xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / md / dm.c
blobd6de00f367efdde4137055dfa4c82fefcbcd1f9a
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
151 struct bio_set *bs;
152 struct bio_set *io_bs;
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
188 return param;
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
207 return param;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
223 static int __init local_init(void)
225 int r = -ENOMEM;
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
251 if (!_major)
252 _major = r;
254 return 0;
256 out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 dm_uevent_exit();
260 out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
265 return r;
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
278 _major = 0;
280 DMINFO("cleaned up");
283 static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
294 static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
305 static int __init dm_init(void)
307 const int count = ARRAY_SIZE(_inits);
309 int r, i;
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
317 return 0;
319 bad:
320 while (i--)
321 _exits[i]();
323 return r;
326 static void __exit dm_exit(void)
328 int i = ARRAY_SIZE(_exits);
330 while (i--)
331 _exits[i]();
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device *md)
344 return test_bit(DMF_DELETING, &md->flags);
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 struct mapped_device *md;
351 spin_lock(&_minor_lock);
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
363 dm_get(md);
364 atomic_inc(&md->open_count);
365 out:
366 spin_unlock(&_minor_lock);
368 return md ? 0 : -ENXIO;
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 struct mapped_device *md;
375 spin_lock(&_minor_lock);
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 dm_put(md);
386 out:
387 spin_unlock(&_minor_lock);
390 int dm_open_count(struct mapped_device *md)
392 return atomic_read(&md->open_count);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 int r = 0;
402 spin_lock(&_minor_lock);
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
413 spin_unlock(&_minor_lock);
415 return r;
418 int dm_cancel_deferred_remove(struct mapped_device *md)
420 int r = 0;
422 spin_lock(&_minor_lock);
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 spin_unlock(&_minor_lock);
431 return r;
434 static void do_deferred_remove(struct work_struct *w)
436 dm_deferred_remove();
439 sector_t dm_get_size(struct mapped_device *md)
441 return get_capacity(md->disk);
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
446 return md->queue;
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
451 return &md->stats;
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 struct mapped_device *md = bdev->bd_disk->private_data;
458 return dm_get_geometry(md, geo);
461 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
462 struct block_device **bdev,
463 fmode_t *mode)
465 struct dm_target *tgt;
466 struct dm_table *map;
467 int srcu_idx, r;
469 retry:
470 r = -ENOTTY;
471 map = dm_get_live_table(md, &srcu_idx);
472 if (!map || !dm_table_get_size(map))
473 goto out;
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map) != 1)
477 goto out;
479 tgt = dm_table_get_target(map, 0);
480 if (!tgt->type->prepare_ioctl)
481 goto out;
483 if (dm_suspended_md(md)) {
484 r = -EAGAIN;
485 goto out;
488 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
489 if (r < 0)
490 goto out;
492 bdgrab(*bdev);
493 dm_put_live_table(md, srcu_idx);
494 return r;
496 out:
497 dm_put_live_table(md, srcu_idx);
498 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
499 msleep(10);
500 goto retry;
502 return r;
505 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
506 unsigned int cmd, unsigned long arg)
508 struct mapped_device *md = bdev->bd_disk->private_data;
509 int r;
511 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
512 if (r < 0)
513 return r;
515 if (r > 0) {
517 * Target determined this ioctl is being issued against a
518 * subset of the parent bdev; require extra privileges.
520 if (!capable(CAP_SYS_RAWIO)) {
521 DMWARN_LIMIT(
522 "%s: sending ioctl %x to DM device without required privilege.",
523 current->comm, cmd);
524 r = -ENOIOCTLCMD;
525 goto out;
529 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
530 out:
531 bdput(bdev);
532 return r;
535 static void start_io_acct(struct dm_io *io);
537 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
539 struct dm_io *io;
540 struct dm_target_io *tio;
541 struct bio *clone;
543 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
544 if (!clone)
545 return NULL;
547 tio = container_of(clone, struct dm_target_io, clone);
548 tio->inside_dm_io = true;
549 tio->io = NULL;
551 io = container_of(tio, struct dm_io, tio);
552 io->magic = DM_IO_MAGIC;
553 io->status = 0;
554 atomic_set(&io->io_count, 1);
555 io->orig_bio = bio;
556 io->md = md;
557 spin_lock_init(&io->endio_lock);
559 start_io_acct(io);
561 return io;
564 static void free_io(struct mapped_device *md, struct dm_io *io)
566 bio_put(&io->tio.clone);
569 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
570 unsigned target_bio_nr, gfp_t gfp_mask)
572 struct dm_target_io *tio;
574 if (!ci->io->tio.io) {
575 /* the dm_target_io embedded in ci->io is available */
576 tio = &ci->io->tio;
577 } else {
578 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
579 if (!clone)
580 return NULL;
582 tio = container_of(clone, struct dm_target_io, clone);
583 tio->inside_dm_io = false;
586 tio->magic = DM_TIO_MAGIC;
587 tio->io = ci->io;
588 tio->ti = ti;
589 tio->target_bio_nr = target_bio_nr;
591 return tio;
594 static void free_tio(struct dm_target_io *tio)
596 if (tio->inside_dm_io)
597 return;
598 bio_put(&tio->clone);
601 int md_in_flight(struct mapped_device *md)
603 return atomic_read(&md->pending[READ]) +
604 atomic_read(&md->pending[WRITE]);
607 static void start_io_acct(struct dm_io *io)
609 struct mapped_device *md = io->md;
610 struct bio *bio = io->orig_bio;
611 int rw = bio_data_dir(bio);
613 io->start_time = jiffies;
615 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
617 atomic_set(&dm_disk(md)->part0.in_flight[rw],
618 atomic_inc_return(&md->pending[rw]));
620 if (unlikely(dm_stats_used(&md->stats)))
621 dm_stats_account_io(&md->stats, bio_data_dir(bio),
622 bio->bi_iter.bi_sector, bio_sectors(bio),
623 false, 0, &io->stats_aux);
626 static void end_io_acct(struct dm_io *io)
628 struct mapped_device *md = io->md;
629 struct bio *bio = io->orig_bio;
630 unsigned long duration = jiffies - io->start_time;
631 int pending;
632 int rw = bio_data_dir(bio);
634 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
636 if (unlikely(dm_stats_used(&md->stats)))
637 dm_stats_account_io(&md->stats, bio_data_dir(bio),
638 bio->bi_iter.bi_sector, bio_sectors(bio),
639 true, duration, &io->stats_aux);
642 * After this is decremented the bio must not be touched if it is
643 * a flush.
645 pending = atomic_dec_return(&md->pending[rw]);
646 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
647 pending += atomic_read(&md->pending[rw^0x1]);
649 /* nudge anyone waiting on suspend queue */
650 if (!pending)
651 wake_up(&md->wait);
655 * Add the bio to the list of deferred io.
657 static void queue_io(struct mapped_device *md, struct bio *bio)
659 unsigned long flags;
661 spin_lock_irqsave(&md->deferred_lock, flags);
662 bio_list_add(&md->deferred, bio);
663 spin_unlock_irqrestore(&md->deferred_lock, flags);
664 queue_work(md->wq, &md->work);
668 * Everyone (including functions in this file), should use this
669 * function to access the md->map field, and make sure they call
670 * dm_put_live_table() when finished.
672 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
674 *srcu_idx = srcu_read_lock(&md->io_barrier);
676 return srcu_dereference(md->map, &md->io_barrier);
679 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
681 srcu_read_unlock(&md->io_barrier, srcu_idx);
684 void dm_sync_table(struct mapped_device *md)
686 synchronize_srcu(&md->io_barrier);
687 synchronize_rcu_expedited();
691 * A fast alternative to dm_get_live_table/dm_put_live_table.
692 * The caller must not block between these two functions.
694 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
696 rcu_read_lock();
697 return rcu_dereference(md->map);
700 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
702 rcu_read_unlock();
706 * Open a table device so we can use it as a map destination.
708 static int open_table_device(struct table_device *td, dev_t dev,
709 struct mapped_device *md)
711 static char *_claim_ptr = "I belong to device-mapper";
712 struct block_device *bdev;
714 int r;
716 BUG_ON(td->dm_dev.bdev);
718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
719 if (IS_ERR(bdev))
720 return PTR_ERR(bdev);
722 r = bd_link_disk_holder(bdev, dm_disk(md));
723 if (r) {
724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 return r;
728 td->dm_dev.bdev = bdev;
729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 return 0;
734 * Close a table device that we've been using.
