xtensa: support DMA buffers in high memory
[cris-mirror.git] / arch / powerpc / mm / hash_utils_64.c
blob7d07c7e17db6708334ea38cad711e1f5c32de1c6
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
39 #include <linux/pkeys.h>
41 #include <asm/debugfs.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
44 #include <asm/mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/page.h>
47 #include <asm/types.h>
48 #include <linux/uaccess.h>
49 #include <asm/machdep.h>
50 #include <asm/prom.h>
51 #include <asm/tlbflush.h>
52 #include <asm/io.h>
53 #include <asm/eeh.h>
54 #include <asm/tlb.h>
55 #include <asm/cacheflush.h>
56 #include <asm/cputable.h>
57 #include <asm/sections.h>
58 #include <asm/copro.h>
59 #include <asm/udbg.h>
60 #include <asm/code-patching.h>
61 #include <asm/fadump.h>
62 #include <asm/firmware.h>
63 #include <asm/tm.h>
64 #include <asm/trace.h>
65 #include <asm/ps3.h>
66 #include <asm/pte-walk.h>
68 #ifdef DEBUG
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
74 #ifdef DEBUG_LOW
75 #define DBG_LOW(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG_LOW(fmt...)
78 #endif
80 #define KB (1024)
81 #define MB (1024*KB)
82 #define GB (1024L*MB)
85 * Note: pte --> Linux PTE
86 * HPTE --> PowerPC Hashed Page Table Entry
88 * Execution context:
89 * htab_initialize is called with the MMU off (of course), but
90 * the kernel has been copied down to zero so it can directly
91 * reference global data. At this point it is very difficult
92 * to print debug info.
96 static unsigned long _SDR1;
97 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
98 EXPORT_SYMBOL_GPL(mmu_psize_defs);
100 u8 hpte_page_sizes[1 << LP_BITS];
101 EXPORT_SYMBOL_GPL(hpte_page_sizes);
103 struct hash_pte *htab_address;
104 unsigned long htab_size_bytes;
105 unsigned long htab_hash_mask;
106 EXPORT_SYMBOL_GPL(htab_hash_mask);
107 int mmu_linear_psize = MMU_PAGE_4K;
108 EXPORT_SYMBOL_GPL(mmu_linear_psize);
109 int mmu_virtual_psize = MMU_PAGE_4K;
110 int mmu_vmalloc_psize = MMU_PAGE_4K;
111 #ifdef CONFIG_SPARSEMEM_VMEMMAP
112 int mmu_vmemmap_psize = MMU_PAGE_4K;
113 #endif
114 int mmu_io_psize = MMU_PAGE_4K;
115 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
116 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
117 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
118 u16 mmu_slb_size = 64;
119 EXPORT_SYMBOL_GPL(mmu_slb_size);
120 #ifdef CONFIG_PPC_64K_PAGES
121 int mmu_ci_restrictions;
122 #endif
123 #ifdef CONFIG_DEBUG_PAGEALLOC
124 static u8 *linear_map_hash_slots;
125 static unsigned long linear_map_hash_count;
126 static DEFINE_SPINLOCK(linear_map_hash_lock);
127 #endif /* CONFIG_DEBUG_PAGEALLOC */
128 struct mmu_hash_ops mmu_hash_ops;
129 EXPORT_SYMBOL(mmu_hash_ops);
131 /* There are definitions of page sizes arrays to be used when none
132 * is provided by the firmware.
135 /* Pre-POWER4 CPUs (4k pages only)
137 static struct mmu_psize_def mmu_psize_defaults_old[] = {
138 [MMU_PAGE_4K] = {
139 .shift = 12,
140 .sllp = 0,
141 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
142 .avpnm = 0,
143 .tlbiel = 0,
147 /* POWER4, GPUL, POWER5
149 * Support for 16Mb large pages
151 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
152 [MMU_PAGE_4K] = {
153 .shift = 12,
154 .sllp = 0,
155 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
156 .avpnm = 0,
157 .tlbiel = 1,
159 [MMU_PAGE_16M] = {
160 .shift = 24,
161 .sllp = SLB_VSID_L,
162 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
163 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
164 .avpnm = 0x1UL,
165 .tlbiel = 0,
170 * 'R' and 'C' update notes:
171 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
172 * create writeable HPTEs without C set, because the hcall H_PROTECT
173 * that we use in that case will not update C
174 * - The above is however not a problem, because we also don't do that
175 * fancy "no flush" variant of eviction and we use H_REMOVE which will
176 * do the right thing and thus we don't have the race I described earlier
178 * - Under bare metal, we do have the race, so we need R and C set
179 * - We make sure R is always set and never lost
180 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
182 unsigned long htab_convert_pte_flags(unsigned long pteflags)
184 unsigned long rflags = 0;
186 /* _PAGE_EXEC -> NOEXEC */
187 if ((pteflags & _PAGE_EXEC) == 0)
188 rflags |= HPTE_R_N;
190 * PPP bits:
191 * Linux uses slb key 0 for kernel and 1 for user.
192 * kernel RW areas are mapped with PPP=0b000
193 * User area is mapped with PPP=0b010 for read/write
194 * or PPP=0b011 for read-only (including writeable but clean pages).
196 if (pteflags & _PAGE_PRIVILEGED) {
198 * Kernel read only mapped with ppp bits 0b110
200 if (!(pteflags & _PAGE_WRITE)) {
201 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
202 rflags |= (HPTE_R_PP0 | 0x2);
203 else
204 rflags |= 0x3;
206 } else {
207 if (pteflags & _PAGE_RWX)
208 rflags |= 0x2;
209 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
210 rflags |= 0x1;
213 * We can't allow hardware to update hpte bits. Hence always
214 * set 'R' bit and set 'C' if it is a write fault
216 rflags |= HPTE_R_R;
218 if (pteflags & _PAGE_DIRTY)
219 rflags |= HPTE_R_C;
221 * Add in WIG bits
224 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
225 rflags |= HPTE_R_I;
226 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
227 rflags |= (HPTE_R_I | HPTE_R_G);
228 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
229 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
230 else
232 * Add memory coherence if cache inhibited is not set
234 rflags |= HPTE_R_M;
236 rflags |= pte_to_hpte_pkey_bits(pteflags);
237 return rflags;
240 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
241 unsigned long pstart, unsigned long prot,
242 int psize, int ssize)
244 unsigned long vaddr, paddr;
245 unsigned int step, shift;
246 int ret = 0;
248 shift = mmu_psize_defs[psize].shift;
249 step = 1 << shift;
251 prot = htab_convert_pte_flags(prot);
253 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
254 vstart, vend, pstart, prot, psize, ssize);
256 for (vaddr = vstart, paddr = pstart; vaddr < vend;
257 vaddr += step, paddr += step) {
258 unsigned long hash, hpteg;
259 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
260 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
261 unsigned long tprot = prot;
264 * If we hit a bad address return error.
