xtensa: support DMA buffers in high memory
[cris-mirror.git] / virt / kvm / arm / arm.c
blob86941f6181bb0ee168918ce2436ed19c12dc4a07
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
41 #include <asm/mman.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
44 #include <asm/virt.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
56 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
68 static bool vgic_present;
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
79 /**
80 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81 * Must be called from non-preemptible context
83 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
85 return __this_cpu_read(kvm_arm_running_vcpu);
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
93 return &kvm_arm_running_vcpu;
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 int kvm_arch_hardware_setup(void)
103 return 0;
106 void kvm_arch_check_processor_compat(void *rtn)
108 *(int *)rtn = 0;
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
118 int ret, cpu;
120 if (type)
121 return -EINVAL;
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
138 kvm_vgic_early_init(kvm);
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
156 bool kvm_arch_has_vcpu_debugfs(void)
158 return false;
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
163 return 0;
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
168 return VM_FAULT_SIGBUS;
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
176 void kvm_arch_destroy_vm(struct kvm *kvm)
178 int i;
180 kvm_vgic_destroy(kvm);
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
191 atomic_set(&kvm->online_vcpus, 0);
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
196 int r;
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 r = vgic_present;
200 break;
201 case KVM_CAP_IOEVENTFD:
202 case KVM_CAP_DEVICE_CTRL:
203 case KVM_CAP_USER_MEMORY:
204 case KVM_CAP_SYNC_MMU:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206 case KVM_CAP_ONE_REG:
207 case KVM_CAP_ARM_PSCI:
208 case KVM_CAP_ARM_PSCI_0_2:
209 case KVM_CAP_READONLY_MEM:
210 case KVM_CAP_MP_STATE:
211 case KVM_CAP_IMMEDIATE_EXIT:
212 r = 1;
213 break;
214 case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 r = 1;
216 break;
217 case KVM_CAP_NR_VCPUS:
218 r = num_online_cpus();
219 break;
220 case KVM_CAP_MAX_VCPUS:
221 r = KVM_MAX_VCPUS;
222 break;
223 case KVM_CAP_NR_MEMSLOTS:
224 r = KVM_USER_MEM_SLOTS;
225 break;
226 case KVM_CAP_MSI_DEVID:
227 if (!kvm)
228 r = -EINVAL;
229 else
230 r = kvm->arch.vgic.msis_require_devid;
231 break;
232 case KVM_CAP_ARM_USER_IRQ:
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
237 r = 1;
238 break;
239 default:
240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 break;
243 return r;
246 long kvm_arch_dev_ioctl(struct file *filp,
247 unsigned int ioctl, unsigned long arg)
249 return -EINVAL;
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
255 int err;
256 struct kvm_vcpu *vcpu;
258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 err = -EBUSY;
260 goto out;
263 if (id >= kvm->arch.max_vcpus) {
264 err = -EINVAL;
265 goto out;
268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 if (!vcpu) {
270 err = -ENOMEM;
271 goto out;
274 err = kvm_vcpu_init(vcpu, kvm, id);
275 if (err)
276 goto free_vcpu;
278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 if (err)
280 goto vcpu_uninit;
282 return vcpu;
283 vcpu_uninit:
284 kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286 kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288 return ERR_PTR(err);
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
293 kvm_vgic_vcpu_early_init(vcpu);
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
298 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
299 static_branch_dec(&userspace_irqchip_in_use);
301 kvm_mmu_free_memory_caches(vcpu);
302 kvm_timer_vcpu_terminate(vcpu);
303 kvm_pmu_vcpu_destroy(vcpu);
304 kvm_vcpu_uninit(vcpu);
305 kmem_cache_free(kvm_vcpu_cache, vcpu);
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
310 kvm_arch_vcpu_free(vcpu);
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
315 return kvm_timer_is_pending(vcpu);
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
320 kvm_timer_schedule(vcpu);
321 kvm_vgic_v4_enable_doorbell(vcpu);
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
326 kvm_timer_unschedule(vcpu);
327 kvm_vgic_v4_disable_doorbell(vcpu);
330 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
332 /* Force users to call KVM_ARM_VCPU_INIT */
333 vcpu->arch.target = -1;
334 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
336 /* Set up the timer */
337 kvm_timer_vcpu_init(vcpu);
339 kvm_arm_reset_debug_ptr(vcpu);
341 return kvm_vgic_vcpu_init(vcpu);
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
346 int *last_ran;
348 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
351 * We might get preempted before the vCPU actually runs, but
352 * over-invalidation doesn't affect correctness.