736 static void close_table_device(struct table_device *td, struct mapped_device *md)
738 if (!td->dm_dev.bdev)
739 return;
741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 put_dax(td->dm_dev.dax_dev);
744 td->dm_dev.bdev = NULL;
745 td->dm_dev.dax_dev = NULL;
748 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 fmode_t mode) {
750 struct table_device *td;
752 list_for_each_entry(td, l, list)
753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 return td;
756 return NULL;
759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 struct dm_dev **result) {
761 int r;
762 struct table_device *td;
764 mutex_lock(&md->table_devices_lock);
765 td = find_table_device(&md->table_devices, dev, mode);
766 if (!td) {
767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 if (!td) {
769 mutex_unlock(&md->table_devices_lock);
770 return -ENOMEM;
773 td->dm_dev.mode = mode;
774 td->dm_dev.bdev = NULL;
776 if ((r = open_table_device(td, dev, md))) {
777 mutex_unlock(&md->table_devices_lock);
778 kfree(td);
779 return r;
782 format_dev_t(td->dm_dev.name, dev);
784 refcount_set(&td->count, 1);
785 list_add(&td->list, &md->table_devices);
786 } else {
787 refcount_inc(&td->count);
789 mutex_unlock(&md->table_devices_lock);
791 *result = &td->dm_dev;
792 return 0;
794 EXPORT_SYMBOL_GPL(dm_get_table_device);
796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
798 struct table_device *td = container_of(d, struct table_device, dm_dev);
800 mutex_lock(&md->table_devices_lock);
801 if (refcount_dec_and_test(&td->count)) {
802 close_table_device(td, md);
803 list_del(&td->list);
804 kfree(td);
806 mutex_unlock(&md->table_devices_lock);
808 EXPORT_SYMBOL(dm_put_table_device);
810 static void free_table_devices(struct list_head *devices)
812 struct list_head *tmp, *next;
814 list_for_each_safe(tmp, next, devices) {
815 struct table_device *td = list_entry(tmp, struct table_device, list);
817 DMWARN("dm_destroy: %s still exists with %d references",
818 td->dm_dev.name, refcount_read(&td->count));
819 kfree(td);
824 * Get the geometry associated with a dm device
826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
828 *geo = md->geometry;
830 return 0;
834 * Set the geometry of a device.
836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
840 if (geo->start > sz) {
841 DMWARN("Start sector is beyond the geometry limits.");
842 return -EINVAL;
845 md->geometry = *geo;
847 return 0;
850 static int __noflush_suspending(struct mapped_device *md)
852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
856 * Decrements the number of outstanding ios that a bio has been
857 * cloned into, completing the original io if necc.
859 static void dec_pending(struct dm_io *io, blk_status_t error)
861 unsigned long flags;
862 blk_status_t io_error;
863 struct bio *bio;
864 struct mapped_device *md = io->md;
866 /* Push-back supersedes any I/O errors */
867 if (unlikely(error)) {
868 spin_lock_irqsave(&io->endio_lock, flags);
869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 io->status = error;
871 spin_unlock_irqrestore(&io->endio_lock, flags);
874 if (atomic_dec_and_test(&io->io_count)) {
875 if (io->status == BLK_STS_DM_REQUEUE) {
877 * Target requested pushing back the I/O.
879 spin_lock_irqsave(&md->deferred_lock, flags);
880 if (__noflush_suspending(md))
881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 bio_list_add_head(&md->deferred, io->orig_bio);
883 else
884 /* noflush suspend was interrupted. */
885 io->status = BLK_STS_IOERR;
886 spin_unlock_irqrestore(&md->deferred_lock, flags);
889 io_error = io->status;
890 bio = io->orig_bio;
891 end_io_acct(io);
892 free_io(md, io);
894 if (io_error == BLK_STS_DM_REQUEUE)
895 return;
897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
899 * Preflush done for flush with data, reissue
900 * without REQ_PREFLUSH.
902 bio->bi_opf &= ~REQ_PREFLUSH;
903 queue_io(md, bio);
904 } else {
905 /* done with normal IO or empty flush */
906 bio->bi_status = io_error;
907 bio_endio(bio);
912 void disable_write_same(struct mapped_device *md)
914 struct queue_limits *limits = dm_get_queue_limits(md);
916 /* device doesn't really support WRITE SAME, disable it */
917 limits->max_write_same_sectors = 0;
920 void disable_write_zeroes(struct mapped_device *md)
922 struct queue_limits *limits = dm_get_queue_limits(md);
924 /* device doesn't really support WRITE ZEROES, disable it */
925 limits->max_write_zeroes_sectors = 0;
928 static void clone_endio(struct bio *bio)
930 blk_status_t error = bio->bi_status;
931 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
932 struct dm_io *io = tio->io;
933 struct mapped_device *md = tio->io->md;
934 dm_endio_fn endio = tio->ti->type->end_io;
936 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
937 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
938 !bio->bi_disk->queue->limits.max_write_same_sectors)
939 disable_write_same(md);
940 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
941 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
942 disable_write_zeroes(md);
945 if (endio) {
946 int r = endio(tio->ti, bio, &error);
947 switch (r) {
948 case DM_ENDIO_REQUEUE:
949 error = BLK_STS_DM_REQUEUE;
950 /*FALLTHRU*/
951 case DM_ENDIO_DONE:
952 break;
953 case DM_ENDIO_INCOMPLETE:
954 /* The target will handle the io */
955 return;
956 default:
957 DMWARN("unimplemented target endio return value: %d", r);
958 BUG();
962 free_tio(tio);
963 dec_pending(io, error);
967 * Return maximum size of I/O possible at the supplied sector up to the current
968 * target boundary.
970 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
972 sector_t target_offset = dm_target_offset(ti, sector);
974 return ti->len - target_offset;
977 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
979 sector_t len = max_io_len_target_boundary(sector, ti);
980 sector_t offset, max_len;
983 * Does the target need to split even further?
985 if (ti->max_io_len) {
986 offset = dm_target_offset(ti, sector);
987 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
988 max_len = sector_div(offset, ti->max_io_len);
989 else
990 max_len = offset & (ti->max_io_len - 1);
991 max_len = ti->max_io_len - max_len;
993 if (len > max_len)
994 len = max_len;
997 return len;
1000 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1002 if (len > UINT_MAX) {
1003 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1004 (unsigned long long)len, UINT_MAX);
1005 ti->error = "Maximum size of target IO is too large";
1006 return -EINVAL;
1010 * BIO based queue uses its own splitting. When multipage bvecs
1011 * is switched on, size of the incoming bio may be too big to
1012 * be handled in some targets, such as crypt.
1014 * When these targets are ready for the big bio, we can remove
1015 * the limit.
1017 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1019 return 0;
1021 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1023 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1024 sector_t sector, int *srcu_idx)
1026 struct dm_table *map;
1027 struct dm_target *ti;
1029 map = dm_get_live_table(md, srcu_idx);
1030 if (!map)
1031 return NULL;
1033 ti = dm_table_find_target(map, sector);
1034 if (!dm_target_is_valid(ti))
1035 return NULL;
1037 return ti;
1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 long nr_pages, void **kaddr, pfn_t *pfn)
1043 struct mapped_device *md = dax_get_private(dax_dev);
1044 sector_t sector = pgoff * PAGE_SECTORS;
1045 struct dm_target *ti;
1046 long len, ret = -EIO;
1047 int srcu_idx;
1049 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1051 if (!ti)
1052 goto out;
1053 if (!ti->type->direct_access)
1054 goto out;
1055 len = max_io_len(sector, ti) / PAGE_SECTORS;
1056 if (len < 1)
1057 goto out;
1058 nr_pages = min(len, nr_pages);
1059 if (ti->type->direct_access)
1060 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1062 out:
1063 dm_put_live_table(md, srcu_idx);
1065 return ret;
1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069 void *addr, size_t bytes, struct iov_iter *i)
1071 struct mapped_device *md = dax_get_private(dax_dev);
1072 sector_t sector = pgoff * PAGE_SECTORS;
1073 struct dm_target *ti;
1074 long ret = 0;
1075 int srcu_idx;
1077 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1079 if (!ti)
1080 goto out;
1081 if (!ti->type->dax_copy_from_iter) {
1082 ret = copy_from_iter(addr, bytes, i);
1083 goto out;
1085 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086 out:
1087 dm_put_live_table(md, srcu_idx);
1089 return ret;
1093 * A target may call dm_accept_partial_bio only from the map routine. It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1102 * | 1 | 2 | 3 |
1103 * +--------------------+---------------+-------+
1105 * <-------------- *tio->len_ptr --------------->
1106 * <------- bi_size ------->
1107 * <-- n_sectors -->
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 * (it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 * (it may be empty if region 1 is non-empty, although there is no reason
1113 * to make it empty)
1114 * The target requires that region 3 is to be sent in the next bio.
