xtensa: support DMA buffers in high memory
[cris-mirror.git] / arch / x86 / kernel / cpu / mcheck / mce.c
blob3a8e88a611ebf99d70c2cacf2d866343f01a4a1a
1 /*
2 * Machine check handler.
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/rcupdate.h>
18 #include <linux/kobject.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/percpu.h>
23 #include <linux/string.h>
24 #include <linux/device.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/delay.h>
27 #include <linux/ctype.h>
28 #include <linux/sched.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/kmod.h>
34 #include <linux/poll.h>
35 #include <linux/nmi.h>
36 #include <linux/cpu.h>
37 #include <linux/ras.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 #include <asm/set_memory.h>
55 #include "mce-internal.h"
57 static DEFINE_MUTEX(mce_log_mutex);
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
62 #define SPINUNIT 100 /* 100ns */
64 DEFINE_PER_CPU(unsigned, mce_exception_count);
66 struct mce_bank *mce_banks __read_mostly;
67 struct mce_vendor_flags mce_flags __read_mostly;
69 struct mca_config mca_cfg __read_mostly = {
70 .bootlog = -1,
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
78 .tolerant = 1,
79 .monarch_timeout = -1
82 static DEFINE_PER_CPU(struct mce, mces_seen);
83 static unsigned long mce_need_notify;
84 static int cpu_missing;
87 * MCA banks polled by the period polling timer for corrected events.
88 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
90 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
91 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
95 * MCA banks controlled through firmware first for corrected errors.
96 * This is a global list of banks for which we won't enable CMCI and we
97 * won't poll. Firmware controls these banks and is responsible for
98 * reporting corrected errors through GHES. Uncorrected/recoverable
99 * errors are still notified through a machine check.
101 mce_banks_t mce_banks_ce_disabled;
103 static struct work_struct mce_work;
104 static struct irq_work mce_irq_work;
106 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
109 * CPU/chipset specific EDAC code can register a notifier call here to print
110 * MCE errors in a human-readable form.
112 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 /* We hope get_seconds stays lockless */
120 m->time = get_seconds();
121 m->cpuvendor = boot_cpu_data.x86_vendor;
122 m->cpuid = cpuid_eax(1);
123 m->socketid = cpu_data(m->extcpu).phys_proc_id;
124 m->apicid = cpu_data(m->extcpu).initial_apicid;
125 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
128 rdmsrl(MSR_PPIN, m->ppin);
131 DEFINE_PER_CPU(struct mce, injectm);
132 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
134 void mce_log(struct mce *m)
136 if (!mce_gen_pool_add(m))
137 irq_work_queue(&mce_irq_work);
140 void mce_inject_log(struct mce *m)
142 mutex_lock(&mce_log_mutex);
143 mce_log(m);
144 mutex_unlock(&mce_log_mutex);
146 EXPORT_SYMBOL_GPL(mce_inject_log);
148 static struct notifier_block mce_srao_nb;
151 * We run the default notifier if we have only the SRAO, the first and the
152 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
153 * notifiers registered on the chain.
155 #define NUM_DEFAULT_NOTIFIERS 3
156 static atomic_t num_notifiers;
158 void mce_register_decode_chain(struct notifier_block *nb)
160 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
161 return;
163 atomic_inc(&num_notifiers);
165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
169 void mce_unregister_decode_chain(struct notifier_block *nb)
171 atomic_dec(&num_notifiers);
173 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
175 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
177 static inline u32 ctl_reg(int bank)
179 return MSR_IA32_MCx_CTL(bank);
182 static inline u32 status_reg(int bank)
184 return MSR_IA32_MCx_STATUS(bank);
187 static inline u32 addr_reg(int bank)
189 return MSR_IA32_MCx_ADDR(bank);
192 static inline u32 misc_reg(int bank)
194 return MSR_IA32_MCx_MISC(bank);
197 static inline u32 smca_ctl_reg(int bank)
199 return MSR_AMD64_SMCA_MCx_CTL(bank);
202 static inline u32 smca_status_reg(int bank)
204 return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 static inline u32 smca_addr_reg(int bank)
209 return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 static inline u32 smca_misc_reg(int bank)
214 return MSR_AMD64_SMCA_MCx_MISC(bank);
217 struct mca_msr_regs msr_ops = {
218 .ctl = ctl_reg,
219 .status = status_reg,
220 .addr = addr_reg,
221 .misc = misc_reg
224 static void __print_mce(struct mce *m)
226 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
227 m->extcpu,
228 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
229 m->mcgstatus, m->bank, m->status);
231 if (m->ip) {
232 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
233 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
234 m->cs, m->ip);
236 if (m->cs == __KERNEL_CS)
237 pr_cont("{%pS}", (void *)m->ip);
238 pr_cont("\n");
241 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
242 if (m->addr)
243 pr_cont("ADDR %llx ", m->addr);
244 if (m->misc)
245 pr_cont("MISC %llx ", m->misc);
247 if (mce_flags.smca) {
248 if (m->synd)
249 pr_cont("SYND %llx ", m->synd);
250 if (m->ipid)
251 pr_cont("IPID %llx ", m->ipid);
254 pr_cont("\n");
256 * Note this output is parsed by external tools and old fields
257 * should not be changed.
259 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
260 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
261 cpu_data(m->extcpu).microcode);
264 static void print_mce(struct mce *m)
266 __print_mce(m);
267 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
270 #define PANIC_TIMEOUT 5 /* 5 seconds */
272 static atomic_t mce_panicked;
274 static int fake_panic;
275 static atomic_t mce_fake_panicked;
277 /* Panic in progress. Enable interrupts and wait for final IPI */
278 static void wait_for_panic(void)
280 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
282 preempt_disable();
283 local_irq_enable();
284 while (timeout-- > 0)
285 udelay(1);
286 if (panic_timeout == 0)
287 panic_timeout = mca_cfg.panic_timeout;
288 panic("Panicing machine check CPU died");
291 static void mce_panic(const char *msg, struct mce *final, char *exp)
293 int apei_err = 0;
294 struct llist_node *pending;
295 struct mce_evt_llist *l;
297 if (!fake_panic) {
299 * Make sure only one CPU runs in machine check panic
301 if (atomic_inc_return(&mce_panicked) > 1)
302 wait_for_panic();
303 barrier();
305 bust_spinlocks(1);
306 console_verbose();
307 } else {
308 /* Don't log too much for fake panic */
309 if (atomic_inc_return(&mce_fake_panicked) > 1)
310 return;
312 pending = mce_gen_pool_prepare_records();
313 /* First print corrected ones that are still unlogged */
314 llist_for_each_entry(l, pending, llnode) {
315 struct mce *m = &l->mce;
316 if (!(m->status & MCI_STATUS_UC)) {
317 print_mce(m);
318 if (!apei_err)
319 apei_err = apei_write_mce(m);
322 /* Now print uncorrected but with the final one last */
323 llist_for_each_entry(l, pending, llnode) {
324 struct mce *m = &l->mce;
325 if (!(m->status & MCI_STATUS_UC))
326 continue;
327 if (!final || mce_cmp(m, final)) {
328 print_mce(m);
329 if (!apei_err)
330 apei_err = apei_write_mce(m);
333 if (final) {
334 print_mce(final);
335 if (!apei_err)
336 apei_err = apei_write_mce(final);
338 if (cpu_missing)
339 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
340 if (exp)
341 pr_emerg(HW_ERR "Machine check: %s\n", exp);
342 if (!fake_panic) {
343 if (panic_timeout == 0)
344 panic_timeout = mca_cfg.panic_timeout;
345 panic(msg);
346 } else
347 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
350 /* Support code for software error injection */
352 static int msr_to_offset(u32 msr)
354 unsigned bank = __this_cpu_read(injectm.bank);
356 if (msr == mca_cfg.rip_msr)
357 return offsetof(struct mce, ip);
358 if (msr == msr_ops.status(bank))
359 return offsetof(struct mce, status);
360 if (msr == msr_ops.addr(bank))
361 return offsetof(struct mce, addr);
362 if (msr == msr_ops.misc(bank))
363 return offsetof(struct mce, misc);
364 if (msr == MSR_IA32_MCG_STATUS)
365 return offsetof(struct mce, mcgstatus);
366 return -1;
369 /* MSR access wrappers used for error injection */
370 static u64 mce_rdmsrl(u32 msr)
372 u64 v;
374 if (__this_cpu_read(injectm.finished)) {
375 int offset = msr_to_offset(msr);
377 if (offset < 0)
378 return 0;
379 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
382 if (rdmsrl_safe(msr, &v)) {
383 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
385 * Return zero in case the access faulted. This should
386 * not happen normally but can happen if the CPU does
387 * something weird, or if the code is buggy.