266 if (!vsid)
267 return -1;
268 /* Make kernel text executable */
269 if (overlaps_kernel_text(vaddr, vaddr + step))
270 tprot &= ~HPTE_R_N;
272 /* Make kvm guest trampolines executable */
273 if (overlaps_kvm_tmp(vaddr, vaddr + step))
274 tprot &= ~HPTE_R_N;
277 * If relocatable, check if it overlaps interrupt vectors that
278 * are copied down to real 0. For relocatable kernel
279 * (e.g. kdump case) we copy interrupt vectors down to real
280 * address 0. Mark that region as executable. This is
281 * because on p8 system with relocation on exception feature
282 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
283 * in order to execute the interrupt handlers in virtual
284 * mode the vector region need to be marked as executable.
286 if ((PHYSICAL_START > MEMORY_START) &&
287 overlaps_interrupt_vector_text(vaddr, vaddr + step))
288 tprot &= ~HPTE_R_N;
290 hash = hpt_hash(vpn, shift, ssize);
291 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
293 BUG_ON(!mmu_hash_ops.hpte_insert);
294 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
295 HPTE_V_BOLTED, psize, psize,
296 ssize);
298 if (ret < 0)
299 break;
301 #ifdef CONFIG_DEBUG_PAGEALLOC
302 if (debug_pagealloc_enabled() &&
303 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
304 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
305 #endif /* CONFIG_DEBUG_PAGEALLOC */
307 return ret < 0 ? ret : 0;
310 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
311 int psize, int ssize)
313 unsigned long vaddr;
314 unsigned int step, shift;
315 int rc;
316 int ret = 0;
318 shift = mmu_psize_defs[psize].shift;
319 step = 1 << shift;
321 if (!mmu_hash_ops.hpte_removebolted)
322 return -ENODEV;
324 for (vaddr = vstart; vaddr < vend; vaddr += step) {
325 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
326 if (rc == -ENOENT) {
327 ret = -ENOENT;
328 continue;
330 if (rc < 0)
331 return rc;
334 return ret;
337 static bool disable_1tb_segments = false;
339 static int __init parse_disable_1tb_segments(char *p)
341 disable_1tb_segments = true;
342 return 0;
344 early_param("disable_1tb_segments", parse_disable_1tb_segments);
346 static int __init htab_dt_scan_seg_sizes(unsigned long node,
347 const char *uname, int depth,
348 void *data)
350 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
351 const __be32 *prop;
352 int size = 0;
354 /* We are scanning "cpu" nodes only */
355 if (type == NULL || strcmp(type, "cpu") != 0)
356 return 0;
358 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
359 if (prop == NULL)
360 return 0;
361 for (; size >= 4; size -= 4, ++prop) {
362 if (be32_to_cpu(prop[0]) == 40) {
363 DBG("1T segment support detected\n");
365 if (disable_1tb_segments) {
366 DBG("1T segments disabled by command line\n");
367 break;
370 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
371 return 1;
374 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
375 return 0;
378 static int __init get_idx_from_shift(unsigned int shift)
380 int idx = -1;
382 switch (shift) {
383 case 0xc:
384 idx = MMU_PAGE_4K;
385 break;
386 case 0x10:
387 idx = MMU_PAGE_64K;
388 break;
389 case 0x14:
390 idx = MMU_PAGE_1M;
391 break;
392 case 0x18:
393 idx = MMU_PAGE_16M;
394 break;
395 case 0x22:
396 idx = MMU_PAGE_16G;
397 break;
399 return idx;
402 static int __init htab_dt_scan_page_sizes(unsigned long node,
403 const char *uname, int depth,
404 void *data)
406 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
407 const __be32 *prop;
408 int size = 0;
410 /* We are scanning "cpu" nodes only */
411 if (type == NULL || strcmp(type, "cpu") != 0)
412 return 0;
414 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
415 if (!prop)
416 return 0;
418 pr_info("Page sizes from device-tree:\n");
419 size /= 4;
420 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
421 while(size > 0) {
422 unsigned int base_shift = be32_to_cpu(prop[0]);
423 unsigned int slbenc = be32_to_cpu(prop[1]);
424 unsigned int lpnum = be32_to_cpu(prop[2]);
425 struct mmu_psize_def *def;
426 int idx, base_idx;
428 size -= 3; prop += 3;
429 base_idx = get_idx_from_shift(base_shift);
430 if (base_idx < 0) {
431 /* skip the pte encoding also */
432 prop += lpnum * 2; size -= lpnum * 2;
433 continue;
435 def = &mmu_psize_defs[base_idx];
436 if (base_idx == MMU_PAGE_16M)
437 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
439 def->shift = base_shift;
440 if (base_shift <= 23)
441 def->avpnm = 0;
442 else
443 def->avpnm = (1 << (base_shift - 23)) - 1;
444 def->sllp = slbenc;
446 * We don't know for sure what's up with tlbiel, so
447 * for now we only set it for 4K and 64K pages
449 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
450 def->tlbiel = 1;
451 else
452 def->tlbiel = 0;
454 while (size > 0 && lpnum) {
455 unsigned int shift = be32_to_cpu(prop[0]);
456 int penc = be32_to_cpu(prop[1]);
458 prop += 2; size -= 2;
459 lpnum--;
461 idx = get_idx_from_shift(shift);
462 if (idx < 0)
463 continue;
465 if (penc == -1)
466 pr_err("Invalid penc for base_shift=%d "
467 "shift=%d\n", base_shift, shift);
469 def->penc[idx] = penc;
470 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
471 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
472 base_shift, shift, def->sllp,
473 def->avpnm, def->tlbiel, def->penc[idx]);
477 return 1;
480 #ifdef CONFIG_HUGETLB_PAGE
481 /* Scan for 16G memory blocks that have been set aside for huge pages
482 * and reserve those blocks for 16G huge pages.
