xtensa: support DMA buffers in high memory
[cris-mirror.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
blob0f32ad242324e0888224b0b4477dbd5d2e6de41f
1 /*
2 * (c) 2005-2016 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Written by Jacob Shin - AMD, Inc.
8 * Maintained by: Borislav Petkov <bp@alien8.de>
10 * All MC4_MISCi registers are shared between cores on a node.
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
31 #include "mce-internal.h"
33 #define NR_BLOCKS 5
34 #define THRESHOLD_MAX 0xFFF
35 #define INT_TYPE_APIC 0x00020000
36 #define MASK_VALID_HI 0x80000000
37 #define MASK_CNTP_HI 0x40000000
38 #define MASK_LOCKED_HI 0x20000000
39 #define MASK_LVTOFF_HI 0x00F00000
40 #define MASK_COUNT_EN_HI 0x00080000
41 #define MASK_INT_TYPE_HI 0x00060000
42 #define MASK_OVERFLOW_HI 0x00010000
43 #define MASK_ERR_COUNT_HI 0x00000FFF
44 #define MASK_BLKPTR_LO 0xFF000000
45 #define MCG_XBLK_ADDR 0xC0000400
47 /* Deferred error settings */
48 #define MSR_CU_DEF_ERR 0xC0000410
49 #define MASK_DEF_LVTOFF 0x000000F0
50 #define MASK_DEF_INT_TYPE 0x00000006
51 #define DEF_LVT_OFF 0x2
52 #define DEF_INT_TYPE_APIC 0x2
54 /* Scalable MCA: */
56 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
57 #define SMCA_THR_LVT_OFF 0xF000
59 static bool thresholding_en;
61 static const char * const th_names[] = {
62 "load_store",
63 "insn_fetch",
64 "combined_unit",
65 "decode_unit",
66 "northbridge",
67 "execution_unit",
70 static const char * const smca_umc_block_names[] = {
71 "dram_ecc",
72 "misc_umc"
75 struct smca_bank_name {
76 const char *name; /* Short name for sysfs */
77 const char *long_name; /* Long name for pretty-printing */
80 static struct smca_bank_name smca_names[] = {
81 [SMCA_LS] = { "load_store", "Load Store Unit" },
82 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
83 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
84 [SMCA_DE] = { "decode_unit", "Decode Unit" },
85 [SMCA_EX] = { "execution_unit", "Execution Unit" },
86 [SMCA_FP] = { "floating_point", "Floating Point Unit" },
87 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
88 [SMCA_CS] = { "coherent_slave", "Coherent Slave" },
89 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
90 [SMCA_UMC] = { "umc", "Unified Memory Controller" },
91 [SMCA_PB] = { "param_block", "Parameter Block" },
92 [SMCA_PSP] = { "psp", "Platform Security Processor" },
93 [SMCA_SMU] = { "smu", "System Management Unit" },
96 const char *smca_get_name(enum smca_bank_types t)
98 if (t >= N_SMCA_BANK_TYPES)
99 return NULL;
101 return smca_names[t].name;
104 const char *smca_get_long_name(enum smca_bank_types t)
106 if (t >= N_SMCA_BANK_TYPES)
107 return NULL;
109 return smca_names[t].long_name;
111 EXPORT_SYMBOL_GPL(smca_get_long_name);
113 static enum smca_bank_types smca_get_bank_type(struct mce *m)
115 struct smca_bank *b;
117 if (m->bank >= N_SMCA_BANK_TYPES)
118 return N_SMCA_BANK_TYPES;
120 b = &smca_banks[m->bank];
121 if (!b->hwid)
122 return N_SMCA_BANK_TYPES;
124 return b->hwid->bank_type;
127 static struct smca_hwid smca_hwid_mcatypes[] = {
128 /* { bank_type, hwid_mcatype, xec_bitmap } */
130 /* ZN Core (HWID=0xB0) MCA types */
131 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
132 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
133 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
134 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
135 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
136 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0x7FF },
137 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F },
138 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
140 /* Data Fabric MCA types */
141 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
142 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0xF },
144 /* Unified Memory Controller MCA type */
145 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0x3F },
147 /* Parameter Block MCA type */
148 { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 },
150 /* Platform Security Processor MCA type */
151 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 },
153 /* System Management Unit MCA type */
154 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 },
157 struct smca_bank smca_banks[MAX_NR_BANKS];
158 EXPORT_SYMBOL_GPL(smca_banks);
161 * In SMCA enabled processors, we can have multiple banks for a given IP type.