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1120 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1122 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125 BUG_ON(bi_size > *tio->len_ptr);
1126 BUG_ON(n_sectors > bi_size);
1127 *tio->len_ptr -= bi_size - n_sectors;
1128 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1140 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1142 #ifdef CONFIG_BLK_DEV_ZONED
1143 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144 struct bio *report_bio = tio->io->orig_bio;
1145 struct blk_zone_report_hdr *hdr = NULL;
1146 struct blk_zone *zone;
1147 unsigned int nr_rep = 0;
1148 unsigned int ofst;
1149 struct bio_vec bvec;
1150 struct bvec_iter iter;
1151 void *addr;
1153 if (bio->bi_status)
1154 return;
1157 * Remap the start sector of the reported zones. For sequential zones,
1158 * also remap the write pointer position.
1160 bio_for_each_segment(bvec, report_bio, iter) {
1161 addr = kmap_atomic(bvec.bv_page);
1163 /* Remember the report header in the first page */
1164 if (!hdr) {
1165 hdr = addr;
1166 ofst = sizeof(struct blk_zone_report_hdr);
1167 } else
1168 ofst = 0;
1170 /* Set zones start sector */
1171 while (hdr->nr_zones && ofst < bvec.bv_len) {
1172 zone = addr + ofst;
1173 if (zone->start >= start + ti->len) {
1174 hdr->nr_zones = 0;
1175 break;
1177 zone->start = zone->start + ti->begin - start;
1178 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179 if (zone->cond == BLK_ZONE_COND_FULL)
1180 zone->wp = zone->start + zone->len;
1181 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182 zone->wp = zone->start;
1183 else
1184 zone->wp = zone->wp + ti->begin - start;
1186 ofst += sizeof(struct blk_zone);
1187 hdr->nr_zones--;
1188 nr_rep++;
1191 if (addr != hdr)
1192 kunmap_atomic(addr);
1194 if (!hdr->nr_zones)
1195 break;
1198 if (hdr) {
1199 hdr->nr_zones = nr_rep;
1200 kunmap_atomic(hdr);
1203 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1205 #else /* !CONFIG_BLK_DEV_ZONED */
1206 bio->bi_status = BLK_STS_NOTSUPP;
1207 #endif
1209 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1211 static blk_qc_t __map_bio(struct dm_target_io *tio)
1213 int r;
1214 sector_t sector;
1215 struct bio *clone = &tio->clone;
1216 struct dm_io *io = tio->io;
1217 struct mapped_device *md = io->md;
1218 struct dm_target *ti = tio->ti;
1219 blk_qc_t ret = BLK_QC_T_NONE;
1221 clone->bi_end_io = clone_endio;
1224 * Map the clone. If r == 0 we don't need to do
1225 * anything, the target has assumed ownership of
1226 * this io.
1228 atomic_inc(&io->io_count);
1229 sector = clone->bi_iter.bi_sector;
1231 r = ti->type->map(ti, clone);
1232 switch (r) {
1233 case DM_MAPIO_SUBMITTED:
1234 break;
1235 case DM_MAPIO_REMAPPED:
1236 /* the bio has been remapped so dispatch it */
1237 trace_block_bio_remap(clone->bi_disk->queue, clone,
1238 bio_dev(io->orig_bio), sector);
1239 if (md->type == DM_TYPE_NVME_BIO_BASED)
1240 ret = direct_make_request(clone);
1241 else
1242 ret = generic_make_request(clone);
1243 break;
1244 case DM_MAPIO_KILL:
1245 free_tio(tio);
1246 dec_pending(io, BLK_STS_IOERR);
1247 break;
1248 case DM_MAPIO_REQUEUE:
1249 free_tio(tio);
1250 dec_pending(io, BLK_STS_DM_REQUEUE);
1251 break;
1252 default:
1253 DMWARN("unimplemented target map return value: %d", r);
1254 BUG();
1257 return ret;
1260 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1262 bio->bi_iter.bi_sector = sector;
1263 bio->bi_iter.bi_size = to_bytes(len);
1267 * Creates a bio that consists of range of complete bvecs.
1269 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270 sector_t sector, unsigned len)
1272 struct bio *clone = &tio->clone;
1274 __bio_clone_fast(clone, bio);
1276 if (unlikely(bio_integrity(bio) != NULL)) {
1277 int r;
1279 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280 !dm_target_passes_integrity(tio->ti->type))) {
1281 DMWARN("%s: the target %s doesn't support integrity data.",
1282 dm_device_name(tio->io->md),
1283 tio->ti->type->name);
1284 return -EIO;
1287 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288 if (r < 0)
1289 return r;
1292 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294 clone->bi_iter.bi_size = to_bytes(len);
1296 if (unlikely(bio_integrity(bio) != NULL))
1297 bio_integrity_trim(clone);
1299 return 0;
1302 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303 struct dm_target *ti, unsigned num_bios)
1305 struct dm_target_io *tio;
1306 int try;
1308 if (!num_bios)
1309 return;
1311 if (num_bios == 1) {
1312 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313 bio_list_add(blist, &tio->clone);
1314 return;
1317 for (try = 0; try < 2; try++) {
1318 int bio_nr;
1319 struct bio *bio;
1321 if (try)
1322 mutex_lock(&ci->io->md->table_devices_lock);
1323 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325 if (!tio)
1326 break;
1328 bio_list_add(blist, &tio->clone);
1330 if (try)
1331 mutex_unlock(&ci->io->md->table_devices_lock);
1332 if (bio_nr == num_bios)
1333 return;
1335 while ((bio = bio_list_pop(blist))) {
1336 tio = container_of(bio, struct dm_target_io, clone);
1337 free_tio(tio);
1342 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343 struct dm_target_io *tio, unsigned *len)
1345 struct bio *clone = &tio->clone;
1347 tio->len_ptr = len;
1349 __bio_clone_fast(clone, ci->bio);
1350 if (len)
1351 bio_setup_sector(clone, ci->sector, *len);
1353 return __map_bio(tio);
1356 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357 unsigned num_bios, unsigned *len)
1359 struct bio_list blist = BIO_EMPTY_LIST;
1360 struct bio *bio;
1361 struct dm_target_io *tio;
1363 alloc_multiple_bios(&blist, ci, ti, num_bios);
1365 while ((bio = bio_list_pop(&blist))) {
1366 tio = container_of(bio, struct dm_target_io, clone);
1367 (void) __clone_and_map_simple_bio(ci, tio, len);
1371 static int __send_empty_flush(struct clone_info *ci)
1373 unsigned target_nr = 0;
1374 struct dm_target *ti;
1376 BUG_ON(bio_has_data(ci->bio));
1377 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1380 return 0;
1383 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384 sector_t sector, unsigned *len)
1386 struct bio *bio = ci->bio;
1387 struct dm_target_io *tio;
1388 int r;
1390 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391 tio->len_ptr = len;
1392 r = clone_bio(tio, bio, sector, *len);
1393 if (r < 0) {
1394 free_tio(tio);
1395 return r;
1397 (void) __map_bio(tio);
1399 return 0;
1402 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1404 static unsigned get_num_discard_bios(struct dm_target *ti)
1406 return ti->num_discard_bios;
1409 static unsigned get_num_write_same_bios(struct dm_target *ti)
1411 return ti->num_write_same_bios;
1414 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1416 return ti->num_write_zeroes_bios;
1419 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1421 static bool is_split_required_for_discard(struct dm_target *ti)
1423 return ti->split_discard_bios;
1426 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1427 get_num_bios_fn get_num_bios,
1428 is_split_required_fn is_split_required)
1430 unsigned len;
1431 unsigned num_bios;
1434 * Even though the device advertised support for this type of
1435 * request, that does not mean every target supports it, and
1436 * reconfiguration might also have changed that since the
1437 * check was performed.
