xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / pci / host / pci-hyperv.c
blob2faf38eab785aa39b0850898dc1405dd91ff095f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <asm/mshyperv.h>
54 * Protocol versions. The low word is the minor version, the high word the
55 * major version.
58 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
59 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
60 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 enum pci_protocol_version_t {
63 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
64 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
67 #define CPU_AFFINITY_ALL -1ULL
70 * Supported protocol versions in the order of probing - highest go
71 * first.
73 static enum pci_protocol_version_t pci_protocol_versions[] = {
74 PCI_PROTOCOL_VERSION_1_2,
75 PCI_PROTOCOL_VERSION_1_1,
79 * Protocol version negotiated by hv_pci_protocol_negotiation().
81 static enum pci_protocol_version_t pci_protocol_version;
83 #define PCI_CONFIG_MMIO_LENGTH 0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 #define STATUS_REVISION_MISMATCH 0xC0000059
92 * Message Types
95 enum pci_message_type {
97 * Version 1.1
99 PCI_MESSAGE_BASE = 0x42490000,
100 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
101 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
102 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
103 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
104 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
105 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
106 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
107 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
108 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
109 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
110 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
111 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
112 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
113 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
114 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
115 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
116 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
117 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
118 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
119 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
120 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
121 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
122 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
123 PCI_MESSAGE_MAXIMUM
127 * Structures defining the virtual PCI Express protocol.
130 union pci_version {
131 struct {
132 u16 minor_version;
133 u16 major_version;
134 } parts;
135 u32 version;
136 } __packed;
139 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
140 * which is all this driver does. This representation is the one used in
141 * Windows, which is what is expected when sending this back and forth with
142 * the Hyper-V parent partition.
144 union win_slot_encoding {
145 struct {
146 u32 dev:5;
147 u32 func:3;
148 u32 reserved:24;
149 } bits;
150 u32 slot;
151 } __packed;
154 * Pretty much as defined in the PCI Specifications.
156 struct pci_function_description {
157 u16 v_id; /* vendor ID */
158 u16 d_id; /* device ID */
159 u8 rev;
160 u8 prog_intf;
161 u8 subclass;
162 u8 base_class;
163 u32 subsystem_id;
164 union win_slot_encoding win_slot;
165 u32 ser; /* serial number */
166 } __packed;
169 * struct hv_msi_desc
170 * @vector: IDT entry
171 * @delivery_mode: As defined in Intel's Programmer's
172 * Reference Manual, Volume 3, Chapter 8.
173 * @vector_count: Number of contiguous entries in the
174 * Interrupt Descriptor Table that are
175 * occupied by this Message-Signaled
176 * Interrupt. For "MSI", as first defined
177 * in PCI 2.2, this can be between 1 and
178 * 32. For "MSI-X," as first defined in PCI
179 * 3.0, this must be 1, as each MSI-X table
180 * entry would have its own descriptor.
181 * @reserved: Empty space
182 * @cpu_mask: All the target virtual processors.
184 struct hv_msi_desc {
185 u8 vector;
186 u8 delivery_mode;
187 u16 vector_count;
188 u32 reserved;
189 u64 cpu_mask;
190 } __packed;
193 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
194 * @vector: IDT entry
195 * @delivery_mode: As defined in Intel's Programmer's
196 * Reference Manual, Volume 3, Chapter 8.
197 * @vector_count: Number of contiguous entries in the
198 * Interrupt Descriptor Table that are
199 * occupied by this Message-Signaled
200 * Interrupt. For "MSI", as first defined
201 * in PCI 2.2, this can be between 1 and
202 * 32. For "MSI-X," as first defined in PCI
203 * 3.0, this must be 1, as each MSI-X table
204 * entry would have its own descriptor.
205 * @processor_count: number of bits enabled in array.
206 * @processor_array: All the target virtual processors.
208 struct hv_msi_desc2 {
209 u8 vector;
210 u8 delivery_mode;
211 u16 vector_count;
212 u16 processor_count;
213 u16 processor_array[32];
214 } __packed;
217 * struct tran_int_desc
218 * @reserved: unused, padding
219 * @vector_count: same as in hv_msi_desc
220 * @data: This is the "data payload" value that is
221 * written by the device when it generates
222 * a message-signaled interrupt, either MSI
223 * or MSI-X.
224 * @address: This is the address to which the data
225 * payload is written on interrupt
226 * generation.
228 struct tran_int_desc {
229 u16 reserved;
230 u16 vector_count;
231 u32 data;
232 u64 address;
233 } __packed;
236 * A generic message format for virtual PCI.
237 * Specific message formats are defined later in the file.
240 struct pci_message {
241 u32 type;
242 } __packed;
244 struct pci_child_message {
245 struct pci_message message_type;
246 union win_slot_encoding wslot;
247 } __packed;
249 struct pci_incoming_message {
250 struct vmpacket_descriptor hdr;
251 struct pci_message message_type;
252 } __packed;
254 struct pci_response {
255 struct vmpacket_descriptor hdr;
256 s32 status; /* negative values are failures */
257 } __packed;
259 struct pci_packet {
260 void (*completion_func)(void *context, struct pci_response *resp,
261 int resp_packet_size);
262 void *compl_ctxt;
264 struct pci_message message[0];
268 * Specific message types supporting the PCI protocol.
272 * Version negotiation message. Sent from the guest to the host.
273 * The guest is free to try different versions until the host
274 * accepts the version.
276 * pci_version: The protocol version requested.
277 * is_last_attempt: If TRUE, this is the last version guest will request.
278 * reservedz: Reserved field, set to zero.
281 struct pci_version_request {
282 struct pci_message message_type;
283 u32 protocol_version;
284 } __packed;
287 * Bus D0 Entry. This is sent from the guest to the host when the virtual
288 * bus (PCI Express port) is ready for action.
291 struct pci_bus_d0_entry {
292 struct pci_message message_type;
293 u32 reserved;
294 u64 mmio_base;
295 } __packed;
297 struct pci_bus_relations {
298 struct pci_incoming_message incoming;
299 u32 device_count;
300 struct pci_function_description func[0];
301 } __packed;
303 struct pci_q_res_req_response {
304 struct vmpacket_descriptor hdr;
305 s32 status; /* negative values are failures */
306 u32 probed_bar[6];
307 } __packed;
309 struct pci_set_power {
310 struct pci_message message_type;
311 union win_slot_encoding wslot;
312 u32 power_state; /* In Windows terms */
313 u32 reserved;
314 } __packed;
316 struct pci_set_power_response {
317 struct vmpacket_descriptor hdr;
318 s32 status; /* negative values are failures */
319 union win_slot_encoding wslot;
320 u32 resultant_state; /* In Windows terms */
321 u32 reserved;
322 } __packed;
324 struct pci_resources_assigned {
325 struct pci_message message_type;
326 union win_slot_encoding wslot;
327 u8 memory_range[0x14][6]; /* not used here */
328 u32 msi_descriptors;
329 u32 reserved[4];
330 } __packed;
332 struct pci_resources_assigned2 {
333 struct pci_message message_type;
334 union win_slot_encoding wslot;
335 u8 memory_range[0x14][6]; /* not used here */
336 u32 msi_descriptor_count;
337 u8 reserved[70];
338 } __packed;
340 struct pci_create_interrupt {
341 struct pci_message message_type;
342 union win_slot_encoding wslot;
343 struct hv_msi_desc int_desc;
344 } __packed;
346 struct pci_create_int_response {
347 struct pci_response response;
348 u32 reserved;
349 struct tran_int_desc int_desc;
350 } __packed;
352 struct pci_create_interrupt2 {
353 struct pci_message message_type;
354 union win_slot_encoding wslot;
355 struct hv_msi_desc2 int_desc;
356 } __packed;
358 struct pci_delete_interrupt {
359 struct pci_message message_type;
360 union win_slot_encoding wslot;
361 struct tran_int_desc int_desc;
362 } __packed;
364 struct pci_dev_incoming {
365 struct pci_incoming_message incoming;
366 union win_slot_encoding wslot;
367 } __packed;
369 struct pci_eject_response {
370 struct pci_message message_type;
371 union win_slot_encoding wslot;
372 u32 status;
373 } __packed;
375 static int pci_ring_size = (4 * PAGE_SIZE);
378 * Definitions or interrupt steering hypercall.
380 #define HV_PARTITION_ID_SELF ((u64)-1)
381 #define HVCALL_RETARGET_INTERRUPT 0x7e
383 struct hv_interrupt_entry {
384 u32 source; /* 1 for MSI(-X) */
385 u32 reserved1;
386 u32 address;
387 u32 data;
390 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
392 struct hv_vp_set {
393 u64 format; /* 0 (HvGenericSetSparse4k) */
394 u64 valid_banks;
395 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
399 * flags for hv_device_interrupt_target.flags
401 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
402 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
404 struct hv_device_interrupt_target {
405 u32 vector;
406 u32 flags;
407 union {
408 u64 vp_mask;
409 struct hv_vp_set vp_set;
413 struct retarget_msi_interrupt {
414 u64 partition_id; /* use "self" */
415 u64 device_id;
416 struct hv_interrupt_entry int_entry;
417 u64 reserved2;
418 struct hv_device_interrupt_target int_target;
419 } __packed;
422 * Driver specific state.
