xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_drv.c
blob173d0095e3b2120e2bd2f4090cbe7da1e25c6619
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_vgpu.h"
53 #include "intel_drv.h"
54 #include "intel_uc.h"
56 static struct drm_driver driver;
58 static unsigned int i915_load_fail_count;
60 bool __i915_inject_load_failure(const char *func, int line)
62 if (i915_load_fail_count >= i915_modparams.inject_load_failure)
63 return false;
65 if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
66 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
67 i915_modparams.inject_load_failure, func, line);
68 return true;
71 return false;
74 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
75 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
76 "providing the dmesg log by booting with drm.debug=0xf"
78 void
79 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
80 const char *fmt, ...)
82 static bool shown_bug_once;
83 struct device *kdev = dev_priv->drm.dev;
84 bool is_error = level[1] <= KERN_ERR[1];
85 bool is_debug = level[1] == KERN_DEBUG[1];
86 struct va_format vaf;
87 va_list args;
89 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
90 return;
92 va_start(args, fmt);
94 vaf.fmt = fmt;
95 vaf.va = &args;
97 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
98 __builtin_return_address(0), &vaf);
100 if (is_error && !shown_bug_once) {
101 dev_notice(kdev, "%s", FDO_BUG_MSG);
102 shown_bug_once = true;
105 va_end(args);
108 static bool i915_error_injected(struct drm_i915_private *dev_priv)
110 return i915_modparams.inject_load_failure &&
111 i915_load_fail_count == i915_modparams.inject_load_failure;
114 #define i915_load_error(dev_priv, fmt, ...) \
115 __i915_printk(dev_priv, \
116 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
117 fmt, ##__VA_ARGS__)
120 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
122 enum intel_pch ret = PCH_NOP;
125 * In a virtualized passthrough environment we can be in a
126 * setup where the ISA bridge is not able to be passed through.
127 * In this case, a south bridge can be emulated and we have to
128 * make an educated guess as to which PCH is really there.
131 if (IS_GEN5(dev_priv)) {
132 ret = PCH_IBX;
133 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
134 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
135 ret = PCH_CPT;
136 DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
137 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
138 ret = PCH_LPT;
139 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
140 dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
141 else
142 dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
143 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
144 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
145 ret = PCH_SPT;
146 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
147 } else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
148 ret = PCH_CNP;
149 DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
152 return ret;
155 static void intel_detect_pch(struct drm_i915_private *dev_priv)
157 struct pci_dev *pch = NULL;
159 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
160 * (which really amounts to a PCH but no South Display).
162 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
163 dev_priv->pch_type = PCH_NOP;
164 return;
168 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
169 * make graphics device passthrough work easy for VMM, that only
170 * need to expose ISA bridge to let driver know the real hardware
171 * underneath. This is a requirement from virtualization team.
173 * In some virtualized environments (e.g. XEN), there is irrelevant
174 * ISA bridge in the system. To work reliably, we should scan trhough
175 * all the ISA bridge devices and check for the first match, instead
176 * of only checking the first one.
178 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
179 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
180 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
182 dev_priv->pch_id = id;
184 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
185 dev_priv->pch_type = PCH_IBX;
186 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
187 WARN_ON(!IS_GEN5(dev_priv));
188 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
189 dev_priv->pch_type = PCH_CPT;
190 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
191 WARN_ON(!IS_GEN6(dev_priv) &&
192 !IS_IVYBRIDGE(dev_priv));
193 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
194 /* PantherPoint is CPT compatible */
195 dev_priv->pch_type = PCH_CPT;
196 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
197 WARN_ON(!IS_GEN6(dev_priv) &&
198 !IS_IVYBRIDGE(dev_priv));
199 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
200 dev_priv->pch_type = PCH_LPT;
201 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
202 WARN_ON(!IS_HASWELL(dev_priv) &&
203 !IS_BROADWELL(dev_priv));
204 WARN_ON(IS_HSW_ULT(dev_priv) ||
205 IS_BDW_ULT(dev_priv));
206 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
207 dev_priv->pch_type = PCH_LPT;
208 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
209 WARN_ON(!IS_HASWELL(dev_priv) &&