1439 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1440 if (!num_bios)
1441 return -EOPNOTSUPP;
1443 if (is_split_required && !is_split_required(ti))
1444 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1445 else
1446 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1448 __send_duplicate_bios(ci, ti, num_bios, &len);
1450 ci->sector += len;
1451 ci->sector_count -= len;
1453 return 0;
1456 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1458 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1459 is_split_required_for_discard);
1462 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1464 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1467 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1469 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1473 * Select the correct strategy for processing a non-flush bio.
1475 static int __split_and_process_non_flush(struct clone_info *ci)
1477 struct bio *bio = ci->bio;
1478 struct dm_target *ti;
1479 unsigned len;
1480 int r;
1482 ti = dm_table_find_target(ci->map, ci->sector);
1483 if (!dm_target_is_valid(ti))
1484 return -EIO;
1486 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1487 return __send_discard(ci, ti);
1488 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1489 return __send_write_same(ci, ti);
1490 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1491 return __send_write_zeroes(ci, ti);
1493 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1494 len = ci->sector_count;
1495 else
1496 len = min_t(sector_t, max_io_len(ci->sector, ti),
1497 ci->sector_count);
1499 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1500 if (r < 0)
1501 return r;
1503 ci->sector += len;
1504 ci->sector_count -= len;
1506 return 0;
1509 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1510 struct dm_table *map, struct bio *bio)
1512 ci->map = map;
1513 ci->io = alloc_io(md, bio);
1514 ci->sector = bio->bi_iter.bi_sector;
1518 * Entry point to split a bio into clones and submit them to the targets.
1520 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1521 struct dm_table *map, struct bio *bio)
1523 struct clone_info ci;
1524 blk_qc_t ret = BLK_QC_T_NONE;
1525 int error = 0;
1527 if (unlikely(!map)) {
1528 bio_io_error(bio);
1529 return ret;
1532 init_clone_info(&ci, md, map, bio);
1534 if (bio->bi_opf & REQ_PREFLUSH) {
1535 ci.bio = &ci.io->md->flush_bio;
1536 ci.sector_count = 0;
1537 error = __send_empty_flush(&ci);
1538 /* dec_pending submits any data associated with flush */
1539 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1540 ci.bio = bio;
1541 ci.sector_count = 0;
1542 error = __split_and_process_non_flush(&ci);
1543 } else {
1544 ci.bio = bio;
1545 ci.sector_count = bio_sectors(bio);
1546 while (ci.sector_count && !error) {
1547 error = __split_and_process_non_flush(&ci);
1548 if (current->bio_list && ci.sector_count && !error) {
1550 * Remainder must be passed to generic_make_request()
1551 * so that it gets handled *after* bios already submitted
1552 * have been completely processed.
1553 * We take a clone of the original to store in
1554 * ci.io->orig_bio to be used by end_io_acct() and
1555 * for dec_pending to use for completion handling.
1556 * As this path is not used for REQ_OP_ZONE_REPORT,
1557 * the usage of io->orig_bio in dm_remap_zone_report()
1558 * won't be affected by this reassignment.
1560 struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1561 md->queue->bio_split);
1562 ci.io->orig_bio = b;
1563 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1564 bio_chain(b, bio);
1565 ret = generic_make_request(bio);
1566 break;
1571 /* drop the extra reference count */
1572 dec_pending(ci.io, errno_to_blk_status(error));
1573 return ret;
1577 * Optimized variant of __split_and_process_bio that leverages the
1578 * fact that targets that use it do _not_ have a need to split bios.
1580 static blk_qc_t __process_bio(struct mapped_device *md,
1581 struct dm_table *map, struct bio *bio)
1583 struct clone_info ci;
1584 blk_qc_t ret = BLK_QC_T_NONE;
1585 int error = 0;
1587 if (unlikely(!map)) {
1588 bio_io_error(bio);
1589 return ret;
1592 init_clone_info(&ci, md, map, bio);
1594 if (bio->bi_opf & REQ_PREFLUSH) {
1595 ci.bio = &ci.io->md->flush_bio;
1596 ci.sector_count = 0;
1597 error = __send_empty_flush(&ci);
1598 /* dec_pending submits any data associated with flush */
1599 } else {
1600 struct dm_target *ti = md->immutable_target;
1601 struct dm_target_io *tio;
1604 * Defend against IO still getting in during teardown
1605 * - as was seen for a time with nvme-fcloop
1607 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1608 error = -EIO;
1609 goto out;
1612 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1613 ci.bio = bio;
1614 ci.sector_count = bio_sectors(bio);
1615 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1617 out:
1618 /* drop the extra reference count */
1619 dec_pending(ci.io, errno_to_blk_status(error));
1620 return ret;
1623 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1625 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1626 process_bio_fn process_bio)
1628 struct mapped_device *md = q->queuedata;
1629 blk_qc_t ret = BLK_QC_T_NONE;
1630 int srcu_idx;
1631 struct dm_table *map;
1633 map = dm_get_live_table(md, &srcu_idx);
1635 /* if we're suspended, we have to queue this io for later */
1636 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1637 dm_put_live_table(md, srcu_idx);
1639 if (!(bio->bi_opf & REQ_RAHEAD))
1640 queue_io(md, bio);
1641 else
1642 bio_io_error(bio);
1643 return ret;
1646 ret = process_bio(md, map, bio);
1648 dm_put_live_table(md, srcu_idx);
1649 return ret;
1653 * The request function that remaps the bio to one target and
1654 * splits off any remainder.
1656 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1658 return __dm_make_request(q, bio, __split_and_process_bio);
1661 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1663 return __dm_make_request(q, bio, __process_bio);
1666 static int dm_any_congested(void *congested_data, int bdi_bits)
1668 int r = bdi_bits;
1669 struct mapped_device *md = congested_data;
1670 struct dm_table *map;
1672 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1673 if (dm_request_based(md)) {
1675 * With request-based DM we only need to check the
1676 * top-level queue for congestion.
1678 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1679 } else {
1680 map = dm_get_live_table_fast(md);
1681 if (map)
1682 r = dm_table_any_congested(map, bdi_bits);
1683 dm_put_live_table_fast(md);
1687 return r;
1690 /*-----------------------------------------------------------------
1691 * An IDR is used to keep track of allocated minor numbers.
1692 *---------------------------------------------------------------*/
1693 static void free_minor(int minor)
1695 spin_lock(&_minor_lock);
1696 idr_remove(&_minor_idr, minor);
1697 spin_unlock(&_minor_lock);
1701 * See if the device with a specific minor # is free.
1703 static int specific_minor(int minor)
1705 int r;
1707 if (minor >= (1 << MINORBITS))
1708 return -EINVAL;
1710 idr_preload(GFP_KERNEL);
1711 spin_lock(&_minor_lock);
1713 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1715 spin_unlock(&_minor_lock);
1716 idr_preload_end();
1717 if (r < 0)
1718 return r == -ENOSPC ? -EBUSY : r;
1719 return 0;
1722 static int next_free_minor(int *minor)
1724 int r;
1726 idr_preload(GFP_KERNEL);
1727 spin_lock(&_minor_lock);
1729 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1731 spin_unlock(&_minor_lock);
1732 idr_preload_end();
1733 if (r < 0)
1734 return r;
1735 *minor = r;
1736 return 0;
1739 static const struct block_device_operations dm_blk_dops;
1740 static const struct dax_operations dm_dax_ops;
1742 static void dm_wq_work(struct work_struct *work);
1744 static void dm_init_normal_md_queue(struct mapped_device *md)
1746 md->use_blk_mq = false;
1749 * Initialize aspects of queue that aren't relevant for blk-mq
1751 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1754 static void cleanup_mapped_device(struct mapped_device *md)
1756 if (md->wq)
1757 destroy_workqueue(md->wq);
1758 if (md->kworker_task)
1759 kthread_stop(md->kworker_task);
1760 if (md->bs)
1761 bioset_free(md->bs);
1762 if (md->io_bs)
1763 bioset_free(md->io_bs);
1765 if (md->dax_dev) {
1766 kill_dax(md->dax_dev);
1767 put_dax(md->dax_dev);
1768 md->dax_dev = NULL;
1771 if (md->disk) {
1772 spin_lock(&_minor_lock);
1773 md->disk->private_data = NULL;
1774 spin_unlock(&_minor_lock);
1775 del_gendisk(md->disk);
1776 put_disk(md->disk);
1779 if (md->queue)
1780 blk_cleanup_queue(md->queue);
1782 cleanup_srcu_struct(&md->io_barrier);
1784 if (md->bdev) {
1785 bdput(md->bdev);
1786 md->bdev = NULL;
1789 mutex_destroy(&md->suspend_lock);
1790 mutex_destroy(&md->type_lock);
1791 mutex_destroy(&md->table_devices_lock);
1793 dm_mq_cleanup_mapped_device(md);
1797 * Allocate and initialise a blank device with a given minor.
