_offset);
235 static const struct ath_ops ath5k_common_ops = {
236 .read = ath5k_ioread32,
237 .write = ath5k_iowrite32,
240 /***********************\
241 * Driver Initialization *
242 \***********************/
244 static void ath5k_reg_notifier(struct wiphy *wiphy,
245 struct regulatory_request *request)
247 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
248 struct ath5k_hw *ah = hw->priv;
249 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
251 ath_reg_notifier_apply(wiphy, request, regulatory);
254 /********************\
255 * Channel/mode setup *
256 \********************/
259 * Returns true for the channel numbers used.
261 #ifdef CONFIG_ATH5K_TEST_CHANNELS
262 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
264 return true;
267 #else
268 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
270 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
271 return true;
273 return /* UNII 1,2 */
274 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
275 /* midband */
276 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
277 /* UNII-3 */
278 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
279 /* 802.11j 5.030-5.080 GHz (20MHz) */
280 (chan == 8 || chan == 12 || chan == 16) ||
281 /* 802.11j 4.9GHz (20MHz) */
282 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
284 #endif
286 static unsigned int
287 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
288 unsigned int mode, unsigned int max)
290 unsigned int count, size, freq, ch;
291 enum ieee80211_band band;
293 switch (mode) {
294 case AR5K_MODE_11A:
295 /* 1..220, but 2GHz frequencies are filtered by check_channel */
296 size = 220;
297 band = IEEE80211_BAND_5GHZ;
298 break;
299 case AR5K_MODE_11B:
300 case AR5K_MODE_11G:
301 size = 26;
302 band = IEEE80211_BAND_2GHZ;
303 break;
304 default:
305 ATH5K_WARN(ah, "bad mode, not copying channels\n");
306 return 0;
309 count = 0;
310 for (ch = 1; ch <= size && count < max; ch++) {
311 freq = ieee80211_channel_to_frequency(ch, band);
313 if (freq == 0) /* mapping failed - not a standard channel */
314 continue;
316 /* Write channel info, needed for ath5k_channel_ok() */
317 channels[count].center_freq = freq;
318 channels[count].band = band;
319 channels[count].hw_value = mode;
321 /* Check if channel is supported by the chipset */
322 if (!ath5k_channel_ok(ah, &channels[count]))
323 continue;
325 if (!ath5k_is_standard_channel(ch, band))
326 continue;
328 count++;
331 return count;
334 static void
335 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
337 u8 i;
339 for (i = 0; i < AR5K_MAX_RATES; i++)
340 ah->rate_idx[b->band][i] = -1;
342 for (i = 0; i < b->n_bitrates; i++) {
343 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
344 if (b->bitrates[i].hw_value_short)
345 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
349 static int
350 ath5k_setup_bands(struct ieee80211_hw *hw)
352 struct ath5k_hw *ah = hw->priv;
353 struct ieee80211_supported_band *sband;
354 int max_c, count_c = 0;
355 int i;
357 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
358 max_c = ARRAY_SIZE(ah->channels);
360 /* 2GHz band */
361 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
362 sband->band = IEEE80211_BAND_2GHZ;
363 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
365 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
366 /* G mode */
367 memcpy(sband->bitrates, &ath5k_rates[0],
368 sizeof(struct ieee80211_rate) * 12);
369 sband->n_bitrates = 12;
371 sband->channels = ah->channels;
372 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
373 AR5K_MODE_11G, max_c);
375 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
376 count_c = sband->n_channels;
377 max_c -= count_c;
378 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
379 /* B mode */
380 memcpy(sband->bitrates, &ath5k_rates[0],
381 sizeof(struct ieee80211_rate) * 4);
382 sband->n_bitrates = 4;
384 /* 5211 only supports B rates and uses 4bit rate codes
385 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
386 * fix them up here:
388 if (ah->ah_version == AR5K_AR5211) {
389 for (i = 0; i < 4; i++) {
390 sband->bitrates[i].hw_value =
391 sband->bitrates[i].hw_value & 0xF;
392 sband->bitrates[i].hw_value_short =
393 sband->bitrates[i].hw_value_short & 0xF;
397 sband->channels = ah->channels;
398 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
399 AR5K_MODE_11B, max_c);
401 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
402 count_c = sband->n_channels;
403 max_c -= count_c;
405 ath5k_setup_rate_idx(ah, sband);
407 /* 5GHz band, A mode */
408 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
409 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
410 sband->band = IEEE80211_BAND_5GHZ;
411 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
413 memcpy(sband->bitrates, &ath5k_rates[4],
414 sizeof(struct ieee80211_rate) * 8);
415 sband->n_bitrates = 8;
417 sband->channels = &ah->channels[count_c];
418 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
419 AR5K_MODE_11A, max_c);
421 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
423 ath5k_setup_rate_idx(ah, sband);
425 ath5k_debug_dump_bands(ah);
427 return 0;
431 * Set/change channels. We always reset the chip.
432 * To accomplish this we must first cleanup any pending DMA,
433 * then restart stuff after a la ath5k_init.
435 * Called with ah->lock.
438 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
440 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
441 "channel set, resetting (%u -> %u MHz)\n",
442 ah->curchan->center_freq, chan->center_freq);
445 * To switch channels clear any pending DMA operations;
446 * wait long enough for the RX fifo to drain, reset the
447 * hardware at the new frequency, and then re-enable
448 * the relevant bits of the h/w.
450 return ath5k_reset(ah, chan, true);
453 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
455 struct ath5k_vif_iter_data *iter_data = data;
456 int i;
457 struct ath5k_vif *avf = (void *)vif->drv_priv;
459 if (iter_data->hw_macaddr)
460 for (i = 0; i < ETH_ALEN; i++)
461 iter_data->mask[i] &=
462 ~(iter_data->hw_macaddr[i] ^ mac[i]);
464 if (!iter_data->found_active) {
465 iter_data->found_active = true;
466 memcpy(iter_data->active_mac, mac, ETH_ALEN);
469 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
470 if (ether_addr_equal(iter_data->hw_macaddr, mac))
471 iter_data->need_set_hw_addr = false;
473 if (!iter_data->any_assoc) {
474 if (avf->assoc)
475 iter_data->any_assoc = true;
478 /* Calculate combined mode - when APs are active, operate in AP mode.
479 * Otherwise use the mode of the new interface. This can currently
480 * only deal with combinations of APs and STAs. Only one ad-hoc
481 * interfaces is allowed.
483 if (avf->opmode == NL80211_IFTYPE_AP)
484 iter_data->opmode = NL80211_IFTYPE_AP;
485 else {
486 if (avf->opmode == NL80211_IFTYPE_STATION)
487 iter_data->n_stas++;
488 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
489 iter_data->opmode = avf->opmode;
493 void
494 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
495 struct ieee80211_vif *vif)
497 struct ath_common *common = ath5k_hw_common(ah);
498 struct ath5k_vif_iter_data iter_data;
499 u32 rfilt;
502 * Use the hardware MAC address as reference, the hardware uses it
503 * together with the BSSID mask when matching addresses.
505 iter_data.hw_macaddr = common->macaddr;
506 memset(&iter_data.mask, 0xff, ETH_ALEN);
507 iter_data.found_active = false;
508 iter_data.need_set_hw_addr = true;
509 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
510 iter_data.n_stas = 0;
512 if (vif)
513 ath5k_vif_iter(&iter_data, vif->addr, vif);
515 /* Get list of all active MAC addresses */
516 ieee80211_iterate_active_interfaces_atomic(
517 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
518 ath5k_vif_iter, &iter_data);
519 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
521 ah->opmode = iter_data.opmode;
522 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
523 /* Nothing active, default to station mode */
524 ah->opmode = NL80211_IFTYPE_STATION;
526 ath5k_hw_set_opmode(ah, ah->opmode);
527 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
528 ah->opmode, ath_opmode_to_string(ah->opmode));
530 if (iter_data.need_set_hw_addr && iter_data.found_active)
531 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
533 if (ath5k_hw_hasbssidmask(ah))
534 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
536 /* Set up RX Filter */
537 if (iter_data.n_stas > 1) {
538 /* If you have multiple STA interfaces connected to
539 * different APs, ARPs are not received (most of the time?)
540 * Enabling PROMISC appears to fix that problem.
542 ah->filter_flags |= AR5K_RX_FILTER_PROM;
545 rfilt = ah->filter_flags;
546 ath5k_hw_set_rx_filter(ah, rfilt);
547 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
550 static inline int
551 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
553 int rix;
555 /* return base rate on errors */
556 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
557 "hw_rix out of bounds: %x\n", hw_rix))
558 return 0;
560 rix = ah->rate_idx[ah->curchan->band][hw_rix];
561 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
562 rix = 0;
564 return rix;
567 /***************\
568 * Buffers setup *
569 \***************/
571 static
572 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
574 struct ath_common *common = ath5k_hw_common(ah);
575 struct sk_buff *skb;
578 * Allocate buffer with headroom_needed space for the
579 * fake physical layer header at the start.
581 skb = ath_rxbuf_alloc(common,
582 common->rx_bufsize,
583 GFP_ATOMIC);
585 if (!skb) {
586 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
587 common->rx_bufsize);
588 return NULL;
591 *skb_addr = dma_map_single(ah->dev,
592 skb->data, common->rx_bufsize,
593 DMA_FROM_DEVICE);
595 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
596 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
597 dev_kfree_skb(skb);
598 return NULL;
600 return skb;
603 static int
604 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
606 struct sk_buff *skb = bf->skb;
607 struct ath5k_desc *ds;
608 int ret;
610 if (!skb) {
611 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
612 if (!skb)
613 return -ENOMEM;
614 bf->skb = skb;
618 * Setup descriptors. For receive we always terminate
619 * the descriptor list with a self-linked entry so we'll
620 * not get overrun under high load (as can happen with a
621 * 5212 when ANI processing enables PHY error frames).