389 v = 0;
392 return v;
395 static void mce_wrmsrl(u32 msr, u64 v)
397 if (__this_cpu_read(injectm.finished)) {
398 int offset = msr_to_offset(msr);
400 if (offset >= 0)
401 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
402 return;
404 wrmsrl(msr, v);
408 * Collect all global (w.r.t. this processor) status about this machine
409 * check into our "mce" struct so that we can use it later to assess
410 * the severity of the problem as we read per-bank specific details.
412 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
414 mce_setup(m);
416 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
417 if (regs) {
419 * Get the address of the instruction at the time of
420 * the machine check error.
422 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
423 m->ip = regs->ip;
424 m->cs = regs->cs;
427 * When in VM86 mode make the cs look like ring 3
428 * always. This is a lie, but it's better than passing
429 * the additional vm86 bit around everywhere.
431 if (v8086_mode(regs))
432 m->cs |= 3;
434 /* Use accurate RIP reporting if available. */
435 if (mca_cfg.rip_msr)
436 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
440 int mce_available(struct cpuinfo_x86 *c)
442 if (mca_cfg.disabled)
443 return 0;
444 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
447 static void mce_schedule_work(void)
449 if (!mce_gen_pool_empty())
450 schedule_work(&mce_work);
453 static void mce_irq_work_cb(struct irq_work *entry)
455 mce_schedule_work();
458 static void mce_report_event(struct pt_regs *regs)
460 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
461 mce_notify_irq();
463 * Triggering the work queue here is just an insurance
464 * policy in case the syscall exit notify handler
465 * doesn't run soon enough or ends up running on the
466 * wrong CPU (can happen when audit sleeps)
468 mce_schedule_work();
469 return;
472 irq_work_queue(&mce_irq_work);
476 * Check if the address reported by the CPU is in a format we can parse.
477 * It would be possible to add code for most other cases, but all would
478 * be somewhat complicated (e.g. segment offset would require an instruction
479 * parser). So only support physical addresses up to page granuality for now.
481 static int mce_usable_address(struct mce *m)
483 if (!(m->status & MCI_STATUS_ADDRV))
484 return 0;
486 /* Checks after this one are Intel-specific: */
487 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
488 return 1;
490 if (!(m->status & MCI_STATUS_MISCV))
491 return 0;
493 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
494 return 0;
496 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
497 return 0;
499 return 1;
502 bool mce_is_memory_error(struct mce *m)
504 if (m->cpuvendor == X86_VENDOR_AMD) {
505 return amd_mce_is_memory_error(m);
507 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
509 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
511 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
512 * indicating a memory error. Bit 8 is used for indicating a
513 * cache hierarchy error. The combination of bit 2 and bit 3
514 * is used for indicating a `generic' cache hierarchy error
515 * But we can't just blindly check the above bits, because if
516 * bit 11 is set, then it is a bus/interconnect error - and
517 * either way the above bits just gives more detail on what
518 * bus/interconnect error happened. Note that bit 12 can be
519 * ignored, as it's the "filter" bit.
521 return (m->status & 0xef80) == BIT(7) ||
522 (m->status & 0xef00) == BIT(8) ||
523 (m->status & 0xeffc) == 0xc;
526 return false;
528 EXPORT_SYMBOL_GPL(mce_is_memory_error);
530 static bool mce_is_correctable(struct mce *m)
532 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
533 return false;
535 if (m->status & MCI_STATUS_UC)
536 return false;
538 return true;
541 static bool cec_add_mce(struct mce *m)
543 if (!m)
544 return false;
546 /* We eat only correctable DRAM errors with usable addresses. */
547 if (mce_is_memory_error(m) &&
548 mce_is_correctable(m) &&
549 mce_usable_address(m))
550 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
551 return true;
553 return false;
556 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
557 void *data)
559 struct mce *m = (struct mce *)data;
561 if (!m)
562 return NOTIFY_DONE;
564 if (cec_add_mce(m))
565 return NOTIFY_STOP;
567 /* Emit the trace record: */
568 trace_mce_record(m);
570 set_bit(0, &mce_need_notify);
572 mce_notify_irq();
574 return NOTIFY_DONE;
577 static struct notifier_block first_nb = {
578 .notifier_call = mce_first_notifier,
579 .priority = MCE_PRIO_FIRST,
582 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
583 void *data)
585 struct mce *mce = (struct mce *)data;
586 unsigned long pfn;
588 if (!mce)
589 return NOTIFY_DONE;
591 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
592 pfn = mce->addr >> PAGE_SHIFT;
593 memory_failure(pfn, 0);
596 return NOTIFY_OK;
598 static struct notifier_block mce_srao_nb = {
599 .notifier_call = srao_decode_notifier,
600 .priority = MCE_PRIO_SRAO,
603 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
604 void *data)
606 struct mce *m = (struct mce *)data;
608 if (!m)
609 return NOTIFY_DONE;
611 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
612 return NOTIFY_DONE;
614 __print_mce(m);
616 return NOTIFY_DONE;
619 static struct notifier_block mce_default_nb = {
620 .notifier_call = mce_default_notifier,
621 /* lowest prio, we want it to run last. */
622 .priority = MCE_PRIO_LOWEST,
626 * Read ADDR and MISC registers.
628 static void mce_read_aux(struct mce *m, int i)
630 if (m->status & MCI_STATUS_MISCV)
631 m->misc = mce_rdmsrl(msr_ops.misc(i));
633 if (m->status & MCI_STATUS_ADDRV) {
634 m->addr = mce_rdmsrl(msr_ops.addr(i));
637 * Mask the reported address by the reported granularity.
639 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
640 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
641 m->addr >>= shift;
642 m->addr <<= shift;
646 * Extract [55:<lsb>] where lsb is the least significant
647 * *valid* bit of the address bits.
649 if (mce_flags.smca) {
650 u8 lsb = (m->addr >> 56) & 0x3f;
652 m->addr &= GENMASK_ULL(55, lsb);
656 if (mce_flags.smca) {
657 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
659 if (m->status & MCI_STATUS_SYNDV)
660 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
664 DEFINE_PER_CPU(unsigned, mce_poll_count);
667 * Poll for corrected events or events that happened before reset.