425 enum hv_pcibus_state {
426 hv_pcibus_init = 0,
427 hv_pcibus_probed,
428 hv_pcibus_installed,
429 hv_pcibus_removed,
430 hv_pcibus_maximum
433 struct hv_pcibus_device {
434 struct pci_sysdata sysdata;
435 enum hv_pcibus_state state;
436 atomic_t remove_lock;
437 struct hv_device *hdev;
438 resource_size_t low_mmio_space;
439 resource_size_t high_mmio_space;
440 struct resource *mem_config;
441 struct resource *low_mmio_res;
442 struct resource *high_mmio_res;
443 struct completion *survey_event;
444 struct completion remove_event;
445 struct pci_bus *pci_bus;
446 spinlock_t config_lock; /* Avoid two threads writing index page */
447 spinlock_t device_list_lock; /* Protect lists below */
448 void __iomem *cfg_addr;
450 struct semaphore enum_sem;
451 struct list_head resources_for_children;
453 struct list_head children;
454 struct list_head dr_list;
456 struct msi_domain_info msi_info;
457 struct msi_controller msi_chip;
458 struct irq_domain *irq_domain;
460 /* hypercall arg, must not cross page boundary */
461 struct retarget_msi_interrupt retarget_msi_interrupt_params;
463 spinlock_t retarget_msi_interrupt_lock;
467 * Tracks "Device Relations" messages from the host, which must be both
468 * processed in order and deferred so that they don't run in the context
469 * of the incoming packet callback.
471 struct hv_dr_work {
472 struct work_struct wrk;
473 struct hv_pcibus_device *bus;
476 struct hv_dr_state {
477 struct list_head list_entry;
478 u32 device_count;
479 struct pci_function_description func[0];
482 enum hv_pcichild_state {
483 hv_pcichild_init = 0,
484 hv_pcichild_requirements,
485 hv_pcichild_resourced,
486 hv_pcichild_ejecting,
487 hv_pcichild_maximum
490 enum hv_pcidev_ref_reason {
491 hv_pcidev_ref_invalid = 0,
492 hv_pcidev_ref_initial,
493 hv_pcidev_ref_by_slot,
494 hv_pcidev_ref_packet,
495 hv_pcidev_ref_pnp,
496 hv_pcidev_ref_childlist,
497 hv_pcidev_irqdata,
498 hv_pcidev_ref_max
501 struct hv_pci_dev {
502 /* List protected by pci_rescan_remove_lock */
503 struct list_head list_entry;
504 refcount_t refs;
505 enum hv_pcichild_state state;
506 struct pci_function_description desc;
507 bool reported_missing;
508 struct hv_pcibus_device *hbus;
509 struct work_struct wrk;
512 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
513 * read it back, for each of the BAR offsets within config space.
515 u32 probed_bar[6];
518 struct hv_pci_compl {
519 struct completion host_event;
520 s32 completion_status;
524 * hv_pci_generic_compl() - Invoked for a completion packet
525 * @context: Set up by the sender of the packet.
526 * @resp: The response packet
527 * @resp_packet_size: Size in bytes of the packet
529 * This function is used to trigger an event and report status
530 * for any message for which the completion packet contains a
531 * status and nothing else.
533 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
534 int resp_packet_size)
536 struct hv_pci_compl *comp_pkt = context;
538 if (resp_packet_size >= offsetofend(struct pci_response, status))
539 comp_pkt->completion_status = resp->status;
540 else
541 comp_pkt->completion_status = -1;
543 complete(&comp_pkt->host_event);
546 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
547 u32 wslot);
548 static void get_pcichild(struct hv_pci_dev *hv_pcidev,
549 enum hv_pcidev_ref_reason reason);
550 static void put_pcichild(struct hv_pci_dev *hv_pcidev,
551 enum hv_pcidev_ref_reason reason);
553 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
554 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
557 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
558 * @devfn: The Linux representation of PCI slot
560 * Windows uses a slightly different representation of PCI slot.
562 * Return: The Windows representation
564 static u32 devfn_to_wslot(int devfn)
566 union win_slot_encoding wslot;
568 wslot.slot = 0;
569 wslot.bits.dev = PCI_SLOT(devfn);
570 wslot.bits.func = PCI_FUNC(devfn);
572 return wslot.slot;
576 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
577 * @wslot: The Windows representation of PCI slot
579 * Windows uses a slightly different representation of PCI slot.
581 * Return: The Linux representation
583 static int wslot_to_devfn(u32 wslot)
585 union win_slot_encoding slot_no;
587 slot_no.slot = wslot;
588 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
592 * PCI Configuration Space for these root PCI buses is implemented as a pair
593 * of pages in memory-mapped I/O space. Writing to the first page chooses
594 * the PCI function being written or read. Once the first page has been
595 * written to, the following page maps in the entire configuration space of
596 * the function.
600 * _hv_pcifront_read_config() - Internal PCI config read
601 * @hpdev: The PCI driver's representation of the device
602 * @where: Offset within config space
603 * @size: Size of the transfer
604 * @val: Pointer to the buffer receiving the data
606 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
607 int size, u32 *val)
609 unsigned long flags;
610 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
613 * If the attempt is to read the IDs or the ROM BAR, simulate that.
615 if (where + size <= PCI_COMMAND) {
616 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
617 } else if (where >= PCI_CLASS_REVISION && where + size <=
618 PCI_CACHE_LINE_SIZE) {
619 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
620 PCI_CLASS_REVISION, size);
621 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
622 PCI_ROM_ADDRESS) {
623 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
624 PCI_SUBSYSTEM_VENDOR_ID, size);
625 } else if (where >= PCI_ROM_ADDRESS && where + size <=
626 PCI_CAPABILITY_LIST) {
627 /* ROM BARs are unimplemented */
628 *val = 0;
629 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
630 PCI_INTERRUPT_PIN) {
632 * Interrupt Line and Interrupt PIN are hard-wired to zero
633 * because this front-end only supports message-signaled
634 * interrupts.
636 *val = 0;
637 } else if (where + size <= CFG_PAGE_SIZE) {
638 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
639 /* Choose the function to be read. (See comment above) */
640 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
641 /* Make sure the function was chosen before we start reading. */
642 mb();
643 /* Read from that function's config space. */
644 switch (size) {
645 case 1:
646 *val = readb(addr);
647 break;
648 case 2:
649 *val = readw(addr);
650 break;
651 default:
652 *val = readl(addr);
653 break;
656 * Make sure the write was done before we release the spinlock
657 * allowing consecutive reads/writes.
659 mb();
660 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
661 } else {
662 dev_err(&hpdev->hbus->hdev->device,
663 "Attempt to read beyond a function's config space.\n");
668 * _hv_pcifront_write_config() - Internal PCI config write
669 * @hpdev: The PCI driver's representation of the device
670 * @where: Offset within config space
671 * @size: Size of the transfer
672 * @val: The data being transferred
674 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
675 int size, u32 val)
677 unsigned long flags;
678 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
680 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
681 where + size <= PCI_CAPABILITY_LIST) {
682 /* SSIDs and ROM BARs are read-only */
683 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
684 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
685 /* Choose the function to be written. (See comment above) */
686 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
687 /* Make sure the function was chosen before we start writing. */
688 wmb();
689 /* Write to that function's config space. */
690 switch (size) {
691 case 1:
692 writeb(val, addr);
693 break;
694 case 2:
695 writew(val, addr);
696 break;
697 default:
698 writel(val, addr);
699 break;
702 * Make sure the write was done before we release the spinlock
703 * allowing consecutive reads/writes.
705 mb();
706 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
707 } else {
708 dev_err(&hpdev->hbus->hdev->device,
709 "Attempt to write beyond a function's config space.\n");
714 * hv_pcifront_read_config() - Read configuration space
715 * @bus: PCI Bus structure
716 * @devfn: Device/function
717 * @where: Offset from base
718 * @size: Byte/word/dword
719 * @val: Value to be read
721 * Return: PCIBIOS_SUCCESSFUL on success
722 * PCIBIOS_DEVICE_NOT_FOUND on failure
724 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
725 int where, int size, u32 *val)
727 struct hv_pcibus_device *hbus =
728 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
729 struct hv_pci_dev *hpdev;
731 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
732 if (!hpdev)
733 return PCIBIOS_DEVICE_NOT_FOUND;
735 _hv_pcifront_read_config(hpdev, where, size, val);
737 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
738 return PCIBIOS_SUCCESSFUL;
742 * hv_pcifront_write_config() - Write configuration space
743 * @bus: PCI Bus structure
744 * @devfn: Device/function
745 * @where: Offset from base
746 * @size: Byte/word/dword
747 * @val: Value to be written to device
749 * Return: PCIBIOS_SUCCESSFUL on success
750 * PCIBIOS_DEVICE_NOT_FOUND on failure
752 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
753 int where, int size, u32 val)
755 struct hv_pcibus_device *hbus =
756 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
757 struct hv_pci_dev *hpdev;
759 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
760 if (!hpdev)
761 return PCIBIOS_DEVICE_NOT_FOUND;
763 _hv_pcifront_write_config(hpdev, where, size, val);
765 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
766 return PCIBIOS_SUCCESSFUL;
769 /* PCIe operations */
770 static struct pci_ops hv_pcifront_ops = {
771 .read = hv_pcifront_read_config,
772 .write = hv_pcifront_write_config,
775 /* Interrupt management hooks */
776 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
777 struct tran_int_desc *int_desc)
779 struct pci_delete_interrupt *int_pkt;
780 struct {
781 struct pci_packet pkt;
782 u8 buffer[sizeof(struct pci_delete_interrupt)];
783 } ctxt;
785 memset(&ctxt, 0, sizeof(ctxt));
786 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
787 int_pkt->message_type.type =
788 PCI_DELETE_INTERRUPT_MESSAGE;
789 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
790 int_pkt->int_desc = *int_desc;
791 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
792 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
793 kfree(int_desc);
797 * hv_msi_free() - Free the MSI.