623 * To ensure the last descriptor is self-linked we create
624 * each descriptor as self-linked and add it to the end. As
625 * each additional descriptor is added the previous self-linked
626 * entry is "fixed" naturally. This should be safe even
627 * if DMA is happening. When processing RX interrupts we
628 * never remove/process the last, self-linked, entry on the
629 * descriptor list. This ensures the hardware always has
630 * someplace to write a new frame.
632 ds = bf->desc;
633 ds->ds_link = bf->daddr; /* link to self */
634 ds->ds_data = bf->skbaddr;
635 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
636 if (ret) {
637 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
638 return ret;
641 if (ah->rxlink != NULL)
642 *ah->rxlink = bf->daddr;
643 ah->rxlink = &ds->ds_link;
644 return 0;
647 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
649 struct ieee80211_hdr *hdr;
650 enum ath5k_pkt_type htype;
651 __le16 fc;
653 hdr = (struct ieee80211_hdr *)skb->data;
654 fc = hdr->frame_control;
656 if (ieee80211_is_beacon(fc))
657 htype = AR5K_PKT_TYPE_BEACON;
658 else if (ieee80211_is_probe_resp(fc))
659 htype = AR5K_PKT_TYPE_PROBE_RESP;
660 else if (ieee80211_is_atim(fc))
661 htype = AR5K_PKT_TYPE_ATIM;
662 else if (ieee80211_is_pspoll(fc))
663 htype = AR5K_PKT_TYPE_PSPOLL;
664 else
665 htype = AR5K_PKT_TYPE_NORMAL;
667 return htype;
670 static struct ieee80211_rate *
671 ath5k_get_rate(const struct ieee80211_hw *hw,
672 const struct ieee80211_tx_info *info,
673 struct ath5k_buf *bf, int idx)
676 * convert a ieee80211_tx_rate RC-table entry to
677 * the respective ieee80211_rate struct
679 if (bf->rates[idx].idx < 0) {
680 return NULL;
683 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
686 static u16
687 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
688 const struct ieee80211_tx_info *info,
689 struct ath5k_buf *bf, int idx)
691 struct ieee80211_rate *rate;
692 u16 hw_rate;
693 u8 rc_flags;
695 rate = ath5k_get_rate(hw, info, bf, idx);
696 if (!rate)
697 return 0;
699 rc_flags = bf->rates[idx].flags;
700 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
701 rate->hw_value_short : rate->hw_value;
703 return hw_rate;
706 static int
707 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
708 struct ath5k_txq *txq, int padsize,
709 struct ieee80211_tx_control *control)
711 struct ath5k_desc *ds = bf->desc;
712 struct sk_buff *skb = bf->skb;
713 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
714 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
715 struct ieee80211_rate *rate;
716 unsigned int mrr_rate[3], mrr_tries[3];
717 int i, ret;
718 u16 hw_rate;
719 u16 cts_rate = 0;
720 u16 duration = 0;
721 u8 rc_flags;
723 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
725 /* XXX endianness */
726 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
727 DMA_TO_DEVICE);
729 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
730 ARRAY_SIZE(bf->rates));
732 rate = ath5k_get_rate(ah->hw, info, bf, 0);
734 if (!rate) {
735 ret = -EINVAL;
736 goto err_unmap;
739 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
740 flags |= AR5K_TXDESC_NOACK;
742 rc_flags = info->control.rates[0].flags;
744 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
746 pktlen = skb->len;
748 /* FIXME: If we are in g mode and rate is a CCK rate
749 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
750 * from tx power (value is in dB units already) */
751 if (info->control.hw_key) {
752 keyidx = info->control.hw_key->hw_key_idx;
753 pktlen += info->control.hw_key->icv_len;
755 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
756 flags |= AR5K_TXDESC_RTSENA;
757 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
758 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
759 info->control.vif, pktlen, info));
761 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
762 flags |= AR5K_TXDESC_CTSENA;
763 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
764 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
765 info->control.vif, pktlen, info));
768 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
769 ieee80211_get_hdrlen_from_skb(skb), padsize,
770 get_hw_packet_type(skb),
771 (ah->ah_txpower.txp_requested * 2),
772 hw_rate,
773 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
774 cts_rate, duration);
775 if (ret)
776 goto err_unmap;
778 /* Set up MRR descriptor */
779 if (ah->ah_capabilities.cap_has_mrr_support) {
780 memset(mrr_rate, 0, sizeof(mrr_rate));
781 memset(mrr_tries, 0, sizeof(mrr_tries));
783 for (i = 0; i < 3; i++) {
785 rate = ath5k_get_rate(ah->hw, info, bf, i);
786 if (!rate)
787 break;
789 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
790 mrr_tries[i] = bf->rates[i].count;
793 ath5k_hw_setup_mrr_tx_desc(ah, ds,
794 mrr_rate[0], mrr_tries[0],
795 mrr_rate[1], mrr_tries[1],
796 mrr_rate[2], mrr_tries[2]);
799 ds->ds_link = 0;
800 ds->ds_data = bf->skbaddr;
802 spin_lock_bh(&txq->lock);
803 list_add_tail(&bf->list, &txq->q);
804 txq->txq_len++;
805 if (txq->link == NULL) /* is this first packet? */
806 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
807 else /* no, so only link it */
808 *txq->link = bf->daddr;
810 txq->link = &ds->ds_link;
811 ath5k_hw_start_tx_dma(ah, txq->qnum);
812 mmiowb();
813 spin_unlock_bh(&txq->lock);
815 return 0;
816 err_unmap:
817 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
818 return ret;
821 /*******************\
822 * Descriptors setup *
823 \*******************/
825 static int
826 ath5k_desc_alloc(struct ath5k_hw *ah)
828 struct ath5k_desc *ds;
829 struct ath5k_buf *bf;
830 dma_addr_t da;
831 unsigned int i;
832 int ret;
834 /* allocate descriptors */
835 ah->desc_len = sizeof(struct ath5k_desc) *
836 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
838 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
839 &ah->desc_daddr, GFP_KERNEL);
840 if (ah->desc == NULL) {
841 ATH5K_ERR(ah, "can't allocate descriptors\n");
842 ret = -ENOMEM;
843 goto err;
845 ds = ah->desc;
846 da = ah->desc_daddr;
847 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
848 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
850 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
851 sizeof(struct ath5k_buf), GFP_KERNEL);
852 if (bf == NULL) {
853 ATH5K_ERR(ah, "can't allocate bufptr\n");
854 ret = -ENOMEM;
855 goto err_free;
857 ah->bufptr = bf;
859 INIT_LIST_HEAD(&ah->rxbuf);
860 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
861 bf->desc = ds;
862 bf->daddr = da;
863 list_add_tail(&bf->list, &ah->rxbuf);
866 INIT_LIST_HEAD(&ah->txbuf);
867 ah->txbuf_len = ATH_TXBUF;
868 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
869 bf->desc = ds;
870 bf->daddr = da;
871 list_add_tail(&bf->list, &ah->txbuf);
874 /* beacon buffers */
875 INIT_LIST_HEAD(&ah->bcbuf);
876 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
877 bf->desc = ds;
878 bf->daddr = da;
879 list_add_tail(&bf->list, &ah->bcbuf);
882 return 0;
883 err_free:
884 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
885 err:
886 ah->desc = NULL;
887 return ret;
890 void
891 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
893 BUG_ON(!bf);
894 if (!bf->skb)
895 return;
896 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
897 DMA_TO_DEVICE);
898 ieee80211_free_txskb(ah->hw, bf->skb);
899 bf->skb = NULL;
900 bf->skbaddr = 0;
901 bf->desc->ds_data = 0;
904 void
905 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
907 struct ath_common *common = ath5k_hw_common(ah);
909 BUG_ON(!bf);
910 if (!bf->skb)
911 return;
912 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
913 DMA_FROM_DEVICE);
914 dev_kfree_skb_any(bf->skb);
915 bf->skb = NULL;
916 bf->skbaddr = 0;
917 bf->desc->ds_data = 0;
920 static void
921 ath5k_desc_free(struct ath5k_hw *ah)
923 struct ath5k_buf *bf;
925 list_for_each_entry(bf, &ah->txbuf, list)
926 ath5k_txbuf_free_skb(ah, bf);
927 list_for_each_entry(bf, &ah->rxbuf, list)
928 ath5k_rxbuf_free_skb(ah, bf);
929 list_for_each_entry(bf, &ah->bcbuf, list)
930 ath5k_txbuf_free_skb(ah, bf);
932 /* Free memory associated with all descriptors */
933 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
934 ah->desc = NULL;
935 ah->desc_daddr = 0;
937 kfree(ah->bufptr);
938 ah->bufptr = NULL;
942 /**************\
943 * Queues setup *
944 \**************/
946 static struct ath5k_txq *
947 ath5k_txq_setup(struct ath5k_hw *ah,
948 int qtype, int subtype)
950 struct ath5k_txq *txq;
951 struct ath5k_txq_info qi = {
952 .tqi_subtype = subtype,
953 /* XXX: default values not correct for B and XR channels,
954 * but who cares? */
955 .tqi_aifs = AR5K_TUNE_AIFS,
956 .tqi_cw_min = AR5K_TUNE_CWMIN,
957 .tqi_cw_max = AR5K_TUNE_CWMAX
959 int qnum;
962 * Enable interrupts only for EOL and DESC conditions.
963 * We mark tx descriptors to receive a DESC interrupt
964 * when a tx queue gets deep; otherwise we wait for the
965 * EOL to reap descriptors. Note that this is done to
966 * reduce interrupt load and this only defers reaping
967 * descriptors, never transmitting frames. Aside from
968 * reducing interrupts this also permits more concurrency.
969 * The only potential downside is if the tx queue backs
970 * up in which case the top half of the kernel may backup
971 * due to a lack of tx descriptors.