210 !IS_BROADWELL(dev_priv));
211 WARN_ON(!IS_HSW_ULT(dev_priv) &&
212 !IS_BDW_ULT(dev_priv));
213 } else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
214 /* WildcatPoint is LPT compatible */
215 dev_priv->pch_type = PCH_LPT;
216 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
217 WARN_ON(!IS_HASWELL(dev_priv) &&
218 !IS_BROADWELL(dev_priv));
219 WARN_ON(IS_HSW_ULT(dev_priv) ||
220 IS_BDW_ULT(dev_priv));
221 } else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
222 /* WildcatPoint is LPT compatible */
223 dev_priv->pch_type = PCH_LPT;
224 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
225 WARN_ON(!IS_HASWELL(dev_priv) &&
226 !IS_BROADWELL(dev_priv));
227 WARN_ON(!IS_HSW_ULT(dev_priv) &&
228 !IS_BDW_ULT(dev_priv));
229 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
230 dev_priv->pch_type = PCH_SPT;
231 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
232 WARN_ON(!IS_SKYLAKE(dev_priv) &&
233 !IS_KABYLAKE(dev_priv));
234 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
235 dev_priv->pch_type = PCH_SPT;
236 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
237 WARN_ON(!IS_SKYLAKE(dev_priv) &&
238 !IS_KABYLAKE(dev_priv));
239 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
240 dev_priv->pch_type = PCH_KBP;
241 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
242 WARN_ON(!IS_SKYLAKE(dev_priv) &&
243 !IS_KABYLAKE(dev_priv) &&
244 !IS_COFFEELAKE(dev_priv));
245 } else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
246 dev_priv->pch_type = PCH_CNP;
247 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
248 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
249 !IS_COFFEELAKE(dev_priv));
250 } else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
251 dev_priv->pch_type = PCH_CNP;
252 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
253 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
254 !IS_COFFEELAKE(dev_priv));
255 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
256 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
257 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
258 pch->subsystem_vendor ==
259 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
260 pch->subsystem_device ==
261 PCI_SUBDEVICE_ID_QEMU)) {
262 dev_priv->pch_type =
263 intel_virt_detect_pch(dev_priv);
264 } else
265 continue;
267 break;
270 if (!pch)
271 DRM_DEBUG_KMS("No PCH found.\n");
273 pci_dev_put(pch);
276 static int i915_getparam(struct drm_device *dev, void *data,
277 struct drm_file *file_priv)
279 struct drm_i915_private *dev_priv = to_i915(dev);
280 struct pci_dev *pdev = dev_priv->drm.pdev;
281 drm_i915_getparam_t *param = data;
282 int value;
284 switch (param->param) {
285 case I915_PARAM_IRQ_ACTIVE:
286 case I915_PARAM_ALLOW_BATCHBUFFER:
287 case I915_PARAM_LAST_DISPATCH:
288 case I915_PARAM_HAS_EXEC_CONSTANTS:
289 /* Reject all old ums/dri params. */
290 return -ENODEV;
291 case I915_PARAM_CHIPSET_ID:
292 value = pdev->device;
293 break;
294 case I915_PARAM_REVISION:
295 value = pdev->revision;
296 break;
297 case I915_PARAM_NUM_FENCES_AVAIL:
298 value = dev_priv->num_fence_regs;
299 break;
300 case I915_PARAM_HAS_OVERLAY:
301 value = dev_priv->overlay ? 1 : 0;
302 break;
303 case I915_PARAM_HAS_BSD:
304 value = !!dev_priv->engine[VCS];
305 break;
306 case I915_PARAM_HAS_BLT:
307 value = !!dev_priv->engine[BCS];
308 break;
309 case I915_PARAM_HAS_VEBOX:
310 value = !!dev_priv->engine[VECS];
311 break;
312 case I915_PARAM_HAS_BSD2:
313 value = !!dev_priv->engine[VCS2];
314 break;
315 case I915_PARAM_HAS_LLC:
316 value = HAS_LLC(dev_priv);
317 break;
318 case I915_PARAM_HAS_WT:
319 value = HAS_WT(dev_priv);
320 break;
321 case I915_PARAM_HAS_ALIASING_PPGTT:
322 value = USES_PPGTT(dev_priv);
323 break;
324 case I915_PARAM_HAS_SEMAPHORES:
325 value = HAS_LEGACY_SEMAPHORES(dev_priv);
326 break;
327 case I915_PARAM_HAS_SECURE_BATCHES:
328 value = capable(CAP_SYS_ADMIN);
329 break;
330 case I915_PARAM_CMD_PARSER_VERSION:
331 value = i915_cmd_parser_get_version(dev_priv);
332 break;
333 case I915_PARAM_SUBSLICE_TOTAL:
334 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
335 if (!value)
336 return -ENODEV;
337 break;
338 case I915_PARAM_EU_TOTAL:
339 value = INTEL_INFO(dev_priv)->sseu.eu_total;
340 if (!value)
341 return -ENODEV;
342 break;
343 case I915_PARAM_HAS_GPU_RESET:
344 value = i915_modparams.enable_hangcheck &&
345 intel_has_gpu_reset(dev_priv);
346 if (value && intel_has_reset_engine(dev_priv))
347 value = 2;
348 break;
349 case I915_PARAM_HAS_RESOURCE_STREAMER:
350 value = HAS_RESOURCE_STREAMER(dev_priv);
351 break;
352 case I915_PARAM_HAS_POOLED_EU:
353 value = HAS_POOLED_EU(dev_priv);
354 break;
355 case I915_PARAM_MIN_EU_IN_POOL:
356 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
357 break;
358 case I915_PARAM_HUC_STATUS:
359 intel_runtime_pm_get(dev_priv);
360 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
361 intel_runtime_pm_put(dev_priv);
362 break;
363 case I915_PARAM_MMAP_GTT_VERSION:
364 /* Though we've started our numbering from 1, and so class all
365 * earlier versions as 0, in effect their value is undefined as
366 * the ioctl will report EINVAL for the unknown param!