354 if (*last_ran != vcpu->vcpu_id) {
355 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
356 *last_ran = vcpu->vcpu_id;
359 vcpu->cpu = cpu;
360 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
362 kvm_arm_set_running_vcpu(vcpu);
363 kvm_vgic_load(vcpu);
364 kvm_timer_vcpu_load(vcpu);
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
369 kvm_timer_vcpu_put(vcpu);
370 kvm_vgic_put(vcpu);
372 vcpu->cpu = -1;
374 kvm_arm_set_running_vcpu(NULL);
377 static void vcpu_power_off(struct kvm_vcpu *vcpu)
379 vcpu->arch.power_off = true;
380 kvm_make_request(KVM_REQ_SLEEP, vcpu);
381 kvm_vcpu_kick(vcpu);
384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
385 struct kvm_mp_state *mp_state)
387 vcpu_load(vcpu);
389 if (vcpu->arch.power_off)
390 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391 else
392 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
394 vcpu_put(vcpu);
395 return 0;
398 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
399 struct kvm_mp_state *mp_state)
401 int ret = 0;
403 vcpu_load(vcpu);
405 switch (mp_state->mp_state) {
406 case KVM_MP_STATE_RUNNABLE:
407 vcpu->arch.power_off = false;
408 break;
409 case KVM_MP_STATE_STOPPED:
410 vcpu_power_off(vcpu);
411 break;
412 default:
413 ret = -EINVAL;
416 vcpu_put(vcpu);
417 return ret;
421 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
422 * @v: The VCPU pointer
424 * If the guest CPU is not waiting for interrupts or an interrupt line is
425 * asserted, the CPU is by definition runnable.
427 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
429 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
430 && !v->arch.power_off && !v->arch.pause);
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
435 return vcpu_mode_priv(vcpu);
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
443 void force_vm_exit(const cpumask_t *mask)
445 preempt_disable();
446 smp_call_function_many(mask, exit_vm_noop, NULL, true);
447 preempt_enable();
451 * need_new_vmid_gen - check that the VMID is still valid
452 * @kvm: The VM's VMID to check
454 * return true if there is a new generation of VMIDs being used
456 * The hardware supports only 256 values with the value zero reserved for the
457 * host, so we check if an assigned value belongs to a previous generation,
458 * which which requires us to assign a new value. If we're the first to use a
459 * VMID for the new generation, we must flush necessary caches and TLBs on all
460 * CPUs.
462 static bool need_new_vmid_gen(struct kvm *kvm)
464 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
468 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
469 * @kvm The guest that we are about to run
471 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
472 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
473 * caches and TLBs.
475 static void update_vttbr(struct kvm *kvm)
477 phys_addr_t pgd_phys;
478 u64 vmid;
480 if (!need_new_vmid_gen(kvm))
481 return;
483 spin_lock(&kvm_vmid_lock);
486 * We need to re-check the vmid_gen here to ensure that if another vcpu
487 * already allocated a valid vmid for this vm, then this vcpu should
488 * use the same vmid.
490 if (!need_new_vmid_gen(kvm)) {
491 spin_unlock(&kvm_vmid_lock);
492 return;
495 /* First user of a new VMID generation? */
496 if (unlikely(kvm_next_vmid == 0)) {
497 atomic64_inc(&kvm_vmid_gen);
498 kvm_next_vmid = 1;
501 * On SMP we know no other CPUs can use this CPU's or each
502 * other's VMID after force_vm_exit returns since the
503 * kvm_vmid_lock blocks them from reentry to the guest.
505 force_vm_exit(cpu_all_mask);
507 * Now broadcast TLB + ICACHE invalidation over the inner
508 * shareable domain to make sure all data structures are
509 * clean.
511 kvm_call_hyp(__kvm_flush_vm_context);
514 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
515 kvm->arch.vmid = kvm_next_vmid;
516 kvm_next_vmid++;
517 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
519 /* update vttbr to be used with the new vmid */
520 pgd_phys = virt_to_phys(kvm->arch.pgd);
521 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
525 spin_unlock(&kvm_vmid_lock);
528 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
530 struct kvm *kvm = vcpu->kvm;
531 int ret = 0;
533 if (likely(vcpu->arch.has_run_once))
534 return 0;
536 vcpu->arch.has_run_once = true;
538 if (likely(irqchip_in_kernel(kvm))) {
540 * Map the VGIC hardware resources before running a vcpu the
541 * first time on this VM.