973 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
974 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
975 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
976 if (qnum < 0) {
978 * NB: don't print a message, this happens
979 * normally on parts with too few tx queues
981 return ERR_PTR(qnum);
983 txq = &ah->txqs[qnum];
984 if (!txq->setup) {
985 txq->qnum = qnum;
986 txq->link = NULL;
987 INIT_LIST_HEAD(&txq->q);
988 spin_lock_init(&txq->lock);
989 txq->setup = true;
990 txq->txq_len = 0;
991 txq->txq_max = ATH5K_TXQ_LEN_MAX;
992 txq->txq_poll_mark = false;
993 txq->txq_stuck = 0;
995 return &ah->txqs[qnum];
998 static int
999 ath5k_beaconq_setup(struct ath5k_hw *ah)
1001 struct ath5k_txq_info qi = {
1002 /* XXX: default values not correct for B and XR channels,
1003 * but who cares? */
1004 .tqi_aifs = AR5K_TUNE_AIFS,
1005 .tqi_cw_min = AR5K_TUNE_CWMIN,
1006 .tqi_cw_max = AR5K_TUNE_CWMAX,
1007 /* NB: for dynamic turbo, don't enable any other interrupts */
1008 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1011 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1014 static int
1015 ath5k_beaconq_config(struct ath5k_hw *ah)
1017 struct ath5k_txq_info qi;
1018 int ret;
1020 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1021 if (ret)
1022 goto err;
1024 if (ah->opmode == NL80211_IFTYPE_AP ||
1025 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1027 * Always burst out beacon and CAB traffic
1028 * (aifs = cwmin = cwmax = 0)
1030 qi.tqi_aifs = 0;
1031 qi.tqi_cw_min = 0;
1032 qi.tqi_cw_max = 0;
1033 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1035 * Adhoc mode; backoff between 0 and (2 * cw_min).
1037 qi.tqi_aifs = 0;
1038 qi.tqi_cw_min = 0;
1039 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1042 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1043 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1044 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1046 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1047 if (ret) {
1048 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1049 "hardware queue!\n", __func__);
1050 goto err;
1052 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1053 if (ret)
1054 goto err;
1056 /* reconfigure cabq with ready time to 80% of beacon_interval */
1057 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1058 if (ret)
1059 goto err;
1061 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1062 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1063 if (ret)
1064 goto err;
1066 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1067 err:
1068 return ret;
1072 * ath5k_drain_tx_buffs - Empty tx buffers
1074 * @ah The &struct ath5k_hw
1076 * Empty tx buffers from all queues in preparation
1077 * of a reset or during shutdown.
1079 * NB: this assumes output has been stopped and
1080 * we do not need to block ath5k_tx_tasklet
1082 static void
1083 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1085 struct ath5k_txq *txq;
1086 struct ath5k_buf *bf, *bf0;
1087 int i;
1089 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1090 if (ah->txqs[i].setup) {
1091 txq = &ah->txqs[i];
1092 spin_lock_bh(&txq->lock);
1093 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1094 ath5k_debug_printtxbuf(ah, bf);
1096 ath5k_txbuf_free_skb(ah, bf);
1098 spin_lock(&ah->txbuflock);
1099 list_move_tail(&bf->list, &ah->txbuf);
1100 ah->txbuf_len++;
1101 txq->txq_len--;
1102 spin_unlock(&ah->txbuflock);
1104 txq->link = NULL;
1105 txq->txq_poll_mark = false;
1106 spin_unlock_bh(&txq->lock);
1111 static void
1112 ath5k_txq_release(struct ath5k_hw *ah)
1114 struct ath5k_txq *txq = ah->txqs;
1115 unsigned int i;
1117 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1118 if (txq->setup) {
1119 ath5k_hw_release_tx_queue(ah, txq->qnum);
1120 txq->setup = false;
1125 /*************\
1126 * RX Handling *
1127 \*************/
1130 * Enable the receive h/w following a reset.
1132 static int
1133 ath5k_rx_start(struct ath5k_hw *ah)
1135 struct ath_common *common = ath5k_hw_common(ah);
1136 struct ath5k_buf *bf;
1137 int ret;
1139 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1141 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1142 common->cachelsz, common->rx_bufsize);
1144 spin_lock_bh(&ah->rxbuflock);
1145 ah->rxlink = NULL;
1146 list_for_each_entry(bf, &ah->rxbuf, list) {
1147 ret = ath5k_rxbuf_setup(ah, bf);
1148 if (ret != 0) {
1149 spin_unlock_bh(&ah->rxbuflock);
1150 goto err;
1153 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1154 ath5k_hw_set_rxdp(ah, bf->daddr);
1155 spin_unlock_bh(&ah->rxbuflock);
1157 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1158 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1159 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1161 return 0;
1162 err:
1163 return ret;
1167 * Disable the receive logic on PCU (DRU)
1168 * In preparation for a shutdown.
1170 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1171 * does.
1173 static void
1174 ath5k_rx_stop(struct ath5k_hw *ah)
1177 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1178 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1180 ath5k_debug_printrxbuffs(ah);
1183 static unsigned int
1184 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1185 struct ath5k_rx_status *rs)
1187 struct ath_common *common = ath5k_hw_common(ah);
1188 struct ieee80211_hdr *hdr = (void *)skb->data;
1189 unsigned int keyix, hlen;
1191 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1192 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1193 return RX_FLAG_DECRYPTED;
1195 /* Apparently when a default key is used to decrypt the packet
1196 the hw does not set the index used to decrypt. In such cases
1197 get the index from the packet. */
1198 hlen = ieee80211_hdrlen(hdr->frame_control);
1199 if (ieee80211_has_protected(hdr->frame_control) &&
1200 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1201 skb->len >= hlen + 4) {
1202 keyix = skb->data[hlen + 3] >> 6;
1204 if (test_bit(keyix, common->keymap))
1205 return RX_FLAG_DECRYPTED;
1208 return 0;
1212 static void
1213 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1214 struct ieee80211_rx_status *rxs)
1216 struct ath_common *common = ath5k_hw_common(ah);
1217 u64 tsf, bc_tstamp;
1218 u32 hw_tu;
1219 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1221 if (ieee80211_is_beacon(mgmt->frame_control) &&
1222 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1223 ether_addr_equal(mgmt->bssid, common->curbssid)) {
1225 * Received an IBSS beacon with the same BSSID. Hardware *must*
1226 * have updated the local TSF. We have to work around various
1227 * hardware bugs, though...
1229 tsf = ath5k_hw_get_tsf64(ah);
1230 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1231 hw_tu = TSF_TO_TU(tsf);
1233 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1234 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1235 (unsigned long long)bc_tstamp,
1236 (unsigned long long)rxs->mactime,
1237 (unsigned long long)(rxs->mactime - bc_tstamp),
1238 (unsigned long long)tsf);
1241 * Sometimes the HW will give us a wrong tstamp in the rx
1242 * status, causing the timestamp extension to go wrong.
1243 * (This seems to happen especially with beacon frames bigger
1244 * than 78 byte (incl. FCS))
1245 * But we know that the receive timestamp must be later than the
1246 * timestamp of the beacon since HW must have synced to that.
1248 * NOTE: here we assume mactime to be after the frame was
1249 * received, not like mac80211 which defines it at the start.
1251 if (bc_tstamp > rxs->mactime) {
1252 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1253 "fixing mactime from %llx to %llx\n",
1254 (unsigned long long)rxs->mactime,
1255 (unsigned long long)tsf);
1256 rxs->mactime = tsf;
1260 * Local TSF might have moved higher than our beacon timers,
1261 * in that case we have to update them to continue sending
1262 * beacons. This also takes care of synchronizing beacon sending
1263 * times with other stations.
1265 if (hw_tu >= ah->nexttbtt)
1266 ath5k_beacon_update_timers(ah, bc_tstamp);
1268 /* Check if the beacon timers are still correct, because a TSF
1269 * update might have created a window between them - for a
1270 * longer description see the comment of this function: */
1271 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1272 ath5k_beacon_update_timers(ah, bc_tstamp);
1273 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1274 "fixed beacon timers after beacon receive\n");
1279 static void
1280 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1282 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1283 struct ath_common *common = ath5k_hw_common(ah);
1285 /* only beacons from our BSSID */
1286 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1287 !ether_addr_equal(mgmt->bssid, common->curbssid))
1288 return;
1290 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1292 /* in IBSS mode we should keep RSSI statistics per neighbour */
1293 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1297 * Compute padding position. skb must contain an IEEE 802.11 frame
1299 static int ath5k_common_padpos(struct sk_buff *skb)
1301 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1302 __le16 frame_control = hdr->frame_control;
1303 int padpos = 24;
1305 if (ieee80211_has_a4(frame_control))
1306 padpos += ETH_ALEN;
1308 if (ieee80211_is_data_qos(frame_control))
1309 padpos += IEEE80211_QOS_CTL_LEN;
1311 return padpos;
1315 * This function expects an 802.11 frame and returns the number of
1316 * bytes added, or -1 if we don't have enough header room.
1318 static int ath5k_add_padding(struct sk_buff *skb)
1320 int padpos = ath5k_common_padpos(skb);
1321 int padsize = padpos & 3;
1323 if (padsize && skb->len > padpos) {
1325 if (skb_headroom(skb) < padsize)
1326 return -1;
1328 skb_push(skb, padsize);
1329 memmove(skb->data, skb->data + padsize, padpos);
1330 return padsize;
1333 return 0;
1337 * The MAC header is padded to have 32-bit boundary if the
1338 * packet payload is non-zero. The general calculation for
1339 * padsize would take into account odd header lengths:
1340 * padsize = 4 - (hdrlen & 3); however, since only
1341 * even-length headers are used, padding can only be 0 or 2
1342 * bytes and we can optimize this a bit. We must not try to
1343 * remove padding from short control frames that do not have a
1344 * payload.
1346 * This function expects an 802.11 frame and returns the number of
1347 * bytes removed.