668 * Those are just logged through /dev/mcelog.
670 * This is executed in standard interrupt context.
672 * Note: spec recommends to panic for fatal unsignalled
673 * errors here. However this would be quite problematic --
674 * we would need to reimplement the Monarch handling and
675 * it would mess up the exclusion between exception handler
676 * and poll hander -- * so we skip this for now.
677 * These cases should not happen anyways, or only when the CPU
678 * is already totally * confused. In this case it's likely it will
679 * not fully execute the machine check handler either.
681 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
683 bool error_seen = false;
684 struct mce m;
685 int i;
687 this_cpu_inc(mce_poll_count);
689 mce_gather_info(&m, NULL);
691 if (flags & MCP_TIMESTAMP)
692 m.tsc = rdtsc();
694 for (i = 0; i < mca_cfg.banks; i++) {
695 if (!mce_banks[i].ctl || !test_bit(i, *b))
696 continue;
698 m.misc = 0;
699 m.addr = 0;
700 m.bank = i;
702 barrier();
703 m.status = mce_rdmsrl(msr_ops.status(i));
704 if (!(m.status & MCI_STATUS_VAL))
705 continue;
708 * Uncorrected or signalled events are handled by the exception
709 * handler when it is enabled, so don't process those here.
711 * TBD do the same check for MCI_STATUS_EN here?
713 if (!(flags & MCP_UC) &&
714 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
715 continue;
717 error_seen = true;
719 mce_read_aux(&m, i);
721 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
724 * Don't get the IP here because it's unlikely to
725 * have anything to do with the actual error location.
727 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
728 mce_log(&m);
729 else if (mce_usable_address(&m)) {
731 * Although we skipped logging this, we still want
732 * to take action. Add to the pool so the registered
733 * notifiers will see it.
735 if (!mce_gen_pool_add(&m))
736 mce_schedule_work();
740 * Clear state for this bank.
742 mce_wrmsrl(msr_ops.status(i), 0);
746 * Don't clear MCG_STATUS here because it's only defined for
747 * exceptions.
750 sync_core();
752 return error_seen;
754 EXPORT_SYMBOL_GPL(machine_check_poll);
757 * Do a quick check if any of the events requires a panic.
758 * This decides if we keep the events around or clear them.
760 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
761 struct pt_regs *regs)
763 int i, ret = 0;
764 char *tmp;
766 for (i = 0; i < mca_cfg.banks; i++) {
767 m->status = mce_rdmsrl(msr_ops.status(i));
768 if (m->status & MCI_STATUS_VAL) {
769 __set_bit(i, validp);
770 if (quirk_no_way_out)
771 quirk_no_way_out(i, m, regs);
774 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
775 *msg = tmp;
776 ret = 1;
779 return ret;
783 * Variable to establish order between CPUs while scanning.
784 * Each CPU spins initially until executing is equal its number.
786 static atomic_t mce_executing;
789 * Defines order of CPUs on entry. First CPU becomes Monarch.
791 static atomic_t mce_callin;
794 * Check if a timeout waiting for other CPUs happened.
796 static int mce_timed_out(u64 *t, const char *msg)
799 * The others already did panic for some reason.
800 * Bail out like in a timeout.
801 * rmb() to tell the compiler that system_state
802 * might have been modified by someone else.
804 rmb();
805 if (atomic_read(&mce_panicked))
806 wait_for_panic();
807 if (!mca_cfg.monarch_timeout)
808 goto out;
809 if ((s64)*t < SPINUNIT) {
810 if (mca_cfg.tolerant <= 1)
811 mce_panic(msg, NULL, NULL);
812 cpu_missing = 1;
813 return 1;
815 *t -= SPINUNIT;
816 out:
817 touch_nmi_watchdog();
818 return 0;
822 * The Monarch's reign. The Monarch is the CPU who entered
823 * the machine check handler first. It waits for the others to
824 * raise the exception too and then grades them. When any
825 * error is fatal panic. Only then let the others continue.
827 * The other CPUs entering the MCE handler will be controlled by the
828 * Monarch. They are called Subjects.
830 * This way we prevent any potential data corruption in a unrecoverable case
831 * and also makes sure always all CPU's errors are examined.
833 * Also this detects the case of a machine check event coming from outer
834 * space (not detected by any CPUs) In this case some external agent wants
835 * us to shut down, so panic too.
837 * The other CPUs might still decide to panic if the handler happens
838 * in a unrecoverable place, but in this case the system is in a semi-stable
839 * state and won't corrupt anything by itself. It's ok to let the others
840 * continue for a bit first.
842 * All the spin loops have timeouts; when a timeout happens a CPU
843 * typically elects itself to be Monarch.
845 static void mce_reign(void)
847 int cpu;
848 struct mce *m = NULL;
849 int global_worst = 0;
850 char *msg = NULL;
851 char *nmsg = NULL;
854 * This CPU is the Monarch and the other CPUs have run
855 * through their handlers.
856 * Grade the severity of the errors of all the CPUs.
858 for_each_possible_cpu(cpu) {
859 int severity = mce_severity(&per_cpu(mces_seen, cpu),
860 mca_cfg.tolerant,
861 &nmsg, true);
862 if (severity > global_worst) {
863 msg = nmsg;
864 global_worst = severity;
865 m = &per_cpu(mces_seen, cpu);
870 * Cannot recover? Panic here then.
871 * This dumps all the mces in the log buffer and stops the
872 * other CPUs.
874 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
875 mce_panic("Fatal machine check", m, msg);
878 * For UC somewhere we let the CPU who detects it handle it.
879 * Also must let continue the others, otherwise the handling
880 * CPU could deadlock on a lock.
884 * No machine check event found. Must be some external
885 * source or one CPU is hung. Panic.
887 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
888 mce_panic("Fatal machine check from unknown source", NULL, NULL);
891 * Now clear all the mces_seen so that they don't reappear on
892 * the next mce.
894 for_each_possible_cpu(cpu)
895 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
898 static atomic_t global_nwo;
901 * Start of Monarch synchronization. This waits until all CPUs have
902 * entered the exception handler and then determines if any of them
903 * saw a fatal event that requires panic. Then it executes them
904 * in the entry order.
905 * TBD double check parallel CPU hotunplug
907 static int mce_start(int *no_way_out)
909 int order;
910 int cpus = num_online_cpus();
911 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
913 if (!timeout)
914 return -1;
916 atomic_add(*no_way_out, &global_nwo);
918 * Rely on the implied barrier below, such that global_nwo
919 * is updated before mce_callin.
921 order = atomic_inc_return(&mce_callin);
924 * Wait for everyone.
926 while (atomic_read(&mce_callin) != cpus) {
927 if (mce_timed_out(&timeout,
928 "Timeout: Not all CPUs entered broadcast exception handler")) {
929 atomic_set(&global_nwo, 0);
930 return -1;
932 ndelay(SPINUNIT);
936 * mce_callin should be read before global_nwo
938 smp_rmb();
940 if (order == 1) {
942 * Monarch: Starts executing now, the others wait.
944 atomic_set(&mce_executing, 1);
945 } else {
947 * Subject: Now start the scanning loop one by one in
948 * the original callin order.
949 * This way when there are any shared banks it will be
950 * only seen by one CPU before cleared, avoiding duplicates.
952 while (atomic_read(&mce_executing) < order) {
953 if (mce_timed_out(&timeout,
954 "Timeout: Subject CPUs unable to finish machine check processing")) {
955 atomic_set(&global_nwo, 0);
956 return -1;
958 ndelay(SPINUNIT);
963 * Cache the global no_way_out state.