543 if (unlikely(!vgic_ready(kvm))) {
544 ret = kvm_vgic_map_resources(kvm);
545 if (ret)
546 return ret;
548 } else {
550 * Tell the rest of the code that there are userspace irqchip
551 * VMs in the wild.
553 static_branch_inc(&userspace_irqchip_in_use);
556 ret = kvm_timer_enable(vcpu);
557 if (ret)
558 return ret;
560 ret = kvm_arm_pmu_v3_enable(vcpu);
562 return ret;
565 bool kvm_arch_intc_initialized(struct kvm *kvm)
567 return vgic_initialized(kvm);
570 void kvm_arm_halt_guest(struct kvm *kvm)
572 int i;
573 struct kvm_vcpu *vcpu;
575 kvm_for_each_vcpu(i, vcpu, kvm)
576 vcpu->arch.pause = true;
577 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
580 void kvm_arm_resume_guest(struct kvm *kvm)
582 int i;
583 struct kvm_vcpu *vcpu;
585 kvm_for_each_vcpu(i, vcpu, kvm) {
586 vcpu->arch.pause = false;
587 swake_up(kvm_arch_vcpu_wq(vcpu));
591 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
593 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
595 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
596 (!vcpu->arch.pause)));
598 if (vcpu->arch.power_off || vcpu->arch.pause) {
599 /* Awaken to handle a signal, request we sleep again later. */
600 kvm_make_request(KVM_REQ_SLEEP, vcpu);
604 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
606 return vcpu->arch.target >= 0;
609 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
611 if (kvm_request_pending(vcpu)) {
612 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
613 vcpu_req_sleep(vcpu);
616 * Clear IRQ_PENDING requests that were made to guarantee
617 * that a VCPU sees new virtual interrupts.
619 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
624 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
625 * @vcpu: The VCPU pointer
626 * @run: The kvm_run structure pointer used for userspace state exchange
628 * This function is called through the VCPU_RUN ioctl called from user space. It
629 * will execute VM code in a loop until the time slice for the process is used
630 * or some emulation is needed from user space in which case the function will
631 * return with return value 0 and with the kvm_run structure filled in with the
632 * required data for the requested emulation.
634 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
636 int ret;
638 if (unlikely(!kvm_vcpu_initialized(vcpu)))
639 return -ENOEXEC;
641 vcpu_load(vcpu);
643 ret = kvm_vcpu_first_run_init(vcpu);
644 if (ret)
645 goto out;
647 if (run->exit_reason == KVM_EXIT_MMIO) {
648 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
649 if (ret)
650 goto out;
651 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
652 ret = 0;
653 goto out;
658 if (run->immediate_exit) {
659 ret = -EINTR;
660 goto out;
663 kvm_sigset_activate(vcpu);
665 ret = 1;
666 run->exit_reason = KVM_EXIT_UNKNOWN;
667 while (ret > 0) {
669 * Check conditions before entering the guest
671 cond_resched();
673 update_vttbr(vcpu->kvm);
675 check_vcpu_requests(vcpu);
678 * Preparing the interrupts to be injected also
679 * involves poking the GIC, which must be done in a
680 * non-preemptible context.
682 preempt_disable();
684 /* Flush FP/SIMD state that can't survive guest entry/exit */
685 kvm_fpsimd_flush_cpu_state();
687 kvm_pmu_flush_hwstate(vcpu);
689 local_irq_disable();
691 kvm_vgic_flush_hwstate(vcpu);
694 * Exit if we have a signal pending so that we can deliver the
695 * signal to user space.
697 if (signal_pending(current)) {
698 ret = -EINTR;
699 run->exit_reason = KVM_EXIT_INTR;
703 * If we're using a userspace irqchip, then check if we need
704 * to tell a userspace irqchip about timer or PMU level
705 * changes and if so, exit to userspace (the actual level
706 * state gets updated in kvm_timer_update_run and
707 * kvm_pmu_update_run below).