1799 static struct mapped_device *alloc_dev(int minor)
1801 int r, numa_node_id = dm_get_numa_node();
1802 struct dax_device *dax_dev;
1803 struct mapped_device *md;
1804 void *old_md;
1806 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1807 if (!md) {
1808 DMWARN("unable to allocate device, out of memory.");
1809 return NULL;
1812 if (!try_module_get(THIS_MODULE))
1813 goto bad_module_get;
1815 /* get a minor number for the dev */
1816 if (minor == DM_ANY_MINOR)
1817 r = next_free_minor(&minor);
1818 else
1819 r = specific_minor(minor);
1820 if (r < 0)
1821 goto bad_minor;
1823 r = init_srcu_struct(&md->io_barrier);
1824 if (r < 0)
1825 goto bad_io_barrier;
1827 md->numa_node_id = numa_node_id;
1828 md->use_blk_mq = dm_use_blk_mq_default();
1829 md->init_tio_pdu = false;
1830 md->type = DM_TYPE_NONE;
1831 mutex_init(&md->suspend_lock);
1832 mutex_init(&md->type_lock);
1833 mutex_init(&md->table_devices_lock);
1834 spin_lock_init(&md->deferred_lock);
1835 atomic_set(&md->holders, 1);
1836 atomic_set(&md->open_count, 0);
1837 atomic_set(&md->event_nr, 0);
1838 atomic_set(&md->uevent_seq, 0);
1839 INIT_LIST_HEAD(&md->uevent_list);
1840 INIT_LIST_HEAD(&md->table_devices);
1841 spin_lock_init(&md->uevent_lock);
1843 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1844 if (!md->queue)
1845 goto bad;
1846 md->queue->queuedata = md;
1847 md->queue->backing_dev_info->congested_data = md;
1849 md->disk = alloc_disk_node(1, md->numa_node_id);
1850 if (!md->disk)
1851 goto bad;
1853 atomic_set(&md->pending[0], 0);
1854 atomic_set(&md->pending[1], 0);
1855 init_waitqueue_head(&md->wait);
1856 INIT_WORK(&md->work, dm_wq_work);
1857 init_waitqueue_head(&md->eventq);
1858 init_completion(&md->kobj_holder.completion);
1859 md->kworker_task = NULL;
1861 md->disk->major = _major;
1862 md->disk->first_minor = minor;
1863 md->disk->fops = &dm_blk_dops;
1864 md->disk->queue = md->queue;
1865 md->disk->private_data = md;
1866 sprintf(md->disk->disk_name, "dm-%d", minor);
1868 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1869 if (!dax_dev)
1870 goto bad;
1871 md->dax_dev = dax_dev;
1873 add_disk_no_queue_reg(md->disk);
1874 format_dev_t(md->name, MKDEV(_major, minor));
1876 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1877 if (!md->wq)
1878 goto bad;
1880 md->bdev = bdget_disk(md->disk, 0);
1881 if (!md->bdev)
1882 goto bad;
1884 bio_init(&md->flush_bio, NULL, 0);
1885 bio_set_dev(&md->flush_bio, md->bdev);
1886 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1888 dm_stats_init(&md->stats);
1890 /* Populate the mapping, nobody knows we exist yet */
1891 spin_lock(&_minor_lock);
1892 old_md = idr_replace(&_minor_idr, md, minor);
1893 spin_unlock(&_minor_lock);
1895 BUG_ON(old_md != MINOR_ALLOCED);
1897 return md;
1899 bad:
1900 cleanup_mapped_device(md);
1901 bad_io_barrier:
1902 free_minor(minor);
1903 bad_minor:
1904 module_put(THIS_MODULE);
1905 bad_module_get:
1906 kvfree(md);
1907 return NULL;
1910 static void unlock_fs(struct mapped_device *md);
1912 static void free_dev(struct mapped_device *md)
1914 int minor = MINOR(disk_devt(md->disk));
1916 unlock_fs(md);
1918 cleanup_mapped_device(md);
1920 free_table_devices(&md->table_devices);
1921 dm_stats_cleanup(&md->stats);
1922 free_minor(minor);
1924 module_put(THIS_MODULE);
1925 kvfree(md);
1928 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1930 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1932 if (dm_table_bio_based(t)) {
1934 * The md may already have mempools that need changing.
1935 * If so, reload bioset because front_pad may have changed
1936 * because a different table was loaded.
1938 if (md->bs) {
1939 bioset_free(md->bs);
1940 md->bs = NULL;
1942 if (md->io_bs) {
1943 bioset_free(md->io_bs);
1944 md->io_bs = NULL;
1947 } else if (md->bs) {
1949 * There's no need to reload with request-based dm
1950 * because the size of front_pad doesn't change.
1951 * Note for future: If you are to reload bioset,
1952 * prep-ed requests in the queue may refer
1953 * to bio from the old bioset, so you must walk
1954 * through the queue to unprep.
1956 goto out;
1959 BUG_ON(!p || md->bs || md->io_bs);
1961 md->bs = p->bs;
1962 p->bs = NULL;
1963 md->io_bs = p->io_bs;
1964 p->io_bs = NULL;
1965 out:
1966 /* mempool bind completed, no longer need any mempools in the table */
1967 dm_table_free_md_mempools(t);
1971 * Bind a table to the device.
1973 static void event_callback(void *context)
1975 unsigned long flags;
1976 LIST_HEAD(uevents);
1977 struct mapped_device *md = (struct mapped_device *) context;
1979 spin_lock_irqsave(&md->uevent_lock, flags);
1980 list_splice_init(&md->uevent_list, &uevents);
1981 spin_unlock_irqrestore(&md->uevent_lock, flags);
1983 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1985 atomic_inc(&md->event_nr);
1986 wake_up(&md->eventq);
1987 dm_issue_global_event();
1991 * Protected by md->suspend_lock obtained by dm_swap_table().
1993 static void __set_size(struct mapped_device *md, sector_t size)
1995 lockdep_assert_held(&md->suspend_lock);
1997 set_capacity(md->disk, size);
1999 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2003 * Returns old map, which caller must destroy.
2005 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2006 struct queue_limits *limits)
2008 struct dm_table *old_map;
2009 struct request_queue *q = md->queue;
2010 bool request_based = dm_table_request_based(t);
2011 sector_t size;
2013 lockdep_assert_held(&md->suspend_lock);
2015 size = dm_table_get_size(t);
2018 * Wipe any geometry if the size of the table changed.
2020 if (size != dm_get_size(md))
2021 memset(&md->geometry, 0, sizeof(md->geometry));
2023 __set_size(md, size);
2025 dm_table_event_callback(t, event_callback, md);
2028 * The queue hasn't been stopped yet, if the old table type wasn't
2029 * for request-based during suspension. So stop it to prevent
2030 * I/O mapping before resume.
2031 * This must be done before setting the queue restrictions,
2032 * because request-based dm may be run just after the setting.
2034 if (request_based)
2035 dm_stop_queue(q);
2037 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2039 * Leverage the fact that request-based DM targets and
2040 * NVMe bio based targets are immutable singletons
2041 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2042 * and __process_bio.
2044 md->immutable_target = dm_table_get_immutable_target(t);
2047 __bind_mempools(md, t);
2049 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2050 rcu_assign_pointer(md->map, (void *)t);
2051 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2053 dm_table_set_restrictions(t, q, limits);
2054 if (old_map)
2055 dm_sync_table(md);
2057 return old_map;
2061 * Returns unbound table for the caller to free.
2063 static struct dm_table *__unbind(struct mapped_device *md)
2065 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2067 if (!map)
2068 return NULL;
2070 dm_table_event_callback(map, NULL, NULL);
2071 RCU_INIT_POINTER(md->map, NULL);
2072 dm_sync_table(md);
2074 return map;
2078 * Constructor for a new device.