798 * @domain: The interrupt domain pointer
799 * @info: Extra MSI-related context
800 * @irq: Identifies the IRQ.
802 * The Hyper-V parent partition and hypervisor are tracking the
803 * messages that are in use, keeping the interrupt redirection
804 * table up to date. This callback sends a message that frees
805 * the IRT entry and related tracking nonsense.
807 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
808 unsigned int irq)
810 struct hv_pcibus_device *hbus;
811 struct hv_pci_dev *hpdev;
812 struct pci_dev *pdev;
813 struct tran_int_desc *int_desc;
814 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
815 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
817 pdev = msi_desc_to_pci_dev(msi);
818 hbus = info->data;
819 int_desc = irq_data_get_irq_chip_data(irq_data);
820 if (!int_desc)
821 return;
823 irq_data->chip_data = NULL;
824 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
825 if (!hpdev) {
826 kfree(int_desc);
827 return;
830 hv_int_desc_free(hpdev, int_desc);
831 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
834 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
835 bool force)
837 struct irq_data *parent = data->parent_data;
839 return parent->chip->irq_set_affinity(parent, dest, force);
842 static void hv_irq_mask(struct irq_data *data)
844 pci_msi_mask_irq(data);
848 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
849 * affinity.
850 * @data: Describes the IRQ
852 * Build new a destination for the MSI and make a hypercall to
853 * update the Interrupt Redirection Table. "Device Logical ID"
854 * is built out of this PCI bus's instance GUID and the function
855 * number of the device.
857 static void hv_irq_unmask(struct irq_data *data)
859 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
860 struct irq_cfg *cfg = irqd_cfg(data);
861 struct retarget_msi_interrupt *params;
862 struct hv_pcibus_device *hbus;
863 struct cpumask *dest;
864 struct pci_bus *pbus;
865 struct pci_dev *pdev;
866 unsigned long flags;
867 u32 var_size = 0;
868 int cpu_vmbus;
869 int cpu;
870 u64 res;
872 dest = irq_data_get_effective_affinity_mask(data);
873 pdev = msi_desc_to_pci_dev(msi_desc);
874 pbus = pdev->bus;
875 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
877 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
879 params = &hbus->retarget_msi_interrupt_params;
880 memset(params, 0, sizeof(*params));
881 params->partition_id = HV_PARTITION_ID_SELF;
882 params->int_entry.source = 1; /* MSI(-X) */
883 params->int_entry.address = msi_desc->msg.address_lo;
884 params->int_entry.data = msi_desc->msg.data;
885 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
886 (hbus->hdev->dev_instance.b[4] << 16) |
887 (hbus->hdev->dev_instance.b[7] << 8) |
888 (hbus->hdev->dev_instance.b[6] & 0xf8) |
889 PCI_FUNC(pdev->devfn);
890 params->int_target.vector = cfg->vector;
893 * Honoring apic->irq_delivery_mode set to dest_Fixed by
894 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
895 * spurious interrupt storm. Not doing so does not seem to have a
896 * negative effect (yet?).
899 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
901 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
902 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
903 * with >64 VP support.
904 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
905 * is not sufficient for this hypercall.
907 params->int_target.flags |=
908 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
909 params->int_target.vp_set.valid_banks =
910 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
913 * var-sized hypercall, var-size starts after vp_mask (thus
914 * vp_set.format does not count, but vp_set.valid_banks does).
916 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
918 for_each_cpu_and(cpu, dest, cpu_online_mask) {
919 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
921 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
922 dev_err(&hbus->hdev->device,
923 "too high CPU %d", cpu_vmbus);
924 res = 1;
925 goto exit_unlock;
928 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
929 (1ULL << (cpu_vmbus & 63));
931 } else {
932 for_each_cpu_and(cpu, dest, cpu_online_mask) {
933 params->int_target.vp_mask |=
934 (1ULL << hv_cpu_number_to_vp_number(cpu));
938 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
939 params, NULL);
941 exit_unlock:
942 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
944 if (res) {
945 dev_err(&hbus->hdev->device,
946 "%s() failed: %#llx", __func__, res);
947 return;
950 pci_msi_unmask_irq(data);
953 struct compose_comp_ctxt {
954 struct hv_pci_compl comp_pkt;
955 struct tran_int_desc int_desc;
958 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
959 int resp_packet_size)
961 struct compose_comp_ctxt *comp_pkt = context;
962 struct pci_create_int_response *int_resp =
963 (struct pci_create_int_response *)resp;
965 comp_pkt->comp_pkt.completion_status = resp->status;
966 comp_pkt->int_desc = int_resp->int_desc;
967 complete(&comp_pkt->comp_pkt.host_event);
970 static u32 hv_compose_msi_req_v1(
971 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
972 u32 slot, u8 vector)
974 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
975 int_pkt->wslot.slot = slot;
976 int_pkt->int_desc.vector = vector;
977 int_pkt->int_desc.vector_count = 1;
978 int_pkt->int_desc.delivery_mode = dest_Fixed;
981 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
982 * hv_irq_unmask().
984 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
986 return sizeof(*int_pkt);
989 static u32 hv_compose_msi_req_v2(
990 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
991 u32 slot, u8 vector)
993 int cpu;
995 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
996 int_pkt->wslot.slot = slot;
997 int_pkt->int_desc.vector = vector;
998 int_pkt->int_desc.vector_count = 1;
999 int_pkt->int_desc.delivery_mode = dest_Fixed;
1002 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1003 * by subsequent retarget in hv_irq_unmask().
1005 cpu = cpumask_first_and(affinity, cpu_online_mask);
1006 int_pkt->int_desc.processor_array[0] =
1007 hv_cpu_number_to_vp_number(cpu);
1008 int_pkt->int_desc.processor_count = 1;
1010 return sizeof(*int_pkt);
1014 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1015 * @data: Everything about this MSI
1016 * @msg: Buffer that is filled in by this function
1018 * This function unpacks the IRQ looking for target CPU set, IDT
1019 * vector and mode and sends a message to the parent partition
1020 * asking for a mapping for that tuple in this partition. The
1021 * response supplies a data value and address to which that data
1022 * should be written to trigger that interrupt.
1024 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1026 struct irq_cfg *cfg = irqd_cfg(data);
1027 struct hv_pcibus_device *hbus;
1028 struct hv_pci_dev *hpdev;
1029 struct pci_bus *pbus;
1030 struct pci_dev *pdev;
1031 struct cpumask *dest;
1032 struct compose_comp_ctxt comp;
1033 struct tran_int_desc *int_desc;
1034 struct {
1035 struct pci_packet pci_pkt;
1036 union {
1037 struct pci_create_interrupt v1;
1038 struct pci_create_interrupt2 v2;
1039 } int_pkts;
1040 } __packed ctxt;
1042 u32 size;
1043 int ret;
1045 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1046 dest = irq_data_get_effective_affinity_mask(data);
1047 pbus = pdev->bus;
1048 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1049 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1050 if (!hpdev)
1051 goto return_null_message;
1053 /* Free any previous message that might have already been composed. */
1054 if (data->chip_data) {
1055 int_desc = data->chip_data;
1056 data->chip_data = NULL;
1057 hv_int_desc_free(hpdev, int_desc);
1060 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1061 if (!int_desc)
1062 goto drop_reference;
1064 memset(&ctxt, 0, sizeof(ctxt));
1065 init_completion(&comp.comp_pkt.host_event);
1066 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1067 ctxt.pci_pkt.compl_ctxt = &comp;
1069 switch (pci_protocol_version) {
1070 case PCI_PROTOCOL_VERSION_1_1:
1071 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1072 dest,
1073 hpdev->desc.win_slot.slot,
1074 cfg->vector);
1075 break;
1077 case PCI_PROTOCOL_VERSION_1_2:
1078 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1079 dest,
1080 hpdev->desc.win_slot.slot,
1081 cfg->vector);
1082 break;
1084 default:
1085 /* As we only negotiate protocol versions known to this driver,
1086 * this path should never hit. However, this is it not a hot
1087 * path so we print a message to aid future updates.