709 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
710 if (kvm_timer_should_notify_user(vcpu) ||
711 kvm_pmu_should_notify_user(vcpu)) {
712 ret = -EINTR;
713 run->exit_reason = KVM_EXIT_INTR;
718 * Ensure we set mode to IN_GUEST_MODE after we disable
719 * interrupts and before the final VCPU requests check.
720 * See the comment in kvm_vcpu_exiting_guest_mode() and
721 * Documentation/virtual/kvm/vcpu-requests.rst
723 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
725 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
726 kvm_request_pending(vcpu)) {
727 vcpu->mode = OUTSIDE_GUEST_MODE;
728 kvm_pmu_sync_hwstate(vcpu);
729 if (static_branch_unlikely(&userspace_irqchip_in_use))
730 kvm_timer_sync_hwstate(vcpu);
731 kvm_vgic_sync_hwstate(vcpu);
732 local_irq_enable();
733 preempt_enable();
734 continue;
737 kvm_arm_setup_debug(vcpu);
739 /**************************************************************
740 * Enter the guest
742 trace_kvm_entry(*vcpu_pc(vcpu));
743 guest_enter_irqoff();
744 if (has_vhe())
745 kvm_arm_vhe_guest_enter();
747 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
749 if (has_vhe())
750 kvm_arm_vhe_guest_exit();
751 vcpu->mode = OUTSIDE_GUEST_MODE;
752 vcpu->stat.exits++;
754 * Back from guest
755 *************************************************************/
757 kvm_arm_clear_debug(vcpu);
760 * We must sync the PMU state before the vgic state so
761 * that the vgic can properly sample the updated state of the
762 * interrupt line.
764 kvm_pmu_sync_hwstate(vcpu);
767 * Sync the vgic state before syncing the timer state because
768 * the timer code needs to know if the virtual timer
769 * interrupts are active.
771 kvm_vgic_sync_hwstate(vcpu);
774 * Sync the timer hardware state before enabling interrupts as
775 * we don't want vtimer interrupts to race with syncing the
776 * timer virtual interrupt state.
778 if (static_branch_unlikely(&userspace_irqchip_in_use))
779 kvm_timer_sync_hwstate(vcpu);
782 * We may have taken a host interrupt in HYP mode (ie
783 * while executing the guest). This interrupt is still
784 * pending, as we haven't serviced it yet!
786 * We're now back in SVC mode, with interrupts
787 * disabled. Enabling the interrupts now will have
788 * the effect of taking the interrupt again, in SVC
789 * mode this time.
791 local_irq_enable();
794 * We do local_irq_enable() before calling guest_exit() so
795 * that if a timer interrupt hits while running the guest we
796 * account that tick as being spent in the guest. We enable
797 * preemption after calling guest_exit() so that if we get
798 * preempted we make sure ticks after that is not counted as
799 * guest time.
801 guest_exit();
802 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
804 /* Exit types that need handling before we can be preempted */
805 handle_exit_early(vcpu, run, ret);
807 preempt_enable();
809 ret = handle_exit(vcpu, run, ret);
812 /* Tell userspace about in-kernel device output levels */
813 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
814 kvm_timer_update_run(vcpu);
815 kvm_pmu_update_run(vcpu);
818 kvm_sigset_deactivate(vcpu);
820 out:
821 vcpu_put(vcpu);
822 return ret;
825 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
827 int bit_index;
828 bool set;
829 unsigned long *ptr;
831 if (number == KVM_ARM_IRQ_CPU_IRQ)
832 bit_index = __ffs(HCR_VI);
833 else /* KVM_ARM_IRQ_CPU_FIQ */
834 bit_index = __ffs(HCR_VF);
836 ptr = (unsigned long *)&vcpu->arch.irq_lines;
837 if (level)
838 set = test_and_set_bit(bit_index, ptr);
839 else
840 set = test_and_clear_bit(bit_index, ptr);
843 * If we didn't change anything, no need to wake up or kick other CPUs
845 if (set == level)
846 return 0;
849 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
850 * trigger a world-switch round on the running physical CPU to set the
851 * virtual IRQ/FIQ fields in the HCR appropriately.