1349 static int ath5k_remove_padding(struct sk_buff *skb)
1351 int padpos = ath5k_common_padpos(skb);
1352 int padsize = padpos & 3;
1354 if (padsize && skb->len >= padpos + padsize) {
1355 memmove(skb->data + padsize, skb->data, padpos);
1356 skb_pull(skb, padsize);
1357 return padsize;
1360 return 0;
1363 static void
1364 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1365 struct ath5k_rx_status *rs)
1367 struct ieee80211_rx_status *rxs;
1369 ath5k_remove_padding(skb);
1371 rxs = IEEE80211_SKB_RXCB(skb);
1373 rxs->flag = 0;
1374 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1375 rxs->flag |= RX_FLAG_MMIC_ERROR;
1378 * always extend the mac timestamp, since this information is
1379 * also needed for proper IBSS merging.
1381 * XXX: it might be too late to do it here, since rs_tstamp is
1382 * 15bit only. that means TSF extension has to be done within
1383 * 32768usec (about 32ms). it might be necessary to move this to
1384 * the interrupt handler, like it is done in madwifi.
1386 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1387 rxs->flag |= RX_FLAG_MACTIME_END;
1389 rxs->freq = ah->curchan->center_freq;
1390 rxs->band = ah->curchan->band;
1392 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1394 rxs->antenna = rs->rs_antenna;
1396 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1397 ah->stats.antenna_rx[rs->rs_antenna]++;
1398 else
1399 ah->stats.antenna_rx[0]++; /* invalid */
1401 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1402 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1404 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1405 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1406 rxs->flag |= RX_FLAG_SHORTPRE;
1408 trace_ath5k_rx(ah, skb);
1410 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1412 /* check beacons in IBSS mode */
1413 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1414 ath5k_check_ibss_tsf(ah, skb, rxs);
1416 ieee80211_rx(ah->hw, skb);
1419 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1421 * Check if we want to further process this frame or not. Also update
1422 * statistics. Return true if we want this frame, false if not.
1424 static bool
1425 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1427 ah->stats.rx_all_count++;
1428 ah->stats.rx_bytes_count += rs->rs_datalen;
1430 if (unlikely(rs->rs_status)) {
1431 if (rs->rs_status & AR5K_RXERR_CRC)
1432 ah->stats.rxerr_crc++;
1433 if (rs->rs_status & AR5K_RXERR_FIFO)
1434 ah->stats.rxerr_fifo++;
1435 if (rs->rs_status & AR5K_RXERR_PHY) {
1436 ah->stats.rxerr_phy++;
1437 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1438 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1439 return false;
1441 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1443 * Decrypt error. If the error occurred
1444 * because there was no hardware key, then
1445 * let the frame through so the upper layers
1446 * can process it. This is necessary for 5210
1447 * parts which have no way to setup a ``clear''
1448 * key cache entry.
1450 * XXX do key cache faulting
1452 ah->stats.rxerr_decrypt++;
1453 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1454 !(rs->rs_status & AR5K_RXERR_CRC))
1455 return true;
1457 if (rs->rs_status & AR5K_RXERR_MIC) {
1458 ah->stats.rxerr_mic++;
1459 return true;
1462 /* reject any frames with non-crypto errors */
1463 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1464 return false;
1467 if (unlikely(rs->rs_more)) {
1468 ah->stats.rxerr_jumbo++;
1469 return false;
1471 return true;
1474 static void
1475 ath5k_set_current_imask(struct ath5k_hw *ah)
1477 enum ath5k_int imask;
1478 unsigned long flags;
1480 spin_lock_irqsave(&ah->irqlock, flags);
1481 imask = ah->imask;
1482 if (ah->rx_pending)
1483 imask &= ~AR5K_INT_RX_ALL;
1484 if (ah->tx_pending)
1485 imask &= ~AR5K_INT_TX_ALL;
1486 ath5k_hw_set_imr(ah, imask);
1487 spin_unlock_irqrestore(&ah->irqlock, flags);
1490 static void
1491 ath5k_tasklet_rx(unsigned long data)
1493 struct ath5k_rx_status rs = {};
1494 struct sk_buff *skb, *next_skb;
1495 dma_addr_t next_skb_addr;
1496 struct ath5k_hw *ah = (void *)data;
1497 struct ath_common *common = ath5k_hw_common(ah);
1498 struct ath5k_buf *bf;
1499 struct ath5k_desc *ds;
1500 int ret;
1502 spin_lock(&ah->rxbuflock);
1503 if (list_empty(&ah->rxbuf)) {
1504 ATH5K_WARN(ah, "empty rx buf pool\n");
1505 goto unlock;
1507 do {
1508 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1509 BUG_ON(bf->skb == NULL);
1510 skb = bf->skb;
1511 ds = bf->desc;
1513 /* bail if HW is still using self-linked descriptor */
1514 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1515 break;
1517 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1518 if (unlikely(ret == -EINPROGRESS))
1519 break;
1520 else if (unlikely(ret)) {
1521 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1522 ah->stats.rxerr_proc++;
1523 break;
1526 if (ath5k_receive_frame_ok(ah, &rs)) {
1527 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1530 * If we can't replace bf->skb with a new skb under
1531 * memory pressure, just skip this packet
1533 if (!next_skb)
1534 goto next;
1536 dma_unmap_single(ah->dev, bf->skbaddr,
1537 common->rx_bufsize,
1538 DMA_FROM_DEVICE);
1540 skb_put(skb, rs.rs_datalen);
1542 ath5k_receive_frame(ah, skb, &rs);
1544 bf->skb = next_skb;
1545 bf->skbaddr = next_skb_addr;
1547 next:
1548 list_move_tail(&bf->list, &ah->rxbuf);
1549 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1550 unlock:
1551 spin_unlock(&ah->rxbuflock);
1552 ah->rx_pending = false;
1553 ath5k_set_current_imask(ah);
1557 /*************\
1558 * TX Handling *
1559 \*************/
1561 void
1562 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1563 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1565 struct ath5k_hw *ah = hw->priv;
1566 struct ath5k_buf *bf;
1567 unsigned long flags;
1568 int padsize;
1570 trace_ath5k_tx(ah, skb, txq);
1573 * The hardware expects the header padded to 4 byte boundaries.
1574 * If this is not the case, we add the padding after the header.
1576 padsize = ath5k_add_padding(skb);
1577 if (padsize < 0) {
1578 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1579 " headroom to pad");
1580 goto drop_packet;
1583 if (txq->txq_len >= txq->txq_max &&
1584 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1585 ieee80211_stop_queue(hw, txq->qnum);
1587 spin_lock_irqsave(&ah->txbuflock, flags);
1588 if (list_empty(&ah->txbuf)) {
1589 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1590 spin_unlock_irqrestore(&ah->txbuflock, flags);
1591 ieee80211_stop_queues(hw);
1592 goto drop_packet;
1594 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1595 list_del(&bf->list);
1596 ah->txbuf_len--;
1597 if (list_empty(&ah->txbuf))
1598 ieee80211_stop_queues(hw);
1599 spin_unlock_irqrestore(&ah->txbuflock, flags);
1601 bf->skb = skb;
1603 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1604 bf->skb = NULL;
1605 spin_lock_irqsave(&ah->txbuflock, flags);
1606 list_add_tail(&bf->list, &ah->txbuf);
1607 ah->txbuf_len++;
1608 spin_unlock_irqrestore(&ah->txbuflock, flags);
1609 goto drop_packet;
1611 return;
1613 drop_packet:
1614 ieee80211_free_txskb(hw, skb);
1617 static void
1618 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1619 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1620 struct ath5k_buf *bf)
1622 struct ieee80211_tx_info *info;
1623 u8 tries[3];
1624 int i;
1625 int size = 0;
1627 ah->stats.tx_all_count++;
1628 ah->stats.tx_bytes_count += skb->len;
1629 info = IEEE80211_SKB_CB(skb);
1631 tries[0] = info->status.rates[0].count;
1632 tries[1] = info->status.rates[1].count;
1633 tries[2] = info->status.rates[2].count;
1635 ieee80211_tx_info_clear_status(info);
1637 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1638 memcpy(info->status.rates, bf->rates, size);
1640 for (i = 0; i < ts->ts_final_idx; i++) {
1641 struct ieee80211_tx_rate *r =
1642 &info->status.rates[i];
1644 r->count = tries[i];
1647 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1648 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1650 if (unlikely(ts->ts_status)) {
1651 ah->stats.ack_fail++;
1652 if (ts->ts_status & AR5K_TXERR_FILT) {
1653 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1654 ah->stats.txerr_filt++;
1656 if (ts->ts_status & AR5K_TXERR_XRETRY)
1657 ah->stats.txerr_retry++;
1658 if (ts->ts_status & AR5K_TXERR_FIFO)
1659 ah->stats.txerr_fifo++;
1660 } else {
1661 info->flags |= IEEE80211_TX_STAT_ACK;
1662 info->status.ack_signal = ts->ts_rssi;
1664 /* count the successful attempt as well */
1665 info->status.rates[ts->ts_final_idx].count++;
1669 * Remove MAC header padding before giving the frame
1670 * back to mac80211.
1672 ath5k_remove_padding(skb);
1674 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1675 ah->stats.antenna_tx[ts->ts_antenna]++;
1676 else
1677 ah->stats.antenna_tx[0]++; /* invalid */
1679 trace_ath5k_tx_complete(ah, skb, txq, ts);
1680 ieee80211_tx_status(ah->hw, skb);
1683 static void
1684 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1686 struct ath5k_tx_status ts = {};
1687 struct ath5k_buf *bf, *bf0;
1688 struct ath5k_desc *ds;
1689 struct sk_buff *skb;
1690 int ret;
1692 spin_lock(&txq->lock);
1693 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1695 txq->txq_poll_mark = false;
1697 /* skb might already have been processed last time. */
1698 if (bf->skb != NULL) {
1699 ds = bf->desc;
1701 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1702 if (unlikely(ret == -EINPROGRESS))
1703 break;
1704 else if (unlikely(ret)) {
1705 ATH5K_ERR(ah,
1706 "error %d while processing "
1707 "queue %u\n", ret, txq->qnum);
1708 break;
1711 skb = bf->skb;
1712 bf->skb = NULL;
1714 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1715 DMA_TO_DEVICE);
1716 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1720 * It's possible that the hardware can say the buffer is
1721 * completed when it hasn't yet loaded the ds_link from
1722 * host memory and moved on.