162 * So to define a unique name for each bank, we use a temp c-string to append
163 * the MCA_IPID[InstanceId] to type's name in get_name().
165 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
166 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
168 #define MAX_MCATYPE_NAME_LEN 30
169 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
171 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
172 static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */
174 static void amd_threshold_interrupt(void);
175 static void amd_deferred_error_interrupt(void);
177 static void default_deferred_error_interrupt(void)
179 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
181 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
183 static void smca_configure(unsigned int bank, unsigned int cpu)
185 unsigned int i, hwid_mcatype;
186 struct smca_hwid *s_hwid;
187 u32 high, low;
188 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
190 /* Set appropriate bits in MCA_CONFIG */
191 if (!rdmsr_safe(smca_config, &low, &high)) {
193 * OS is required to set the MCAX bit to acknowledge that it is
194 * now using the new MSR ranges and new registers under each
195 * bank. It also means that the OS will configure deferred
196 * errors in the new MCx_CONFIG register. If the bit is not set,
197 * uncorrectable errors will cause a system panic.
199 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
201 high |= BIT(0);
204 * SMCA sets the Deferred Error Interrupt type per bank.
206 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
207 * if the DeferredIntType bit field is available.
209 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
210 * high portion of the MSR). OS should set this to 0x1 to enable
211 * APIC based interrupt. First, check that no interrupt has been
212 * set.
214 if ((low & BIT(5)) && !((high >> 5) & 0x3))
215 high |= BIT(5);
217 wrmsr(smca_config, low, high);
220 /* Return early if this bank was already initialized. */
221 if (smca_banks[bank].hwid)
222 return;
224 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
225 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
226 return;
229 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
230 (high & MCI_IPID_MCATYPE) >> 16);
232 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
233 s_hwid = &smca_hwid_mcatypes[i];
234 if (hwid_mcatype == s_hwid->hwid_mcatype) {
235 smca_banks[bank].hwid = s_hwid;
236 smca_banks[bank].id = low;
237 smca_banks[bank].sysfs_id = s_hwid->count++;
238 break;
243 struct thresh_restart {
244 struct threshold_block *b;
245 int reset;
246 int set_lvt_off;
247 int lvt_off;
248 u16 old_limit;
251 static inline bool is_shared_bank(int bank)
254 * Scalable MCA provides for only one core to have access to the MSRs of
255 * a shared bank.
257 if (mce_flags.smca)
258 return false;
260 /* Bank 4 is for northbridge reporting and is thus shared */
261 return (bank == 4);
264 static const char *bank4_names(const struct threshold_block *b)
266 switch (b->address) {
267 /* MSR4_MISC0 */
268 case 0x00000413:
269 return "dram";
271 case 0xc0000408:
272 return "ht_links";
274 case 0xc0000409:
275 return "l3_cache";
277 default:
278 WARN(1, "Funny MSR: 0x%08x\n", b->address);
279 return "";
284 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
287 * bank 4 supports APIC LVT interrupts implicitly since forever.