1089 dev_err(&hbus->hdev->device,
1090 "Unexpected vPCI protocol, update driver.");
1091 goto free_int_desc;
1094 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1095 size, (unsigned long)&ctxt.pci_pkt,
1096 VM_PKT_DATA_INBAND,
1097 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1098 if (ret) {
1099 dev_err(&hbus->hdev->device,
1100 "Sending request for interrupt failed: 0x%x",
1101 comp.comp_pkt.completion_status);
1102 goto free_int_desc;
1106 * Since this function is called with IRQ locks held, can't
1107 * do normal wait for completion; instead poll.
1109 while (!try_wait_for_completion(&comp.comp_pkt.host_event))
1110 udelay(100);
1112 if (comp.comp_pkt.completion_status < 0) {
1113 dev_err(&hbus->hdev->device,
1114 "Request for interrupt failed: 0x%x",
1115 comp.comp_pkt.completion_status);
1116 goto free_int_desc;
1120 * Record the assignment so that this can be unwound later. Using
1121 * irq_set_chip_data() here would be appropriate, but the lock it takes
1122 * is already held.
1124 *int_desc = comp.int_desc;
1125 data->chip_data = int_desc;
1127 /* Pass up the result. */
1128 msg->address_hi = comp.int_desc.address >> 32;
1129 msg->address_lo = comp.int_desc.address & 0xffffffff;
1130 msg->data = comp.int_desc.data;
1132 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1133 return;
1135 free_int_desc:
1136 kfree(int_desc);
1137 drop_reference:
1138 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
1139 return_null_message:
1140 msg->address_hi = 0;
1141 msg->address_lo = 0;
1142 msg->data = 0;
1145 /* HW Interrupt Chip Descriptor */
1146 static struct irq_chip hv_msi_irq_chip = {
1147 .name = "Hyper-V PCIe MSI",
1148 .irq_compose_msi_msg = hv_compose_msi_msg,
1149 .irq_set_affinity = hv_set_affinity,
1150 .irq_ack = irq_chip_ack_parent,
1151 .irq_mask = hv_irq_mask,
1152 .irq_unmask = hv_irq_unmask,
1155 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1156 msi_alloc_info_t *arg)
1158 return arg->msi_hwirq;
1161 static struct msi_domain_ops hv_msi_ops = {
1162 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1163 .msi_prepare = pci_msi_prepare,
1164 .set_desc = pci_msi_set_desc,
1165 .msi_free = hv_msi_free,
1169 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1170 * @hbus: The root PCI bus
1172 * This function creates an IRQ domain which will be used for
1173 * interrupts from devices that have been passed through. These
1174 * devices only support MSI and MSI-X, not line-based interrupts
1175 * or simulations of line-based interrupts through PCIe's
1176 * fabric-layer messages. Because interrupts are remapped, we
1177 * can support multi-message MSI here.
1179 * Return: '0' on success and error value on failure
1181 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1183 hbus->msi_info.chip = &hv_msi_irq_chip;
1184 hbus->msi_info.ops = &hv_msi_ops;
1185 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1186 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1187 MSI_FLAG_PCI_MSIX);
1188 hbus->msi_info.handler = handle_edge_irq;
1189 hbus->msi_info.handler_name = "edge";
1190 hbus->msi_info.data = hbus;
1191 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1192 &hbus->msi_info,
1193 x86_vector_domain);
1194 if (!hbus->irq_domain) {
1195 dev_err(&hbus->hdev->device,
1196 "Failed to build an MSI IRQ domain\n");
1197 return -ENODEV;
1200 return 0;
1204 * get_bar_size() - Get the address space consumed by a BAR
1205 * @bar_val: Value that a BAR returned after -1 was written
1206 * to it.
1208 * This function returns the size of the BAR, rounded up to 1
1209 * page. It has to be rounded up because the hypervisor's page
1210 * table entry that maps the BAR into the VM can't specify an
1211 * offset within a page. The invariant is that the hypervisor
1212 * must place any BARs of smaller than page length at the
1213 * beginning of a page.
1215 * Return: Size in bytes of the consumed MMIO space.
1217 static u64 get_bar_size(u64 bar_val)
1219 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1220 PAGE_SIZE);
1224 * survey_child_resources() - Total all MMIO requirements
1225 * @hbus: Root PCI bus, as understood by this driver
1227 static void survey_child_resources(struct hv_pcibus_device *hbus)
1229 struct list_head *iter;
1230 struct hv_pci_dev *hpdev;
1231 resource_size_t bar_size = 0;
1232 unsigned long flags;
1233 struct completion *event;
1234 u64 bar_val;
1235 int i;
1237 /* If nobody is waiting on the answer, don't compute it. */
1238 event = xchg(&hbus->survey_event, NULL);
1239 if (!event)
1240 return;
1242 /* If the answer has already been computed, go with it. */
1243 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1244 complete(event);
1245 return;
1248 spin_lock_irqsave(&hbus->device_list_lock, flags);
1251 * Due to an interesting quirk of the PCI spec, all memory regions
1252 * for a child device are a power of 2 in size and aligned in memory,
1253 * so it's sufficient to just add them up without tracking alignment.
1255 list_for_each(iter, &hbus->children) {
1256 hpdev = container_of(iter, struct hv_pci_dev, list_entry);
1257 for (i = 0; i < 6; i++) {
1258 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1259 dev_err(&hbus->hdev->device,
1260 "There's an I/O BAR in this list!\n");
1262 if (hpdev->probed_bar[i] != 0) {
1264 * A probed BAR has all the upper bits set that
1265 * can be changed.
1268 bar_val = hpdev->probed_bar[i];
1269 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1270 bar_val |=
1271 ((u64)hpdev->probed_bar[++i] << 32);
1272 else
1273 bar_val |= 0xffffffff00000000ULL;
1275 bar_size = get_bar_size(bar_val);
1277 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1278 hbus->high_mmio_space += bar_size;
1279 else
1280 hbus->low_mmio_space += bar_size;
1285 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1286 complete(event);
1290 * prepopulate_bars() - Fill in BARs with defaults
1291 * @hbus: Root PCI bus, as understood by this driver
1293 * The core PCI driver code seems much, much happier if the BARs
1294 * for a device have values upon first scan. So fill them in.
1295 * The algorithm below works down from large sizes to small,
1296 * attempting to pack the assignments optimally. The assumption,
1297 * enforced in other parts of the code, is that the beginning of
1298 * the memory-mapped I/O space will be aligned on the largest
1299 * BAR size.
1301 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1303 resource_size_t high_size = 0;
1304 resource_size_t low_size = 0;
1305 resource_size_t high_base = 0;
1306 resource_size_t low_base = 0;
1307 resource_size_t bar_size;
1308 struct hv_pci_dev *hpdev;
1309 struct list_head *iter;
1310 unsigned long flags;
1311 u64 bar_val;
1312 u32 command;
1313 bool high;
1314 int i;
1316 if (hbus->low_mmio_space) {
1317 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1318 low_base = hbus->low_mmio_res->start;
1321 if (hbus->high_mmio_space) {
1322 high_size = 1ULL <<
1323 (63 - __builtin_clzll(hbus->high_mmio_space));
1324 high_base = hbus->high_mmio_res->start;
1327 spin_lock_irqsave(&hbus->device_list_lock, flags);
1329 /* Pick addresses for the BARs. */
1330 do {
1331 list_for_each(iter, &hbus->children) {
1332 hpdev = container_of(iter, struct hv_pci_dev,
1333 list_entry);
1334 for (i = 0; i < 6; i++) {
1335 bar_val = hpdev->probed_bar[i];
1336 if (bar_val == 0)
1337 continue;
1338 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1339 if (high) {
1340 bar_val |=
1341 ((u64)hpdev->probed_bar[i + 1]
1342 << 32);
1343 } else {
1344 bar_val |= 0xffffffffULL << 32;
1346 bar_size = get_bar_size(bar_val);
1347 if (high) {
1348 if (high_size != bar_size) {
1349 i++;
1350 continue;
1352 _hv_pcifront_write_config(hpdev,
1353 PCI_BASE_ADDRESS_0 + (4 * i),
1355 (u32)(high_base & 0xffffff00));
1356 i++;
1357 _hv_pcifront_write_config(hpdev,
1358 PCI_BASE_ADDRESS_0 + (4 * i),
1359 4, (u32)(high_base >> 32));
1360 high_base += bar_size;
1361 } else {
1362 if (low_size != bar_size)
1363 continue;
1364 _hv_pcifront_write_config(hpdev,
1365 PCI_BASE_ADDRESS_0 + (4 * i),
1367 (u32)(low_base & 0xffffff00));
1368 low_base += bar_size;
1371 if (high_size <= 1 && low_size <= 1) {
1372 /* Set the memory enable bit. */
1373 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1374 &command);
1375 command |= PCI_COMMAND_MEMORY;
1376 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1377 command);
1378 break;
1382 high_size >>= 1;
1383 low_size >>= 1;
1384 } while (high_size || low_size);
1386 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1390 * create_root_hv_pci_bus() - Expose a new root PCI bus
1391 * @hbus: Root PCI bus, as understood by this driver
1393 * Return: 0 on success, -errno on failure
1395 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1397 /* Register the device */
1398 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1399 0, /* bus number is always zero */
1400 &hv_pcifront_ops,
1401 &hbus->sysdata,
1402 &hbus->resources_for_children);
1403 if (!hbus->pci_bus)
1404 return -ENODEV;
1406 hbus->pci_bus->msi = &hbus->msi_chip;
1407 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1409 pci_lock_rescan_remove();
1410 pci_scan_child_bus(hbus->pci_bus);
1411 pci_bus_assign_resources(hbus->pci_bus);
1412 pci_bus_add_devices(hbus->pci_bus);
1413 pci_unlock_rescan_remove();
1414 hbus->state = hv_pcibus_installed;
1415 return 0;
1418 struct q_res_req_compl {
1419 struct completion host_event;
1420 struct hv_pci_dev *hpdev;
1424 * q_resource_requirements() - Query Resource Requirements
1425 * @context: The completion context.