1723 * Always keep the last descriptor to avoid HW races...
1725 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1726 spin_lock(&ah->txbuflock);
1727 list_move_tail(&bf->list, &ah->txbuf);
1728 ah->txbuf_len++;
1729 txq->txq_len--;
1730 spin_unlock(&ah->txbuflock);
1733 spin_unlock(&txq->lock);
1734 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1735 ieee80211_wake_queue(ah->hw, txq->qnum);
1738 static void
1739 ath5k_tasklet_tx(unsigned long data)
1741 int i;
1742 struct ath5k_hw *ah = (void *)data;
1744 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1745 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1746 ath5k_tx_processq(ah, &ah->txqs[i]);
1748 ah->tx_pending = false;
1749 ath5k_set_current_imask(ah);
1753 /*****************\
1754 * Beacon handling *
1755 \*****************/
1758 * Setup the beacon frame for transmit.
1760 static int
1761 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1763 struct sk_buff *skb = bf->skb;
1764 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1765 struct ath5k_desc *ds;
1766 int ret = 0;
1767 u8 antenna;
1768 u32 flags;
1769 const int padsize = 0;
1771 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1772 DMA_TO_DEVICE);
1773 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1774 "skbaddr %llx\n", skb, skb->data, skb->len,
1775 (unsigned long long)bf->skbaddr);
1777 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1778 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1779 dev_kfree_skb_any(skb);
1780 bf->skb = NULL;
1781 return -EIO;
1784 ds = bf->desc;
1785 antenna = ah->ah_tx_ant;
1787 flags = AR5K_TXDESC_NOACK;
1788 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1789 ds->ds_link = bf->daddr; /* self-linked */
1790 flags |= AR5K_TXDESC_VEOL;
1791 } else
1792 ds->ds_link = 0;
1795 * If we use multiple antennas on AP and use
1796 * the Sectored AP scenario, switch antenna every
1797 * 4 beacons to make sure everybody hears our AP.
1798 * When a client tries to associate, hw will keep
1799 * track of the tx antenna to be used for this client
1800 * automatically, based on ACKed packets.
1802 * Note: AP still listens and transmits RTS on the
1803 * default antenna which is supposed to be an omni.
1805 * Note2: On sectored scenarios it's possible to have
1806 * multiple antennas (1 omni -- the default -- and 14
1807 * sectors), so if we choose to actually support this
1808 * mode, we need to allow the user to set how many antennas
1809 * we have and tweak the code below to send beacons
1810 * on all of them.
1812 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1813 antenna = ah->bsent & 4 ? 2 : 1;
1816 /* FIXME: If we are in g mode and rate is a CCK rate
1817 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1818 * from tx power (value is in dB units already) */
1819 ds->ds_data = bf->skbaddr;
1820 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1821 ieee80211_get_hdrlen_from_skb(skb), padsize,
1822 AR5K_PKT_TYPE_BEACON,
1823 (ah->ah_txpower.txp_requested * 2),
1824 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1825 1, AR5K_TXKEYIX_INVALID,
1826 antenna, flags, 0, 0);
1827 if (ret)
1828 goto err_unmap;
1830 return 0;
1831 err_unmap:
1832 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1833 return ret;
1837 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1838 * this is called only once at config_bss time, for AP we do it every
1839 * SWBA interrupt so that the TIM will reflect buffered frames.
1841 * Called with the beacon lock.
1844 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1846 int ret;
1847 struct ath5k_hw *ah = hw->priv;
1848 struct ath5k_vif *avf;
1849 struct sk_buff *skb;
1851 if (WARN_ON(!vif)) {
1852 ret = -EINVAL;
1853 goto out;
1856 skb = ieee80211_beacon_get(hw, vif);
1858 if (!skb) {
1859 ret = -ENOMEM;
1860 goto out;
1863 avf = (void *)vif->drv_priv;
1864 ath5k_txbuf_free_skb(ah, avf->bbuf);
1865 avf->bbuf->skb = skb;
1866 ret = ath5k_beacon_setup(ah, avf->bbuf);
1867 out:
1868 return ret;
1872 * Transmit a beacon frame at SWBA. Dynamic updates to the
1873 * frame contents are done as needed and the slot time is
1874 * also adjusted based on current state.
1876 * This is called from software irq context (beacontq tasklets)
1877 * or user context from ath5k_beacon_config.
1879 static void
1880 ath5k_beacon_send(struct ath5k_hw *ah)
1882 struct ieee80211_vif *vif;
1883 struct ath5k_vif *avf;
1884 struct ath5k_buf *bf;
1885 struct sk_buff *skb;
1886 int err;
1888 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1891 * Check if the previous beacon has gone out. If
1892 * not, don't don't try to post another: skip this
1893 * period and wait for the next. Missed beacons
1894 * indicate a problem and should not occur. If we
1895 * miss too many consecutive beacons reset the device.
1897 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1898 ah->bmisscount++;
1899 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1900 "missed %u consecutive beacons\n", ah->bmisscount);
1901 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1902 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1903 "stuck beacon time (%u missed)\n",
1904 ah->bmisscount);
1905 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1906 "stuck beacon, resetting\n");
1907 ieee80211_queue_work(ah->hw, &ah->reset_work);
1909 return;
1911 if (unlikely(ah->bmisscount != 0)) {
1912 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1913 "resume beacon xmit after %u misses\n",
1914 ah->bmisscount);
1915 ah->bmisscount = 0;
1918 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1919 ah->num_mesh_vifs > 1) ||
1920 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1921 u64 tsf = ath5k_hw_get_tsf64(ah);
1922 u32 tsftu = TSF_TO_TU(tsf);
1923 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1924 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1925 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1926 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1927 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1928 } else /* only one interface */
1929 vif = ah->bslot[0];
1931 if (!vif)
1932 return;
1934 avf = (void *)vif->drv_priv;
1935 bf = avf->bbuf;
1938 * Stop any current dma and put the new frame on the queue.
1939 * This should never fail since we check above that no frames
1940 * are still pending on the queue.
1942 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1943 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1944 /* NB: hw still stops DMA, so proceed */
1947 /* refresh the beacon for AP or MESH mode */
1948 if (ah->opmode == NL80211_IFTYPE_AP ||
1949 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1950 err = ath5k_beacon_update(ah->hw, vif);
1951 if (err)
1952 return;
1955 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1956 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1957 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1958 return;
1961 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1963 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1964 ath5k_hw_start_tx_dma(ah, ah->bhalq);
1965 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1966 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1968 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1969 while (skb) {
1970 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
1972 if (ah->cabq->txq_len >= ah->cabq->txq_max)
1973 break;
1975 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1978 ah->bsent++;
1982 * ath5k_beacon_update_timers - update beacon timers
1984 * @ah: struct ath5k_hw pointer we are operating on
1985 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1986 * beacon timer update based on the current HW TSF.
1988 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1989 * of a received beacon or the current local hardware TSF and write it to the
1990 * beacon timer registers.
1992 * This is called in a variety of situations, e.g. when a beacon is received,
1993 * when a TSF update has been detected, but also when an new IBSS is created or
1994 * when we otherwise know we have to update the timers, but we keep it in this
1995 * function to have it all together in one place.
1997 void
1998 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2000 u32 nexttbtt, intval, hw_tu, bc_tu;
2001 u64 hw_tsf;
2003 intval = ah->bintval & AR5K_BEACON_PERIOD;
2004 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2005 + ah->num_mesh_vifs > 1) {
2006 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2007 if (intval < 15)
2008 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2009 intval);
2011 if (WARN_ON(!intval))
2012 return;
2014 /* beacon TSF converted to TU */
2015 bc_tu = TSF_TO_TU(bc_tsf);
2017 /* current TSF converted to TU */
2018 hw_tsf = ath5k_hw_get_tsf64(ah);
2019 hw_tu = TSF_TO_TU(hw_tsf);
2021 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2022 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2023 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2024 * configuration we need to make sure it is bigger than that. */
2026 if (bc_tsf == -1) {
2028 * no beacons received, called internally.
2029 * just need to refresh timers based on HW TSF.
2031 nexttbtt = roundup(hw_tu + FUDGE, intval);
2032 } else if (bc_tsf == 0) {
2034 * no beacon received, probably called by ath5k_reset_tsf().
2035 * reset TSF to start with 0.
2037 nexttbtt = intval;
2038 intval |= AR5K_BEACON_RESET_TSF;
2039 } else if (bc_tsf > hw_tsf) {
2041 * beacon received, SW merge happened but HW TSF not yet updated.
2042 * not possible to reconfigure timers yet, but next time we
2043 * receive a beacon with the same BSSID, the hardware will
2044 * automatically update the TSF and then we need to reconfigure
2045 * the timers.
2047 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2048 "need to wait for HW TSF sync\n");
2049 return;
2050 } else {
2052 * most important case for beacon synchronization between STA.
2054 * beacon received and HW TSF has been already updated by HW.
2055 * update next TBTT based on the TSF of the beacon, but make
2056 * sure it is ahead of our local TSF timer.