289 if (bank == 4)
290 return true;
293 * IntP: interrupt present; if this bit is set, the thresholding
294 * bank can generate APIC LVT interrupts
296 return msr_high_bits & BIT(28);
299 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
301 int msr = (hi & MASK_LVTOFF_HI) >> 20;
303 if (apic < 0) {
304 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
305 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
306 b->bank, b->block, b->address, hi, lo);
307 return 0;
310 if (apic != msr) {
312 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
313 * the BIOS provides the value. The original field where LVT offset
314 * was set is reserved. Return early here:
316 if (mce_flags.smca)
317 return 0;
319 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
320 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
321 b->cpu, apic, b->bank, b->block, b->address, hi, lo);
322 return 0;
325 return 1;
328 /* Reprogram MCx_MISC MSR behind this threshold bank. */
329 static void threshold_restart_bank(void *_tr)
331 struct thresh_restart *tr = _tr;
332 u32 hi, lo;
334 rdmsr(tr->b->address, lo, hi);
336 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
337 tr->reset = 1; /* limit cannot be lower than err count */
339 if (tr->reset) { /* reset err count and overflow bit */
340 hi =
341 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
342 (THRESHOLD_MAX - tr->b->threshold_limit);
343 } else if (tr->old_limit) { /* change limit w/o reset */
344 int new_count = (hi & THRESHOLD_MAX) +
345 (tr->old_limit - tr->b->threshold_limit);
347 hi = (hi & ~MASK_ERR_COUNT_HI) |
348 (new_count & THRESHOLD_MAX);
351 /* clear IntType */
352 hi &= ~MASK_INT_TYPE_HI;
354 if (!tr->b->interrupt_capable)
355 goto done;
357 if (tr->set_lvt_off) {
358 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
359 /* set new lvt offset */
360 hi &= ~MASK_LVTOFF_HI;
361 hi |= tr->lvt_off << 20;
365 if (tr->b->interrupt_enable)
366 hi |= INT_TYPE_APIC;
368 done:
370 hi |= MASK_COUNT_EN_HI;
371 wrmsr(tr->b->address, lo, hi);
374 static void mce_threshold_block_init(struct threshold_block *b, int offset)
376 struct thresh_restart tr = {
377 .b = b,
378 .set_lvt_off = 1,
379 .lvt_off = offset,
382 b->threshold_limit = THRESHOLD_MAX;
383 threshold_restart_bank(&tr);
386 static int setup_APIC_mce_threshold(int reserved, int new)
388 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
389 APIC_EILVT_MSG_FIX, 0))
390 return new;
392 return reserved;
395 static int setup_APIC_deferred_error(int reserved, int new)
397 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
398 APIC_EILVT_MSG_FIX, 0))
399 return new;
401 return reserved;
404 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
406 u32 low = 0, high = 0;
407 int def_offset = -1, def_new;
409 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
410 return;
412 def_new = (low & MASK_DEF_LVTOFF) >> 4;
413 if (!(low & MASK_DEF_LVTOFF)) {
414 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
415 def_new = DEF_LVT_OFF;
416 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
419 def_offset = setup_APIC_deferred_error(def_offset, def_new);
420 if ((def_offset == def_new) &&
421 (deferred_error_int_vector != amd_deferred_error_interrupt))
422 deferred_error_int_vector = amd_deferred_error_interrupt;
424 if (!mce_flags.smca)
425 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
427 wrmsr(MSR_CU_DEF_ERR, low, high);
430 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
431 unsigned int bank, unsigned int block)
433 u32 addr = 0, offset = 0;
435 if (mce_flags.smca) {
436 if (!block) {
437 addr = MSR_AMD64_SMCA_MCx_MISC(bank);
438 } else {
440 * For SMCA enabled processors, BLKPTR field of the
441 * first MISC register (MCx_MISC0) indicates presence of
442 * additional MISC register set (MISC1-4).
444 u32 low, high;
446 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
447 return addr;
449 if (!(low & MCI_CONFIG_MCAX))
450 return addr;
452 if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
453 (low & MASK_BLKPTR_LO))
454 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
456 return addr;
459 /* Fall back to method we used for older processors: */
460 switch (block) {
461 case 0:
462 addr = msr_ops.misc(bank);
463 break;
464 case 1:
465 offset = ((low & MASK_BLKPTR_LO) >> 21);
466 if (offset)
467 addr = MCG_XBLK_ADDR + offset;
468 break;
469 default:
470 addr = ++current_addr;
472 return addr;
475 static int
476 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
477 int offset, u32 misc_high)
479 unsigned int cpu = smp_processor_id();
480 u32 smca_low, smca_high;
481 struct threshold_block b;
482 int new;
484 if (!block)