368 value = i915_gem_mmap_gtt_version();
369 break;
370 case I915_PARAM_HAS_SCHEDULER:
371 value = 0;
372 if (dev_priv->engine[RCS] && dev_priv->engine[RCS]->schedule) {
373 value |= I915_SCHEDULER_CAP_ENABLED;
374 value |= I915_SCHEDULER_CAP_PRIORITY;
375 if (HAS_LOGICAL_RING_PREEMPTION(dev_priv))
376 value |= I915_SCHEDULER_CAP_PREEMPTION;
378 break;
380 case I915_PARAM_MMAP_VERSION:
381 /* Remember to bump this if the version changes! */
382 case I915_PARAM_HAS_GEM:
383 case I915_PARAM_HAS_PAGEFLIPPING:
384 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
385 case I915_PARAM_HAS_RELAXED_FENCING:
386 case I915_PARAM_HAS_COHERENT_RINGS:
387 case I915_PARAM_HAS_RELAXED_DELTA:
388 case I915_PARAM_HAS_GEN7_SOL_RESET:
389 case I915_PARAM_HAS_WAIT_TIMEOUT:
390 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
391 case I915_PARAM_HAS_PINNED_BATCHES:
392 case I915_PARAM_HAS_EXEC_NO_RELOC:
393 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
394 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
395 case I915_PARAM_HAS_EXEC_SOFTPIN:
396 case I915_PARAM_HAS_EXEC_ASYNC:
397 case I915_PARAM_HAS_EXEC_FENCE:
398 case I915_PARAM_HAS_EXEC_CAPTURE:
399 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
400 case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
401 /* For the time being all of these are always true;
402 * if some supported hardware does not have one of these
403 * features this value needs to be provided from
404 * INTEL_INFO(), a feature macro, or similar.
406 value = 1;
407 break;
408 case I915_PARAM_HAS_CONTEXT_ISOLATION:
409 value = intel_engines_has_context_isolation(dev_priv);
410 break;
411 case I915_PARAM_SLICE_MASK:
412 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
413 if (!value)
414 return -ENODEV;
415 break;
416 case I915_PARAM_SUBSLICE_MASK:
417 value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
418 if (!value)
419 return -ENODEV;
420 break;
421 case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
422 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
423 break;
424 default:
425 DRM_DEBUG("Unknown parameter %d\n", param->param);
426 return -EINVAL;
429 if (put_user(value, param->value))
430 return -EFAULT;
432 return 0;
435 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
437 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
438 if (!dev_priv->bridge_dev) {
439 DRM_ERROR("bridge device not found\n");
440 return -1;
442 return 0;
445 /* Allocate space for the MCH regs if needed, return nonzero on error */
446 static int
447 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
449 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
450 u32 temp_lo, temp_hi = 0;
451 u64 mchbar_addr;
452 int ret;
454 if (INTEL_GEN(dev_priv) >= 4)
455 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
456 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
457 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
459 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
460 #ifdef CONFIG_PNP
461 if (mchbar_addr &&
462 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
463 return 0;
464 #endif
466 /* Get some space for it */
467 dev_priv->mch_res.name = "i915 MCHBAR";
468 dev_priv->mch_res.flags = IORESOURCE_MEM;
469 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
470 &dev_priv->mch_res,
471 MCHBAR_SIZE, MCHBAR_SIZE,
472 PCIBIOS_MIN_MEM,
473 0, pcibios_align_resource,
474 dev_priv->bridge_dev);
475 if (ret) {
476 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
477 dev_priv->mch_res.start = 0;
478 return ret;
481 if (INTEL_GEN(dev_priv) >= 4)
482 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
483 upper_32_bits(dev_priv->mch_res.start));
485 pci_write_config_dword(dev_priv->bridge_dev, reg,
486 lower_32_bits(dev_priv->mch_res.start));
487 return 0;
490 /* Setup MCHBAR if possible, return true if we should disable it again */
491 static void
492 intel_setup_mchbar(struct drm_i915_private *dev_priv)
494 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
495 u32 temp;
496 bool enabled;
498 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
499 return;
501 dev_priv->mchbar_need_disable = false;
503 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
504 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
505 enabled = !!(temp & DEVEN_MCHBAR_EN);
506 } else {
507 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
508 enabled = temp & 1;
511 /* If it's already enabled, don't have to do anything */
512 if (enabled)
513 return;
515 if (intel_alloc_mchbar_resource(dev_priv))
516 return;
518 dev_priv->mchbar_need_disable = true;
520 /* Space is allocated or reserved, so enable it. */
521 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
522 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
523 temp | DEVEN_MCHBAR_EN);
524 } else {
525 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
526 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
530 static void
531 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
533 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
535 if (dev_priv->mchbar_need_disable) {
536 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
537 u32 deven_val;
539 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
540 &deven_val);
541 deven_val &= ~DEVEN_MCHBAR_EN;
542 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
543 deven_val);
544 } else {
545 u32 mchbar_val;
547 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
548 &mchbar_val);
549 mchbar_val &= ~1;
550 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
551 mchbar_val);
555 if (dev_priv->mch_res.start)
556 release_resource(&dev_priv->mch_res);
559 /* true = enable decode, false = disable decoder */
560 static unsigned int i915_vga_set_decode(void *cookie, bool state)
562 struct drm_i915_private *dev_priv = cookie;
564 intel_modeset_vga_set_state(dev_priv, state);
565 if (state)
566 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
567 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
568 else
569 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
572 static int i915_resume_switcheroo(struct drm_device *dev);
573 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
575 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
577 struct drm_device *dev = pci_get_drvdata(pdev);
578 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
580 if (state == VGA_SWITCHEROO_ON) {
581 pr_info("switched on\n");
582 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
583 /* i915 resume handler doesn't set to D0 */
584 pci_set_power_state(pdev, PCI_D0);
585 i915_resume_switcheroo(dev);
586 dev->switch_power_state = DRM_SWITCH_POWER_ON;
587 } else {
588 pr_info("switched off\n");
589 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
590 i915_suspend_switcheroo(dev, pmm);
591 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
595 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
597 struct drm_device *dev = pci_get_drvdata(pdev);
600 * FIXME: open_count is protected by drm_global_mutex but that would lead to
601 * locking inversion with the driver load path. And the access here is
602 * completely racy anyway. So don't bother with locking for now.