965 *no_way_out = atomic_read(&global_nwo);
967 return order;
971 * Synchronize between CPUs after main scanning loop.
972 * This invokes the bulk of the Monarch processing.
974 static int mce_end(int order)
976 int ret = -1;
977 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
979 if (!timeout)
980 goto reset;
981 if (order < 0)
982 goto reset;
985 * Allow others to run.
987 atomic_inc(&mce_executing);
989 if (order == 1) {
990 /* CHECKME: Can this race with a parallel hotplug? */
991 int cpus = num_online_cpus();
994 * Monarch: Wait for everyone to go through their scanning
995 * loops.
997 while (atomic_read(&mce_executing) <= cpus) {
998 if (mce_timed_out(&timeout,
999 "Timeout: Monarch CPU unable to finish machine check processing"))
1000 goto reset;
1001 ndelay(SPINUNIT);
1004 mce_reign();
1005 barrier();
1006 ret = 0;
1007 } else {
1009 * Subject: Wait for Monarch to finish.
1011 while (atomic_read(&mce_executing) != 0) {
1012 if (mce_timed_out(&timeout,
1013 "Timeout: Monarch CPU did not finish machine check processing"))
1014 goto reset;
1015 ndelay(SPINUNIT);
1019 * Don't reset anything. That's done by the Monarch.
1021 return 0;
1025 * Reset all global state.
1027 reset:
1028 atomic_set(&global_nwo, 0);
1029 atomic_set(&mce_callin, 0);
1030 barrier();
1033 * Let others run again.
1035 atomic_set(&mce_executing, 0);
1036 return ret;
1039 static void mce_clear_state(unsigned long *toclear)
1041 int i;
1043 for (i = 0; i < mca_cfg.banks; i++) {
1044 if (test_bit(i, toclear))
1045 mce_wrmsrl(msr_ops.status(i), 0);
1049 static int do_memory_failure(struct mce *m)
1051 int flags = MF_ACTION_REQUIRED;
1052 int ret;
1054 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1055 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1056 flags |= MF_MUST_KILL;
1057 ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1058 if (ret)
1059 pr_err("Memory error not recovered");
1060 return ret;
1063 #if defined(arch_unmap_kpfn) && defined(CONFIG_MEMORY_FAILURE)
1065 void arch_unmap_kpfn(unsigned long pfn)
1067 unsigned long decoy_addr;
1070 * Unmap this page from the kernel 1:1 mappings to make sure
1071 * we don't log more errors because of speculative access to
1072 * the page.
1073 * We would like to just call:
1074 * set_memory_np((unsigned long)pfn_to_kaddr(pfn), 1);
1075 * but doing that would radically increase the odds of a
1076 * speculative access to the posion page because we'd have
1077 * the virtual address of the kernel 1:1 mapping sitting
1078 * around in registers.
1079 * Instead we get tricky. We create a non-canonical address
1080 * that looks just like the one we want, but has bit 63 flipped.
1081 * This relies on set_memory_np() not checking whether we passed
1082 * a legal address.
1086 * Build time check to see if we have a spare virtual bit. Don't want
1087 * to leave this until run time because most developers don't have a
1088 * system that can exercise this code path. This will only become a
1089 * problem if/when we move beyond 5-level page tables.
1091 * Hard code "9" here because cpp doesn't grok ilog2(PTRS_PER_PGD)
1093 #if PGDIR_SHIFT + 9 < 63
1094 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1095 #else
1096 #error "no unused virtual bit available"
1097 #endif
1099 if (set_memory_np(decoy_addr, 1))
1100 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1103 #endif
1106 * The actual machine check handler. This only handles real
1107 * exceptions when something got corrupted coming in through int 18.
1109 * This is executed in NMI context not subject to normal locking rules. This
1110 * implies that most kernel services cannot be safely used. Don't even
1111 * think about putting a printk in there!
1113 * On Intel systems this is entered on all CPUs in parallel through
1114 * MCE broadcast. However some CPUs might be broken beyond repair,
1115 * so be always careful when synchronizing with others.
1117 void do_machine_check(struct pt_regs *regs, long error_code)
1119 struct mca_config *cfg = &mca_cfg;
1120 struct mce m, *final;
1121 int i;
1122 int worst = 0;
1123 int severity;
1126 * Establish sequential order between the CPUs entering the machine
1127 * check handler.
1129 int order = -1;
1131 * If no_way_out gets set, there is no safe way to recover from this
1132 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1134 int no_way_out = 0;
1136 * If kill_it gets set, there might be a way to recover from this
1137 * error.
1139 int kill_it = 0;
1140 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1141 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1142 char *msg = "Unknown";
1145 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1146 * on Intel.
1148 int lmce = 1;
1149 int cpu = smp_processor_id();
1152 * Cases where we avoid rendezvous handler timeout:
1153 * 1) If this CPU is offline.
1155 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1156 * skip those CPUs which remain looping in the 1st kernel - see
1157 * crash_nmi_callback().
1159 * Note: there still is a small window between kexec-ing and the new,
1160 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1161 * might not get handled properly.
1163 if (cpu_is_offline(cpu) ||
1164 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1165 u64 mcgstatus;
1167 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1168 if (mcgstatus & MCG_STATUS_RIPV) {
1169 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1170 return;
1174 ist_enter(regs);
1176 this_cpu_inc(mce_exception_count);
1178 if (!cfg->banks)
1179 goto out;
1181 mce_gather_info(&m, regs);
1182 m.tsc = rdtsc();
1184 final = this_cpu_ptr(&mces_seen);
1185 *final = m;
1187 memset(valid_banks, 0, sizeof(valid_banks));
1188 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1190 barrier();
1193 * When no restart IP might need to kill or panic.
1194 * Assume the worst for now, but if we find the
1195 * severity is MCE_AR_SEVERITY we have other options.
1197 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1198 kill_it = 1;
1201 * Check if this MCE is signaled to only this logical processor,
1202 * on Intel only.
1204 if (m.cpuvendor == X86_VENDOR_INTEL)
1205 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1208 * Go through all banks in exclusion of the other CPUs. This way we
1209 * don't report duplicated events on shared banks because the first one
1210 * to see it will clear it. If this is a Local MCE, then no need to
1211 * perform rendezvous.
1213 if (!lmce)
1214 order = mce_start(&no_way_out);
1216 for (i = 0; i < cfg->banks; i++) {
1217 __clear_bit(i, toclear);
1218 if (!test_bit(i, valid_banks))
1219 continue;
1220 if (!mce_banks[i].ctl)
1221 continue;
1223 m.misc = 0;
1224 m.addr = 0;
1225 m.bank = i;
1227 m.status = mce_rdmsrl(msr_ops.status(i));
1228 if ((m.status & MCI_STATUS_VAL) == 0)
1229 continue;
1232 * Non uncorrected or non signaled errors are handled by
1233 * machine_check_poll. Leave them alone, unless this panics.
1235 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1236 !no_way_out)
1237 continue;
1240 * Set taint even when machine check was not enabled.
1242 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1244 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1247 * When machine check was for corrected/deferred handler don't
1248 * touch, unless we're panicing.
1250 if ((severity == MCE_KEEP_SEVERITY ||
1251 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1252 continue;
1253 __set_bit(i, toclear);
1254 if (severity == MCE_NO_SEVERITY) {
1256 * Machine check event was not enabled. Clear, but
1257 * ignore.