2080 int dm_create(int minor, struct mapped_device **result)
2082 int r;
2083 struct mapped_device *md;
2085 md = alloc_dev(minor);
2086 if (!md)
2087 return -ENXIO;
2089 r = dm_sysfs_init(md);
2090 if (r) {
2091 free_dev(md);
2092 return r;
2095 *result = md;
2096 return 0;
2100 * Functions to manage md->type.
2101 * All are required to hold md->type_lock.
2103 void dm_lock_md_type(struct mapped_device *md)
2105 mutex_lock(&md->type_lock);
2108 void dm_unlock_md_type(struct mapped_device *md)
2110 mutex_unlock(&md->type_lock);
2113 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2115 BUG_ON(!mutex_is_locked(&md->type_lock));
2116 md->type = type;
2119 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2121 return md->type;
2124 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2126 return md->immutable_target_type;
2130 * The queue_limits are only valid as long as you have a reference
2131 * count on 'md'.
2133 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2135 BUG_ON(!atomic_read(&md->holders));
2136 return &md->queue->limits;
2138 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2141 * Setup the DM device's queue based on md's type
2143 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2145 int r;
2146 struct queue_limits limits;
2147 enum dm_queue_mode type = dm_get_md_type(md);
2149 switch (type) {
2150 case DM_TYPE_REQUEST_BASED:
2151 dm_init_normal_md_queue(md);
2152 r = dm_old_init_request_queue(md, t);
2153 if (r) {
2154 DMERR("Cannot initialize queue for request-based mapped device");
2155 return r;
2157 break;
2158 case DM_TYPE_MQ_REQUEST_BASED:
2159 r = dm_mq_init_request_queue(md, t);
2160 if (r) {
2161 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2162 return r;
2164 break;
2165 case DM_TYPE_BIO_BASED:
2166 case DM_TYPE_DAX_BIO_BASED:
2167 dm_init_normal_md_queue(md);
2168 blk_queue_make_request(md->queue, dm_make_request);
2169 break;
2170 case DM_TYPE_NVME_BIO_BASED:
2171 dm_init_normal_md_queue(md);
2172 blk_queue_make_request(md->queue, dm_make_request_nvme);
2173 break;
2174 case DM_TYPE_NONE:
2175 WARN_ON_ONCE(true);
2176 break;
2179 r = dm_calculate_queue_limits(t, &limits);
2180 if (r) {
2181 DMERR("Cannot calculate initial queue limits");
2182 return r;
2184 dm_table_set_restrictions(t, md->queue, &limits);
2185 blk_register_queue(md->disk);
2187 return 0;
2190 struct mapped_device *dm_get_md(dev_t dev)
2192 struct mapped_device *md;
2193 unsigned minor = MINOR(dev);
2195 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2196 return NULL;
2198 spin_lock(&_minor_lock);
2200 md = idr_find(&_minor_idr, minor);
2201 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2202 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2203 md = NULL;
2204 goto out;
2206 dm_get(md);
2207 out:
2208 spin_unlock(&_minor_lock);
2210 return md;
2212 EXPORT_SYMBOL_GPL(dm_get_md);
2214 void *dm_get_mdptr(struct mapped_device *md)
2216 return md->interface_ptr;
2219 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2221 md->interface_ptr = ptr;
2224 void dm_get(struct mapped_device *md)
2226 atomic_inc(&md->holders);
2227 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2230 int dm_hold(struct mapped_device *md)
2232 spin_lock(&_minor_lock);
2233 if (test_bit(DMF_FREEING, &md->flags)) {
2234 spin_unlock(&_minor_lock);
2235 return -EBUSY;
2237 dm_get(md);
2238 spin_unlock(&_minor_lock);
2239 return 0;
2241 EXPORT_SYMBOL_GPL(dm_hold);
2243 const char *dm_device_name(struct mapped_device *md)
2245 return md->name;
2247 EXPORT_SYMBOL_GPL(dm_device_name);
2249 static void __dm_destroy(struct mapped_device *md, bool wait)
2251 struct dm_table *map;
2252 int srcu_idx;
2254 might_sleep();
2256 spin_lock(&_minor_lock);
2257 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2258 set_bit(DMF_FREEING, &md->flags);
2259 spin_unlock(&_minor_lock);
2261 blk_set_queue_dying(md->queue);
2263 if (dm_request_based(md) && md->kworker_task)
2264 kthread_flush_worker(&md->kworker);
2267 * Take suspend_lock so that presuspend and postsuspend methods
2268 * do not race with internal suspend.
2270 mutex_lock(&md->suspend_lock);
2271 map = dm_get_live_table(md, &srcu_idx);
2272 if (!dm_suspended_md(md)) {
2273 dm_table_presuspend_targets(map);
2274 dm_table_postsuspend_targets(map);
2276 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2277 dm_put_live_table(md, srcu_idx);
2278 mutex_unlock(&md->suspend_lock);
2281 * Rare, but there may be I/O requests still going to complete,
2282 * for example. Wait for all references to disappear.
2283 * No one should increment the reference count of the mapped_device,
2284 * after the mapped_device state becomes DMF_FREEING.
2286 if (wait)
2287 while (atomic_read(&md->holders))
2288 msleep(1);
2289 else if (atomic_read(&md->holders))
2290 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2291 dm_device_name(md), atomic_read(&md->holders));
2293 dm_sysfs_exit(md);
2294 dm_table_destroy(__unbind(md));
2295 free_dev(md);
2298 void dm_destroy(struct mapped_device *md)
2300 __dm_destroy(md, true);
2303 void dm_destroy_immediate(struct mapped_device *md)
2305 __dm_destroy(md, false);
2308 void dm_put(struct mapped_device *md)
2310 atomic_dec(&md->holders);
2312 EXPORT_SYMBOL_GPL(dm_put);
2314 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2316 int r = 0;
2317 DEFINE_WAIT(wait);
2319 while (1) {
2320 prepare_to_wait(&md->wait, &wait, task_state);
2322 if (!md_in_flight(md))
2323 break;
2325 if (signal_pending_state(task_state, current)) {
2326 r = -EINTR;
2327 break;
2330 io_schedule();
2332 finish_wait(&md->wait, &wait);
2334 return r;
2338 * Process the deferred bios
2340 static void dm_wq_work(struct work_struct *work)
2342 struct mapped_device *md = container_of(work, struct mapped_device,
2343 work);
2344 struct bio *c;
2345 int srcu_idx;
2346 struct dm_table *map;
2348 map = dm_get_live_table(md, &srcu_idx);
2350 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2351 spin_lock_irq(&md->deferred_lock);
2352 c = bio_list_pop(&md->deferred);
2353 spin_unlock_irq(&md->deferred_lock);
2355 if (!c)
2356 break;
2358 if (dm_request_based(md))
2359 generic_make_request(c);
2360 else
2361 __split_and_process_bio(md, map, c);
2364 dm_put_live_table(md, srcu_idx);
2367 static void dm_queue_flush(struct mapped_device *md)
2369 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2370 smp_mb__after_atomic();
2371 queue_work(md->wq, &md->work);
2375 * Swap in a new table, returning the old one for the caller to destroy.
2377 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2379 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2380 struct queue_limits limits;
2381 int r;
2383 mutex_lock(&md->suspend_lock);
2385 /* device must be suspended */
2386 if (!dm_suspended_md(md))
2387 goto out;
2390 * If the new table has no data devices, retain the existing limits.
2391 * This helps multipath with queue_if_no_path if all paths disappear,
2392 * then new I/O is queued based on these limits, and then some paths
2393 * reappear.
2395 if (dm_table_has_no_data_devices(table)) {
2396 live_map = dm_get_live_table_fast(md);
2397 if (live_map)
2398 limits = md->queue->limits;
2399 dm_put_live_table_fast(md);
2402 if (!live_map) {
2403 r = dm_calculate_queue_limits(table, &limits);
2404 if (r) {
2405 map = ERR_PTR(r);
2406 goto out;
2410 map = __bind(md, table, &limits);
2411 dm_issue_global_event();
2413 out:
2414 mutex_unlock(&md->suspend_lock);
2415 return map;
2419 * Functions to lock and unlock any filesystem running on the
2420 * device.