2058 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2060 #undef FUDGE
2062 ah->nexttbtt = nexttbtt;
2064 intval |= AR5K_BEACON_ENA;
2065 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2068 * debugging output last in order to preserve the time critical aspect
2069 * of this function
2071 if (bc_tsf == -1)
2072 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2073 "reconfigured timers based on HW TSF\n");
2074 else if (bc_tsf == 0)
2075 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2076 "reset HW TSF and timers\n");
2077 else
2078 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2079 "updated timers based on beacon TSF\n");
2081 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2082 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2083 (unsigned long long) bc_tsf,
2084 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2085 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2086 intval & AR5K_BEACON_PERIOD,
2087 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2088 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2092 * ath5k_beacon_config - Configure the beacon queues and interrupts
2094 * @ah: struct ath5k_hw pointer we are operating on
2096 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2097 * interrupts to detect TSF updates only.
2099 void
2100 ath5k_beacon_config(struct ath5k_hw *ah)
2102 spin_lock_bh(&ah->block);
2103 ah->bmisscount = 0;
2104 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2106 if (ah->enable_beacon) {
2108 * In IBSS mode we use a self-linked tx descriptor and let the
2109 * hardware send the beacons automatically. We have to load it
2110 * only once here.
2111 * We use the SWBA interrupt only to keep track of the beacon
2112 * timers in order to detect automatic TSF updates.
2114 ath5k_beaconq_config(ah);
2116 ah->imask |= AR5K_INT_SWBA;
2118 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2119 if (ath5k_hw_hasveol(ah))
2120 ath5k_beacon_send(ah);
2121 } else
2122 ath5k_beacon_update_timers(ah, -1);
2123 } else {
2124 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2127 ath5k_hw_set_imr(ah, ah->imask);
2128 mmiowb();
2129 spin_unlock_bh(&ah->block);
2132 static void ath5k_tasklet_beacon(unsigned long data)
2134 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2137 * Software beacon alert--time to send a beacon.
2139 * In IBSS mode we use this interrupt just to
2140 * keep track of the next TBTT (target beacon
2141 * transmission time) in order to detect whether
2142 * automatic TSF updates happened.
2144 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2145 /* XXX: only if VEOL supported */
2146 u64 tsf = ath5k_hw_get_tsf64(ah);
2147 ah->nexttbtt += ah->bintval;
2148 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2149 "SWBA nexttbtt: %x hw_tu: %x "
2150 "TSF: %llx\n",
2151 ah->nexttbtt,
2152 TSF_TO_TU(tsf),
2153 (unsigned long long) tsf);
2154 } else {
2155 spin_lock(&ah->block);
2156 ath5k_beacon_send(ah);
2157 spin_unlock(&ah->block);
2162 /********************\
2163 * Interrupt handling *
2164 \********************/
2166 static void
2167 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2169 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2170 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2171 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2173 /* Run ANI only when calibration is not active */
2175 ah->ah_cal_next_ani = jiffies +
2176 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2177 tasklet_schedule(&ah->ani_tasklet);
2179 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2180 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2181 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2183 /* Run calibration only when another calibration
2184 * is not running.
2186 * Note: This is for both full/short calibration,
2187 * if it's time for a full one, ath5k_calibrate_work will deal
2188 * with it. */
2190 ah->ah_cal_next_short = jiffies +
2191 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2192 ieee80211_queue_work(ah->hw, &ah->calib_work);
2194 /* we could use SWI to generate enough interrupts to meet our
2195 * calibration interval requirements, if necessary:
2196 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2199 static void
2200 ath5k_schedule_rx(struct ath5k_hw *ah)
2202 ah->rx_pending = true;
2203 tasklet_schedule(&ah->rxtq);
2206 static void
2207 ath5k_schedule_tx(struct ath5k_hw *ah)
2209 ah->tx_pending = true;
2210 tasklet_schedule(&ah->txtq);
2213 static irqreturn_t
2214 ath5k_intr(int irq, void *dev_id)
2216 struct ath5k_hw *ah = dev_id;
2217 enum ath5k_int status;
2218 unsigned int counter = 1000;
2222 * If hw is not ready (or detached) and we get an
2223 * interrupt, or if we have no interrupts pending
2224 * (that means it's not for us) skip it.
2226 * NOTE: Group 0/1 PCI interface registers are not
2227 * supported on WiSOCs, so we can't check for pending
2228 * interrupts (ISR belongs to another register group
2229 * so we are ok).
2231 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2232 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2233 !ath5k_hw_is_intr_pending(ah))))
2234 return IRQ_NONE;
2236 /** Main loop **/
2237 do {
2238 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2240 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2241 status, ah->imask);
2244 * Fatal hw error -> Log and reset
2246 * Fatal errors are unrecoverable so we have to
2247 * reset the card. These errors include bus and
2248 * dma errors.
2250 if (unlikely(status & AR5K_INT_FATAL)) {
2252 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2253 "fatal int, resetting\n");
2254 ieee80211_queue_work(ah->hw, &ah->reset_work);
2257 * RX Overrun -> Count and reset if needed
2259 * Receive buffers are full. Either the bus is busy or
2260 * the CPU is not fast enough to process all received
2261 * frames.
2263 } else if (unlikely(status & AR5K_INT_RXORN)) {
2266 * Older chipsets need a reset to come out of this
2267 * condition, but we treat it as RX for newer chips.
2268 * We don't know exactly which versions need a reset
2269 * this guess is copied from the HAL.
2271 ah->stats.rxorn_intr++;
2273 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2274 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2275 "rx overrun, resetting\n");
2276 ieee80211_queue_work(ah->hw, &ah->reset_work);
2277 } else
2278 ath5k_schedule_rx(ah);
2280 } else {
2282 /* Software Beacon Alert -> Schedule beacon tasklet */
2283 if (status & AR5K_INT_SWBA)
2284 tasklet_hi_schedule(&ah->beacontq);
2287 * No more RX descriptors -> Just count
2289 * NB: the hardware should re-read the link when
2290 * RXE bit is written, but it doesn't work at
2291 * least on older hardware revs.
2293 if (status & AR5K_INT_RXEOL)
2294 ah->stats.rxeol_intr++;
2297 /* TX Underrun -> Bump tx trigger level */
2298 if (status & AR5K_INT_TXURN)
2299 ath5k_hw_update_tx_triglevel(ah, true);
2301 /* RX -> Schedule rx tasklet */
2302 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2303 ath5k_schedule_rx(ah);
2305 /* TX -> Schedule tx tasklet */
2306 if (status & (AR5K_INT_TXOK
2307 | AR5K_INT_TXDESC
2308 | AR5K_INT_TXERR
2309 | AR5K_INT_TXEOL))
2310 ath5k_schedule_tx(ah);
2312 /* Missed beacon -> TODO
2313 if (status & AR5K_INT_BMISS)
2316 /* MIB event -> Update counters and notify ANI */
2317 if (status & AR5K_INT_MIB) {
2318 ah->stats.mib_intr++;
2319 ath5k_hw_update_mib_counters(ah);
2320 ath5k_ani_mib_intr(ah);
2323 /* GPIO -> Notify RFKill layer */
2324 if (status & AR5K_INT_GPIO)
2325 tasklet_schedule(&ah->rf_kill.toggleq);
2329 if (ath5k_get_bus_type(ah) == ATH_AHB)
2330 break;
2332 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2335 * Until we handle rx/tx interrupts mask them on IMR
2337 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2338 * and unset after we 've handled the interrupts.
2340 if (ah->rx_pending || ah->tx_pending)
2341 ath5k_set_current_imask(ah);
2343 if (unlikely(!counter))
2344 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2346 /* Fire up calibration poll */
2347 ath5k_intr_calibration_poll(ah);
2349 return IRQ_HANDLED;
2353 * Periodically recalibrate the PHY to account
2354 * for temperature/environment changes.
2356 static void
2357 ath5k_calibrate_work(struct work_struct *work)
2359 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2360 calib_work);
2362 /* Should we run a full calibration ? */
2363 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2365 ah->ah_cal_next_full = jiffies +
2366 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2367 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2369 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2370 "running full calibration\n");
2372 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2374 * Rfgain is out of bounds, reset the chip
2375 * to load new gain values.
2377 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2378 "got new rfgain, resetting\n");
2379 ieee80211_queue_work(ah->hw, &ah->reset_work);
2381 } else
2382 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2385 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2386 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2387 ah->curchan->hw_value);
2389 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2390 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2391 ieee80211_frequency_to_channel(
2392 ah->curchan->center_freq));
2394 /* Clear calibration flags */
2395 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2396 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2397 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2398 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2402 static void
2403 ath5k_tasklet_ani(unsigned long data)
2405 struct ath5k_hw *ah = (void *)data;
2407 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2408 ath5k_ani_calibration(ah);
2409 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2413 static void
2414 ath5k_tx_complete_poll_work(struct work_struct *work)
2416 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2417 tx_complete_work.work);
2418 struct ath5k_txq *txq;
2419 int i;
2420 bool needreset = false;
2422 if (!test_bit(ATH_STAT_STARTED, ah->status))
2423 return;
2425 mutex_lock(&ah->lock);
2427 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2428 if (ah->txqs[i].setup) {
2429 txq = &ah->txqs[i];
2430 spin_lock_bh(&txq->lock);
2431 if (txq->txq_len > 1) {
2432 if (txq->txq_poll_mark) {
2433 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2434 "TX queue stuck %d\n",
2435 txq->qnum);
2436 needreset = true;
2437 txq->txq_stuck++;
2438 spin_unlock_bh(&txq->lock);
2439 break;
2440 } else {
2441 txq->txq_poll_mark = true;
2444 spin_unlock_bh(&txq->lock);
2448 if (needreset) {
2449 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2450 "TX queues stuck, resetting\n");
2451 ath5k_reset(ah, NULL, true);
2454 mutex_unlock(&ah->lock);
2456 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2457 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2461 /*************************\
2462 * Initialization routines *
2463 \*************************/
2465 static const struct ieee80211_iface_limit if_limits[] = {
2466 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2467 { .max = 4, .types =
2468 #ifdef CONFIG_MAC80211_MESH
2469 BIT(NL80211_IFTYPE_MESH_POINT) |
2470 #endif
2471 BIT(NL80211_IFTYPE_AP) },
2474 static const struct ieee80211_iface_combination if_comb = {
2475 .limits = if_limits,
2476 .n_limits = ARRAY_SIZE(if_limits),
2477 .max_interfaces = 2048,
2478 .num_different_channels = 1,
2482 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2484 struct ieee80211_hw *hw = ah->hw;
2485 struct ath_common *common;
2486 int ret;
2487 int csz;
2489 /* Initialize driver private data */
2490 SET_IEEE80211_DEV(hw, ah->dev);
2491 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2492 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2493 IEEE80211_HW_SIGNAL_DBM |
2494 IEEE80211_HW_MFP_CAPABLE |
2495 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2496 IEEE80211_HW_SUPPORTS_RC_TABLE;
2498 hw->wiphy->interface_modes =
2499 BIT(NL80211_IFTYPE_AP) |
2500 BIT(NL80211_IFTYPE_STATION) |
2501 BIT(NL80211_IFTYPE_ADHOC) |
2502 BIT(NL80211_IFTYPE_MESH_POINT);
2504 hw->wiphy->iface_combinations = &if_comb;
2505 hw->wiphy->n_iface_combinations = 1;
2507 /* SW support for IBSS_RSN is provided by mac80211 */
2508 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2510 /* both antennas can be configured as RX or TX */
2511 hw->wiphy->available_antennas_tx = 0x3;
2512 hw->wiphy->available_antennas_rx = 0x3;
2514 hw->extra_tx_headroom = 2;
2515 hw->channel_change_time = 5000;
2518 * Mark the device as detached to avoid processing
2519 * interrupts until setup is complete.