1259 continue;
1262 mce_read_aux(&m, i);
1264 /* assuming valid severity level != 0 */
1265 m.severity = severity;
1267 mce_log(&m);
1269 if (severity > worst) {
1270 *final = m;
1271 worst = severity;
1275 /* mce_clear_state will clear *final, save locally for use later */
1276 m = *final;
1278 if (!no_way_out)
1279 mce_clear_state(toclear);
1282 * Do most of the synchronization with other CPUs.
1283 * When there's any problem use only local no_way_out state.
1285 if (!lmce) {
1286 if (mce_end(order) < 0)
1287 no_way_out = worst >= MCE_PANIC_SEVERITY;
1288 } else {
1290 * Local MCE skipped calling mce_reign()
1291 * If we found a fatal error, we need to panic here.
1293 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1294 mce_panic("Machine check from unknown source",
1295 NULL, NULL);
1299 * If tolerant is at an insane level we drop requests to kill
1300 * processes and continue even when there is no way out.
1302 if (cfg->tolerant == 3)
1303 kill_it = 0;
1304 else if (no_way_out)
1305 mce_panic("Fatal machine check on current CPU", &m, msg);
1307 if (worst > 0)
1308 mce_report_event(regs);
1309 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1310 out:
1311 sync_core();
1313 if (worst != MCE_AR_SEVERITY && !kill_it)
1314 goto out_ist;
1316 /* Fault was in user mode and we need to take some action */
1317 if ((m.cs & 3) == 3) {
1318 ist_begin_non_atomic(regs);
1319 local_irq_enable();
1321 if (kill_it || do_memory_failure(&m))
1322 force_sig(SIGBUS, current);
1323 local_irq_disable();
1324 ist_end_non_atomic();
1325 } else {
1326 if (!fixup_exception(regs, X86_TRAP_MC))
1327 mce_panic("Failed kernel mode recovery", &m, NULL);
1330 out_ist:
1331 ist_exit(regs);
1333 EXPORT_SYMBOL_GPL(do_machine_check);
1335 #ifndef CONFIG_MEMORY_FAILURE
1336 int memory_failure(unsigned long pfn, int flags)
1338 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1339 BUG_ON(flags & MF_ACTION_REQUIRED);
1340 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1341 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1342 pfn);
1344 return 0;
1346 #endif
1349 * Periodic polling timer for "silent" machine check errors. If the
1350 * poller finds an MCE, poll 2x faster. When the poller finds no more
1351 * errors, poll 2x slower (up to check_interval seconds).
1353 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1355 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1356 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1358 static unsigned long mce_adjust_timer_default(unsigned long interval)
1360 return interval;
1363 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1365 static void __start_timer(struct timer_list *t, unsigned long interval)
1367 unsigned long when = jiffies + interval;
1368 unsigned long flags;
1370 local_irq_save(flags);
1372 if (!timer_pending(t) || time_before(when, t->expires))
1373 mod_timer(t, round_jiffies(when));
1375 local_irq_restore(flags);
1378 static void mce_timer_fn(struct timer_list *t)
1380 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1381 unsigned long iv;
1383 WARN_ON(cpu_t != t);
1385 iv = __this_cpu_read(mce_next_interval);
1387 if (mce_available(this_cpu_ptr(&cpu_info))) {
1388 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1390 if (mce_intel_cmci_poll()) {
1391 iv = mce_adjust_timer(iv);
1392 goto done;
1397 * Alert userspace if needed. If we logged an MCE, reduce the polling
1398 * interval, otherwise increase the polling interval.
1400 if (mce_notify_irq())
1401 iv = max(iv / 2, (unsigned long) HZ/100);
1402 else
1403 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1405 done:
1406 __this_cpu_write(mce_next_interval, iv);
1407 __start_timer(t, iv);
1411 * Ensure that the timer is firing in @interval from now.
1413 void mce_timer_kick(unsigned long interval)
1415 struct timer_list *t = this_cpu_ptr(&mce_timer);
1416 unsigned long iv = __this_cpu_read(mce_next_interval);
1418 __start_timer(t, interval);
1420 if (interval < iv)
1421 __this_cpu_write(mce_next_interval, interval);
1424 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1425 static void mce_timer_delete_all(void)
1427 int cpu;
1429 for_each_online_cpu(cpu)
1430 del_timer_sync(&per_cpu(mce_timer, cpu));
1434 * Notify the user(s) about new machine check events.
1435 * Can be called from interrupt context, but not from machine check/NMI
1436 * context.
1438 int mce_notify_irq(void)
1440 /* Not more than two messages every minute */
1441 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1443 if (test_and_clear_bit(0, &mce_need_notify)) {
1444 mce_work_trigger();
1446 if (__ratelimit(&ratelimit))
1447 pr_info(HW_ERR "Machine check events logged\n");
1449 return 1;
1451 return 0;
1453 EXPORT_SYMBOL_GPL(mce_notify_irq);
1455 static int __mcheck_cpu_mce_banks_init(void)
1457 int i;
1458 u8 num_banks = mca_cfg.banks;
1460 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1461 if (!mce_banks)
1462 return -ENOMEM;
1464 for (i = 0; i < num_banks; i++) {
1465 struct mce_bank *b = &mce_banks[i];
1467 b->ctl = -1ULL;
1468 b->init = 1;
1470 return 0;
1474 * Initialize Machine Checks for a CPU.
1476 static int __mcheck_cpu_cap_init(void)
1478 unsigned b;
1479 u64 cap;
1481 rdmsrl(MSR_IA32_MCG_CAP, cap);
1483 b = cap & MCG_BANKCNT_MASK;
1484 if (!mca_cfg.banks)
1485 pr_info("CPU supports %d MCE banks\n", b);
1487 if (b > MAX_NR_BANKS) {
1488 pr_warn("Using only %u machine check banks out of %u\n",
1489 MAX_NR_BANKS, b);
1490 b = MAX_NR_BANKS;
1493 /* Don't support asymmetric configurations today */
1494 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1495 mca_cfg.banks = b;
1497 if (!mce_banks) {
1498 int err = __mcheck_cpu_mce_banks_init();
1500 if (err)
1501 return err;
1504 /* Use accurate RIP reporting if available. */
1505 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1506 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1508 if (cap & MCG_SER_P)
1509 mca_cfg.ser = true;
1511 return 0;
1514 static void __mcheck_cpu_init_generic(void)
1516 enum mcp_flags m_fl = 0;
1517 mce_banks_t all_banks;
1518 u64 cap;
1520 if (!mca_cfg.bootlog)
1521 m_fl = MCP_DONTLOG;
1524 * Log the machine checks left over from the previous reset.