485 per_cpu(bank_map, cpu) |= (1 << bank);
487 memset(&b, 0, sizeof(b));
488 b.cpu = cpu;
489 b.bank = bank;
490 b.block = block;
491 b.address = addr;
492 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
494 if (!b.interrupt_capable)
495 goto done;
497 b.interrupt_enable = 1;
499 if (!mce_flags.smca) {
500 new = (misc_high & MASK_LVTOFF_HI) >> 20;
501 goto set_offset;
504 /* Gather LVT offset for thresholding: */
505 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
506 goto out;
508 new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
510 set_offset:
511 offset = setup_APIC_mce_threshold(offset, new);
513 if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
514 mce_threshold_vector = amd_threshold_interrupt;
516 done:
517 mce_threshold_block_init(&b, offset);
519 out:
520 return offset;
523 /* cpu init entry point, called from mce.c with preempt off */
524 void mce_amd_feature_init(struct cpuinfo_x86 *c)
526 u32 low = 0, high = 0, address = 0;
527 unsigned int bank, block, cpu = smp_processor_id();
528 int offset = -1;
530 for (bank = 0; bank < mca_cfg.banks; ++bank) {
531 if (mce_flags.smca)
532 smca_configure(bank, cpu);
534 for (block = 0; block < NR_BLOCKS; ++block) {
535 address = get_block_address(cpu, address, low, high, bank, block);
536 if (!address)
537 break;
539 if (rdmsr_safe(address, &low, &high))
540 break;
542 if (!(high & MASK_VALID_HI))
543 continue;
545 if (!(high & MASK_CNTP_HI) ||
546 (high & MASK_LOCKED_HI))
547 continue;
549 offset = prepare_threshold_block(bank, block, address, offset, high);
553 if (mce_flags.succor)
554 deferred_error_interrupt_enable(c);
557 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
559 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
560 /* We start from the normalized address */
561 u64 ret_addr = norm_addr;
563 u32 tmp;
565 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
566 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
567 u8 intlv_addr_sel, intlv_addr_bit;
568 u8 num_intlv_bits, hashed_bit;
569 u8 lgcy_mmio_hole_en, base = 0;
570 u8 cs_mask, cs_id = 0;
571 bool hash_enabled = false;
573 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
574 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
575 goto out_err;
577 /* Remove HiAddrOffset from normalized address, if enabled: */
578 if (tmp & BIT(0)) {
579 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
581 if (norm_addr >= hi_addr_offset) {
582 ret_addr -= hi_addr_offset;
583 base = 1;
587 /* Read D18F0x110 (DramBaseAddress). */
588 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
589 goto out_err;
591 /* Check if address range is valid. */
592 if (!(tmp & BIT(0))) {
593 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
594 __func__, tmp);
595 goto out_err;
598 lgcy_mmio_hole_en = tmp & BIT(1);
599 intlv_num_chan = (tmp >> 4) & 0xF;
600 intlv_addr_sel = (tmp >> 8) & 0x7;
601 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
603 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
604 if (intlv_addr_sel > 3) {
605 pr_err("%s: Invalid interleave address select %d.\n",
606 __func__, intlv_addr_sel);
607 goto out_err;
610 /* Read D18F0x114 (DramLimitAddress). */
611 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
612 goto out_err;
614 intlv_num_sockets = (tmp >> 8) & 0x1;
615 intlv_num_dies = (tmp >> 10) & 0x3;
616 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
618 intlv_addr_bit = intlv_addr_sel + 8;
620 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
621 switch (intlv_num_chan) {
622 case 0: intlv_num_chan = 0; break;
623 case 1: intlv_num_chan = 1; break;
624 case 3: intlv_num_chan = 2; break;
625 case 5: intlv_num_chan = 3; break;
626 case 7: intlv_num_chan = 4; break;
628 case 8: intlv_num_chan = 1;
629 hash_enabled = true;
630 break;
631 default:
632 pr_err("%s: Invalid number of interleaved channels %d.\n",
633 __func__, intlv_num_chan);
634 goto out_err;
637 num_intlv_bits = intlv_num_chan;
639 if (intlv_num_dies > 2) {
640 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
641 __func__, intlv_num_dies);
642 goto out_err;
645 num_intlv_bits += intlv_num_dies;
647 /* Add a bit if sockets are interleaved. */
648 num_intlv_bits += intlv_num_sockets;
650 /* Assert num_intlv_bits <= 4 */
651 if (num_intlv_bits > 4) {
652 pr_err("%s: Invalid interleave bits %d.\n",
653 __func__, num_intlv_bits);
654 goto out_err;
657 if (num_intlv_bits > 0) {
658 u64 temp_addr_x, temp_addr_i, temp_addr_y;
659 u8 die_id_bit, sock_id_bit, cs_fabric_id;
662 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
663 * This is the fabric id for this coherent slave. Use
664 * umc/channel# as instance id of the coherent slave
665 * for FICAA.