853 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
854 kvm_vcpu_kick(vcpu);
856 return 0;
859 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
860 bool line_status)
862 u32 irq = irq_level->irq;
863 unsigned int irq_type, vcpu_idx, irq_num;
864 int nrcpus = atomic_read(&kvm->online_vcpus);
865 struct kvm_vcpu *vcpu = NULL;
866 bool level = irq_level->level;
868 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
869 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
870 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
872 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
874 switch (irq_type) {
875 case KVM_ARM_IRQ_TYPE_CPU:
876 if (irqchip_in_kernel(kvm))
877 return -ENXIO;
879 if (vcpu_idx >= nrcpus)
880 return -EINVAL;
882 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
883 if (!vcpu)
884 return -EINVAL;
886 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
887 return -EINVAL;
889 return vcpu_interrupt_line(vcpu, irq_num, level);
890 case KVM_ARM_IRQ_TYPE_PPI:
891 if (!irqchip_in_kernel(kvm))
892 return -ENXIO;
894 if (vcpu_idx >= nrcpus)
895 return -EINVAL;
897 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
898 if (!vcpu)
899 return -EINVAL;
901 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
902 return -EINVAL;
904 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
905 case KVM_ARM_IRQ_TYPE_SPI:
906 if (!irqchip_in_kernel(kvm))
907 return -ENXIO;
909 if (irq_num < VGIC_NR_PRIVATE_IRQS)
910 return -EINVAL;
912 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
915 return -EINVAL;
918 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
919 const struct kvm_vcpu_init *init)
921 unsigned int i;
922 int phys_target = kvm_target_cpu();
924 if (init->target != phys_target)
925 return -EINVAL;
928 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
929 * use the same target.
931 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
932 return -EINVAL;
934 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
935 for (i = 0; i < sizeof(init->features) * 8; i++) {
936 bool set = (init->features[i / 32] & (1 << (i % 32)));
938 if (set && i >= KVM_VCPU_MAX_FEATURES)
939 return -ENOENT;
942 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
943 * use the same feature set.
945 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
946 test_bit(i, vcpu->arch.features) != set)
947 return -EINVAL;
949 if (set)
950 set_bit(i, vcpu->arch.features);
953 vcpu->arch.target = phys_target;
955 /* Now we know what it is, we can reset it. */
956 return kvm_reset_vcpu(vcpu);
960 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
961 struct kvm_vcpu_init *init)
963 int ret;
965 ret = kvm_vcpu_set_target(vcpu, init);
966 if (ret)
967 return ret;
970 * Ensure a rebooted VM will fault in RAM pages and detect if the
971 * guest MMU is turned off and flush the caches as needed.
973 if (vcpu->arch.has_run_once)
974 stage2_unmap_vm(vcpu->kvm);
976 vcpu_reset_hcr(vcpu);
979 * Handle the "start in power-off" case.
981 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
982 vcpu_power_off(vcpu);
983 else
984 vcpu->arch.power_off = false;
986 return 0;
989 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
990 struct kvm_device_attr *attr)
992 int ret = -ENXIO;
994 switch (attr->group) {
995 default:
996 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
997 break;
1000 return ret;
1003 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1004 struct kvm_device_attr *attr)
1006 int ret = -ENXIO;
1008 switch (attr->group) {
1009 default:
1010 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1011 break;
1014 return ret;
1017 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1018 struct kvm_device_attr *attr)
1020 int ret = -ENXIO;
1022 switch (attr->group) {
1023 default:
1024 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1025 break;
1028 return ret;
1031 long kvm_arch_vcpu_ioctl(struct file *filp,
1032 unsigned int ioctl, unsigned long arg)
1034 struct kvm_vcpu *vcpu = filp->private_data;
1035 void __user *argp = (void __user *)arg;
1036 struct kvm_device_attr attr;
1037 long r;
1039 vcpu_load(vcpu);
1041 switch (ioctl) {
1042 case KVM_ARM_VCPU_INIT: {
1043 struct kvm_vcpu_init init;
1045 r = -EFAULT;
1046 if (copy_from_user(&init, argp, sizeof(init)))
1047 break;
1049 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1050 break;
1052 case KVM_SET_ONE_REG:
1053 case KVM_GET_ONE_REG: {
1054 struct kvm_one_reg reg;
1056 r = -ENOEXEC;
1057 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1058 break;
1060 r = -EFAULT;
1061 if (copy_from_user(&reg, argp, sizeof(reg)))
1062 break;
1064 if (ioctl == KVM_SET_ONE_REG)
1065 r = kvm_arm_set_reg(vcpu, &reg);