484 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
485 const char *uname, int depth,
486 void *data) {
487 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
488 const __be64 *addr_prop;
489 const __be32 *page_count_prop;
490 unsigned int expected_pages;
491 long unsigned int phys_addr;
492 long unsigned int block_size;
494 /* We are scanning "memory" nodes only */
495 if (type == NULL || strcmp(type, "memory") != 0)
496 return 0;
498 /* This property is the log base 2 of the number of virtual pages that
499 * will represent this memory block. */
500 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
501 if (page_count_prop == NULL)
502 return 0;
503 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
504 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
505 if (addr_prop == NULL)
506 return 0;
507 phys_addr = be64_to_cpu(addr_prop[0]);
508 block_size = be64_to_cpu(addr_prop[1]);
509 if (block_size != (16 * GB))
510 return 0;
511 printk(KERN_INFO "Huge page(16GB) memory: "
512 "addr = 0x%lX size = 0x%lX pages = %d\n",
513 phys_addr, block_size, expected_pages);
514 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
515 memblock_reserve(phys_addr, block_size * expected_pages);
516 pseries_add_gpage(phys_addr, block_size, expected_pages);
518 return 0;
520 #endif /* CONFIG_HUGETLB_PAGE */
522 static void mmu_psize_set_default_penc(void)
524 int bpsize, apsize;
525 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
526 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
527 mmu_psize_defs[bpsize].penc[apsize] = -1;
530 #ifdef CONFIG_PPC_64K_PAGES
532 static bool might_have_hea(void)
535 * The HEA ethernet adapter requires awareness of the
536 * GX bus. Without that awareness we can easily assume
537 * we will never see an HEA ethernet device.
539 #ifdef CONFIG_IBMEBUS
540 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
541 firmware_has_feature(FW_FEATURE_SPLPAR);
542 #else
543 return false;
544 #endif
547 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
549 static void __init htab_scan_page_sizes(void)
551 int rc;
553 /* se the invalid penc to -1 */
554 mmu_psize_set_default_penc();
556 /* Default to 4K pages only */
557 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
558 sizeof(mmu_psize_defaults_old));
561 * Try to find the available page sizes in the device-tree
563 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
564 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
566 * Nothing in the device-tree, but the CPU supports 16M pages,
567 * so let's fallback on a known size list for 16M capable CPUs.
569 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
570 sizeof(mmu_psize_defaults_gp));
573 #ifdef CONFIG_HUGETLB_PAGE
574 /* Reserve 16G huge page memory sections for huge pages */
575 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
576 #endif /* CONFIG_HUGETLB_PAGE */
580 * Fill in the hpte_page_sizes[] array.
581 * We go through the mmu_psize_defs[] array looking for all the
582 * supported base/actual page size combinations. Each combination
583 * has a unique pagesize encoding (penc) value in the low bits of
584 * the LP field of the HPTE. For actual page sizes less than 1MB,
585 * some of the upper LP bits are used for RPN bits, meaning that
586 * we need to fill in several entries in hpte_page_sizes[].
588 * In diagrammatic form, with r = RPN bits and z = page size bits:
589 * PTE LP actual page size
590 * rrrr rrrz >=8KB
591 * rrrr rrzz >=16KB
592 * rrrr rzzz >=32KB
593 * rrrr zzzz >=64KB
594 * ...
596 * The zzzz bits are implementation-specific but are chosen so that
597 * no encoding for a larger page size uses the same value in its
598 * low-order N bits as the encoding for the 2^(12+N) byte page size
599 * (if it exists).
601 static void init_hpte_page_sizes(void)
603 long int ap, bp;
604 long int shift, penc;
606 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
607 if (!mmu_psize_defs[bp].shift)
608 continue; /* not a supported page size */
609 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
610 penc = mmu_psize_defs[bp].penc[ap];
611 if (penc == -1 || !mmu_psize_defs[ap].shift)
612 continue;
613 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
614 if (shift <= 0)
615 continue; /* should never happen */
617 * For page sizes less than 1MB, this loop
618 * replicates the entry for all possible values
619 * of the rrrr bits.
621 while (penc < (1 << LP_BITS)) {
622 hpte_page_sizes[penc] = (ap << 4) | bp;
623 penc += 1 << shift;
629 static void __init htab_init_page_sizes(void)
631 init_hpte_page_sizes();
633 if (!debug_pagealloc_enabled()) {
635 * Pick a size for the linear mapping. Currently, we only
636 * support 16M, 1M and 4K which is the default
638 if (mmu_psize_defs[MMU_PAGE_16M].shift)
639 mmu_linear_psize = MMU_PAGE_16M;
640 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
641 mmu_linear_psize = MMU_PAGE_1M;
644 #ifdef CONFIG_PPC_64K_PAGES
646 * Pick a size for the ordinary pages. Default is 4K, we support
647 * 64K for user mappings and vmalloc if supported by the processor.
648 * We only use 64k for ioremap if the processor
649 * (and firmware) support cache-inhibited large pages.
650 * If not, we use 4k and set mmu_ci_restrictions so that
651 * hash_page knows to switch processes that use cache-inhibited
652 * mappings to 4k pages.
654 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
655 mmu_virtual_psize = MMU_PAGE_64K;
656 mmu_vmalloc_psize = MMU_PAGE_64K;
657 if (mmu_linear_psize == MMU_PAGE_4K)
658 mmu_linear_psize = MMU_PAGE_64K;
659 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
661 * When running on pSeries using 64k pages for ioremap
662 * would stop us accessing the HEA ethernet. So if we
663 * have the chance of ever seeing one, stay at 4k.
665 if (!might_have_hea())
666 mmu_io_psize = MMU_PAGE_64K;
667 } else
668 mmu_ci_restrictions = 1;
670 #endif /* CONFIG_PPC_64K_PAGES */
672 #ifdef CONFIG_SPARSEMEM_VMEMMAP
673 /* We try to use 16M pages for vmemmap if that is supported
674 * and we have at least 1G of RAM at boot
676 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
677 memblock_phys_mem_size() >= 0x40000000)
678 mmu_vmemmap_psize = MMU_PAGE_16M;
679 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
680 mmu_vmemmap_psize = MMU_PAGE_64K;
681 else
682 mmu_vmemmap_psize = MMU_PAGE_4K;
683 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
685 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
686 "virtual = %d, io = %d"
687 #ifdef CONFIG_SPARSEMEM_VMEMMAP
688 ", vmemmap = %d"
689 #endif
690 "\n",
691 mmu_psize_defs[mmu_linear_psize].shift,
692 mmu_psize_defs[mmu_virtual_psize].shift,
693 mmu_psize_defs[mmu_io_psize].shift
694 #ifdef CONFIG_SPARSEMEM_VMEMMAP
695 ,mmu_psize_defs[mmu_vmemmap_psize].shift
696 #endif
700 static int __init htab_dt_scan_pftsize(unsigned long node,
701 const char *uname, int depth,
702 void *data)
704 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
705 const __be32 *prop;
707 /* We are scanning "cpu" nodes only */
708 if (type == NULL || strcmp(type, "cpu") != 0)
709 return 0;
711 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
712 if (prop != NULL) {
713 /* pft_size[0] is the NUMA CEC cookie */
714 ppc64_pft_size = be32_to_cpu(prop[1]);
715 return 1;
717 return 0;
720 unsigned htab_shift_for_mem_size(unsigned long mem_size)
722 unsigned memshift = __ilog2(mem_size);
723 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
724 unsigned pteg_shift;
726 /* round mem_size up to next power of 2 */
727 if ((1UL << memshift) < mem_size)
728 memshift += 1;
730 /* aim for 2 pages / pteg */
731 pteg_shift = memshift - (pshift + 1);
734 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
735 * size permitted by the architecture.