667 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
668 goto out_err;
670 cs_fabric_id = (tmp >> 8) & 0xFF;
671 die_id_bit = 0;
673 /* If interleaved over more than 1 channel: */
674 if (intlv_num_chan) {
675 die_id_bit = intlv_num_chan;
676 cs_mask = (1 << die_id_bit) - 1;
677 cs_id = cs_fabric_id & cs_mask;
680 sock_id_bit = die_id_bit;
682 /* Read D18F1x208 (SystemFabricIdMask). */
683 if (intlv_num_dies || intlv_num_sockets)
684 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
685 goto out_err;
687 /* If interleaved over more than 1 die. */
688 if (intlv_num_dies) {
689 sock_id_bit = die_id_bit + intlv_num_dies;
690 die_id_shift = (tmp >> 24) & 0xF;
691 die_id_mask = (tmp >> 8) & 0xFF;
693 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
696 /* If interleaved over more than 1 socket. */
697 if (intlv_num_sockets) {
698 socket_id_shift = (tmp >> 28) & 0xF;
699 socket_id_mask = (tmp >> 16) & 0xFF;
701 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
705 * The pre-interleaved address consists of XXXXXXIIIYYYYY
706 * where III is the ID for this CS, and XXXXXXYYYYY are the
707 * address bits from the post-interleaved address.
708 * "num_intlv_bits" has been calculated to tell us how many "I"
709 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
710 * there are (where "I" starts).
712 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
713 temp_addr_i = (cs_id << intlv_addr_bit);
714 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
715 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
718 /* Add dram base address */
719 ret_addr += dram_base_addr;
721 /* If legacy MMIO hole enabled */
722 if (lgcy_mmio_hole_en) {
723 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
724 goto out_err;
726 dram_hole_base = tmp & GENMASK(31, 24);
727 if (ret_addr >= dram_hole_base)
728 ret_addr += (BIT_ULL(32) - dram_hole_base);
731 if (hash_enabled) {
732 /* Save some parentheses and grab ls-bit at the end. */
733 hashed_bit = (ret_addr >> 12) ^
734 (ret_addr >> 18) ^
735 (ret_addr >> 21) ^
736 (ret_addr >> 30) ^
737 cs_id;
739 hashed_bit &= BIT(0);
741 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
742 ret_addr ^= BIT(intlv_addr_bit);
745 /* Is calculated system address is above DRAM limit address? */
746 if (ret_addr > dram_limit_addr)
747 goto out_err;
749 *sys_addr = ret_addr;
750 return 0;
752 out_err:
753 return -EINVAL;
755 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
757 bool amd_mce_is_memory_error(struct mce *m)
759 /* ErrCodeExt[20:16] */
760 u8 xec = (m->status >> 16) & 0x1f;
762 if (mce_flags.smca)
763 return smca_get_bank_type(m) == SMCA_UMC && xec == 0x0;
765 return m->bank == 4 && xec == 0x8;
768 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
770 struct mce m;
772 mce_setup(&m);
774 m.status = status;
775 m.misc = misc;
776 m.bank = bank;
777 m.tsc = rdtsc();
779 if (m.status & MCI_STATUS_ADDRV) {
780 m.addr = addr;
783 * Extract [55:<lsb>] where lsb is the least significant
784 * *valid* bit of the address bits.
786 if (mce_flags.smca) {
787 u8 lsb = (m.addr >> 56) & 0x3f;
789 m.addr &= GENMASK_ULL(55, lsb);
793 if (mce_flags.smca) {
794 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
796 if (m.status & MCI_STATUS_SYNDV)
797 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
800 mce_log(&m);
803 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
805 entering_irq();
806 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
807 inc_irq_stat(irq_deferred_error_count);
808 deferred_error_int_vector();
809 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
810 exiting_ack_irq();
814 * Returns true if the logged error is deferred. False, otherwise.
816 static inline bool
817 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
819 u64 status, addr = 0;
821 rdmsrl(msr_stat, status);
822 if (!(status & MCI_STATUS_VAL))
823 return false;
825 if (status & MCI_STATUS_ADDRV)
826 rdmsrl(msr_addr, addr);
828 __log_error(bank, status, addr, misc);
830 wrmsrl(msr_stat, 0);
832 return status & MCI_STATUS_DEFERRED;
836 * We have three scenarios for checking for Deferred errors:
838 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
839 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
840 * clear MCA_DESTAT.
841 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
842 * log it.
844 static void log_error_deferred(unsigned int bank)
846 bool defrd;
848 defrd = _log_error_bank(bank, msr_ops.status(bank),
849 msr_ops.addr(bank), 0);
851 if (!mce_flags.smca)
852 return;
854 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
855 if (defrd) {
856 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
857 return;
861 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
862 * for a valid error.