604 return dev->open_count == 0;
607 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
608 .set_gpu_state = i915_switcheroo_set_state,
609 .reprobe = NULL,
610 .can_switch = i915_switcheroo_can_switch,
613 static void i915_gem_fini(struct drm_i915_private *dev_priv)
615 /* Flush any outstanding unpin_work. */
616 i915_gem_drain_workqueue(dev_priv);
618 mutex_lock(&dev_priv->drm.struct_mutex);
619 intel_uc_fini_hw(dev_priv);
620 intel_uc_fini(dev_priv);
621 i915_gem_cleanup_engines(dev_priv);
622 i915_gem_contexts_fini(dev_priv);
623 mutex_unlock(&dev_priv->drm.struct_mutex);
625 intel_uc_fini_wq(dev_priv);
626 i915_gem_cleanup_userptr(dev_priv);
628 i915_gem_drain_freed_objects(dev_priv);
630 WARN_ON(!list_empty(&dev_priv->contexts.list));
633 static int i915_load_modeset_init(struct drm_device *dev)
635 struct drm_i915_private *dev_priv = to_i915(dev);
636 struct pci_dev *pdev = dev_priv->drm.pdev;
637 int ret;
639 if (i915_inject_load_failure())
640 return -ENODEV;
642 intel_bios_init(dev_priv);
644 /* If we have > 1 VGA cards, then we need to arbitrate access
645 * to the common VGA resources.
647 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
648 * then we do not take part in VGA arbitration and the
649 * vga_client_register() fails with -ENODEV.
651 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
652 if (ret && ret != -ENODEV)
653 goto out;
655 intel_register_dsm_handler();
657 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
658 if (ret)
659 goto cleanup_vga_client;
661 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
662 intel_update_rawclk(dev_priv);
664 intel_power_domains_init_hw(dev_priv, false);
666 intel_csr_ucode_init(dev_priv);
668 ret = intel_irq_install(dev_priv);
669 if (ret)
670 goto cleanup_csr;
672 intel_setup_gmbus(dev_priv);
674 /* Important: The output setup functions called by modeset_init need
675 * working irqs for e.g. gmbus and dp aux transfers. */
676 ret = intel_modeset_init(dev);
677 if (ret)
678 goto cleanup_irq;
680 intel_uc_init_fw(dev_priv);
682 ret = i915_gem_init(dev_priv);
683 if (ret)
684 goto cleanup_uc;
686 intel_setup_overlay(dev_priv);
688 if (INTEL_INFO(dev_priv)->num_pipes == 0)
689 return 0;
691 ret = intel_fbdev_init(dev);
692 if (ret)
693 goto cleanup_gem;
695 /* Only enable hotplug handling once the fbdev is fully set up. */
696 intel_hpd_init(dev_priv);
698 return 0;
700 cleanup_gem:
701 if (i915_gem_suspend(dev_priv))
702 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
703 i915_gem_fini(dev_priv);
704 cleanup_uc:
705 intel_uc_fini_fw(dev_priv);
706 cleanup_irq:
707 drm_irq_uninstall(dev);
708 intel_teardown_gmbus(dev_priv);
709 cleanup_csr:
710 intel_csr_ucode_fini(dev_priv);
711 intel_power_domains_fini(dev_priv);
712 vga_switcheroo_unregister_client(pdev);
713 cleanup_vga_client:
714 vga_client_register(pdev, NULL, NULL, NULL);
715 out:
716 return ret;
719 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
721 struct apertures_struct *ap;
722 struct pci_dev *pdev = dev_priv->drm.pdev;
723 struct i915_ggtt *ggtt = &dev_priv->ggtt;
724 bool primary;
725 int ret;
727 ap = alloc_apertures(1);
728 if (!ap)
729 return -ENOMEM;
731 ap->ranges[0].base = ggtt->gmadr.start;
732 ap->ranges[0].size = ggtt->mappable_end;
734 primary =
735 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
737 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
739 kfree(ap);
741 return ret;
744 #if !defined(CONFIG_VGA_CONSOLE)
745 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 return 0;
749 #elif !defined(CONFIG_DUMMY_CONSOLE)
750 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 return -ENODEV;
754 #else
755 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
757 int ret = 0;
759 DRM_INFO("Replacing VGA console driver\n");
761 console_lock();
762 if (con_is_bound(&vga_con))
763 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
764 if (ret == 0) {
765 ret = do_unregister_con_driver(&vga_con);
767 /* Ignore "already unregistered". */
768 if (ret == -ENODEV)
769 ret = 0;
771 console_unlock();
773 return ret;
775 #endif
777 static void intel_init_dpio(struct drm_i915_private *dev_priv)
780 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
781 * CHV x1 PHY (DP/HDMI D)
782 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
784 if (IS_CHERRYVIEW(dev_priv)) {
785 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
786 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
787 } else if (IS_VALLEYVIEW(dev_priv)) {
788 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
792 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
795 * The i915 workqueue is primarily used for batched retirement of
796 * requests (and thus managing bo) once the task has been completed
797 * by the GPU. i915_gem_retire_requests() is called directly when we
798 * need high-priority retirement, such as waiting for an explicit
799 * bo.