1426 * @resp: The response that came from the host.
1427 * @resp_packet_size: The size in bytes of resp.
1429 * This function is invoked on completion of a Query Resource
1430 * Requirements packet.
1432 static void q_resource_requirements(void *context, struct pci_response *resp,
1433 int resp_packet_size)
1435 struct q_res_req_compl *completion = context;
1436 struct pci_q_res_req_response *q_res_req =
1437 (struct pci_q_res_req_response *)resp;
1438 int i;
1440 if (resp->status < 0) {
1441 dev_err(&completion->hpdev->hbus->hdev->device,
1442 "query resource requirements failed: %x\n",
1443 resp->status);
1444 } else {
1445 for (i = 0; i < 6; i++) {
1446 completion->hpdev->probed_bar[i] =
1447 q_res_req->probed_bar[i];
1451 complete(&completion->host_event);
1454 static void get_pcichild(struct hv_pci_dev *hpdev,
1455 enum hv_pcidev_ref_reason reason)
1457 refcount_inc(&hpdev->refs);
1460 static void put_pcichild(struct hv_pci_dev *hpdev,
1461 enum hv_pcidev_ref_reason reason)
1463 if (refcount_dec_and_test(&hpdev->refs))
1464 kfree(hpdev);
1468 * new_pcichild_device() - Create a new child device
1469 * @hbus: The internal struct tracking this root PCI bus.
1470 * @desc: The information supplied so far from the host
1471 * about the device.
1473 * This function creates the tracking structure for a new child
1474 * device and kicks off the process of figuring out what it is.
1476 * Return: Pointer to the new tracking struct
1478 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1479 struct pci_function_description *desc)
1481 struct hv_pci_dev *hpdev;
1482 struct pci_child_message *res_req;
1483 struct q_res_req_compl comp_pkt;
1484 struct {
1485 struct pci_packet init_packet;
1486 u8 buffer[sizeof(struct pci_child_message)];
1487 } pkt;
1488 unsigned long flags;
1489 int ret;
1491 hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1492 if (!hpdev)
1493 return NULL;
1495 hpdev->hbus = hbus;
1497 memset(&pkt, 0, sizeof(pkt));
1498 init_completion(&comp_pkt.host_event);
1499 comp_pkt.hpdev = hpdev;
1500 pkt.init_packet.compl_ctxt = &comp_pkt;
1501 pkt.init_packet.completion_func = q_resource_requirements;
1502 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1503 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1504 res_req->wslot.slot = desc->win_slot.slot;
1506 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1507 sizeof(struct pci_child_message),
1508 (unsigned long)&pkt.init_packet,
1509 VM_PKT_DATA_INBAND,
1510 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1511 if (ret)
1512 goto error;
1514 wait_for_completion(&comp_pkt.host_event);
1516 hpdev->desc = *desc;
1517 refcount_set(&hpdev->refs, 1);
1518 get_pcichild(hpdev, hv_pcidev_ref_childlist);
1519 spin_lock_irqsave(&hbus->device_list_lock, flags);
1522 * When a device is being added to the bus, we set the PCI domain
1523 * number to be the device serial number, which is non-zero and
1524 * unique on the same VM. The serial numbers start with 1, and
1525 * increase by 1 for each device. So device names including this
1526 * can have shorter names than based on the bus instance UUID.
1527 * Only the first device serial number is used for domain, so the
1528 * domain number will not change after the first device is added.
1530 if (list_empty(&hbus->children))
1531 hbus->sysdata.domain = desc->ser;
1532 list_add_tail(&hpdev->list_entry, &hbus->children);
1533 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1534 return hpdev;
1536 error:
1537 kfree(hpdev);
1538 return NULL;
1542 * get_pcichild_wslot() - Find device from slot
1543 * @hbus: Root PCI bus, as understood by this driver
1544 * @wslot: Location on the bus
1546 * This function looks up a PCI device and returns the internal
1547 * representation of it. It acquires a reference on it, so that
1548 * the device won't be deleted while somebody is using it. The
1549 * caller is responsible for calling put_pcichild() to release
1550 * this reference.
1552 * Return: Internal representation of a PCI device
1554 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1555 u32 wslot)
1557 unsigned long flags;
1558 struct hv_pci_dev *iter, *hpdev = NULL;
1560 spin_lock_irqsave(&hbus->device_list_lock, flags);
1561 list_for_each_entry(iter, &hbus->children, list_entry) {
1562 if (iter->desc.win_slot.slot == wslot) {
1563 hpdev = iter;
1564 get_pcichild(hpdev, hv_pcidev_ref_by_slot);
1565 break;
1568 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1570 return hpdev;
1574 * pci_devices_present_work() - Handle new list of child devices
1575 * @work: Work struct embedded in struct hv_dr_work
1577 * "Bus Relations" is the Windows term for "children of this
1578 * bus." The terminology is preserved here for people trying to
1579 * debug the interaction between Hyper-V and Linux. This
1580 * function is called when the parent partition reports a list
1581 * of functions that should be observed under this PCI Express
1582 * port (bus).
1584 * This function updates the list, and must tolerate being
1585 * called multiple times with the same information. The typical
1586 * number of child devices is one, with very atypical cases
1587 * involving three or four, so the algorithms used here can be
1588 * simple and inefficient.
1590 * It must also treat the omission of a previously observed device as
1591 * notification that the device no longer exists.
1593 * Note that this function is a work item, and it may not be
1594 * invoked in the order that it was queued. Back to back
1595 * updates of the list of present devices may involve queuing
1596 * multiple work items, and this one may run before ones that
1597 * were sent later. As such, this function only does something
1598 * if is the last one in the queue.
1600 static void pci_devices_present_work(struct work_struct *work)
1602 u32 child_no;
1603 bool found;
1604 struct list_head *iter;
1605 struct pci_function_description *new_desc;
1606 struct hv_pci_dev *hpdev;
1607 struct hv_pcibus_device *hbus;
1608 struct list_head removed;
1609 struct hv_dr_work *dr_wrk;
1610 struct hv_dr_state *dr = NULL;
1611 unsigned long flags;
1613 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1614 hbus = dr_wrk->bus;
1615 kfree(dr_wrk);
1617 INIT_LIST_HEAD(&removed);
1619 if (down_interruptible(&hbus->enum_sem)) {
1620 put_hvpcibus(hbus);
1621 return;
1624 /* Pull this off the queue and process it if it was the last one. */
1625 spin_lock_irqsave(&hbus->device_list_lock, flags);
1626 while (!list_empty(&hbus->dr_list)) {
1627 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1628 list_entry);
1629 list_del(&dr->list_entry);
1631 /* Throw this away if the list still has stuff in it. */
1632 if (!list_empty(&hbus->dr_list)) {
1633 kfree(dr);
1634 continue;
1637 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1639 if (!dr) {
1640 up(&hbus->enum_sem);
1641 put_hvpcibus(hbus);
1642 return;
1645 /* First, mark all existing children as reported missing. */
1646 spin_lock_irqsave(&hbus->device_list_lock, flags);
1647 list_for_each(iter, &hbus->children) {
1648 hpdev = container_of(iter, struct hv_pci_dev,
1649 list_entry);
1650 hpdev->reported_missing = true;
1652 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1654 /* Next, add back any reported devices. */
1655 for (child_no = 0; child_no < dr->device_count; child_no++) {
1656 found = false;
1657 new_desc = &dr->func[child_no];
1659 spin_lock_irqsave(&hbus->device_list_lock, flags);
1660 list_for_each(iter, &hbus->children) {
1661 hpdev = container_of(iter, struct hv_pci_dev,
1662 list_entry);
1663 if ((hpdev->desc.win_slot.slot ==
1664 new_desc->win_slot.slot) &&
1665 (hpdev->desc.v_id == new_desc->v_id) &&
1666 (hpdev->desc.d_id == new_desc->d_id) &&
1667 (hpdev->desc.ser == new_desc->ser)) {
1668 hpdev->reported_missing = false;
1669 found = true;
1672 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1674 if (!found) {
1675 hpdev = new_pcichild_device(hbus, new_desc);
1676 if (!hpdev)
1677 dev_err(&hbus->hdev->device,
1678 "couldn't record a child device.\n");
1682 /* Move missing children to a list on the stack. */
1683 spin_lock_irqsave(&hbus->device_list_lock, flags);
1684 do {
1685 found = false;
1686 list_for_each(iter, &hbus->children) {
1687 hpdev = container_of(iter, struct hv_pci_dev,
1688 list_entry);
1689 if (hpdev->reported_missing) {
1690 found = true;
1691 put_pcichild(hpdev, hv_pcidev_ref_childlist);
1692 list_move_tail(&hpdev->list_entry, &removed);
1693 break;
1696 } while (found);
1697 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1699 /* Delete everything that should no longer exist. */
1700 while (!list_empty(&removed)) {
1701 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1702 list_entry);
1703 list_del(&hpdev->list_entry);
1704 put_pcichild(hpdev, hv_pcidev_ref_initial);
1707 switch (hbus->state) {
1708 case hv_pcibus_installed:
1710 * Tell the core to rescan bus
1711 * because there may have been changes.