864 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
865 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
868 /* APIC interrupt handler for deferred errors */
869 static void amd_deferred_error_interrupt(void)
871 unsigned int bank;
873 for (bank = 0; bank < mca_cfg.banks; ++bank)
874 log_error_deferred(bank);
877 static void log_error_thresholding(unsigned int bank, u64 misc)
879 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
882 static void log_and_reset_block(struct threshold_block *block)
884 struct thresh_restart tr;
885 u32 low = 0, high = 0;
887 if (!block)
888 return;
890 if (rdmsr_safe(block->address, &low, &high))
891 return;
893 if (!(high & MASK_OVERFLOW_HI))
894 return;
896 /* Log the MCE which caused the threshold event. */
897 log_error_thresholding(block->bank, ((u64)high << 32) | low);
899 /* Reset threshold block after logging error. */
900 memset(&tr, 0, sizeof(tr));
901 tr.b = block;
902 threshold_restart_bank(&tr);
906 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
907 * goes off when error_count reaches threshold_limit.
909 static void amd_threshold_interrupt(void)
911 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
912 unsigned int bank, cpu = smp_processor_id();
914 for (bank = 0; bank < mca_cfg.banks; ++bank) {
915 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
916 continue;
918 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
919 if (!first_block)
920 continue;
923 * The first block is also the head of the list. Check it first
924 * before iterating over the rest.
926 log_and_reset_block(first_block);
927 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
928 log_and_reset_block(block);
933 * Sysfs Interface
936 struct threshold_attr {
937 struct attribute attr;
938 ssize_t (*show) (struct threshold_block *, char *);
939 ssize_t (*store) (struct threshold_block *, const char *, size_t count);
942 #define SHOW_FIELDS(name) \
943 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
945 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
947 SHOW_FIELDS(interrupt_enable)
948 SHOW_FIELDS(threshold_limit)
950 static ssize_t
951 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
953 struct thresh_restart tr;
954 unsigned long new;
956 if (!b->interrupt_capable)
957 return -EINVAL;
959 if (kstrtoul(buf, 0, &new) < 0)
960 return -EINVAL;
962 b->interrupt_enable = !!new;
964 memset(&tr, 0, sizeof(tr));
965 tr.b = b;
967 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
969 return size;
972 static ssize_t
973 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
975 struct thresh_restart tr;
976 unsigned long new;
978 if (kstrtoul(buf, 0, &new) < 0)
979 return -EINVAL;
981 if (new > THRESHOLD_MAX)
982 new = THRESHOLD_MAX;
983 if (new < 1)
984 new = 1;
986 memset(&tr, 0, sizeof(tr));
987 tr.old_limit = b->threshold_limit;
988 b->threshold_limit = new;
989 tr.b = b;
991 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
993 return size;
996 static ssize_t show_error_count(struct threshold_block *b, char *buf)
998 u32 lo, hi;
1000 rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1002 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1003 (THRESHOLD_MAX - b->threshold_limit)));
1006 static struct threshold_attr error_count = {
1007 .attr = {.name = __stringify(error_count), .mode = 0444 },
1008 .show = show_error_count,
1011 #define RW_ATTR(val) \
1012 static struct threshold_attr val = { \
1013 .attr = {.name = __stringify(val), .mode = 0644 }, \
1014 .show = show_## val, \
1015 .store = store_## val, \
1018 RW_ATTR(interrupt_enable);
1019 RW_ATTR(threshold_limit);
1021 static struct attribute *default_attrs[] = {
1022 &threshold_limit.attr,
1023 &error_count.attr,
1024 NULL, /* possibly interrupt_enable if supported, see below */
1025 NULL,
1028 #define to_block(k) container_of(k, struct threshold_block, kobj)
1029 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1031 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1033 struct threshold_block *b = to_block(kobj);
1034 struct threshold_attr *a = to_attr(attr);
1035 ssize_t ret;
1037 ret = a->show ? a->show(b, buf) : -EIO;
1039 return ret;
1042 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1043 const char *buf, size_t count)
1045 struct threshold_block *b = to_block(kobj);