801 * It is also used for periodic low-priority events, such as
802 * idle-timers and recording error state.
804 * All tasks on the workqueue are expected to acquire the dev mutex
805 * so there is no point in running more than one instance of the
806 * workqueue at any time. Use an ordered one.
808 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
809 if (dev_priv->wq == NULL)
810 goto out_err;
812 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
813 if (dev_priv->hotplug.dp_wq == NULL)
814 goto out_free_wq;
816 return 0;
818 out_free_wq:
819 destroy_workqueue(dev_priv->wq);
820 out_err:
821 DRM_ERROR("Failed to allocate workqueues.\n");
823 return -ENOMEM;
826 static void i915_engines_cleanup(struct drm_i915_private *i915)
828 struct intel_engine_cs *engine;
829 enum intel_engine_id id;
831 for_each_engine(engine, i915, id)
832 kfree(engine);
835 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
837 destroy_workqueue(dev_priv->hotplug.dp_wq);
838 destroy_workqueue(dev_priv->wq);
842 * We don't keep the workarounds for pre-production hardware, so we expect our
843 * driver to fail on these machines in one way or another. A little warning on
844 * dmesg may help both the user and the bug triagers.
846 * Our policy for removing pre-production workarounds is to keep the
847 * current gen workarounds as a guide to the bring-up of the next gen
848 * (workarounds have a habit of persisting!). Anything older than that
849 * should be removed along with the complications they introduce.
851 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
853 bool pre = false;
855 pre |= IS_HSW_EARLY_SDV(dev_priv);
856 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
857 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
859 if (pre) {
860 DRM_ERROR("This is a pre-production stepping. "
861 "It may not be fully functional.\n");
862 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
867 * i915_driver_init_early - setup state not requiring device access
868 * @dev_priv: device private
870 * Initialize everything that is a "SW-only" state, that is state not
871 * requiring accessing the device or exposing the driver via kernel internal
872 * or userspace interfaces. Example steps belonging here: lock initialization,
873 * system memory allocation, setting up device specific attributes and
874 * function hooks not requiring accessing the device.
876 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
877 const struct pci_device_id *ent)
879 const struct intel_device_info *match_info =
880 (struct intel_device_info *)ent->driver_data;
881 struct intel_device_info *device_info;
882 int ret = 0;
884 if (i915_inject_load_failure())
885 return -ENODEV;
887 /* Setup the write-once "constant" device info */
888 device_info = mkwrite_device_info(dev_priv);
889 memcpy(device_info, match_info, sizeof(*device_info));
890 device_info->device_id = dev_priv->drm.pdev->device;
892 BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
893 sizeof(device_info->platform_mask) * BITS_PER_BYTE);
894 device_info->platform_mask = BIT(device_info->platform);
896 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
897 device_info->gen_mask = BIT(device_info->gen - 1);
899 spin_lock_init(&dev_priv->irq_lock);
900 spin_lock_init(&dev_priv->gpu_error.lock);
901 mutex_init(&dev_priv->backlight_lock);
902 spin_lock_init(&dev_priv->uncore.lock);
904 mutex_init(&dev_priv->sb_lock);
905 mutex_init(&dev_priv->modeset_restore_lock);
906 mutex_init(&dev_priv->av_mutex);
907 mutex_init(&dev_priv->wm.wm_mutex);
908 mutex_init(&dev_priv->pps_mutex);
910 intel_uc_init_early(dev_priv);
911 i915_memcpy_init_early(dev_priv);
913 ret = i915_workqueues_init(dev_priv);
914 if (ret < 0)
915 goto err_engines;
917 /* This must be called before any calls to HAS_PCH_* */
918 intel_detect_pch(dev_priv);
920 intel_pm_setup(dev_priv);
921 intel_init_dpio(dev_priv);
922 intel_power_domains_init(dev_priv);
923 intel_irq_init(dev_priv);
924 intel_hangcheck_init(dev_priv);
925 intel_init_display_hooks(dev_priv);
926 intel_init_clock_gating_hooks(dev_priv);
927 intel_init_audio_hooks(dev_priv);
928 ret = i915_gem_load_init(dev_priv);
929 if (ret < 0)
930 goto err_irq;
932 intel_display_crc_init(dev_priv);
934 intel_detect_preproduction_hw(dev_priv);
936 return 0;
938 err_irq:
939 intel_irq_fini(dev_priv);
940 i915_workqueues_cleanup(dev_priv);
941 err_engines:
942 i915_engines_cleanup(dev_priv);
943 return ret;
947 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
948 * @dev_priv: device private
950 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
952 i915_gem_load_cleanup(dev_priv);
953 intel_irq_fini(dev_priv);
954 i915_workqueues_cleanup(dev_priv);
955 i915_engines_cleanup(dev_priv);
958 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
960 struct pci_dev *pdev = dev_priv->drm.pdev;
961 int mmio_bar;
962 int mmio_size;
964 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
966 * Before gen4, the registers and the GTT are behind different BARs.