2422 static int lock_fs(struct mapped_device *md)
2424 int r;
2426 WARN_ON(md->frozen_sb);
2428 md->frozen_sb = freeze_bdev(md->bdev);
2429 if (IS_ERR(md->frozen_sb)) {
2430 r = PTR_ERR(md->frozen_sb);
2431 md->frozen_sb = NULL;
2432 return r;
2435 set_bit(DMF_FROZEN, &md->flags);
2437 return 0;
2440 static void unlock_fs(struct mapped_device *md)
2442 if (!test_bit(DMF_FROZEN, &md->flags))
2443 return;
2445 thaw_bdev(md->bdev, md->frozen_sb);
2446 md->frozen_sb = NULL;
2447 clear_bit(DMF_FROZEN, &md->flags);
2451 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2452 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2453 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2455 * If __dm_suspend returns 0, the device is completely quiescent
2456 * now. There is no request-processing activity. All new requests
2457 * are being added to md->deferred list.
2459 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2460 unsigned suspend_flags, long task_state,
2461 int dmf_suspended_flag)
2463 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2464 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2465 int r;
2467 lockdep_assert_held(&md->suspend_lock);
2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2471 * This flag is cleared before dm_suspend returns.
2473 if (noflush)
2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2475 else
2476 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2479 * This gets reverted if there's an error later and the targets
2480 * provide the .presuspend_undo hook.
2482 dm_table_presuspend_targets(map);
2485 * Flush I/O to the device.
2486 * Any I/O submitted after lock_fs() may not be flushed.
2487 * noflush takes precedence over do_lockfs.
2488 * (lock_fs() flushes I/Os and waits for them to complete.)
2490 if (!noflush && do_lockfs) {
2491 r = lock_fs(md);
2492 if (r) {
2493 dm_table_presuspend_undo_targets(map);
2494 return r;
2499 * Here we must make sure that no processes are submitting requests
2500 * to target drivers i.e. no one may be executing
2501 * __split_and_process_bio. This is called from dm_request and
2502 * dm_wq_work.
2504 * To get all processes out of __split_and_process_bio in dm_request,
2505 * we take the write lock. To prevent any process from reentering
2506 * __split_and_process_bio from dm_request and quiesce the thread
2507 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2508 * flush_workqueue(md->wq).
2510 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2511 if (map)
2512 synchronize_srcu(&md->io_barrier);
2515 * Stop md->queue before flushing md->wq in case request-based
2516 * dm defers requests to md->wq from md->queue.
2518 if (dm_request_based(md)) {
2519 dm_stop_queue(md->queue);
2520 if (md->kworker_task)
2521 kthread_flush_worker(&md->kworker);
2524 flush_workqueue(md->wq);
2527 * At this point no more requests are entering target request routines.
2528 * We call dm_wait_for_completion to wait for all existing requests
2529 * to finish.
2531 r = dm_wait_for_completion(md, task_state);
2532 if (!r)
2533 set_bit(dmf_suspended_flag, &md->flags);
2535 if (noflush)
2536 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2537 if (map)
2538 synchronize_srcu(&md->io_barrier);
2540 /* were we interrupted ? */
2541 if (r < 0) {
2542 dm_queue_flush(md);
2544 if (dm_request_based(md))
2545 dm_start_queue(md->queue);
2547 unlock_fs(md);
2548 dm_table_presuspend_undo_targets(map);
2549 /* pushback list is already flushed, so skip flush */
2552 return r;
2556 * We need to be able to change a mapping table under a mounted
2557 * filesystem. For example we might want to move some data in
2558 * the background. Before the table can be swapped with
2559 * dm_bind_table, dm_suspend must be called to flush any in
2560 * flight bios and ensure that any further io gets deferred.
2563 * Suspend mechanism in request-based dm.
2565 * 1. Flush all I/Os by lock_fs() if needed.
2566 * 2. Stop dispatching any I/O by stopping the request_queue.
2567 * 3. Wait for all in-flight I/Os to be completed or requeued.
2569 * To abort suspend, start the request_queue.
2571 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2573 struct dm_table *map = NULL;
2574 int r = 0;
2576 retry:
2577 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2579 if (dm_suspended_md(md)) {
2580 r = -EINVAL;
2581 goto out_unlock;
2584 if (dm_suspended_internally_md(md)) {
2585 /* already internally suspended, wait for internal resume */
2586 mutex_unlock(&md->suspend_lock);
2587 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2588 if (r)
2589 return r;
2590 goto retry;
2593 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2595 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2596 if (r)
2597 goto out_unlock;
2599 dm_table_postsuspend_targets(map);
2601 out_unlock:
2602 mutex_unlock(&md->suspend_lock);
2603 return r;
2606 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2608 if (map) {
2609 int r = dm_table_resume_targets(map);
2610 if (r)
2611 return r;
2614 dm_queue_flush(md);
2617 * Flushing deferred I/Os must be done after targets are resumed
2618 * so that mapping of targets can work correctly.
2619 * Request-based dm is queueing the deferred I/Os in its request_queue.
2621 if (dm_request_based(md))
2622 dm_start_queue(md->queue);
2624 unlock_fs(md);
2626 return 0;
2629 int dm_resume(struct mapped_device *md)
2631 int r;
2632 struct dm_table *map = NULL;
2634 retry:
2635 r = -EINVAL;
2636 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2638 if (!dm_suspended_md(md))
2639 goto out;
2641 if (dm_suspended_internally_md(md)) {
2642 /* already internally suspended, wait for internal resume */
2643 mutex_unlock(&md->suspend_lock);
2644 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2645 if (r)
2646 return r;
2647 goto retry;
2650 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2651 if (!map || !dm_table_get_size(map))
2652 goto out;
2654 r = __dm_resume(md, map);
2655 if (r)
2656 goto out;
2658 clear_bit(DMF_SUSPENDED, &md->flags);
2659 out:
2660 mutex_unlock(&md->suspend_lock);
2662 return r;
2666 * Internal suspend/resume works like userspace-driven suspend. It waits
2667 * until all bios finish and prevents issuing new bios to the target drivers.
2668 * It may be used only from the kernel.
2671 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2673 struct dm_table *map = NULL;
2675 lockdep_assert_held(&md->suspend_lock);
2677 if (md->internal_suspend_count++)
2678 return; /* nested internal suspend */
2680 if (dm_suspended_md(md)) {
2681 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2682 return; /* nest suspend */
2685 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2688 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2689 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2690 * would require changing .presuspend to return an error -- avoid this
2691 * until there is a need for more elaborate variants of internal suspend.
2693 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2694 DMF_SUSPENDED_INTERNALLY);
2696 dm_table_postsuspend_targets(map);
2699 static void __dm_internal_resume(struct mapped_device *md)
2701 BUG_ON(!md->internal_suspend_count);
2703 if (--md->internal_suspend_count)
2704 return; /* resume from nested internal suspend */
2706 if (dm_suspended_md(md))
2707 goto done; /* resume from nested suspend */
2710 * NOTE: existing callers don't need to call dm_table_resume_targets
2711 * (which may fail -- so best to avoid it for now by passing NULL map)
2713 (void) __dm_resume(md, NULL);
2715 done:
2716 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2717 smp_mb__after_atomic();
2718 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2721 void dm_internal_suspend_noflush(struct mapped_device *md)
2723 mutex_lock(&md->suspend_lock);
2724 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2725 mutex_unlock(&md->suspend_lock);
2727 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2729 void dm_internal_resume(struct mapped_device *md)
2731 mutex_lock(&md->suspend_lock);
2732 __dm_internal_resume(md);
2733 mutex_unlock(&md->suspend_lock);
2735 EXPORT_SYMBOL_GPL(dm_internal_resume);
2738 * Fast variants of internal suspend/resume hold md->suspend_lock,
2739 * which prevents interaction with userspace-driven suspend.
2742 void dm_internal_suspend_fast(struct mapped_device *md)
2744 mutex_lock(&md->suspend_lock);
2745 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2746 return;
2748 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2749 synchronize_srcu(&md->io_barrier);
2750 flush_workqueue(md->wq);
2751 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2753 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2755 void dm_internal_resume_fast(struct mapped_device *md)
2757 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2758 goto done;
2760 dm_queue_flush(md);
2762 done:
2763 mutex_unlock(&md->suspend_lock);
2765 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2767 /*-----------------------------------------------------------------
2768 * Event notification.