1066 else
1067 r = kvm_arm_get_reg(vcpu, &reg);
1068 break;
1070 case KVM_GET_REG_LIST: {
1071 struct kvm_reg_list __user *user_list = argp;
1072 struct kvm_reg_list reg_list;
1073 unsigned n;
1075 r = -ENOEXEC;
1076 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1077 break;
1079 r = -EFAULT;
1080 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1081 break;
1082 n = reg_list.n;
1083 reg_list.n = kvm_arm_num_regs(vcpu);
1084 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1085 break;
1086 r = -E2BIG;
1087 if (n < reg_list.n)
1088 break;
1089 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1090 break;
1092 case KVM_SET_DEVICE_ATTR: {
1093 r = -EFAULT;
1094 if (copy_from_user(&attr, argp, sizeof(attr)))
1095 break;
1096 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1097 break;
1099 case KVM_GET_DEVICE_ATTR: {
1100 r = -EFAULT;
1101 if (copy_from_user(&attr, argp, sizeof(attr)))
1102 break;
1103 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1104 break;
1106 case KVM_HAS_DEVICE_ATTR: {
1107 r = -EFAULT;
1108 if (copy_from_user(&attr, argp, sizeof(attr)))
1109 break;
1110 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1111 break;
1113 default:
1114 r = -EINVAL;
1117 vcpu_put(vcpu);
1118 return r;
1122 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1123 * @kvm: kvm instance
1124 * @log: slot id and address to which we copy the log
1126 * Steps 1-4 below provide general overview of dirty page logging. See
1127 * kvm_get_dirty_log_protect() function description for additional details.
1129 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1130 * always flush the TLB (step 4) even if previous step failed and the dirty
1131 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1132 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1133 * writes will be marked dirty for next log read.
1135 * 1. Take a snapshot of the bit and clear it if needed.
1136 * 2. Write protect the corresponding page.
1137 * 3. Copy the snapshot to the userspace.
1138 * 4. Flush TLB's if needed.
1140 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1142 bool is_dirty = false;
1143 int r;
1145 mutex_lock(&kvm->slots_lock);
1147 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1149 if (is_dirty)
1150 kvm_flush_remote_tlbs(kvm);
1152 mutex_unlock(&kvm->slots_lock);
1153 return r;
1156 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1157 struct kvm_arm_device_addr *dev_addr)
1159 unsigned long dev_id, type;
1161 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1162 KVM_ARM_DEVICE_ID_SHIFT;
1163 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1164 KVM_ARM_DEVICE_TYPE_SHIFT;
1166 switch (dev_id) {
1167 case KVM_ARM_DEVICE_VGIC_V2:
1168 if (!vgic_present)
1169 return -ENXIO;
1170 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1171 default:
1172 return -ENODEV;
1176 long kvm_arch_vm_ioctl(struct file *filp,
1177 unsigned int ioctl, unsigned long arg)
1179 struct kvm *kvm = filp->private_data;
1180 void __user *argp = (void __user *)arg;
1182 switch (ioctl) {
1183 case KVM_CREATE_IRQCHIP: {
1184 int ret;
1185 if (!vgic_present)
1186 return -ENXIO;
1187 mutex_lock(&kvm->lock);
1188 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1189 mutex_unlock(&kvm->lock);
1190 return ret;
1192 case KVM_ARM_SET_DEVICE_ADDR: {
1193 struct kvm_arm_device_addr dev_addr;
1195 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1196 return -EFAULT;
1197 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1199 case KVM_ARM_PREFERRED_TARGET: {
1200 int err;
1201 struct kvm_vcpu_init init;
1203 err = kvm_vcpu_preferred_target(&init);
1204 if (err)
1205 return err;
1207 if (copy_to_user(argp, &init, sizeof(init)))
1208 return -EFAULT;
1210 return 0;
1212 default:
1213 return -EINVAL;
1217 static void cpu_init_hyp_mode(void *dummy)
1219 phys_addr_t pgd_ptr;
1220 unsigned long hyp_stack_ptr;
1221 unsigned long stack_page;
1222 unsigned long vector_ptr;
1224 /* Switch from the HYP stub to our own HYP init vector */
1225 __hyp_set_vectors(kvm_get_idmap_vector());
1227 pgd_ptr = kvm_mmu_get_httbr();
1228 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1229 hyp_stack_ptr = stack_page + PAGE_SIZE;
1230 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1232 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1233 __cpu_init_stage2();
1235 kvm_arm_init_debug();
1238 static void cpu_hyp_reset(void)
1240 if (!is_kernel_in_hyp_mode())
1241 __hyp_reset_vectors();
1244 static void cpu_hyp_reinit(void)
1246 cpu_hyp_reset();
1248 if (is_kernel_in_hyp_mode()) {
1250 * __cpu_init_stage2() is safe to call even if the PM
1251 * event was cancelled before the CPU was reset.