737 return max(pteg_shift + 7, 18U);
740 static unsigned long __init htab_get_table_size(void)
742 /* If hash size isn't already provided by the platform, we try to
743 * retrieve it from the device-tree. If it's not there neither, we
744 * calculate it now based on the total RAM size
746 if (ppc64_pft_size == 0)
747 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
748 if (ppc64_pft_size)
749 return 1UL << ppc64_pft_size;
751 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
754 #ifdef CONFIG_MEMORY_HOTPLUG
755 void resize_hpt_for_hotplug(unsigned long new_mem_size)
757 unsigned target_hpt_shift;
759 if (!mmu_hash_ops.resize_hpt)
760 return;
762 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
765 * To avoid lots of HPT resizes if memory size is fluctuating
766 * across a boundary, we deliberately have some hysterisis
767 * here: we immediately increase the HPT size if the target
768 * shift exceeds the current shift, but we won't attempt to
769 * reduce unless the target shift is at least 2 below the
770 * current shift
772 if ((target_hpt_shift > ppc64_pft_size)
773 || (target_hpt_shift < (ppc64_pft_size - 1))) {
774 int rc;
776 rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
777 if (rc && (rc != -ENODEV))
778 printk(KERN_WARNING
779 "Unable to resize hash page table to target order %d: %d\n",
780 target_hpt_shift, rc);
784 int hash__create_section_mapping(unsigned long start, unsigned long end)
786 int rc = htab_bolt_mapping(start, end, __pa(start),
787 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
788 mmu_kernel_ssize);
790 if (rc < 0) {
791 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
792 mmu_kernel_ssize);
793 BUG_ON(rc2 && (rc2 != -ENOENT));
795 return rc;
798 int hash__remove_section_mapping(unsigned long start, unsigned long end)
800 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
801 mmu_kernel_ssize);
802 WARN_ON(rc < 0);
803 return rc;
805 #endif /* CONFIG_MEMORY_HOTPLUG */
807 static void update_hid_for_hash(void)
809 unsigned long hid0;
810 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
812 asm volatile("ptesync": : :"memory");
813 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
814 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
815 : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
816 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
817 trace_tlbie(0, 0, rb, 0, 2, 0, 0);
820 * now switch the HID
822 hid0 = mfspr(SPRN_HID0);
823 hid0 &= ~HID0_POWER9_RADIX;
824 mtspr(SPRN_HID0, hid0);
825 asm volatile("isync": : :"memory");
827 /* Wait for it to happen */
828 while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
829 cpu_relax();
832 static void __init hash_init_partition_table(phys_addr_t hash_table,
833 unsigned long htab_size)
835 mmu_partition_table_init();
838 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
839 * For now, UPRT is 0 and we have no segment table.
841 htab_size = __ilog2(htab_size) - 18;
842 mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
843 pr_info("Partition table %p\n", partition_tb);
844 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
845 update_hid_for_hash();
848 static void __init htab_initialize(void)
850 unsigned long table;
851 unsigned long pteg_count;
852 unsigned long prot;
853 unsigned long base = 0, size = 0;
854 struct memblock_region *reg;
856 DBG(" -> htab_initialize()\n");
858 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
859 mmu_kernel_ssize = MMU_SEGSIZE_1T;
860 mmu_highuser_ssize = MMU_SEGSIZE_1T;
861 printk(KERN_INFO "Using 1TB segments\n");
865 * Calculate the required size of the htab. We want the number of
866 * PTEGs to equal one half the number of real pages.
868 htab_size_bytes = htab_get_table_size();
869 pteg_count = htab_size_bytes >> 7;
871 htab_hash_mask = pteg_count - 1;
873 if (firmware_has_feature(FW_FEATURE_LPAR) ||
874 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
875 /* Using a hypervisor which owns the htab */
876 htab_address = NULL;
877 _SDR1 = 0;
878 #ifdef CONFIG_FA_DUMP
880 * If firmware assisted dump is active firmware preserves
881 * the contents of htab along with entire partition memory.
882 * Clear the htab if firmware assisted dump is active so
883 * that we dont end up using old mappings.
885 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
886 mmu_hash_ops.hpte_clear_all();
887 #endif
888 } else {
889 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
891 #ifdef CONFIG_PPC_CELL
893 * Cell may require the hash table down low when using the
894 * Axon IOMMU in order to fit the dynamic region over it, see
895 * comments in cell/iommu.c
897 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
898 limit = 0x80000000;
899 pr_info("Hash table forced below 2G for Axon IOMMU\n");
901 #endif /* CONFIG_PPC_CELL */
903 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
904 limit);
906 DBG("Hash table allocated at %lx, size: %lx\n", table,
907 htab_size_bytes);
909 htab_address = __va(table);
911 /* htab absolute addr + encoded htabsize */
912 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
914 /* Initialize the HPT with no entries */
915 memset((void *)table, 0, htab_size_bytes);
917 if (!cpu_has_feature(CPU_FTR_ARCH_300))
918 /* Set SDR1 */
919 mtspr(SPRN_SDR1, _SDR1);
920 else
921 hash_init_partition_table(table, htab_size_bytes);
924 prot = pgprot_val(PAGE_KERNEL);
926 #ifdef CONFIG_DEBUG_PAGEALLOC
927 if (debug_pagealloc_enabled()) {
928 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
929 linear_map_hash_slots = __va(memblock_alloc_base(
930 linear_map_hash_count, 1, ppc64_rma_size));
931 memset(linear_map_hash_slots, 0, linear_map_hash_count);
933 #endif /* CONFIG_DEBUG_PAGEALLOC */
935 /* create bolted the linear mapping in the hash table */
936 for_each_memblock(memory, reg) {
937 base = (unsigned long)__va(reg->base);
938 size = reg->size;
940 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
941 base, size, prot);
943 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
944 prot, mmu_linear_psize, mmu_kernel_ssize));
946 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
949 * If we have a memory_limit and we've allocated TCEs then we need to
950 * explicitly map the TCE area at the top of RAM. We also cope with the
951 * case that the TCEs start below memory_limit.
952 * tce_alloc_start/end are 16MB aligned so the mapping should work
953 * for either 4K or 16MB pages.