2521 __set_bit(ATH_STAT_INVALID, ah->status);
2523 ah->opmode = NL80211_IFTYPE_STATION;
2524 ah->bintval = 1000;
2525 mutex_init(&ah->lock);
2526 spin_lock_init(&ah->rxbuflock);
2527 spin_lock_init(&ah->txbuflock);
2528 spin_lock_init(&ah->block);
2529 spin_lock_init(&ah->irqlock);
2531 /* Setup interrupt handler */
2532 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2533 if (ret) {
2534 ATH5K_ERR(ah, "request_irq failed\n");
2535 goto err;
2538 common = ath5k_hw_common(ah);
2539 common->ops = &ath5k_common_ops;
2540 common->bus_ops = bus_ops;
2541 common->ah = ah;
2542 common->hw = hw;
2543 common->priv = ah;
2544 common->clockrate = 40;
2547 * Cache line size is used to size and align various
2548 * structures used to communicate with the hardware.
2550 ath5k_read_cachesize(common, &csz);
2551 common->cachelsz = csz << 2; /* convert to bytes */
2553 spin_lock_init(&common->cc_lock);
2555 /* Initialize device */
2556 ret = ath5k_hw_init(ah);
2557 if (ret)
2558 goto err_irq;
2560 /* Set up multi-rate retry capabilities */
2561 if (ah->ah_capabilities.cap_has_mrr_support) {
2562 hw->max_rates = 4;
2563 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2564 AR5K_INIT_RETRY_LONG);
2567 hw->vif_data_size = sizeof(struct ath5k_vif);
2569 /* Finish private driver data initialization */
2570 ret = ath5k_init(hw);
2571 if (ret)
2572 goto err_ah;
2574 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2575 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2576 ah->ah_mac_srev,
2577 ah->ah_phy_revision);
2579 if (!ah->ah_single_chip) {
2580 /* Single chip radio (!RF5111) */
2581 if (ah->ah_radio_5ghz_revision &&
2582 !ah->ah_radio_2ghz_revision) {
2583 /* No 5GHz support -> report 2GHz radio */
2584 if (!test_bit(AR5K_MODE_11A,
2585 ah->ah_capabilities.cap_mode)) {
2586 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2587 ath5k_chip_name(AR5K_VERSION_RAD,
2588 ah->ah_radio_5ghz_revision),
2589 ah->ah_radio_5ghz_revision);
2590 /* No 2GHz support (5110 and some
2591 * 5GHz only cards) -> report 5GHz radio */
2592 } else if (!test_bit(AR5K_MODE_11B,
2593 ah->ah_capabilities.cap_mode)) {
2594 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2595 ath5k_chip_name(AR5K_VERSION_RAD,
2596 ah->ah_radio_5ghz_revision),
2597 ah->ah_radio_5ghz_revision);
2598 /* Multiband radio */
2599 } else {
2600 ATH5K_INFO(ah, "RF%s multiband radio found"
2601 " (0x%x)\n",
2602 ath5k_chip_name(AR5K_VERSION_RAD,
2603 ah->ah_radio_5ghz_revision),
2604 ah->ah_radio_5ghz_revision);
2607 /* Multi chip radio (RF5111 - RF2111) ->
2608 * report both 2GHz/5GHz radios */
2609 else if (ah->ah_radio_5ghz_revision &&
2610 ah->ah_radio_2ghz_revision) {
2611 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2612 ath5k_chip_name(AR5K_VERSION_RAD,
2613 ah->ah_radio_5ghz_revision),
2614 ah->ah_radio_5ghz_revision);
2615 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2616 ath5k_chip_name(AR5K_VERSION_RAD,
2617 ah->ah_radio_2ghz_revision),
2618 ah->ah_radio_2ghz_revision);
2622 ath5k_debug_init_device(ah);
2624 /* ready to process interrupts */
2625 __clear_bit(ATH_STAT_INVALID, ah->status);
2627 return 0;
2628 err_ah:
2629 ath5k_hw_deinit(ah);
2630 err_irq:
2631 free_irq(ah->irq, ah);
2632 err:
2633 return ret;
2636 static int
2637 ath5k_stop_locked(struct ath5k_hw *ah)
2640 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2641 test_bit(ATH_STAT_INVALID, ah->status));
2644 * Shutdown the hardware and driver:
2645 * stop output from above
2646 * disable interrupts
2647 * turn off timers
2648 * turn off the radio
2649 * clear transmit machinery
2650 * clear receive machinery
2651 * drain and release tx queues
2652 * reclaim beacon resources
2653 * power down hardware
2655 * Note that some of this work is not possible if the
2656 * hardware is gone (invalid).
2658 ieee80211_stop_queues(ah->hw);
2660 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2661 ath5k_led_off(ah);
2662 ath5k_hw_set_imr(ah, 0);
2663 synchronize_irq(ah->irq);
2664 ath5k_rx_stop(ah);
2665 ath5k_hw_dma_stop(ah);
2666 ath5k_drain_tx_buffs(ah);
2667 ath5k_hw_phy_disable(ah);
2670 return 0;
2673 int ath5k_start(struct ieee80211_hw *hw)
2675 struct ath5k_hw *ah = hw->priv;
2676 struct ath_common *common = ath5k_hw_common(ah);
2677 int ret, i;
2679 mutex_lock(&ah->lock);
2681 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2684 * Stop anything previously setup. This is safe
2685 * no matter this is the first time through or not.
2687 ath5k_stop_locked(ah);
2690 * The basic interface to setting the hardware in a good
2691 * state is ``reset''. On return the hardware is known to
2692 * be powered up and with interrupts disabled. This must
2693 * be followed by initialization of the appropriate bits
2694 * and then setup of the interrupt mask.
2696 ah->curchan = ah->hw->conf.chandef.chan;
2697 ah->imask = AR5K_INT_RXOK
2698 | AR5K_INT_RXERR
2699 | AR5K_INT_RXEOL
2700 | AR5K_INT_RXORN
2701 | AR5K_INT_TXDESC
2702 | AR5K_INT_TXEOL
2703 | AR5K_INT_FATAL
2704 | AR5K_INT_GLOBAL
2705 | AR5K_INT_MIB;
2707 ret = ath5k_reset(ah, NULL, false);
2708 if (ret)
2709 goto done;
2711 if (!ath5k_modparam_no_hw_rfkill_switch)
2712 ath5k_rfkill_hw_start(ah);
2715 * Reset the key cache since some parts do not reset the
2716 * contents on initial power up or resume from suspend.
2718 for (i = 0; i < common->keymax; i++)
2719 ath_hw_keyreset(common, (u16) i);
2721 /* Use higher rates for acks instead of base
2722 * rate */
2723 ah->ah_ack_bitrate_high = true;
2725 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2726 ah->bslot[i] = NULL;
2728 ret = 0;
2729 done:
2730 mmiowb();
2731 mutex_unlock(&ah->lock);
2733 set_bit(ATH_STAT_STARTED, ah->status);
2734 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2735 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2737 return ret;
2740 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2742 ah->rx_pending = false;
2743 ah->tx_pending = false;
2744 tasklet_kill(&ah->rxtq);
2745 tasklet_kill(&ah->txtq);
2746 tasklet_kill(&ah->beacontq);
2747 tasklet_kill(&ah->ani_tasklet);
2751 * Stop the device, grabbing the top-level lock to protect
2752 * against concurrent entry through ath5k_init (which can happen
2753 * if another thread does a system call and the thread doing the
2754 * stop is preempted).
2756 void ath5k_stop(struct ieee80211_hw *hw)
2758 struct ath5k_hw *ah = hw->priv;
2759 int ret;
2761 mutex_lock(&ah->lock);
2762 ret = ath5k_stop_locked(ah);
2763 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2765 * Don't set the card in full sleep mode!
2767 * a) When the device is in this state it must be carefully
2768 * woken up or references to registers in the PCI clock
2769 * domain may freeze the bus (and system). This varies
2770 * by chip and is mostly an issue with newer parts
2771 * (madwifi sources mentioned srev >= 0x78) that go to
2772 * sleep more quickly.
2774 * b) On older chips full sleep results a weird behaviour
2775 * during wakeup. I tested various cards with srev < 0x78
2776 * and they don't wake up after module reload, a second
2777 * module reload is needed to bring the card up again.