1253 __cpu_init_stage2();
1254 kvm_timer_init_vhe();
1255 } else {
1256 cpu_init_hyp_mode(NULL);
1259 if (vgic_present)
1260 kvm_vgic_init_cpu_hardware();
1263 static void _kvm_arch_hardware_enable(void *discard)
1265 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1266 cpu_hyp_reinit();
1267 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1271 int kvm_arch_hardware_enable(void)
1273 _kvm_arch_hardware_enable(NULL);
1274 return 0;
1277 static void _kvm_arch_hardware_disable(void *discard)
1279 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1280 cpu_hyp_reset();
1281 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1285 void kvm_arch_hardware_disable(void)
1287 _kvm_arch_hardware_disable(NULL);
1290 #ifdef CONFIG_CPU_PM
1291 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1292 unsigned long cmd,
1293 void *v)
1296 * kvm_arm_hardware_enabled is left with its old value over
1297 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1298 * re-enable hyp.
1300 switch (cmd) {
1301 case CPU_PM_ENTER:
1302 if (__this_cpu_read(kvm_arm_hardware_enabled))
1304 * don't update kvm_arm_hardware_enabled here
1305 * so that the hardware will be re-enabled
1306 * when we resume. See below.
1308 cpu_hyp_reset();
1310 return NOTIFY_OK;
1311 case CPU_PM_ENTER_FAILED:
1312 case CPU_PM_EXIT:
1313 if (__this_cpu_read(kvm_arm_hardware_enabled))
1314 /* The hardware was enabled before suspend. */
1315 cpu_hyp_reinit();
1317 return NOTIFY_OK;
1319 default:
1320 return NOTIFY_DONE;
1324 static struct notifier_block hyp_init_cpu_pm_nb = {
1325 .notifier_call = hyp_init_cpu_pm_notifier,
1328 static void __init hyp_cpu_pm_init(void)
1330 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1332 static void __init hyp_cpu_pm_exit(void)
1334 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1336 #else
1337 static inline void hyp_cpu_pm_init(void)
1340 static inline void hyp_cpu_pm_exit(void)
1343 #endif
1345 static int init_common_resources(void)
1347 /* set size of VMID supported by CPU */
1348 kvm_vmid_bits = kvm_get_vmid_bits();
1349 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1351 return 0;
1354 static int init_subsystems(void)
1356 int err = 0;
1359 * Enable hardware so that subsystem initialisation can access EL2.