955 if (tce_alloc_start) {
956 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
957 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
959 if (base + size >= tce_alloc_start)
960 tce_alloc_start = base + size + 1;
962 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
963 __pa(tce_alloc_start), prot,
964 mmu_linear_psize, mmu_kernel_ssize));
968 DBG(" <- htab_initialize()\n");
970 #undef KB
971 #undef MB
973 void __init hash__early_init_devtree(void)
975 /* Initialize segment sizes */
976 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
978 /* Initialize page sizes */
979 htab_scan_page_sizes();
982 void __init hash__early_init_mmu(void)
984 #ifndef CONFIG_PPC_64K_PAGES
986 * We have code in __hash_page_4K() and elsewhere, which assumes it can
987 * do the following:
988 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
990 * Where the slot number is between 0-15, and values of 8-15 indicate
991 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
992 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
993 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
994 * with a BUILD_BUG_ON().
996 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
997 #endif /* CONFIG_PPC_64K_PAGES */
999 htab_init_page_sizes();
1002 * initialize page table size
1004 __pte_frag_nr = H_PTE_FRAG_NR;
1005 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1007 __pte_index_size = H_PTE_INDEX_SIZE;
1008 __pmd_index_size = H_PMD_INDEX_SIZE;
1009 __pud_index_size = H_PUD_INDEX_SIZE;
1010 __pgd_index_size = H_PGD_INDEX_SIZE;
1011 __pmd_cache_index = H_PMD_CACHE_INDEX;
1012 __pte_table_size = H_PTE_TABLE_SIZE;
1013 __pmd_table_size = H_PMD_TABLE_SIZE;
1014 __pud_table_size = H_PUD_TABLE_SIZE;
1015 __pgd_table_size = H_PGD_TABLE_SIZE;
1017 * 4k use hugepd format, so for hash set then to
1018 * zero
1020 __pmd_val_bits = 0;
1021 __pud_val_bits = 0;
1022 __pgd_val_bits = 0;
1024 __kernel_virt_start = H_KERN_VIRT_START;
1025 __kernel_virt_size = H_KERN_VIRT_SIZE;
1026 __vmalloc_start = H_VMALLOC_START;
1027 __vmalloc_end = H_VMALLOC_END;
1028 __kernel_io_start = H_KERN_IO_START;
1029 vmemmap = (struct page *)H_VMEMMAP_BASE;
1030 ioremap_bot = IOREMAP_BASE;
1032 #ifdef CONFIG_PCI
1033 pci_io_base = ISA_IO_BASE;
1034 #endif
1036 /* Select appropriate backend */
1037 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1038 ps3_early_mm_init();
1039 else if (firmware_has_feature(FW_FEATURE_LPAR))
1040 hpte_init_pseries();
1041 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1042 hpte_init_native();
1044 if (!mmu_hash_ops.hpte_insert)
1045 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1047 /* Initialize the MMU Hash table and create the linear mapping
1048 * of memory. Has to be done before SLB initialization as this is
1049 * currently where the page size encoding is obtained.
1051 htab_initialize();
1053 pr_info("Initializing hash mmu with SLB\n");
1054 /* Initialize SLB management */
1055 slb_initialize();
1057 if (cpu_has_feature(CPU_FTR_ARCH_206)
1058 && cpu_has_feature(CPU_FTR_HVMODE))
1059 tlbiel_all();
1062 #ifdef CONFIG_SMP
1063 void hash__early_init_mmu_secondary(void)
1065 /* Initialize hash table for that CPU */
1066 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1068 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1069 update_hid_for_hash();
1071 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1072 mtspr(SPRN_SDR1, _SDR1);
1073 else
1074 mtspr(SPRN_PTCR,
1075 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1077 /* Initialize SLB */
1078 slb_initialize();
1080 if (cpu_has_feature(CPU_FTR_ARCH_206)
1081 && cpu_has_feature(CPU_FTR_HVMODE))
1082 tlbiel_all();
1084 #endif /* CONFIG_SMP */
1087 * Called by asm hashtable.S for doing lazy icache flush
1089 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1091 struct page *page;
1093 if (!pfn_valid(pte_pfn(pte)))
1094 return pp;
1096 page = pte_page(pte);
1098 /* page is dirty */
1099 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1100 if (trap == 0x400) {
1101 flush_dcache_icache_page(page);
1102 set_bit(PG_arch_1, &page->flags);
1103 } else
1104 pp |= HPTE_R_N;
1106 return pp;
1109 #ifdef CONFIG_PPC_MM_SLICES
1110 static unsigned int get_paca_psize(unsigned long addr)
1112 u64 lpsizes;
1113 unsigned char *hpsizes;
1114 unsigned long index, mask_index;
1116 if (addr < SLICE_LOW_TOP) {
1117 lpsizes = get_paca()->mm_ctx_low_slices_psize;
1118 index = GET_LOW_SLICE_INDEX(addr);
1119 return (lpsizes >> (index * 4)) & 0xF;
1121 hpsizes = get_paca()->mm_ctx_high_slices_psize;
1122 index = GET_HIGH_SLICE_INDEX(addr);
1123 mask_index = index & 0x1;
1124 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1127 #else
1128 unsigned int get_paca_psize(unsigned long addr)
1130 return get_paca()->mm_ctx_user_psize;
1132 #endif
1135 * Demote a segment to using 4k pages.
1136 * For now this makes the whole process use 4k pages.
1138 #ifdef CONFIG_PPC_64K_PAGES
1139 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1141 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1142 return;
1143 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1144 copro_flush_all_slbs(mm);
1145 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1147 copy_mm_to_paca(mm);
1148 slb_flush_and_rebolt();
1151 #endif /* CONFIG_PPC_64K_PAGES */
1153 #ifdef CONFIG_PPC_SUBPAGE_PROT
1155 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1156 * Userspace sets the subpage permissions using the subpage_prot system call.
1158 * Result is 0: full permissions, _PAGE_RW: read-only,
1159 * _PAGE_RWX: no access.
1161 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1163 struct subpage_prot_table *spt = &mm->context.spt;
1164 u32 spp = 0;
1165 u32 **sbpm, *sbpp;
1167 if (ea >= spt->maxaddr)
1168 return 0;
1169 if (ea < 0x100000000UL) {
1170 /* addresses below 4GB use spt->low_prot */
1171 sbpm = spt->low_prot;
1172 } else {
1173 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1174 if (!sbpm)
1175 return 0;
1177 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1178 if (!sbpp)
1179 return 0;
1180 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1182 /* extract 2-bit bitfield for this 4k subpage */
1183 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1186 * 0 -> full premission
1187 * 1 -> Read only
1188 * 2 -> no access.
1189 * We return the flag that need to be cleared.