1526 bitmap_fill(all_banks, MAX_NR_BANKS);
1527 machine_check_poll(MCP_UC | m_fl, &all_banks);
1529 cr4_set_bits(X86_CR4_MCE);
1531 rdmsrl(MSR_IA32_MCG_CAP, cap);
1532 if (cap & MCG_CTL_P)
1533 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1536 static void __mcheck_cpu_init_clear_banks(void)
1538 int i;
1540 for (i = 0; i < mca_cfg.banks; i++) {
1541 struct mce_bank *b = &mce_banks[i];
1543 if (!b->init)
1544 continue;
1545 wrmsrl(msr_ops.ctl(i), b->ctl);
1546 wrmsrl(msr_ops.status(i), 0);
1551 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1552 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1553 * Vol 3B Table 15-20). But this confuses both the code that determines
1554 * whether the machine check occurred in kernel or user mode, and also
1555 * the severity assessment code. Pretend that EIPV was set, and take the
1556 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1558 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1560 if (bank != 0)
1561 return;
1562 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1563 return;
1564 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1565 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1566 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1567 MCACOD)) !=
1568 (MCI_STATUS_UC|MCI_STATUS_EN|
1569 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1570 MCI_STATUS_AR|MCACOD_INSTR))
1571 return;
1573 m->mcgstatus |= MCG_STATUS_EIPV;
1574 m->ip = regs->ip;
1575 m->cs = regs->cs;
1578 /* Add per CPU specific workarounds here */
1579 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1581 struct mca_config *cfg = &mca_cfg;
1583 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1584 pr_info("unknown CPU type - not enabling MCE support\n");
1585 return -EOPNOTSUPP;
1588 /* This should be disabled by the BIOS, but isn't always */
1589 if (c->x86_vendor == X86_VENDOR_AMD) {
1590 if (c->x86 == 15 && cfg->banks > 4) {
1592 * disable GART TBL walk error reporting, which
1593 * trips off incorrectly with the IOMMU & 3ware
1594 * & Cerberus:
1596 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1598 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1600 * Lots of broken BIOS around that don't clear them
1601 * by default and leave crap in there. Don't log:
1603 cfg->bootlog = 0;
1606 * Various K7s with broken bank 0 around. Always disable
1607 * by default.
1609 if (c->x86 == 6 && cfg->banks > 0)
1610 mce_banks[0].ctl = 0;
1613 * overflow_recov is supported for F15h Models 00h-0fh
1614 * even though we don't have a CPUID bit for it.
1616 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1617 mce_flags.overflow_recov = 1;
1620 * Turn off MC4_MISC thresholding banks on those models since
1621 * they're not supported there.
1623 if (c->x86 == 0x15 &&
1624 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1625 int i;
1626 u64 hwcr;
1627 bool need_toggle;
1628 u32 msrs[] = {
1629 0x00000413, /* MC4_MISC0 */
1630 0xc0000408, /* MC4_MISC1 */
1633 rdmsrl(MSR_K7_HWCR, hwcr);
1635 /* McStatusWrEn has to be set */
1636 need_toggle = !(hwcr & BIT(18));
1638 if (need_toggle)
1639 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1641 /* Clear CntP bit safely */
1642 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1643 msr_clear_bit(msrs[i], 62);
1645 /* restore old settings */
1646 if (need_toggle)
1647 wrmsrl(MSR_K7_HWCR, hwcr);
1651 if (c->x86_vendor == X86_VENDOR_INTEL) {
1653 * SDM documents that on family 6 bank 0 should not be written
1654 * because it aliases to another special BIOS controlled
1655 * register.
1656 * But it's not aliased anymore on model 0x1a+
1657 * Don't ignore bank 0 completely because there could be a
1658 * valid event later, merely don't write CTL0.
1661 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1662 mce_banks[0].init = 0;
1665 * All newer Intel systems support MCE broadcasting. Enable
1666 * synchronization with a one second timeout.
1668 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1669 cfg->monarch_timeout < 0)
1670 cfg->monarch_timeout = USEC_PER_SEC;
1673 * There are also broken BIOSes on some Pentium M and
1674 * earlier systems:
1676 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1677 cfg->bootlog = 0;
1679 if (c->x86 == 6 && c->x86_model == 45)
1680 quirk_no_way_out = quirk_sandybridge_ifu;
1682 if (cfg->monarch_timeout < 0)
1683 cfg->monarch_timeout = 0;
1684 if (cfg->bootlog != 0)
1685 cfg->panic_timeout = 30;
1687 return 0;
1690 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1692 if (c->x86 != 5)
1693 return 0;
1695 switch (c->x86_vendor) {
1696 case X86_VENDOR_INTEL:
1697 intel_p5_mcheck_init(c);
1698 return 1;
1699 break;
1700 case X86_VENDOR_CENTAUR:
1701 winchip_mcheck_init(c);
1702 return 1;
1703 break;
1704 default:
1705 return 0;
1708 return 0;
1712 * Init basic CPU features needed for early decoding of MCEs.
1714 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1716 if (c->x86_vendor == X86_VENDOR_AMD) {
1717 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1718 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1719 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1721 if (mce_flags.smca) {
1722 msr_ops.ctl = smca_ctl_reg;
1723 msr_ops.status = smca_status_reg;
1724 msr_ops.addr = smca_addr_reg;
1725 msr_ops.misc = smca_misc_reg;
1730 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1732 switch (c->x86_vendor) {
1733 case X86_VENDOR_INTEL:
1734 mce_intel_feature_init(c);
1735 mce_adjust_timer = cmci_intel_adjust_timer;
1736 break;
1738 case X86_VENDOR_AMD: {
1739 mce_amd_feature_init(c);
1740 break;
1743 default:
1744 break;
1748 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1750 switch (c->x86_vendor) {
1751 case X86_VENDOR_INTEL:
1752 mce_intel_feature_clear(c);
1753 break;
1754 default:
1755 break;
1759 static void mce_start_timer(struct timer_list *t)
1761 unsigned long iv = check_interval * HZ;
1763 if (mca_cfg.ignore_ce || !iv)
1764 return;
1766 this_cpu_write(mce_next_interval, iv);
1767 __start_timer(t, iv);
1770 static void __mcheck_cpu_setup_timer(void)
1772 struct timer_list *t = this_cpu_ptr(&mce_timer);
1774 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1777 static void __mcheck_cpu_init_timer(void)
1779 struct timer_list *t = this_cpu_ptr(&mce_timer);
1781 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1782 mce_start_timer(t);
1785 /* Handle unconfigured int18 (should never happen) */
1786 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1788 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1789 smp_processor_id());
1792 /* Call the installed machine check handler for this CPU setup. */
1793 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1794 unexpected_machine_check;
1796 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1798 machine_check_vector(regs, error_code);
1802 * Called for each booted CPU to set up machine checks.
1803 * Must be called with preempt off:
1805 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1807 if (mca_cfg.disabled)
1808 return;
1810 if (__mcheck_cpu_ancient_init(c))
1811 return;
1813 if (!mce_available(c))
1814 return;
1816 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1817 mca_cfg.disabled = true;
1818 return;
1821 if (mce_gen_pool_init()) {
1822 mca_cfg.disabled = true;
1823 pr_emerg("Couldn't allocate MCE records pool!\n");
1824 return;
1827 machine_check_vector = do_machine_check;
1829 __mcheck_cpu_init_early(c);
1830 __mcheck_cpu_init_generic();
1831 __mcheck_cpu_init_vendor(c);
1832 __mcheck_cpu_init_clear_banks();
1833 __mcheck_cpu_setup_timer();
1837 * Called for each booted CPU to clear some machine checks opt-ins
1839 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1841 if (mca_cfg.disabled)
1842 return;
1844 if (!mce_available(c))
1845 return;
1848 * Possibly to clear general settings generic to x86
1849 * __mcheck_cpu_clear_generic(c);
1851 __mcheck_cpu_clear_vendor(c);
1855 static void __mce_disable_bank(void *arg)
1857 int bank = *((int *)arg);
1858 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1859 cmci_disable_bank(bank);
1862 void mce_disable_bank(int bank)
1864 if (bank >= mca_cfg.banks) {
1865 pr_warn(FW_BUG
1866 "Ignoring request to disable invalid MCA bank %d.\n",
1867 bank);
1868 return;
1870 set_bit(bank, mce_banks_ce_disabled);
1871 on_each_cpu(__mce_disable_bank, &bank, 1);
1875 * mce=off Disables machine check
1876 * mce=no_cmci Disables CMCI
1877 * mce=no_lmce Disables LMCE
1878 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1879 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1880 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1881 * monarchtimeout is how long to wait for other CPUs on machine
1882 * check, or 0 to not wait
1883 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1884 and older.