1361 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1364 * Register CPU lower-power notifier
1366 hyp_cpu_pm_init();
1369 * Init HYP view of VGIC
1371 err = kvm_vgic_hyp_init();
1372 switch (err) {
1373 case 0:
1374 vgic_present = true;
1375 break;
1376 case -ENODEV:
1377 case -ENXIO:
1378 vgic_present = false;
1379 err = 0;
1380 break;
1381 default:
1382 goto out;
1386 * Init HYP architected timer support
1388 err = kvm_timer_hyp_init(vgic_present);
1389 if (err)
1390 goto out;
1392 kvm_perf_init();
1393 kvm_coproc_table_init();
1395 out:
1396 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1398 return err;
1401 static void teardown_hyp_mode(void)
1403 int cpu;
1405 free_hyp_pgds();
1406 for_each_possible_cpu(cpu)
1407 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1408 hyp_cpu_pm_exit();
1412 * Inits Hyp-mode on all online CPUs
1414 static int init_hyp_mode(void)
1416 int cpu;
1417 int err = 0;
1420 * Allocate Hyp PGD and setup Hyp identity mapping
1422 err = kvm_mmu_init();
1423 if (err)
1424 goto out_err;
1427 * Allocate stack pages for Hypervisor-mode
1429 for_each_possible_cpu(cpu) {
1430 unsigned long stack_page;
1432 stack_page = __get_free_page(GFP_KERNEL);
1433 if (!stack_page) {
1434 err = -ENOMEM;
1435 goto out_err;
1438 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1442 * Map the Hyp-code called directly from the host
1444 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1445 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1446 if (err) {
1447 kvm_err("Cannot map world-switch code\n");
1448 goto out_err;
1451 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1452 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1453 if (err) {
1454 kvm_err("Cannot map rodata section\n");
1455 goto out_err;
1458 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1459 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1460 if (err) {
1461 kvm_err("Cannot map bss section\n");
1462 goto out_err;
1465 err = kvm_map_vectors();
1466 if (err) {
1467 kvm_err("Cannot map vectors\n");
1468 goto out_err;
1472 * Map the Hyp stack pages
1474 for_each_possible_cpu(cpu) {
1475 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1476 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1477 PAGE_HYP);
1479 if (err) {
1480 kvm_err("Cannot map hyp stack\n");
1481 goto out_err;
1485 for_each_possible_cpu(cpu) {
1486 kvm_cpu_context_t *cpu_ctxt;
1488 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1489 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1491 if (err) {
1492 kvm_err("Cannot map host CPU state: %d\n", err);
1493 goto out_err;
1497 return 0;
1499 out_err:
1500 teardown_hyp_mode();
1501 kvm_err("error initializing Hyp mode: %d\n", err);
1502 return err;
1505 static void check_kvm_target_cpu(void *ret)
1507 *(int *)ret = kvm_target_cpu();
1510 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1512 struct kvm_vcpu *vcpu;
1513 int i;
1515 mpidr &= MPIDR_HWID_BITMASK;
1516 kvm_for_each_vcpu(i, vcpu, kvm) {
1517 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1518 return vcpu;
1520 return NULL;
1523 bool kvm_arch_has_irq_bypass(void)
1525 return true;
1528 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1529 struct irq_bypass_producer *prod)
1531 struct kvm_kernel_irqfd *irqfd =
1532 container_of(cons, struct kvm_kernel_irqfd, consumer);
1534 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1535 &irqfd->irq_entry);
1537 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1538 struct irq_bypass_producer *prod)
1540 struct kvm_kernel_irqfd *irqfd =
1541 container_of(cons, struct kvm_kernel_irqfd, consumer);
1543 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1544 &irqfd->irq_entry);
1547 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1549 struct kvm_kernel_irqfd *irqfd =
1550 container_of(cons, struct kvm_kernel_irqfd, consumer);
1552 kvm_arm_halt_guest(irqfd->kvm);
1555 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1557 struct kvm_kernel_irqfd *irqfd =
1558 container_of(cons, struct kvm_kernel_irqfd, consumer);
1560 kvm_arm_resume_guest(irqfd->kvm);
1564 * Initialize Hyp-mode and memory mappings on all CPUs.
1566 int kvm_arch_init(void *opaque)
1568 int err;
1569 int ret, cpu;
1570 bool in_hyp_mode;
1572 if (!is_hyp_mode_available()) {
1573 kvm_info("HYP mode not available\n");
1574 return -ENODEV;
1577 for_each_online_cpu(cpu) {
1578 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1579 if (ret < 0) {
1580 kvm_err("Error, CPU %d not supported!\n", cpu);
1581 return -ENODEV;
1585 err = init_common_resources();
1586 if (err)
1587 return err;
1589 in_hyp_mode = is_kernel_in_hyp_mode();
1591 if (!in_hyp_mode) {
1592 err = init_hyp_mode();
1593 if (err)
1594 goto out_err;
1597 err = init_subsystems();
1598 if (err)
1599 goto out_hyp;
1601 if (in_hyp_mode)
1602 kvm_info("VHE mode initialized successfully\n");
1603 else
1604 kvm_info("Hyp mode initialized successfully\n");
1606 return 0;
1608 out_hyp:
1609 if (!in_hyp_mode)
1610 teardown_hyp_mode();
1611 out_err:
1612 return err;
1615 /* NOP: Compiling as a module not supported */
1616 void kvm_arch_exit(void)
1618 kvm_perf_teardown();
1621 static int arm_init(void)
1623 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624 return rc;
1627 module_init(arm_init);