1191 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1192 return spp;
1195 #else /* CONFIG_PPC_SUBPAGE_PROT */
1196 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1198 return 0;
1200 #endif
1202 void hash_failure_debug(unsigned long ea, unsigned long access,
1203 unsigned long vsid, unsigned long trap,
1204 int ssize, int psize, int lpsize, unsigned long pte)
1206 if (!printk_ratelimit())
1207 return;
1208 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1209 ea, access, current->comm);
1210 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1211 trap, vsid, ssize, psize, lpsize, pte);
1214 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1215 int psize, bool user_region)
1217 if (user_region) {
1218 if (psize != get_paca_psize(ea)) {
1219 copy_mm_to_paca(mm);
1220 slb_flush_and_rebolt();
1222 } else if (get_paca()->vmalloc_sllp !=
1223 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1224 get_paca()->vmalloc_sllp =
1225 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1226 slb_vmalloc_update();
1230 /* Result code is:
1231 * 0 - handled
1232 * 1 - normal page fault
1233 * -1 - critical hash insertion error
1234 * -2 - access not permitted by subpage protection mechanism
1236 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1237 unsigned long access, unsigned long trap,
1238 unsigned long flags)
1240 bool is_thp;
1241 enum ctx_state prev_state = exception_enter();
1242 pgd_t *pgdir;
1243 unsigned long vsid;
1244 pte_t *ptep;
1245 unsigned hugeshift;
1246 int rc, user_region = 0;
1247 int psize, ssize;
1249 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1250 ea, access, trap);
1251 trace_hash_fault(ea, access, trap);
1253 /* Get region & vsid */
1254 switch (REGION_ID(ea)) {
1255 case USER_REGION_ID:
1256 user_region = 1;
1257 if (! mm) {
1258 DBG_LOW(" user region with no mm !\n");
1259 rc = 1;
1260 goto bail;
1262 psize = get_slice_psize(mm, ea);
1263 ssize = user_segment_size(ea);
1264 vsid = get_vsid(mm->context.id, ea, ssize);
1265 break;
1266 case VMALLOC_REGION_ID:
1267 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1268 if (ea < VMALLOC_END)
1269 psize = mmu_vmalloc_psize;
1270 else
1271 psize = mmu_io_psize;
1272 ssize = mmu_kernel_ssize;
1273 break;
1274 default:
1275 /* Not a valid range
1276 * Send the problem up to do_page_fault
1278 rc = 1;
1279 goto bail;
1281 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1283 /* Bad address. */
1284 if (!vsid) {
1285 DBG_LOW("Bad address!\n");
1286 rc = 1;
1287 goto bail;
1289 /* Get pgdir */
1290 pgdir = mm->pgd;
1291 if (pgdir == NULL) {
1292 rc = 1;
1293 goto bail;
1296 /* Check CPU locality */
1297 if (user_region && mm_is_thread_local(mm))
1298 flags |= HPTE_LOCAL_UPDATE;
1300 #ifndef CONFIG_PPC_64K_PAGES
1301 /* If we use 4K pages and our psize is not 4K, then we might
1302 * be hitting a special driver mapping, and need to align the
1303 * address before we fetch the PTE.
1305 * It could also be a hugepage mapping, in which case this is
1306 * not necessary, but it's not harmful, either.
1308 if (psize != MMU_PAGE_4K)
1309 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1310 #endif /* CONFIG_PPC_64K_PAGES */
1312 /* Get PTE and page size from page tables */
1313 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1314 if (ptep == NULL || !pte_present(*ptep)) {
1315 DBG_LOW(" no PTE !\n");
1316 rc = 1;
1317 goto bail;
1320 /* Add _PAGE_PRESENT to the required access perm */
1321 access |= _PAGE_PRESENT;
1323 /* Pre-check access permissions (will be re-checked atomically
1324 * in __hash_page_XX but this pre-check is a fast path
1326 if (!check_pte_access(access, pte_val(*ptep))) {
1327 DBG_LOW(" no access !\n");
1328 rc = 1;
1329 goto bail;
1332 if (hugeshift) {
1333 if (is_thp)
1334 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1335 trap, flags, ssize, psize);
1336 #ifdef CONFIG_HUGETLB_PAGE
1337 else
1338 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1339 flags, ssize, hugeshift, psize);
1340 #else
1341 else {
1343 * if we have hugeshift, and is not transhuge with
1344 * hugetlb disabled, something is really wrong.
1346 rc = 1;
1347 WARN_ON(1);
1349 #endif
1350 if (current->mm == mm)
1351 check_paca_psize(ea, mm, psize, user_region);
1353 goto bail;
1356 #ifndef CONFIG_PPC_64K_PAGES
1357 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1358 #else
1359 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1360 pte_val(*(ptep + PTRS_PER_PTE)));
1361 #endif
1362 /* Do actual hashing */
1363 #ifdef CONFIG_PPC_64K_PAGES
1364 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1365 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1366 demote_segment_4k(mm, ea);
1367 psize = MMU_PAGE_4K;
1370 /* If this PTE is non-cacheable and we have restrictions on
1371 * using non cacheable large pages, then we switch to 4k
1373 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1374 if (user_region) {
1375 demote_segment_4k(mm, ea);
1376 psize = MMU_PAGE_4K;
1377 } else if (ea < VMALLOC_END) {
1379 * some driver did a non-cacheable mapping
1380 * in vmalloc space, so switch vmalloc
1381 * to 4k pages
1383 printk(KERN_ALERT "Reducing vmalloc segment "
1384 "to 4kB pages because of "
1385 "non-cacheable mapping\n");
1386 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1387 copro_flush_all_slbs(mm);
1391 #endif /* CONFIG_PPC_64K_PAGES */
1393 if (current->mm == mm)
1394 check_paca_psize(ea, mm, psize, user_region);
1396 #ifdef CONFIG_PPC_64K_PAGES
1397 if (psize == MMU_PAGE_64K)
1398 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1399 flags, ssize);
1400 else
1401 #endif /* CONFIG_PPC_64K_PAGES */
1403 int spp = subpage_protection(mm, ea);
1404 if (access & spp)
1405 rc = -2;
1406 else
1407 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1408 flags, ssize, spp);
1411 /* Dump some info in case of hash insertion failure, they should
1412 * never happen so it is really useful to know if/when they do
1414 if (rc == -1)
1415 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1416 psize, pte_val(*ptep));
1417 #ifndef CONFIG_PPC_64K_PAGES
1418 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1419 #else
1420 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1421 pte_val(*(ptep + PTRS_PER_PTE)));
1422 #endif
1423 DBG_LOW(" -> rc=%d\n", rc);
1425 bail:
1426 exception_exit(prev_state);
1427 return rc;
1429 EXPORT_SYMBOL_GPL(hash_page_mm);
1431 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1432 unsigned long dsisr)
1434 unsigned long flags = 0;
1435 struct mm_struct *mm = current->mm;
1437 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1438 mm = &init_mm;
1440 if (dsisr & DSISR_NOHPTE)
1441 flags |= HPTE_NOHPTE_UPDATE;
1443 return hash_page_mm(mm, ea, access, trap, flags);
1445 EXPORT_SYMBOL_GPL(hash_page);
1447 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1448 unsigned long dsisr)
1450 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1451 unsigned long flags = 0;
1452 struct mm_struct *mm = current->mm;
1454 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1455 mm = &init_mm;
1457 if (dsisr & DSISR_NOHPTE)
1458 flags |= HPTE_NOHPTE_UPDATE;
1460 if (dsisr & DSISR_ISSTORE)
1461 access |= _PAGE_WRITE;
1463 * We set _PAGE_PRIVILEGED only when
1464 * kernel mode access kernel space.