2779 * Until we figure out what's going on don't enable
2780 * full chip reset on any chip (this is what Legacy HAL
2781 * and Sam's HAL do anyway). Instead Perform a full reset
2782 * on the device (same as initial state after attach) and
2783 * leave it idle (keep MAC/BB on warm reset) */
2784 ret = ath5k_hw_on_hold(ah);
2786 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2787 "putting device to sleep\n");
2790 mmiowb();
2791 mutex_unlock(&ah->lock);
2793 ath5k_stop_tasklets(ah);
2795 clear_bit(ATH_STAT_STARTED, ah->status);
2796 cancel_delayed_work_sync(&ah->tx_complete_work);
2798 if (!ath5k_modparam_no_hw_rfkill_switch)
2799 ath5k_rfkill_hw_stop(ah);
2803 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2804 * and change to the given channel.
2806 * This should be called with ah->lock.
2808 static int
2809 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2810 bool skip_pcu)
2812 struct ath_common *common = ath5k_hw_common(ah);
2813 int ret, ani_mode;
2814 bool fast;
2816 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2818 ath5k_hw_set_imr(ah, 0);
2819 synchronize_irq(ah->irq);
2820 ath5k_stop_tasklets(ah);
2822 /* Save ani mode and disable ANI during
2823 * reset. If we don't we might get false
2824 * PHY error interrupts. */
2825 ani_mode = ah->ani_state.ani_mode;
2826 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2828 /* We are going to empty hw queues
2829 * so we should also free any remaining
2830 * tx buffers */
2831 ath5k_drain_tx_buffs(ah);
2832 if (chan)
2833 ah->curchan = chan;
2835 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2837 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2838 if (ret) {
2839 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2840 goto err;
2843 ret = ath5k_rx_start(ah);
2844 if (ret) {
2845 ATH5K_ERR(ah, "can't start recv logic\n");
2846 goto err;
2849 ath5k_ani_init(ah, ani_mode);
2852 * Set calibration intervals
2854 * Note: We don't need to run calibration imediately
2855 * since some initial calibration is done on reset
2856 * even for fast channel switching. Also on scanning
2857 * this will get set again and again and it won't get
2858 * executed unless we connect somewhere and spend some
2859 * time on the channel (that's what calibration needs
2860 * anyway to be accurate).
2862 ah->ah_cal_next_full = jiffies +
2863 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2864 ah->ah_cal_next_ani = jiffies +
2865 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2866 ah->ah_cal_next_short = jiffies +
2867 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2869 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2871 /* clear survey data and cycle counters */
2872 memset(&ah->survey, 0, sizeof(ah->survey));
2873 spin_lock_bh(&common->cc_lock);
2874 ath_hw_cycle_counters_update(common);
2875 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2876 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2877 spin_unlock_bh(&common->cc_lock);
2880 * Change channels and update the h/w rate map if we're switching;
2881 * e.g. 11a to 11b/g.
2883 * We may be doing a reset in response to an ioctl that changes the
2884 * channel so update any state that might change as a result.
2886 * XXX needed?
2888 /* ath5k_chan_change(ah, c); */
2890 ath5k_beacon_config(ah);
2891 /* intrs are enabled by ath5k_beacon_config */
2893 ieee80211_wake_queues(ah->hw);
2895 return 0;
2896 err:
2897 return ret;
2900 static void ath5k_reset_work(struct work_struct *work)
2902 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2903 reset_work);
2905 mutex_lock(&ah->lock);
2906 ath5k_reset(ah, NULL, true);
2907 mutex_unlock(&ah->lock);
2910 static int
2911 ath5k_init(struct ieee80211_hw *hw)
2914 struct ath5k_hw *ah = hw->priv;
2915 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2916 struct ath5k_txq *txq;
2917 u8 mac[ETH_ALEN] = {};
2918 int ret;
2922 * Collect the channel list. The 802.11 layer
2923 * is responsible for filtering this list based
2924 * on settings like the phy mode and regulatory
2925 * domain restrictions.
2927 ret = ath5k_setup_bands(hw);
2928 if (ret) {
2929 ATH5K_ERR(ah, "can't get channels\n");
2930 goto err;
2934 * Allocate tx+rx descriptors and populate the lists.
2936 ret = ath5k_desc_alloc(ah);
2937 if (ret) {
2938 ATH5K_ERR(ah, "can't allocate descriptors\n");
2939 goto err;
2943 * Allocate hardware transmit queues: one queue for
2944 * beacon frames and one data queue for each QoS
2945 * priority. Note that hw functions handle resetting
2946 * these queues at the needed time.
2948 ret = ath5k_beaconq_setup(ah);
2949 if (ret < 0) {
2950 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2951 goto err_desc;
2953 ah->bhalq = ret;
2954 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2955 if (IS_ERR(ah->cabq)) {
2956 ATH5K_ERR(ah, "can't setup cab queue\n");
2957 ret = PTR_ERR(ah->cabq);
2958 goto err_bhal;
2961 /* 5211 and 5212 usually support 10 queues but we better rely on the
2962 * capability information */
2963 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2964 /* This order matches mac80211's queue priority, so we can
2965 * directly use the mac80211 queue number without any mapping */
2966 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2967 if (IS_ERR(txq)) {
2968 ATH5K_ERR(ah, "can't setup xmit queue\n");
2969 ret = PTR_ERR(txq);
2970 goto err_queues;
2972 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2973 if (IS_ERR(txq)) {
2974 ATH5K_ERR(ah, "can't setup xmit queue\n");
2975 ret = PTR_ERR(txq);
2976 goto err_queues;
2978 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2979 if (IS_ERR(txq)) {
2980 ATH5K_ERR(ah, "can't setup xmit queue\n");
2981 ret = PTR_ERR(txq);
2982 goto err_queues;
2984 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2985 if (IS_ERR(txq)) {
2986 ATH5K_ERR(ah, "can't setup xmit queue\n");
2987 ret = PTR_ERR(txq);
2988 goto err_queues;
2990 hw->queues = 4;
2991 } else {
2992 /* older hardware (5210) can only support one data queue */
2993 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2994 if (IS_ERR(txq)) {
2995 ATH5K_ERR(ah, "can't setup xmit queue\n");
2996 ret = PTR_ERR(txq);
2997 goto err_queues;
2999 hw->queues = 1;
3002 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3003 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3004 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3005 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3007 INIT_WORK(&ah->reset_work, ath5k_reset_work);
3008 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3009 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3011 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3012 if (ret) {
3013 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3014 goto err_queues;
3017 SET_IEEE80211_PERM_ADDR(hw, mac);
3018 /* All MAC address bits matter for ACKs */
3019 ath5k_update_bssid_mask_and_opmode(ah, NULL);
3021 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3022 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3023 if (ret) {
3024 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3025 goto err_queues;
3028 ret = ieee80211_register_hw(hw);
3029 if (ret) {
3030 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3031 goto err_queues;
3034 if (!ath_is_world_regd(regulatory))
3035 regulatory_hint(hw->wiphy, regulatory->alpha2);
3037 ath5k_init_leds(ah);
3039 ath5k_sysfs_register(ah);
3041 return 0;
3042 err_queues:
3043 ath5k_txq_release(ah);
3044 err_bhal:
3045 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3046 err_desc:
3047 ath5k_desc_free(ah);
3048 err:
3049 return ret;
3052 void
3053 ath5k_deinit_ah(struct ath5k_hw *ah)
3055 struct ieee80211_hw *hw = ah->hw;
3058 * NB: the order of these is important:
3059 * o call the 802.11 layer before detaching ath5k_hw to
3060 * ensure callbacks into the driver to delete global
3061 * key cache entries can be handled
3062 * o reclaim the tx queue data structures after calling
3063 * the 802.11 layer as we'll get called back to reclaim
3064 * node state and potentially want to use them
3065 * o to cleanup the tx queues the hal is called, so detach
3066 * it last
3067 * XXX: ??? detach ath5k_hw ???
3068 * Other than that, it's straightforward...
3070 ieee80211_unregister_hw(hw);
3071 ath5k_desc_free(ah);
3072 ath5k_txq_release(ah);
3073 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3074 ath5k_unregister_leds(ah);
3076 ath5k_sysfs_unregister(ah);
3078 * NB: can't reclaim these until after ieee80211_ifdetach
3079 * returns because we'll get called back to reclaim node
3080 * state and potentially want to use them.
3082 ath5k_hw_deinit(ah);
3083 free_irq(ah->irq, ah);
3086 bool
3087 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3089 struct ath5k_vif_iter_data iter_data;
3090 iter_data.hw_macaddr = NULL;
3091 iter_data.any_assoc = false;
3092 iter_data.need_set_hw_addr = false;
3093 iter_data.found_active = true;
3095 ieee80211_iterate_active_interfaces_atomic(
3096 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3097 ath5k_vif_iter, &iter_data);
3098 return iter_data.any_assoc;
3101 void
3102 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3104 struct ath5k_hw *ah = hw->priv;
3105 u32 rfilt;
3106 rfilt = ath5k_hw_get_rx_filter(ah);
3107 if (enable)
3108 rfilt |= AR5K_RX_FILTER_BEACON;
3109 else
3110 rfilt &= ~AR5K_RX_FILTER_BEACON;
3111 ath5k_hw_set_rx_filter(ah, rfilt);
3112 ah->filter_flags = rfilt;
3115 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3116 const char *fmt, ...)
3118 struct va_format vaf;
3119 va_list args;
3121 va_start(args, fmt);
3123 vaf.fmt = fmt;
3124 vaf.va = &args;
3126 if (ah && ah->hw)
3127 printk("%s" pr_fmt("%s: %pV"),
3128 level, wiphy_name(ah->hw->wiphy), &vaf);
3129 else
3130 printk("%s" pr_fmt("%pV"), level, &vaf);
3132 va_end(args);