1046 struct threshold_attr *a = to_attr(attr);
1047 ssize_t ret;
1049 ret = a->store ? a->store(b, buf, count) : -EIO;
1051 return ret;
1054 static const struct sysfs_ops threshold_ops = {
1055 .show = show,
1056 .store = store,
1059 static struct kobj_type threshold_ktype = {
1060 .sysfs_ops = &threshold_ops,
1061 .default_attrs = default_attrs,
1064 static const char *get_name(unsigned int bank, struct threshold_block *b)
1066 unsigned int bank_type;
1068 if (!mce_flags.smca) {
1069 if (b && bank == 4)
1070 return bank4_names(b);
1072 return th_names[bank];
1075 if (!smca_banks[bank].hwid)
1076 return NULL;
1078 bank_type = smca_banks[bank].hwid->bank_type;
1080 if (b && bank_type == SMCA_UMC) {
1081 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1082 return smca_umc_block_names[b->block];
1083 return NULL;
1086 if (smca_banks[bank].hwid->count == 1)
1087 return smca_get_name(bank_type);
1089 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1090 "%s_%x", smca_get_name(bank_type),
1091 smca_banks[bank].sysfs_id);
1092 return buf_mcatype;
1095 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1096 unsigned int block, u32 address)
1098 struct threshold_block *b = NULL;
1099 u32 low, high;
1100 int err;
1102 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1103 return 0;
1105 if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1106 return 0;
1108 if (!(high & MASK_VALID_HI)) {
1109 if (block)
1110 goto recurse;
1111 else
1112 return 0;
1115 if (!(high & MASK_CNTP_HI) ||
1116 (high & MASK_LOCKED_HI))
1117 goto recurse;
1119 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1120 if (!b)
1121 return -ENOMEM;
1123 b->block = block;
1124 b->bank = bank;
1125 b->cpu = cpu;
1126 b->address = address;
1127 b->interrupt_enable = 0;
1128 b->interrupt_capable = lvt_interrupt_supported(bank, high);
1129 b->threshold_limit = THRESHOLD_MAX;
1131 if (b->interrupt_capable) {
1132 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1133 b->interrupt_enable = 1;
1134 } else {
1135 threshold_ktype.default_attrs[2] = NULL;
1138 INIT_LIST_HEAD(&b->miscj);
1140 if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1141 list_add(&b->miscj,
1142 &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1143 } else {
1144 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1147 err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1148 per_cpu(threshold_banks, cpu)[bank]->kobj,
1149 get_name(bank, b));
1150 if (err)
1151 goto out_free;
1152 recurse:
1153 address = get_block_address(cpu, address, low, high, bank, ++block);
1154 if (!address)
1155 return 0;
1157 err = allocate_threshold_blocks(cpu, bank, block, address);
1158 if (err)
1159 goto out_free;
1161 if (b)
1162 kobject_uevent(&b->kobj, KOBJ_ADD);
1164 return err;
1166 out_free:
1167 if (b) {
1168 kobject_put(&b->kobj);
1169 list_del(&b->miscj);
1170 kfree(b);
1172 return err;
1175 static int __threshold_add_blocks(struct threshold_bank *b)
1177 struct list_head *head = &b->blocks->miscj;
1178 struct threshold_block *pos = NULL;
1179 struct threshold_block *tmp = NULL;
1180 int err = 0;
1182 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1183 if (err)
1184 return err;
1186 list_for_each_entry_safe(pos, tmp, head, miscj) {
1188 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1189 if (err) {
1190 list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1191 kobject_del(&pos->kobj);
1193 return err;
1196 return err;
1199 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1201 struct device *dev = per_cpu(mce_device, cpu);
1202 struct amd_northbridge *nb = NULL;
1203 struct threshold_bank *b = NULL;
1204 const char *name = get_name(bank, NULL);
1205 int err = 0;
1207 if (!dev)
1208 return -ENODEV;
1210 if (is_shared_bank(bank)) {
1211 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1213 /* threshold descriptor already initialized on this node? */
1214 if (nb && nb->bank4) {
1215 /* yes, use it */
1216 b = nb->bank4;
1217 err = kobject_add(b->kobj, &dev->kobj, name);
1218 if (err)
1219 goto out;
1221 per_cpu(threshold_banks, cpu)[bank] = b;
1222 refcount_inc(&b->cpus);
1224 err = __threshold_add_blocks(b);
1226 goto out;
1230 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1231 if (!b) {
1232 err = -ENOMEM;
1233 goto out;