1466 * _PAGE_PRIVILEGED is NOT set
1467 * 1) when kernel mode access user space
1468 * 2) user space access kernel space.
1470 access |= _PAGE_PRIVILEGED;
1471 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1472 access &= ~_PAGE_PRIVILEGED;
1474 if (trap == 0x400)
1475 access |= _PAGE_EXEC;
1477 return hash_page_mm(mm, ea, access, trap, flags);
1480 #ifdef CONFIG_PPC_MM_SLICES
1481 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1483 int psize = get_slice_psize(mm, ea);
1485 /* We only prefault standard pages for now */
1486 if (unlikely(psize != mm->context.user_psize))
1487 return false;
1490 * Don't prefault if subpage protection is enabled for the EA.
1492 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1493 return false;
1495 return true;
1497 #else
1498 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1500 return true;
1502 #endif
1504 void hash_preload(struct mm_struct *mm, unsigned long ea,
1505 unsigned long access, unsigned long trap)
1507 int hugepage_shift;
1508 unsigned long vsid;
1509 pgd_t *pgdir;
1510 pte_t *ptep;
1511 unsigned long flags;
1512 int rc, ssize, update_flags = 0;
1514 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1516 if (!should_hash_preload(mm, ea))
1517 return;
1519 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1520 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1522 /* Get Linux PTE if available */
1523 pgdir = mm->pgd;
1524 if (pgdir == NULL)
1525 return;
1527 /* Get VSID */
1528 ssize = user_segment_size(ea);
1529 vsid = get_vsid(mm->context.id, ea, ssize);
1530 if (!vsid)
1531 return;
1533 * Hash doesn't like irqs. Walking linux page table with irq disabled
1534 * saves us from holding multiple locks.
1536 local_irq_save(flags);
1539 * THP pages use update_mmu_cache_pmd. We don't do
1540 * hash preload there. Hence can ignore THP here
1542 ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1543 if (!ptep)
1544 goto out_exit;
1546 WARN_ON(hugepage_shift);
1547 #ifdef CONFIG_PPC_64K_PAGES
1548 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1549 * a 64K kernel), then we don't preload, hash_page() will take
1550 * care of it once we actually try to access the page.
1551 * That way we don't have to duplicate all of the logic for segment
1552 * page size demotion here
1554 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1555 goto out_exit;
1556 #endif /* CONFIG_PPC_64K_PAGES */
1558 /* Is that local to this CPU ? */
1559 if (mm_is_thread_local(mm))
1560 update_flags |= HPTE_LOCAL_UPDATE;
1562 /* Hash it in */
1563 #ifdef CONFIG_PPC_64K_PAGES
1564 if (mm->context.user_psize == MMU_PAGE_64K)
1565 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1566 update_flags, ssize);
1567 else
1568 #endif /* CONFIG_PPC_64K_PAGES */
1569 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1570 ssize, subpage_protection(mm, ea));
1572 /* Dump some info in case of hash insertion failure, they should
1573 * never happen so it is really useful to know if/when they do
1575 if (rc == -1)
1576 hash_failure_debug(ea, access, vsid, trap, ssize,
1577 mm->context.user_psize,
1578 mm->context.user_psize,
1579 pte_val(*ptep));
1580 out_exit:
1581 local_irq_restore(flags);
1584 #ifdef CONFIG_PPC_MEM_KEYS
1586 * Return the protection key associated with the given address and the
1587 * mm_struct.
1589 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1591 pte_t *ptep;
1592 u16 pkey = 0;
1593 unsigned long flags;
1595 if (!mm || !mm->pgd)
1596 return 0;
1598 local_irq_save(flags);
1599 ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1600 if (ptep)
1601 pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1602 local_irq_restore(flags);
1604 return pkey;
1606 #endif /* CONFIG_PPC_MEM_KEYS */
1608 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1609 static inline void tm_flush_hash_page(int local)
1612 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1613 * page back to a block device w/PIO could pick up transactional data
1614 * (bad!) so we force an abort here. Before the sync the page will be
1615 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1616 * kernel uses a page from userspace without unmapping it first, it may
1617 * see the speculated version.
1619 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1620 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1621 tm_enable();
1622 tm_abort(TM_CAUSE_TLBI);
1625 #else
1626 static inline void tm_flush_hash_page(int local)
1629 #endif
1632 * Return the global hash slot, corresponding to the given PTE, which contains
1633 * the HPTE.
1635 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1636 int ssize, real_pte_t rpte, unsigned int subpg_index)
1638 unsigned long hash, gslot, hidx;
1640 hash = hpt_hash(vpn, shift, ssize);
1641 hidx = __rpte_to_hidx(rpte, subpg_index);
1642 if (hidx & _PTEIDX_SECONDARY)
1643 hash = ~hash;
1644 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1645 gslot += hidx & _PTEIDX_GROUP_IX;
1646 return gslot;
1649 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1650 * do not forget to update the assembly call site !
1652 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1653 unsigned long flags)
1655 unsigned long index, shift, gslot;
1656 int local = flags & HPTE_LOCAL_UPDATE;
1658 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1659 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1660 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1661 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1663 * We use same base page size and actual psize, because we don't
1664 * use these functions for hugepage
1666 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1667 ssize, local);
1668 } pte_iterate_hashed_end();
1670 tm_flush_hash_page(local);
1673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1674 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1675 pmd_t *pmdp, unsigned int psize, int ssize,
1676 unsigned long flags)
1678 int i, max_hpte_count, valid;
1679 unsigned long s_addr;
1680 unsigned char *hpte_slot_array;
1681 unsigned long hidx, shift, vpn, hash, slot;
1682 int local = flags & HPTE_LOCAL_UPDATE;
1684 s_addr = addr & HPAGE_PMD_MASK;
1685 hpte_slot_array = get_hpte_slot_array(pmdp);
1687 * IF we try to do a HUGE PTE update after a withdraw is done.