967 * However, from gen4 onwards, the registers and the GTT are shared
968 * in the same BAR, so we want to restrict this ioremap from
969 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
970 * the register BAR remains the same size for all the earlier
971 * generations up to Ironlake.
973 if (INTEL_GEN(dev_priv) < 5)
974 mmio_size = 512 * 1024;
975 else
976 mmio_size = 2 * 1024 * 1024;
977 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
978 if (dev_priv->regs == NULL) {
979 DRM_ERROR("failed to map registers\n");
981 return -EIO;
984 /* Try to make sure MCHBAR is enabled before poking at it */
985 intel_setup_mchbar(dev_priv);
987 return 0;
990 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
992 struct pci_dev *pdev = dev_priv->drm.pdev;
994 intel_teardown_mchbar(dev_priv);
995 pci_iounmap(pdev, dev_priv->regs);
999 * i915_driver_init_mmio - setup device MMIO
1000 * @dev_priv: device private
1002 * Setup minimal device state necessary for MMIO accesses later in the
1003 * initialization sequence. The setup here should avoid any other device-wide
1004 * side effects or exposing the driver via kernel internal or user space
1005 * interfaces.
1007 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1009 int ret;
1011 if (i915_inject_load_failure())
1012 return -ENODEV;
1014 if (i915_get_bridge_dev(dev_priv))
1015 return -EIO;
1017 ret = i915_mmio_setup(dev_priv);
1018 if (ret < 0)
1019 goto err_bridge;
1021 intel_uncore_init(dev_priv);
1023 intel_uc_init_mmio(dev_priv);
1025 ret = intel_engines_init_mmio(dev_priv);
1026 if (ret)
1027 goto err_uncore;
1029 i915_gem_init_mmio(dev_priv);
1031 return 0;
1033 err_uncore:
1034 intel_uncore_fini(dev_priv);
1035 err_bridge:
1036 pci_dev_put(dev_priv->bridge_dev);
1038 return ret;
1042 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1043 * @dev_priv: device private
1045 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1047 intel_uncore_fini(dev_priv);
1048 i915_mmio_cleanup(dev_priv);
1049 pci_dev_put(dev_priv->bridge_dev);
1052 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1055 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1056 * user's requested state against the hardware/driver capabilities. We
1057 * do this now so that we can print out any log messages once rather
1058 * than every time we check intel_enable_ppgtt().
1060 i915_modparams.enable_ppgtt =
1061 intel_sanitize_enable_ppgtt(dev_priv,
1062 i915_modparams.enable_ppgtt);
1063 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1065 intel_uc_sanitize_options(dev_priv);
1067 intel_gvt_sanitize_options(dev_priv);
1071 * i915_driver_init_hw - setup state requiring device access
1072 * @dev_priv: device private
1074 * Setup state that requires accessing the device, but doesn't require
1075 * exposing the driver via kernel internal or userspace interfaces.
1077 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1079 struct pci_dev *pdev = dev_priv->drm.pdev;
1080 int ret;
1082 if (i915_inject_load_failure())
1083 return -ENODEV;
1085 intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1087 intel_sanitize_options(dev_priv);
1089 i915_perf_init(dev_priv);
1091 ret = i915_ggtt_probe_hw(dev_priv);
1092 if (ret)
1093 return ret;
1095 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1096 * otherwise the vga fbdev driver falls over. */
1097 ret = i915_kick_out_firmware_fb(dev_priv);
1098 if (ret) {
1099 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1100 goto out_ggtt;
1103 ret = i915_kick_out_vgacon(dev_priv);
1104 if (ret) {
1105 DRM_ERROR("failed to remove conflicting VGA console\n");
1106 goto out_ggtt;
1109 ret = i915_ggtt_init_hw(dev_priv);
1110 if (ret)
1111 return ret;
1113 ret = i915_ggtt_enable_hw(dev_priv);
1114 if (ret) {
1115 DRM_ERROR("failed to enable GGTT\n");
1116 goto out_ggtt;
1119 pci_set_master(pdev);
1121 /* overlay on gen2 is broken and can't address above 1G */
1122 if (IS_GEN2(dev_priv)) {
1123 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1124 if (ret) {
1125 DRM_ERROR("failed to set DMA mask\n");
1127 goto out_ggtt;
1131 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1132 * using 32bit addressing, overwriting memory if HWS is located
1133 * above 4GB.
1135 * The documentation also mentions an issue with undefined
1136 * behaviour if any general state is accessed within a page above 4GB,
1137 * which also needs to be handled carefully.
1139 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1140 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1142 if (ret) {
1143 DRM_ERROR("failed to set DMA mask\n");
1145 goto out_ggtt;
1149 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1150 PM_QOS_DEFAULT_VALUE);
1152 intel_uncore_sanitize(dev_priv);
1154 intel_opregion_setup(dev_priv);
1156 i915_gem_load_init_fences(dev_priv);
1158 /* On the 945G/GM, the chipset reports the MSI capability on the
1159 * integrated graphics even though the support isn't actually there
1160 * according to the published specs. It doesn't appear to function
1161 * correctly in testing on 945G.
1162 * This may be a side effect of MSI having been made available for PEG
1163 * and the registers being closely associated.
1165 * According to chipset errata, on the 965GM, MSI interrupts may
1166 * be lost or delayed, and was defeatured. MSI interrupts seem to
1167 * get lost on g4x as well, and interrupt delivery seems to stay
1168 * properly dead afterwards. So we'll just disable them for all
1169 * pre-gen5 chipsets.