1713 pci_lock_rescan_remove();
1714 pci_scan_child_bus(hbus->pci_bus);
1715 pci_unlock_rescan_remove();
1716 break;
1718 case hv_pcibus_init:
1719 case hv_pcibus_probed:
1720 survey_child_resources(hbus);
1721 break;
1723 default:
1724 break;
1727 up(&hbus->enum_sem);
1728 put_hvpcibus(hbus);
1729 kfree(dr);
1733 * hv_pci_devices_present() - Handles list of new children
1734 * @hbus: Root PCI bus, as understood by this driver
1735 * @relations: Packet from host listing children
1737 * This function is invoked whenever a new list of devices for
1738 * this bus appears.
1740 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1741 struct pci_bus_relations *relations)
1743 struct hv_dr_state *dr;
1744 struct hv_dr_work *dr_wrk;
1745 unsigned long flags;
1747 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1748 if (!dr_wrk)
1749 return;
1751 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1752 (sizeof(struct pci_function_description) *
1753 (relations->device_count)), GFP_NOWAIT);
1754 if (!dr) {
1755 kfree(dr_wrk);
1756 return;
1759 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1760 dr_wrk->bus = hbus;
1761 dr->device_count = relations->device_count;
1762 if (dr->device_count != 0) {
1763 memcpy(dr->func, relations->func,
1764 sizeof(struct pci_function_description) *
1765 dr->device_count);
1768 spin_lock_irqsave(&hbus->device_list_lock, flags);
1769 list_add_tail(&dr->list_entry, &hbus->dr_list);
1770 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1772 get_hvpcibus(hbus);
1773 schedule_work(&dr_wrk->wrk);
1777 * hv_eject_device_work() - Asynchronously handles ejection
1778 * @work: Work struct embedded in internal device struct
1780 * This function handles ejecting a device. Windows will
1781 * attempt to gracefully eject a device, waiting 60 seconds to
1782 * hear back from the guest OS that this completed successfully.
1783 * If this timer expires, the device will be forcibly removed.
1785 static void hv_eject_device_work(struct work_struct *work)
1787 struct pci_eject_response *ejct_pkt;
1788 struct hv_pci_dev *hpdev;
1789 struct pci_dev *pdev;
1790 unsigned long flags;
1791 int wslot;
1792 struct {
1793 struct pci_packet pkt;
1794 u8 buffer[sizeof(struct pci_eject_response)];
1795 } ctxt;
1797 hpdev = container_of(work, struct hv_pci_dev, wrk);
1799 if (hpdev->state != hv_pcichild_ejecting) {
1800 put_pcichild(hpdev, hv_pcidev_ref_pnp);
1801 return;
1805 * Ejection can come before or after the PCI bus has been set up, so
1806 * attempt to find it and tear down the bus state, if it exists. This
1807 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1808 * because hbus->pci_bus may not exist yet.
1810 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1811 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1812 wslot);
1813 if (pdev) {
1814 pci_lock_rescan_remove();
1815 pci_stop_and_remove_bus_device(pdev);
1816 pci_dev_put(pdev);
1817 pci_unlock_rescan_remove();
1820 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1821 list_del(&hpdev->list_entry);
1822 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1824 memset(&ctxt, 0, sizeof(ctxt));
1825 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1826 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1827 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1828 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1829 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1830 VM_PKT_DATA_INBAND, 0);
1832 put_pcichild(hpdev, hv_pcidev_ref_childlist);
1833 put_pcichild(hpdev, hv_pcidev_ref_pnp);
1834 put_hvpcibus(hpdev->hbus);
1838 * hv_pci_eject_device() - Handles device ejection
1839 * @hpdev: Internal device tracking struct
1841 * This function is invoked when an ejection packet arrives. It
1842 * just schedules work so that we don't re-enter the packet
1843 * delivery code handling the ejection.
1845 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1847 hpdev->state = hv_pcichild_ejecting;
1848 get_pcichild(hpdev, hv_pcidev_ref_pnp);
1849 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1850 get_hvpcibus(hpdev->hbus);
1851 schedule_work(&hpdev->wrk);
1855 * hv_pci_onchannelcallback() - Handles incoming packets
1856 * @context: Internal bus tracking struct
1858 * This function is invoked whenever the host sends a packet to
1859 * this channel (which is private to this root PCI bus).
1861 static void hv_pci_onchannelcallback(void *context)
1863 const int packet_size = 0x100;
1864 int ret;
1865 struct hv_pcibus_device *hbus = context;
1866 u32 bytes_recvd;
1867 u64 req_id;
1868 struct vmpacket_descriptor *desc;
1869 unsigned char *buffer;
1870 int bufferlen = packet_size;
1871 struct pci_packet *comp_packet;
1872 struct pci_response *response;
1873 struct pci_incoming_message *new_message;
1874 struct pci_bus_relations *bus_rel;
1875 struct pci_dev_incoming *dev_message;
1876 struct hv_pci_dev *hpdev;
1878 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1879 if (!buffer)
1880 return;
1882 while (1) {
1883 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1884 bufferlen, &bytes_recvd, &req_id);
1886 if (ret == -ENOBUFS) {
1887 kfree(buffer);
1888 /* Handle large packet */
1889 bufferlen = bytes_recvd;
1890 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1891 if (!buffer)
1892 return;
1893 continue;
1896 /* Zero length indicates there are no more packets. */
1897 if (ret || !bytes_recvd)
1898 break;
1901 * All incoming packets must be at least as large as a
1902 * response.
1904 if (bytes_recvd <= sizeof(struct pci_response))
1905 continue;
1906 desc = (struct vmpacket_descriptor *)buffer;
1908 switch (desc->type) {
1909 case VM_PKT_COMP:
1912 * The host is trusted, and thus it's safe to interpret
1913 * this transaction ID as a pointer.
1915 comp_packet = (struct pci_packet *)req_id;
1916 response = (struct pci_response *)buffer;
1917 comp_packet->completion_func(comp_packet->compl_ctxt,
1918 response,
1919 bytes_recvd);
1920 break;
1922 case VM_PKT_DATA_INBAND:
1924 new_message = (struct pci_incoming_message *)buffer;
1925 switch (new_message->message_type.type) {
1926 case PCI_BUS_RELATIONS:
1928 bus_rel = (struct pci_bus_relations *)buffer;
1929 if (bytes_recvd <
1930 offsetof(struct pci_bus_relations, func) +
1931 (sizeof(struct pci_function_description) *
1932 (bus_rel->device_count))) {
1933 dev_err(&hbus->hdev->device,
1934 "bus relations too small\n");
1935 break;
1938 hv_pci_devices_present(hbus, bus_rel);
1939 break;
1941 case PCI_EJECT:
1943 dev_message = (struct pci_dev_incoming *)buffer;
1944 hpdev = get_pcichild_wslot(hbus,
1945 dev_message->wslot.slot);
1946 if (hpdev) {
1947 hv_pci_eject_device(hpdev);
1948 put_pcichild(hpdev,
1949 hv_pcidev_ref_by_slot);
1951 break;
1953 default:
1954 dev_warn(&hbus->hdev->device,
1955 "Unimplemented protocol message %x\n",
1956 new_message->message_type.type);
1957 break;
1959 break;
1961 default:
1962 dev_err(&hbus->hdev->device,
1963 "unhandled packet type %d, tid %llx len %d\n",
1964 desc->type, req_id, bytes_recvd);
1965 break;
1969 kfree(buffer);
1973 * hv_pci_protocol_negotiation() - Set up protocol
1974 * @hdev: VMBus's tracking struct for this root PCI bus
1976 * This driver is intended to support running on Windows 10
1977 * (server) and later versions. It will not run on earlier
1978 * versions, as they assume that many of the operations which
1979 * Linux needs accomplished with a spinlock held were done via
1980 * asynchronous messaging via VMBus. Windows 10 increases the
1981 * surface area of PCI emulation so that these actions can take
1982 * place by suspending a virtual processor for their duration.
1984 * This function negotiates the channel protocol version,
1985 * failing if the host doesn't support the necessary protocol
1986 * level.