1688 * we will find the below NULL. This happens when we do
1689 * split_huge_page_pmd
1691 if (!hpte_slot_array)
1692 return;
1694 if (mmu_hash_ops.hugepage_invalidate) {
1695 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1696 psize, ssize, local);
1697 goto tm_abort;
1700 * No bluk hpte removal support, invalidate each entry
1702 shift = mmu_psize_defs[psize].shift;
1703 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1704 for (i = 0; i < max_hpte_count; i++) {
1706 * 8 bits per each hpte entries
1707 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1709 valid = hpte_valid(hpte_slot_array, i);
1710 if (!valid)
1711 continue;
1712 hidx = hpte_hash_index(hpte_slot_array, i);
1714 /* get the vpn */
1715 addr = s_addr + (i * (1ul << shift));
1716 vpn = hpt_vpn(addr, vsid, ssize);
1717 hash = hpt_hash(vpn, shift, ssize);
1718 if (hidx & _PTEIDX_SECONDARY)
1719 hash = ~hash;
1721 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1722 slot += hidx & _PTEIDX_GROUP_IX;
1723 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1724 MMU_PAGE_16M, ssize, local);
1726 tm_abort:
1727 tm_flush_hash_page(local);
1729 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1731 void flush_hash_range(unsigned long number, int local)
1733 if (mmu_hash_ops.flush_hash_range)
1734 mmu_hash_ops.flush_hash_range(number, local);
1735 else {
1736 int i;
1737 struct ppc64_tlb_batch *batch =
1738 this_cpu_ptr(&ppc64_tlb_batch);
1740 for (i = 0; i < number; i++)
1741 flush_hash_page(batch->vpn[i], batch->pte[i],
1742 batch->psize, batch->ssize, local);
1747 * low_hash_fault is called when we the low level hash code failed
1748 * to instert a PTE due to an hypervisor error
1750 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1752 enum ctx_state prev_state = exception_enter();
1754 if (user_mode(regs)) {
1755 #ifdef CONFIG_PPC_SUBPAGE_PROT
1756 if (rc == -2)
1757 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1758 else
1759 #endif
1760 _exception(SIGBUS, regs, BUS_ADRERR, address);
1761 } else
1762 bad_page_fault(regs, address, SIGBUS);
1764 exception_exit(prev_state);
1767 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1768 unsigned long pa, unsigned long rflags,
1769 unsigned long vflags, int psize, int ssize)
1771 unsigned long hpte_group;
1772 long slot;
1774 repeat:
1775 hpte_group = ((hash & htab_hash_mask) *
1776 HPTES_PER_GROUP) & ~0x7UL;
1778 /* Insert into the hash table, primary slot */
1779 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1780 psize, psize, ssize);
1782 /* Primary is full, try the secondary */
1783 if (unlikely(slot == -1)) {
1784 hpte_group = ((~hash & htab_hash_mask) *
1785 HPTES_PER_GROUP) & ~0x7UL;
1786 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1787 vflags | HPTE_V_SECONDARY,
1788 psize, psize, ssize);
1789 if (slot == -1) {
1790 if (mftb() & 0x1)
1791 hpte_group = ((hash & htab_hash_mask) *
1792 HPTES_PER_GROUP)&~0x7UL;
1794 mmu_hash_ops.hpte_remove(hpte_group);
1795 goto repeat;
1799 return slot;
1802 #ifdef CONFIG_DEBUG_PAGEALLOC
1803 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1805 unsigned long hash;
1806 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1807 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1808 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1809 long ret;
1811 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1813 /* Don't create HPTE entries for bad address */
1814 if (!vsid)
1815 return;
1817 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1818 HPTE_V_BOLTED,
1819 mmu_linear_psize, mmu_kernel_ssize);
1821 BUG_ON (ret < 0);
1822 spin_lock(&linear_map_hash_lock);
1823 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1824 linear_map_hash_slots[lmi] = ret | 0x80;
1825 spin_unlock(&linear_map_hash_lock);
1828 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1830 unsigned long hash, hidx, slot;
1831 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1832 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1834 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1835 spin_lock(&linear_map_hash_lock);
1836 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1837 hidx = linear_map_hash_slots[lmi] & 0x7f;
1838 linear_map_hash_slots[lmi] = 0;
1839 spin_unlock(&linear_map_hash_lock);
1840 if (hidx & _PTEIDX_SECONDARY)
1841 hash = ~hash;
1842 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1843 slot += hidx & _PTEIDX_GROUP_IX;
1844 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1845 mmu_linear_psize,
1846 mmu_kernel_ssize, 0);
1849 void __kernel_map_pages(struct page *page, int numpages, int enable)
1851 unsigned long flags, vaddr, lmi;
1852 int i;
1854 local_irq_save(flags);
1855 for (i = 0; i < numpages; i++, page++) {
1856 vaddr = (unsigned long)page_address(page);
1857 lmi = __pa(vaddr) >> PAGE_SHIFT;
1858 if (lmi >= linear_map_hash_count)
1859 continue;
1860 if (enable)
1861 kernel_map_linear_page(vaddr, lmi);
1862 else
1863 kernel_unmap_linear_page(vaddr, lmi);
1865 local_irq_restore(flags);
1867 #endif /* CONFIG_DEBUG_PAGEALLOC */
1869 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1870 phys_addr_t first_memblock_size)
1872 /* We don't currently support the first MEMBLOCK not mapping 0
1873 * physical on those processors
1875 BUG_ON(first_memblock_base != 0);
1878 * On virtualized systems the first entry is our RMA region aka VRMA,
1879 * non-virtualized 64-bit hash MMU systems don't have a limitation
1880 * on real mode access.
1882 * For guests on platforms before POWER9, we clamp the it limit to 1G
1883 * to avoid some funky things such as RTAS bugs etc...
1885 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1886 ppc64_rma_size = first_memblock_size;
1887 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1888 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1890 /* Finally limit subsequent allocations */
1891 memblock_set_current_limit(ppc64_rma_size);
1892 } else {
1893 ppc64_rma_size = ULONG_MAX;
1897 #ifdef CONFIG_DEBUG_FS
1899 static int hpt_order_get(void *data, u64 *val)
1901 *val = ppc64_pft_size;
1902 return 0;
1905 static int hpt_order_set(void *data, u64 val)
1907 if (!mmu_hash_ops.resize_hpt)
1908 return -ENODEV;
1910 return mmu_hash_ops.resize_hpt(val);
1913 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1915 static int __init hash64_debugfs(void)
1917 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1918 NULL, &fops_hpt_order)) {
1919 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1922 return 0;
1924 machine_device_initcall(pseries, hash64_debugfs);
1925 #endif /* CONFIG_DEBUG_FS */