2769 *---------------------------------------------------------------*/
2770 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2771 unsigned cookie)
2773 char udev_cookie[DM_COOKIE_LENGTH];
2774 char *envp[] = { udev_cookie, NULL };
2776 if (!cookie)
2777 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2778 else {
2779 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2780 DM_COOKIE_ENV_VAR_NAME, cookie);
2781 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2782 action, envp);
2786 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2788 return atomic_add_return(1, &md->uevent_seq);
2791 uint32_t dm_get_event_nr(struct mapped_device *md)
2793 return atomic_read(&md->event_nr);
2796 int dm_wait_event(struct mapped_device *md, int event_nr)
2798 return wait_event_interruptible(md->eventq,
2799 (event_nr != atomic_read(&md->event_nr)));
2802 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2804 unsigned long flags;
2806 spin_lock_irqsave(&md->uevent_lock, flags);
2807 list_add(elist, &md->uevent_list);
2808 spin_unlock_irqrestore(&md->uevent_lock, flags);
2812 * The gendisk is only valid as long as you have a reference
2813 * count on 'md'.
2815 struct gendisk *dm_disk(struct mapped_device *md)
2817 return md->disk;
2819 EXPORT_SYMBOL_GPL(dm_disk);
2821 struct kobject *dm_kobject(struct mapped_device *md)
2823 return &md->kobj_holder.kobj;
2826 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2828 struct mapped_device *md;
2830 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2832 spin_lock(&_minor_lock);
2833 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2834 md = NULL;
2835 goto out;
2837 dm_get(md);
2838 out:
2839 spin_unlock(&_minor_lock);
2841 return md;
2844 int dm_suspended_md(struct mapped_device *md)
2846 return test_bit(DMF_SUSPENDED, &md->flags);
2849 int dm_suspended_internally_md(struct mapped_device *md)
2851 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2854 int dm_test_deferred_remove_flag(struct mapped_device *md)
2856 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2859 int dm_suspended(struct dm_target *ti)
2861 return dm_suspended_md(dm_table_get_md(ti->table));
2863 EXPORT_SYMBOL_GPL(dm_suspended);
2865 int dm_noflush_suspending(struct dm_target *ti)
2867 return __noflush_suspending(dm_table_get_md(ti->table));
2869 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2871 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2872 unsigned integrity, unsigned per_io_data_size,
2873 unsigned min_pool_size)
2875 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2876 unsigned int pool_size = 0;
2877 unsigned int front_pad, io_front_pad;
2879 if (!pools)
2880 return NULL;
2882 switch (type) {
2883 case DM_TYPE_BIO_BASED:
2884 case DM_TYPE_DAX_BIO_BASED:
2885 case DM_TYPE_NVME_BIO_BASED:
2886 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2887 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2888 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2889 pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2890 if (!pools->io_bs)
2891 goto out;
2892 if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2893 goto out;
2894 break;
2895 case DM_TYPE_REQUEST_BASED:
2896 case DM_TYPE_MQ_REQUEST_BASED:
2897 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2898 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2899 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2900 break;
2901 default:
2902 BUG();
2905 pools->bs = bioset_create(pool_size, front_pad, 0);
2906 if (!pools->bs)
2907 goto out;
2909 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2910 goto out;
2912 return pools;
2914 out:
2915 dm_free_md_mempools(pools);
2917 return NULL;
2920 void dm_free_md_mempools(struct dm_md_mempools *pools)
2922 if (!pools)
2923 return;
2925 if (pools->bs)
2926 bioset_free(pools->bs);
2927 if (pools->io_bs)
2928 bioset_free(pools->io_bs);
2930 kfree(pools);
2933 struct dm_pr {
2934 u64 old_key;
2935 u64 new_key;
2936 u32 flags;
2937 bool fail_early;
2940 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2941 void *data)
2943 struct mapped_device *md = bdev->bd_disk->private_data;
2944 struct dm_table *table;
2945 struct dm_target *ti;
2946 int ret = -ENOTTY, srcu_idx;
2948 table = dm_get_live_table(md, &srcu_idx);
2949 if (!table || !dm_table_get_size(table))
2950 goto out;
2952 /* We only support devices that have a single target */
2953 if (dm_table_get_num_targets(table) != 1)
2954 goto out;
2955 ti = dm_table_get_target(table, 0);
2957 ret = -EINVAL;
2958 if (!ti->type->iterate_devices)
2959 goto out;
2961 ret = ti->type->iterate_devices(ti, fn, data);
2962 out:
2963 dm_put_live_table(md, srcu_idx);
2964 return ret;
2968 * For register / unregister we need to manually call out to every path.
2970 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2971 sector_t start, sector_t len, void *data)
2973 struct dm_pr *pr = data;
2974 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2976 if (!ops || !ops->pr_register)
2977 return -EOPNOTSUPP;
2978 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2981 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2982 u32 flags)
2984 struct dm_pr pr = {
2985 .old_key = old_key,
2986 .new_key = new_key,
2987 .flags = flags,
2988 .fail_early = true,
2990 int ret;
2992 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2993 if (ret && new_key) {
2994 /* unregister all paths if we failed to register any path */
2995 pr.old_key = new_key;
2996 pr.new_key = 0;
2997 pr.flags = 0;
2998 pr.fail_early = false;
2999 dm_call_pr(bdev, __dm_pr_register, &pr);
3002 return ret;
3005 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3006 u32 flags)
3008 struct mapped_device *md = bdev->bd_disk->private_data;
3009 const struct pr_ops *ops;
3010 fmode_t mode;
3011 int r;
3013 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3014 if (r < 0)
3015 return r;
3017 ops = bdev->bd_disk->fops->pr_ops;
3018 if (ops && ops->pr_reserve)
3019 r = ops->pr_reserve(bdev, key, type, flags);
3020 else
3021 r = -EOPNOTSUPP;
3023 bdput(bdev);
3024 return r;
3027 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3029 struct mapped_device *md = bdev->bd_disk->private_data;
3030 const struct pr_ops *ops;
3031 fmode_t mode;
3032 int r;
3034 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3035 if (r < 0)
3036 return r;
3038 ops = bdev->bd_disk->fops->pr_ops;
3039 if (ops && ops->pr_release)
3040 r = ops->pr_release(bdev, key, type);
3041 else
3042 r = -EOPNOTSUPP;
3044 bdput(bdev);
3045 return r;
3048 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3049 enum pr_type type, bool abort)
3051 struct mapped_device *md = bdev->bd_disk->private_data;
3052 const struct pr_ops *ops;
3053 fmode_t mode;
3054 int r;
3056 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3057 if (r < 0)
3058 return r;
3060 ops = bdev->bd_disk->fops->pr_ops;
3061 if (ops && ops->pr_preempt)
3062 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3063 else
3064 r = -EOPNOTSUPP;
3066 bdput(bdev);
3067 return r;
3070 static int dm_pr_clear(struct block_device *bdev, u64 key)
3072 struct mapped_device *md = bdev->bd_disk->private_data;
3073 const struct pr_ops *ops;
3074 fmode_t mode;
3075 int r;
3077 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3078 if (r < 0)
3079 return r;
3081 ops = bdev->bd_disk->fops->pr_ops;
3082 if (ops && ops->pr_clear)
3083 r = ops->pr_clear(bdev, key);
3084 else
3085 r = -EOPNOTSUPP;
3087 bdput(bdev);
3088 return r;
3091 static const struct pr_ops dm_pr_ops = {
3092 .pr_register = dm_pr_register,
3093 .pr_reserve = dm_pr_reserve,
3094 .pr_release = dm_pr_release,
3095 .pr_preempt = dm_pr_preempt,
3096 .pr_clear = dm_pr_clear,
3099 static const struct block_device_operations dm_blk_dops = {
3100 .open = dm_blk_open,
3101 .release = dm_blk_close,
3102 .ioctl = dm_blk_ioctl,
3103 .getgeo = dm_blk_getgeo,
3104 .pr_ops = &dm_pr_ops,
3105 .owner = THIS_MODULE
3108 static const struct dax_operations dm_dax_ops = {
3109 .direct_access = dm_dax_direct_access,
3110 .copy_from_iter = dm_dax_copy_from_iter,
3114 * module hooks
3116 module_init(dm_init);
3117 module_exit(dm_exit);
3119 module_param(major, uint, 0);
3120 MODULE_PARM_DESC(major, "The major number of the device mapper");
3122 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3123 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3125 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3126 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3128 MODULE_DESCRIPTION(DM_NAME " driver");
3129 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3130 MODULE_LICENSE("GPL");