1171 if (INTEL_GEN(dev_priv) >= 5) {
1172 if (pci_enable_msi(pdev) < 0)
1173 DRM_DEBUG_DRIVER("can't enable MSI");
1176 ret = intel_gvt_init(dev_priv);
1177 if (ret)
1178 goto out_ggtt;
1180 return 0;
1182 out_ggtt:
1183 i915_ggtt_cleanup_hw(dev_priv);
1185 return ret;
1189 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1190 * @dev_priv: device private
1192 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1194 struct pci_dev *pdev = dev_priv->drm.pdev;
1196 i915_perf_fini(dev_priv);
1198 if (pdev->msi_enabled)
1199 pci_disable_msi(pdev);
1201 pm_qos_remove_request(&dev_priv->pm_qos);
1202 i915_ggtt_cleanup_hw(dev_priv);
1206 * i915_driver_register - register the driver with the rest of the system
1207 * @dev_priv: device private
1209 * Perform any steps necessary to make the driver available via kernel
1210 * internal or userspace interfaces.
1212 static void i915_driver_register(struct drm_i915_private *dev_priv)
1214 struct drm_device *dev = &dev_priv->drm;
1216 i915_gem_shrinker_register(dev_priv);
1217 i915_pmu_register(dev_priv);
1220 * Notify a valid surface after modesetting,
1221 * when running inside a VM.
1223 if (intel_vgpu_active(dev_priv))
1224 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1226 /* Reveal our presence to userspace */
1227 if (drm_dev_register(dev, 0) == 0) {
1228 i915_debugfs_register(dev_priv);
1229 i915_guc_log_register(dev_priv);
1230 i915_setup_sysfs(dev_priv);
1232 /* Depends on sysfs having been initialized */
1233 i915_perf_register(dev_priv);
1234 } else
1235 DRM_ERROR("Failed to register driver for userspace access!\n");
1237 if (INTEL_INFO(dev_priv)->num_pipes) {
1238 /* Must be done after probing outputs */
1239 intel_opregion_register(dev_priv);
1240 acpi_video_register();
1243 if (IS_GEN5(dev_priv))
1244 intel_gpu_ips_init(dev_priv);
1246 intel_audio_init(dev_priv);
1249 * Some ports require correctly set-up hpd registers for detection to
1250 * work properly (leading to ghost connected connector status), e.g. VGA
1251 * on gm45. Hence we can only set up the initial fbdev config after hpd
1252 * irqs are fully enabled. We do it last so that the async config
1253 * cannot run before the connectors are registered.
1255 intel_fbdev_initial_config_async(dev);
1258 * We need to coordinate the hotplugs with the asynchronous fbdev
1259 * configuration, for which we use the fbdev->async_cookie.
1261 if (INTEL_INFO(dev_priv)->num_pipes)
1262 drm_kms_helper_poll_init(dev);
1266 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1267 * @dev_priv: device private
1269 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1271 intel_fbdev_unregister(dev_priv);
1272 intel_audio_deinit(dev_priv);
1275 * After flushing the fbdev (incl. a late async config which will
1276 * have delayed queuing of a hotplug event), then flush the hotplug
1277 * events.
1279 drm_kms_helper_poll_fini(&dev_priv->drm);
1281 intel_gpu_ips_teardown();
1282 acpi_video_unregister();
1283 intel_opregion_unregister(dev_priv);
1285 i915_perf_unregister(dev_priv);
1286 i915_pmu_unregister(dev_priv);
1288 i915_teardown_sysfs(dev_priv);
1289 i915_guc_log_unregister(dev_priv);
1290 drm_dev_unregister(&dev_priv->drm);
1292 i915_gem_shrinker_unregister(dev_priv);
1295 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1297 if (drm_debug & DRM_UT_DRIVER) {
1298 struct drm_printer p = drm_debug_printer("i915 device info:");
1300 intel_device_info_dump(&dev_priv->info, &p);
1301 intel_device_info_dump_runtime(&dev_priv->info, &p);
1304 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1305 DRM_INFO("DRM_I915_DEBUG enabled\n");
1306 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1307 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1311 * i915_driver_load - setup chip and create an initial config
1312 * @pdev: PCI device
1313 * @ent: matching PCI ID entry
1315 * The driver load routine has to do several things:
1316 * - drive output discovery via intel_modeset_init()
1317 * - initialize the memory manager
1318 * - allocate initial config memory
1319 * - setup the DRM framebuffer with the allocated memory
1321 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1323 const struct intel_device_info *match_info =
1324 (struct intel_device_info *)ent->driver_data;
1325 struct drm_i915_private *dev_priv;
1326 int ret;
1328 /* Enable nuclear pageflip on ILK+ */
1329 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1330 driver.driver_features &= ~DRIVER_ATOMIC;
1332 ret = -ENOMEM;
1333 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1334 if (dev_priv)
1335 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1336 if (ret) {
1337 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1338 goto out_free;
1341 dev_priv->drm.pdev = pdev;
1342 dev_priv->drm.dev_private = dev_priv;
1344 ret = pci_enable_device(pdev);
1345 if (ret)
1346 goto out_fini;
1348 pci_set_drvdata(pdev, &dev_priv->drm);
1350 * Disable the system suspend direct complete optimization, which can
1351 * leave the device suspended skipping the driver's suspend handlers
1352 * if the device was already runtime suspended. This is needed due to
1353 * the difference in our runtime and system suspend sequence and
1354 * becaue the HDA driver may require us to enable the audio power
1355 * domain during system suspend.