1988 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
1990 struct pci_version_request *version_req;
1991 struct hv_pci_compl comp_pkt;
1992 struct pci_packet *pkt;
1993 int ret;
1994 int i;
1997 * Initiate the handshake with the host and negotiate
1998 * a version that the host can support. We start with the
1999 * highest version number and go down if the host cannot
2000 * support it.
2002 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2003 if (!pkt)
2004 return -ENOMEM;
2006 init_completion(&comp_pkt.host_event);
2007 pkt->completion_func = hv_pci_generic_compl;
2008 pkt->compl_ctxt = &comp_pkt;
2009 version_req = (struct pci_version_request *)&pkt->message;
2010 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2012 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2013 version_req->protocol_version = pci_protocol_versions[i];
2014 ret = vmbus_sendpacket(hdev->channel, version_req,
2015 sizeof(struct pci_version_request),
2016 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2017 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2018 if (ret) {
2019 dev_err(&hdev->device,
2020 "PCI Pass-through VSP failed sending version reqquest: %#x",
2021 ret);
2022 goto exit;
2025 wait_for_completion(&comp_pkt.host_event);
2027 if (comp_pkt.completion_status >= 0) {
2028 pci_protocol_version = pci_protocol_versions[i];
2029 dev_info(&hdev->device,
2030 "PCI VMBus probing: Using version %#x\n",
2031 pci_protocol_version);
2032 goto exit;
2035 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2036 dev_err(&hdev->device,
2037 "PCI Pass-through VSP failed version request: %#x",
2038 comp_pkt.completion_status);
2039 ret = -EPROTO;
2040 goto exit;
2043 reinit_completion(&comp_pkt.host_event);
2046 dev_err(&hdev->device,
2047 "PCI pass-through VSP failed to find supported version");
2048 ret = -EPROTO;
2050 exit:
2051 kfree(pkt);
2052 return ret;
2056 * hv_pci_free_bridge_windows() - Release memory regions for the
2057 * bus
2058 * @hbus: Root PCI bus, as understood by this driver
2060 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2063 * Set the resources back to the way they looked when they
2064 * were allocated by setting IORESOURCE_BUSY again.
2067 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2068 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2069 vmbus_free_mmio(hbus->low_mmio_res->start,
2070 resource_size(hbus->low_mmio_res));
2073 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2074 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2075 vmbus_free_mmio(hbus->high_mmio_res->start,
2076 resource_size(hbus->high_mmio_res));
2081 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2082 * for the bus
2083 * @hbus: Root PCI bus, as understood by this driver
2085 * This function calls vmbus_allocate_mmio(), which is itself a
2086 * bit of a compromise. Ideally, we might change the pnp layer
2087 * in the kernel such that it comprehends either PCI devices
2088 * which are "grandchildren of ACPI," with some intermediate bus
2089 * node (in this case, VMBus) or change it such that it
2090 * understands VMBus. The pnp layer, however, has been declared
2091 * deprecated, and not subject to change.
2093 * The workaround, implemented here, is to ask VMBus to allocate
2094 * MMIO space for this bus. VMBus itself knows which ranges are
2095 * appropriate by looking at its own ACPI objects. Then, after
2096 * these ranges are claimed, they're modified to look like they
2097 * would have looked if the ACPI and pnp code had allocated
2098 * bridge windows. These descriptors have to exist in this form
2099 * in order to satisfy the code which will get invoked when the
2100 * endpoint PCI function driver calls request_mem_region() or
2101 * request_mem_region_exclusive().
2103 * Return: 0 on success, -errno on failure
2105 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2107 resource_size_t align;
2108 int ret;
2110 if (hbus->low_mmio_space) {
2111 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2112 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2113 (u64)(u32)0xffffffff,
2114 hbus->low_mmio_space,
2115 align, false);
2116 if (ret) {
2117 dev_err(&hbus->hdev->device,
2118 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2119 hbus->low_mmio_space);
2120 return ret;
2123 /* Modify this resource to become a bridge window. */
2124 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2125 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2126 pci_add_resource(&hbus->resources_for_children,
2127 hbus->low_mmio_res);
2130 if (hbus->high_mmio_space) {
2131 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2132 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2133 0x100000000, -1,
2134 hbus->high_mmio_space, align,
2135 false);
2136 if (ret) {
2137 dev_err(&hbus->hdev->device,
2138 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2139 hbus->high_mmio_space);
2140 goto release_low_mmio;
2143 /* Modify this resource to become a bridge window. */
2144 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2145 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2146 pci_add_resource(&hbus->resources_for_children,
2147 hbus->high_mmio_res);
2150 return 0;
2152 release_low_mmio:
2153 if (hbus->low_mmio_res) {
2154 vmbus_free_mmio(hbus->low_mmio_res->start,
2155 resource_size(hbus->low_mmio_res));
2158 return ret;
2162 * hv_allocate_config_window() - Find MMIO space for PCI Config
2163 * @hbus: Root PCI bus, as understood by this driver
2165 * This function claims memory-mapped I/O space for accessing
2166 * configuration space for the functions on this bus.
2168 * Return: 0 on success, -errno on failure
2170 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2172 int ret;
2175 * Set up a region of MMIO space to use for accessing configuration
2176 * space.
2178 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2179 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2180 if (ret)
2181 return ret;
2184 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2185 * resource claims (those which cannot be overlapped) and the ranges
2186 * which are valid for the children of this bus, which are intended
2187 * to be overlapped by those children. Set the flag on this claim
2188 * meaning that this region can't be overlapped.
2191 hbus->mem_config->flags |= IORESOURCE_BUSY;
2193 return 0;
2196 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2198 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2202 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2203 * @hdev: VMBus's tracking struct for this root PCI bus
2205 * Return: 0 on success, -errno on failure
2207 static int hv_pci_enter_d0(struct hv_device *hdev)
2209 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2210 struct pci_bus_d0_entry *d0_entry;
2211 struct hv_pci_compl comp_pkt;
2212 struct pci_packet *pkt;
2213 int ret;
2216 * Tell the host that the bus is ready to use, and moved into the
2217 * powered-on state. This includes telling the host which region
2218 * of memory-mapped I/O space has been chosen for configuration space
2219 * access.
2221 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2222 if (!pkt)
2223 return -ENOMEM;
2225 init_completion(&comp_pkt.host_event);
2226 pkt->completion_func = hv_pci_generic_compl;
2227 pkt->compl_ctxt = &comp_pkt;
2228 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2229 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2230 d0_entry->mmio_base = hbus->mem_config->start;
2232 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2233 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2234 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2235 if (ret)
2236 goto exit;
2238 wait_for_completion(&comp_pkt.host_event);
2240 if (comp_pkt.completion_status < 0) {
2241 dev_err(&hdev->device,
2242 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2243 comp_pkt.completion_status);
2244 ret = -EPROTO;
2245 goto exit;
2248 ret = 0;
2250 exit:
2251 kfree(pkt);
2252 return ret;
2256 * hv_pci_query_relations() - Ask host to send list of child
2257 * devices
2258 * @hdev: VMBus's tracking struct for this root PCI bus
2260 * Return: 0 on success, -errno on failure
2262 static int hv_pci_query_relations(struct hv_device *hdev)
2264 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2265 struct pci_message message;
2266 struct completion comp;
2267 int ret;
2269 /* Ask the host to send along the list of child devices */
2270 init_completion(&comp);
2271 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2272 return -ENOTEMPTY;
2274 memset(&message, 0, sizeof(message));
2275 message.type = PCI_QUERY_BUS_RELATIONS;
2277 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2278 0, VM_PKT_DATA_INBAND, 0);
2279 if (ret)
2280 return ret;
2282 wait_for_completion(&comp);
2283 return 0;
2287 * hv_send_resources_allocated() - Report local resource choices
2288 * @hdev: VMBus's tracking struct for this root PCI bus
2290 * The host OS is expecting to be sent a request as a message
2291 * which contains all the resources that the device will use.
2292 * The response contains those same resources, "translated"
2293 * which is to say, the values which should be used by the
2294 * hardware, when it delivers an interrupt. (MMIO resources are
2295 * used in local terms.) This is nice for Windows, and lines up
2296 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2297 * is deeply expecting to scan an emulated PCI configuration
2298 * space. So this message is sent here only to drive the state
2299 * machine on the host forward.