1236 b->kobj = kobject_create_and_add(name, &dev->kobj);
1237 if (!b->kobj) {
1238 err = -EINVAL;
1239 goto out_free;
1242 per_cpu(threshold_banks, cpu)[bank] = b;
1244 if (is_shared_bank(bank)) {
1245 refcount_set(&b->cpus, 1);
1247 /* nb is already initialized, see above */
1248 if (nb) {
1249 WARN_ON(nb->bank4);
1250 nb->bank4 = b;
1254 err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1255 if (!err)
1256 goto out;
1258 out_free:
1259 kfree(b);
1261 out:
1262 return err;
1265 static void deallocate_threshold_block(unsigned int cpu,
1266 unsigned int bank)
1268 struct threshold_block *pos = NULL;
1269 struct threshold_block *tmp = NULL;
1270 struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1272 if (!head)
1273 return;
1275 list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1276 kobject_put(&pos->kobj);
1277 list_del(&pos->miscj);
1278 kfree(pos);
1281 kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1282 per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1285 static void __threshold_remove_blocks(struct threshold_bank *b)
1287 struct threshold_block *pos = NULL;
1288 struct threshold_block *tmp = NULL;
1290 kobject_del(b->kobj);
1292 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1293 kobject_del(&pos->kobj);
1296 static void threshold_remove_bank(unsigned int cpu, int bank)
1298 struct amd_northbridge *nb;
1299 struct threshold_bank *b;
1301 b = per_cpu(threshold_banks, cpu)[bank];
1302 if (!b)
1303 return;
1305 if (!b->blocks)
1306 goto free_out;
1308 if (is_shared_bank(bank)) {
1309 if (!refcount_dec_and_test(&b->cpus)) {
1310 __threshold_remove_blocks(b);
1311 per_cpu(threshold_banks, cpu)[bank] = NULL;
1312 return;
1313 } else {
1315 * the last CPU on this node using the shared bank is
1316 * going away, remove that bank now.
1318 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1319 nb->bank4 = NULL;
1323 deallocate_threshold_block(cpu, bank);
1325 free_out:
1326 kobject_del(b->kobj);
1327 kobject_put(b->kobj);
1328 kfree(b);
1329 per_cpu(threshold_banks, cpu)[bank] = NULL;
1332 int mce_threshold_remove_device(unsigned int cpu)
1334 unsigned int bank;
1336 if (!thresholding_en)
1337 return 0;
1339 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1340 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1341 continue;
1342 threshold_remove_bank(cpu, bank);
1344 kfree(per_cpu(threshold_banks, cpu));
1345 per_cpu(threshold_banks, cpu) = NULL;
1346 return 0;
1349 /* create dir/files for all valid threshold banks */
1350 int mce_threshold_create_device(unsigned int cpu)
1352 unsigned int bank;
1353 struct threshold_bank **bp;
1354 int err = 0;
1356 if (!thresholding_en)
1357 return 0;
1359 bp = per_cpu(threshold_banks, cpu);
1360 if (bp)
1361 return 0;
1363 bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1364 GFP_KERNEL);
1365 if (!bp)
1366 return -ENOMEM;
1368 per_cpu(threshold_banks, cpu) = bp;
1370 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1371 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1372 continue;
1373 err = threshold_create_bank(cpu, bank);
1374 if (err)
1375 goto err;
1377 return err;
1378 err:
1379 mce_threshold_remove_device(cpu);
1380 return err;
1383 static __init int threshold_init_device(void)
1385 unsigned lcpu = 0;
1387 if (mce_threshold_vector == amd_threshold_interrupt)
1388 thresholding_en = true;
1390 /* to hit CPUs online before the notifier is up */
1391 for_each_online_cpu(lcpu) {
1392 int err = mce_threshold_create_device(lcpu);
1394 if (err)
1395 return err;
1398 return 0;
1401 * there are 3 funcs which need to be _initcalled in a logic sequence:
1402 * 1. xen_late_init_mcelog
1403 * 2. mcheck_init_device
1404 * 3. threshold_init_device
1406 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1407 * native mce_chrdev_device registration if running under xen platform;
1409 * mcheck_init_device should be inited before threshold_init_device to
1410 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1412 * so we use following _initcalls
1413 * 1. device_initcall(xen_late_init_mcelog);
1414 * 2. device_initcall_sync(mcheck_init_device);
1415 * 3. late_initcall(threshold_init_device);
1417 * when running under xen, the initcall order is 1,2,3;
1418 * on baremetal, we skip 1 and we do only 2 and 3.
1420 late_initcall(threshold_init_device);