1885 * mce=nobootlog Don't log MCEs from before booting.
1886 * mce=bios_cmci_threshold Don't program the CMCI threshold
1887 * mce=recovery force enable memcpy_mcsafe()
1889 static int __init mcheck_enable(char *str)
1891 struct mca_config *cfg = &mca_cfg;
1893 if (*str == 0) {
1894 enable_p5_mce();
1895 return 1;
1897 if (*str == '=')
1898 str++;
1899 if (!strcmp(str, "off"))
1900 cfg->disabled = true;
1901 else if (!strcmp(str, "no_cmci"))
1902 cfg->cmci_disabled = true;
1903 else if (!strcmp(str, "no_lmce"))
1904 cfg->lmce_disabled = true;
1905 else if (!strcmp(str, "dont_log_ce"))
1906 cfg->dont_log_ce = true;
1907 else if (!strcmp(str, "ignore_ce"))
1908 cfg->ignore_ce = true;
1909 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1910 cfg->bootlog = (str[0] == 'b');
1911 else if (!strcmp(str, "bios_cmci_threshold"))
1912 cfg->bios_cmci_threshold = true;
1913 else if (!strcmp(str, "recovery"))
1914 cfg->recovery = true;
1915 else if (isdigit(str[0])) {
1916 if (get_option(&str, &cfg->tolerant) == 2)
1917 get_option(&str, &(cfg->monarch_timeout));
1918 } else {
1919 pr_info("mce argument %s ignored. Please use /sys\n", str);
1920 return 0;
1922 return 1;
1924 __setup("mce", mcheck_enable);
1926 int __init mcheck_init(void)
1928 mcheck_intel_therm_init();
1929 mce_register_decode_chain(&first_nb);
1930 mce_register_decode_chain(&mce_srao_nb);
1931 mce_register_decode_chain(&mce_default_nb);
1932 mcheck_vendor_init_severity();
1934 INIT_WORK(&mce_work, mce_gen_pool_process);
1935 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1937 return 0;
1941 * mce_syscore: PM support
1945 * Disable machine checks on suspend and shutdown. We can't really handle
1946 * them later.
1948 static void mce_disable_error_reporting(void)
1950 int i;
1952 for (i = 0; i < mca_cfg.banks; i++) {
1953 struct mce_bank *b = &mce_banks[i];
1955 if (b->init)
1956 wrmsrl(msr_ops.ctl(i), 0);
1958 return;
1961 static void vendor_disable_error_reporting(void)
1964 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1965 * Disabling them for just a single offlined CPU is bad, since it will
1966 * inhibit reporting for all shared resources on the socket like the
1967 * last level cache (LLC), the integrated memory controller (iMC), etc.
1969 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1970 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1971 return;
1973 mce_disable_error_reporting();
1976 static int mce_syscore_suspend(void)
1978 vendor_disable_error_reporting();
1979 return 0;
1982 static void mce_syscore_shutdown(void)
1984 vendor_disable_error_reporting();
1988 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1989 * Only one CPU is active at this time, the others get re-added later using
1990 * CPU hotplug:
1992 static void mce_syscore_resume(void)
1994 __mcheck_cpu_init_generic();
1995 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
1996 __mcheck_cpu_init_clear_banks();
1999 static struct syscore_ops mce_syscore_ops = {
2000 .suspend = mce_syscore_suspend,
2001 .shutdown = mce_syscore_shutdown,
2002 .resume = mce_syscore_resume,
2006 * mce_device: Sysfs support
2009 static void mce_cpu_restart(void *data)
2011 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2012 return;
2013 __mcheck_cpu_init_generic();
2014 __mcheck_cpu_init_clear_banks();
2015 __mcheck_cpu_init_timer();
2018 /* Reinit MCEs after user configuration changes */
2019 static void mce_restart(void)
2021 mce_timer_delete_all();
2022 on_each_cpu(mce_cpu_restart, NULL, 1);
2025 /* Toggle features for corrected errors */
2026 static void mce_disable_cmci(void *data)
2028 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2029 return;
2030 cmci_clear();
2033 static void mce_enable_ce(void *all)
2035 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2036 return;
2037 cmci_reenable();
2038 cmci_recheck();
2039 if (all)
2040 __mcheck_cpu_init_timer();
2043 static struct bus_type mce_subsys = {
2044 .name = "machinecheck",
2045 .dev_name = "machinecheck",
2048 DEFINE_PER_CPU(struct device *, mce_device);
2050 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2052 return container_of(attr, struct mce_bank, attr);
2055 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2056 char *buf)
2058 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2061 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2062 const char *buf, size_t size)
2064 u64 new;
2066 if (kstrtou64(buf, 0, &new) < 0)
2067 return -EINVAL;
2069 attr_to_bank(attr)->ctl = new;
2070 mce_restart();
2072 return size;
2075 static ssize_t set_ignore_ce(struct device *s,
2076 struct device_attribute *attr,
2077 const char *buf, size_t size)
2079 u64 new;
2081 if (kstrtou64(buf, 0, &new) < 0)
2082 return -EINVAL;
2084 if (mca_cfg.ignore_ce ^ !!new) {
2085 if (new) {
2086 /* disable ce features */
2087 mce_timer_delete_all();
2088 on_each_cpu(mce_disable_cmci, NULL, 1);
2089 mca_cfg.ignore_ce = true;
2090 } else {
2091 /* enable ce features */
2092 mca_cfg.ignore_ce = false;
2093 on_each_cpu(mce_enable_ce, (void *)1, 1);
2096 return size;
2099 static ssize_t set_cmci_disabled(struct device *s,
2100 struct device_attribute *attr,
2101 const char *buf, size_t size)
2103 u64 new;
2105 if (kstrtou64(buf, 0, &new) < 0)
2106 return -EINVAL;
2108 if (mca_cfg.cmci_disabled ^ !!new) {
2109 if (new) {
2110 /* disable cmci */
2111 on_each_cpu(mce_disable_cmci, NULL, 1);
2112 mca_cfg.cmci_disabled = true;
2113 } else {
2114 /* enable cmci */
2115 mca_cfg.cmci_disabled = false;
2116 on_each_cpu(mce_enable_ce, NULL, 1);
2119 return size;
2122 static ssize_t store_int_with_restart(struct device *s,
2123 struct device_attribute *attr,
2124 const char *buf, size_t size)
2126 ssize_t ret = device_store_int(s, attr, buf, size);
2127 mce_restart();
2128 return ret;
2131 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2132 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2133 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2135 static struct dev_ext_attribute dev_attr_check_interval = {
2136 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2137 &check_interval
2140 static struct dev_ext_attribute dev_attr_ignore_ce = {
2141 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2142 &mca_cfg.ignore_ce
2145 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2146 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2147 &mca_cfg.cmci_disabled
2150 static struct device_attribute *mce_device_attrs[] = {