2301 * Return: 0 on success, -errno on failure
2303 static int hv_send_resources_allocated(struct hv_device *hdev)
2305 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2306 struct pci_resources_assigned *res_assigned;
2307 struct pci_resources_assigned2 *res_assigned2;
2308 struct hv_pci_compl comp_pkt;
2309 struct hv_pci_dev *hpdev;
2310 struct pci_packet *pkt;
2311 size_t size_res;
2312 u32 wslot;
2313 int ret;
2315 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2316 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2318 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2319 if (!pkt)
2320 return -ENOMEM;
2322 ret = 0;
2324 for (wslot = 0; wslot < 256; wslot++) {
2325 hpdev = get_pcichild_wslot(hbus, wslot);
2326 if (!hpdev)
2327 continue;
2329 memset(pkt, 0, sizeof(*pkt) + size_res);
2330 init_completion(&comp_pkt.host_event);
2331 pkt->completion_func = hv_pci_generic_compl;
2332 pkt->compl_ctxt = &comp_pkt;
2334 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2335 res_assigned =
2336 (struct pci_resources_assigned *)&pkt->message;
2337 res_assigned->message_type.type =
2338 PCI_RESOURCES_ASSIGNED;
2339 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2340 } else {
2341 res_assigned2 =
2342 (struct pci_resources_assigned2 *)&pkt->message;
2343 res_assigned2->message_type.type =
2344 PCI_RESOURCES_ASSIGNED2;
2345 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2347 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2349 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2350 size_res, (unsigned long)pkt,
2351 VM_PKT_DATA_INBAND,
2352 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2353 if (ret)
2354 break;
2356 wait_for_completion(&comp_pkt.host_event);
2358 if (comp_pkt.completion_status < 0) {
2359 ret = -EPROTO;
2360 dev_err(&hdev->device,
2361 "resource allocated returned 0x%x",
2362 comp_pkt.completion_status);
2363 break;
2367 kfree(pkt);
2368 return ret;
2372 * hv_send_resources_released() - Report local resources
2373 * released
2374 * @hdev: VMBus's tracking struct for this root PCI bus
2376 * Return: 0 on success, -errno on failure
2378 static int hv_send_resources_released(struct hv_device *hdev)
2380 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2381 struct pci_child_message pkt;
2382 struct hv_pci_dev *hpdev;
2383 u32 wslot;
2384 int ret;
2386 for (wslot = 0; wslot < 256; wslot++) {
2387 hpdev = get_pcichild_wslot(hbus, wslot);
2388 if (!hpdev)
2389 continue;
2391 memset(&pkt, 0, sizeof(pkt));
2392 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2393 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2395 put_pcichild(hpdev, hv_pcidev_ref_by_slot);
2397 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2398 VM_PKT_DATA_INBAND, 0);
2399 if (ret)
2400 return ret;
2403 return 0;
2406 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2408 atomic_inc(&hbus->remove_lock);
2411 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2413 if (atomic_dec_and_test(&hbus->remove_lock))
2414 complete(&hbus->remove_event);
2418 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2419 * @hdev: VMBus's tracking struct for this root PCI bus
2420 * @dev_id: Identifies the device itself
2422 * Return: 0 on success, -errno on failure
2424 static int hv_pci_probe(struct hv_device *hdev,
2425 const struct hv_vmbus_device_id *dev_id)
2427 struct hv_pcibus_device *hbus;
2428 int ret;
2431 * hv_pcibus_device contains the hypercall arguments for retargeting in
2432 * hv_irq_unmask(). Those must not cross a page boundary.
2434 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2436 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2437 if (!hbus)
2438 return -ENOMEM;
2439 hbus->state = hv_pcibus_init;
2442 * The PCI bus "domain" is what is called "segment" in ACPI and
2443 * other specs. Pull it from the instance ID, to get something
2444 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2445 * do the same thing for consistency. Note that, since this code
2446 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2447 * that (1) the only domain in use for something that looks like
2448 * a physical PCI bus (which is actually emulated by the
2449 * hypervisor) is domain 0 and (2) there will be no overlap
2450 * between domains derived from these instance IDs in the same
2451 * VM.
2453 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2454 hdev->dev_instance.b[8] << 8;
2456 hbus->hdev = hdev;
2457 atomic_inc(&hbus->remove_lock);
2458 INIT_LIST_HEAD(&hbus->children);
2459 INIT_LIST_HEAD(&hbus->dr_list);
2460 INIT_LIST_HEAD(&hbus->resources_for_children);
2461 spin_lock_init(&hbus->config_lock);
2462 spin_lock_init(&hbus->device_list_lock);
2463 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2464 sema_init(&hbus->enum_sem, 1);
2465 init_completion(&hbus->remove_event);
2467 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2468 hv_pci_onchannelcallback, hbus);
2469 if (ret)
2470 goto free_bus;
2472 hv_set_drvdata(hdev, hbus);
2474 ret = hv_pci_protocol_negotiation(hdev);
2475 if (ret)
2476 goto close;
2478 ret = hv_allocate_config_window(hbus);
2479 if (ret)
2480 goto close;
2482 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2483 PCI_CONFIG_MMIO_LENGTH);
2484 if (!hbus->cfg_addr) {
2485 dev_err(&hdev->device,
2486 "Unable to map a virtual address for config space\n");
2487 ret = -ENOMEM;
2488 goto free_config;
2491 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2492 if (!hbus->sysdata.fwnode) {
2493 ret = -ENOMEM;
2494 goto unmap;
2497 ret = hv_pcie_init_irq_domain(hbus);
2498 if (ret)
2499 goto free_fwnode;
2501 ret = hv_pci_query_relations(hdev);
2502 if (ret)
2503 goto free_irq_domain;
2505 ret = hv_pci_enter_d0(hdev);
2506 if (ret)
2507 goto free_irq_domain;
2509 ret = hv_pci_allocate_bridge_windows(hbus);
2510 if (ret)
2511 goto free_irq_domain;
2513 ret = hv_send_resources_allocated(hdev);
2514 if (ret)
2515 goto free_windows;
2517 prepopulate_bars(hbus);
2519 hbus->state = hv_pcibus_probed;
2521 ret = create_root_hv_pci_bus(hbus);
2522 if (ret)
2523 goto free_windows;
2525 return 0;
2527 free_windows:
2528 hv_pci_free_bridge_windows(hbus);
2529 free_irq_domain:
2530 irq_domain_remove(hbus->irq_domain);
2531 free_fwnode:
2532 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2533 unmap:
2534 iounmap(hbus->cfg_addr);
2535 free_config:
2536 hv_free_config_window(hbus);
2537 close:
2538 vmbus_close(hdev->channel);
2539 free_bus:
2540 free_page((unsigned long)hbus);
2541 return ret;
2544 static void hv_pci_bus_exit(struct hv_device *hdev)
2546 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2547 struct {
2548 struct pci_packet teardown_packet;
2549 u8 buffer[sizeof(struct pci_message)];
2550 } pkt;
2551 struct pci_bus_relations relations;
2552 struct hv_pci_compl comp_pkt;
2553 int ret;
2556 * After the host sends the RESCIND_CHANNEL message, it doesn't
2557 * access the per-channel ringbuffer any longer.
2559 if (hdev->channel->rescind)
2560 return;
2562 /* Delete any children which might still exist. */
2563 memset(&relations, 0, sizeof(relations));
2564 hv_pci_devices_present(hbus, &relations);
2566 ret = hv_send_resources_released(hdev);
2567 if (ret)
2568 dev_err(&hdev->device,
2569 "Couldn't send resources released packet(s)\n");
2571 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2572 init_completion(&comp_pkt.host_event);
2573 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2574 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2575 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2577 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2578 sizeof(struct pci_message),
2579 (unsigned long)&pkt.teardown_packet,
2580 VM_PKT_DATA_INBAND,
2581 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2582 if (!ret)
2583 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2587 * hv_pci_remove() - Remove routine for this VMBus channel
2588 * @hdev: VMBus's tracking struct for this root PCI bus
2590 * Return: 0 on success, -errno on failure
2592 static int hv_pci_remove(struct hv_device *hdev)
2594 struct hv_pcibus_device *hbus;
2596 hbus = hv_get_drvdata(hdev);
2597 if (hbus->state == hv_pcibus_installed) {
2598 /* Remove the bus from PCI's point of view. */
2599 pci_lock_rescan_remove();
2600 pci_stop_root_bus(hbus->pci_bus);
2601 pci_remove_root_bus(hbus->pci_bus);
2602 pci_unlock_rescan_remove();
2603 hbus->state = hv_pcibus_removed;
2606 hv_pci_bus_exit(hdev);
2608 vmbus_close(hdev->channel);
2610 iounmap(hbus->cfg_addr);
2611 hv_free_config_window(hbus);
2612 pci_free_resource_list(&hbus->resources_for_children);
2613 hv_pci_free_bridge_windows(hbus);
2614 irq_domain_remove(hbus->irq_domain);
2615 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2616 put_hvpcibus(hbus);
2617 wait_for_completion(&hbus->remove_event);
2618 free_page((unsigned long)hbus);
2619 return 0;
2622 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2623 /* PCI Pass-through Class ID */
2624 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2625 { HV_PCIE_GUID, },
2626 { },
2629 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2631 static struct hv_driver hv_pci_drv = {
2632 .name = "hv_pci",
2633 .id_table = hv_pci_id_table,
2634 .probe = hv_pci_probe,
2635 .remove = hv_pci_remove,
2638 static void __exit exit_hv_pci_drv(void)
2640 vmbus_driver_unregister(&hv_pci_drv);
2643 static int __init init_hv_pci_drv(void)
2645 return vmbus_driver_register(&hv_pci_drv);
2648 module_init(init_hv_pci_drv);
2649 module_exit(exit_hv_pci_drv);
2651 MODULE_DESCRIPTION("Hyper-V PCI");
2652 MODULE_LICENSE("GPL v2");