2151 &dev_attr_tolerant.attr,
2152 &dev_attr_check_interval.attr,
2153 #ifdef CONFIG_X86_MCELOG_LEGACY
2154 &dev_attr_trigger,
2155 #endif
2156 &dev_attr_monarch_timeout.attr,
2157 &dev_attr_dont_log_ce.attr,
2158 &dev_attr_ignore_ce.attr,
2159 &dev_attr_cmci_disabled.attr,
2160 NULL
2163 static cpumask_var_t mce_device_initialized;
2165 static void mce_device_release(struct device *dev)
2167 kfree(dev);
2170 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2171 static int mce_device_create(unsigned int cpu)
2173 struct device *dev;
2174 int err;
2175 int i, j;
2177 if (!mce_available(&boot_cpu_data))
2178 return -EIO;
2180 dev = per_cpu(mce_device, cpu);
2181 if (dev)
2182 return 0;
2184 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2185 if (!dev)
2186 return -ENOMEM;
2187 dev->id = cpu;
2188 dev->bus = &mce_subsys;
2189 dev->release = &mce_device_release;
2191 err = device_register(dev);
2192 if (err) {
2193 put_device(dev);
2194 return err;
2197 for (i = 0; mce_device_attrs[i]; i++) {
2198 err = device_create_file(dev, mce_device_attrs[i]);
2199 if (err)
2200 goto error;
2202 for (j = 0; j < mca_cfg.banks; j++) {
2203 err = device_create_file(dev, &mce_banks[j].attr);
2204 if (err)
2205 goto error2;
2207 cpumask_set_cpu(cpu, mce_device_initialized);
2208 per_cpu(mce_device, cpu) = dev;
2210 return 0;
2211 error2:
2212 while (--j >= 0)
2213 device_remove_file(dev, &mce_banks[j].attr);
2214 error:
2215 while (--i >= 0)
2216 device_remove_file(dev, mce_device_attrs[i]);
2218 device_unregister(dev);
2220 return err;
2223 static void mce_device_remove(unsigned int cpu)
2225 struct device *dev = per_cpu(mce_device, cpu);
2226 int i;
2228 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2229 return;
2231 for (i = 0; mce_device_attrs[i]; i++)
2232 device_remove_file(dev, mce_device_attrs[i]);
2234 for (i = 0; i < mca_cfg.banks; i++)
2235 device_remove_file(dev, &mce_banks[i].attr);
2237 device_unregister(dev);
2238 cpumask_clear_cpu(cpu, mce_device_initialized);
2239 per_cpu(mce_device, cpu) = NULL;
2242 /* Make sure there are no machine checks on offlined CPUs. */
2243 static void mce_disable_cpu(void)
2245 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2246 return;
2248 if (!cpuhp_tasks_frozen)
2249 cmci_clear();
2251 vendor_disable_error_reporting();
2254 static void mce_reenable_cpu(void)
2256 int i;
2258 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2259 return;
2261 if (!cpuhp_tasks_frozen)
2262 cmci_reenable();
2263 for (i = 0; i < mca_cfg.banks; i++) {
2264 struct mce_bank *b = &mce_banks[i];
2266 if (b->init)
2267 wrmsrl(msr_ops.ctl(i), b->ctl);
2271 static int mce_cpu_dead(unsigned int cpu)
2273 mce_intel_hcpu_update(cpu);
2275 /* intentionally ignoring frozen here */
2276 if (!cpuhp_tasks_frozen)
2277 cmci_rediscover();
2278 return 0;
2281 static int mce_cpu_online(unsigned int cpu)
2283 struct timer_list *t = this_cpu_ptr(&mce_timer);
2284 int ret;
2286 mce_device_create(cpu);
2288 ret = mce_threshold_create_device(cpu);
2289 if (ret) {
2290 mce_device_remove(cpu);
2291 return ret;
2293 mce_reenable_cpu();
2294 mce_start_timer(t);
2295 return 0;
2298 static int mce_cpu_pre_down(unsigned int cpu)
2300 struct timer_list *t = this_cpu_ptr(&mce_timer);
2302 mce_disable_cpu();
2303 del_timer_sync(t);
2304 mce_threshold_remove_device(cpu);
2305 mce_device_remove(cpu);
2306 return 0;
2309 static __init void mce_init_banks(void)
2311 int i;
2313 for (i = 0; i < mca_cfg.banks; i++) {
2314 struct mce_bank *b = &mce_banks[i];
2315 struct device_attribute *a = &b->attr;
2317 sysfs_attr_init(&a->attr);
2318 a->attr.name = b->attrname;
2319 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2321 a->attr.mode = 0644;
2322 a->show = show_bank;
2323 a->store = set_bank;
2327 static __init int mcheck_init_device(void)
2329 int err;
2331 if (!mce_available(&boot_cpu_data)) {
2332 err = -EIO;
2333 goto err_out;
2336 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2337 err = -ENOMEM;
2338 goto err_out;
2341 mce_init_banks();
2343 err = subsys_system_register(&mce_subsys, NULL);
2344 if (err)
2345 goto err_out_mem;
2347 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2348 mce_cpu_dead);
2349 if (err)
2350 goto err_out_mem;
2352 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2353 mce_cpu_online, mce_cpu_pre_down);
2354 if (err < 0)
2355 goto err_out_online;
2357 register_syscore_ops(&mce_syscore_ops);
2359 return 0;
2361 err_out_online:
2362 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2364 err_out_mem:
2365 free_cpumask_var(mce_device_initialized);
2367 err_out:
2368 pr_err("Unable to init MCE device (rc: %d)\n", err);
2370 return err;
2372 device_initcall_sync(mcheck_init_device);
2375 * Old style boot options parsing. Only for compatibility.
2377 static int __init mcheck_disable(char *str)
2379 mca_cfg.disabled = true;
2380 return 1;
2382 __setup("nomce", mcheck_disable);
2384 #ifdef CONFIG_DEBUG_FS
2385 struct dentry *mce_get_debugfs_dir(void)
2387 static struct dentry *dmce;
2389 if (!dmce)
2390 dmce = debugfs_create_dir("mce", NULL);
2392 return dmce;
2395 static void mce_reset(void)
2397 cpu_missing = 0;
2398 atomic_set(&mce_fake_panicked, 0);
2399 atomic_set(&mce_executing, 0);
2400 atomic_set(&mce_callin, 0);
2401 atomic_set(&global_nwo, 0);
2404 static int fake_panic_get(void *data, u64 *val)
2406 *val = fake_panic;
2407 return 0;
2410 static int fake_panic_set(void *data, u64 val)
2412 mce_reset();
2413 fake_panic = val;
2414 return 0;
2417 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2418 fake_panic_set, "%llu\n");
2420 static int __init mcheck_debugfs_init(void)
2422 struct dentry *dmce, *ffake_panic;
2424 dmce = mce_get_debugfs_dir();
2425 if (!dmce)
2426 return -ENOMEM;
2427 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2428 &fake_panic_fops);
2429 if (!ffake_panic)
2430 return -ENOMEM;
2432 return 0;
2434 #else
2435 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2436 #endif
2438 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2439 EXPORT_SYMBOL_GPL(mcsafe_key);
2441 static int __init mcheck_late_init(void)
2443 if (mca_cfg.recovery)
2444 static_branch_inc(&mcsafe_key);
2446 mcheck_debugfs_init();
2447 cec_init();
2450 * Flush out everything that has been logged during early boot, now that
2451 * everything has been initialized (workqueues, decoders, ...).
2453 mce_schedule_work();
2455 return 0;
2457 late_initcall(mcheck_late_init);