1357 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1359 ret = i915_driver_init_early(dev_priv, ent);
1360 if (ret < 0)
1361 goto out_pci_disable;
1363 intel_runtime_pm_get(dev_priv);
1365 ret = i915_driver_init_mmio(dev_priv);
1366 if (ret < 0)
1367 goto out_runtime_pm_put;
1369 ret = i915_driver_init_hw(dev_priv);
1370 if (ret < 0)
1371 goto out_cleanup_mmio;
1374 * TODO: move the vblank init and parts of modeset init steps into one
1375 * of the i915_driver_init_/i915_driver_register functions according
1376 * to the role/effect of the given init step.
1378 if (INTEL_INFO(dev_priv)->num_pipes) {
1379 ret = drm_vblank_init(&dev_priv->drm,
1380 INTEL_INFO(dev_priv)->num_pipes);
1381 if (ret)
1382 goto out_cleanup_hw;
1385 ret = i915_load_modeset_init(&dev_priv->drm);
1386 if (ret < 0)
1387 goto out_cleanup_hw;
1389 i915_driver_register(dev_priv);
1391 intel_runtime_pm_enable(dev_priv);
1393 intel_init_ipc(dev_priv);
1395 intel_runtime_pm_put(dev_priv);
1397 i915_welcome_messages(dev_priv);
1399 return 0;
1401 out_cleanup_hw:
1402 i915_driver_cleanup_hw(dev_priv);
1403 out_cleanup_mmio:
1404 i915_driver_cleanup_mmio(dev_priv);
1405 out_runtime_pm_put:
1406 intel_runtime_pm_put(dev_priv);
1407 i915_driver_cleanup_early(dev_priv);
1408 out_pci_disable:
1409 pci_disable_device(pdev);
1410 out_fini:
1411 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1412 drm_dev_fini(&dev_priv->drm);
1413 out_free:
1414 kfree(dev_priv);
1415 return ret;
1418 void i915_driver_unload(struct drm_device *dev)
1420 struct drm_i915_private *dev_priv = to_i915(dev);
1421 struct pci_dev *pdev = dev_priv->drm.pdev;
1423 i915_driver_unregister(dev_priv);
1425 if (i915_gem_suspend(dev_priv))
1426 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1428 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1430 drm_atomic_helper_shutdown(dev);
1432 intel_gvt_cleanup(dev_priv);
1434 intel_modeset_cleanup(dev);
1437 * free the memory space allocated for the child device
1438 * config parsed from VBT
1440 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1441 kfree(dev_priv->vbt.child_dev);
1442 dev_priv->vbt.child_dev = NULL;
1443 dev_priv->vbt.child_dev_num = 0;
1445 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1446 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1447 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1448 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1450 vga_switcheroo_unregister_client(pdev);
1451 vga_client_register(pdev, NULL, NULL, NULL);
1453 intel_csr_ucode_fini(dev_priv);
1455 /* Free error state after interrupts are fully disabled. */
1456 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1457 i915_reset_error_state(dev_priv);
1459 i915_gem_fini(dev_priv);
1460 intel_uc_fini_fw(dev_priv);
1461 intel_fbc_cleanup_cfb(dev_priv);
1463 intel_power_domains_fini(dev_priv);
1465 i915_driver_cleanup_hw(dev_priv);
1466 i915_driver_cleanup_mmio(dev_priv);
1468 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1471 static void i915_driver_release(struct drm_device *dev)
1473 struct drm_i915_private *dev_priv = to_i915(dev);
1475 i915_driver_cleanup_early(dev_priv);
1476 drm_dev_fini(&dev_priv->drm);
1478 kfree(dev_priv);
1481 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1483 struct drm_i915_private *i915 = to_i915(dev);
1484 int ret;
1486 ret = i915_gem_open(i915, file);
1487 if (ret)
1488 return ret;
1490 return 0;
1494 * i915_driver_lastclose - clean up after all DRM clients have exited
1495 * @dev: DRM device
1497 * Take care of cleaning up after all DRM clients have exited. In the
1498 * mode setting case, we want to restore the kernel's initial mode (just
1499 * in case the last client left us in a bad state).
1501 * Additionally, in the non-mode setting case, we'll tear down the GTT
1502 * and DMA structures, since the kernel won't be using them, and clea
1503 * up any GEM state.
1505 static void i915_driver_lastclose(struct drm_device *dev)
1507 intel_fbdev_restore_mode(dev);
1508 vga_switcheroo_process_delayed_switch();
1511 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1513 struct drm_i915_file_private *file_priv = file->driver_priv;
1515 mutex_lock(&dev->struct_mutex);
1516 i915_gem_context_close(file);
1517 i915_gem_release(dev, file);
1518 mutex_unlock(&dev->struct_mutex);
1520 kfree(file_priv);
1523 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1525 struct drm_device *dev = &dev_priv->drm;
1526 struct intel_encoder *encoder;
1528 drm_modeset_lock_all(dev);
1529 for_each_intel_encoder(dev, encoder)
1530 if (encoder->suspend)
1531 encoder->suspend(encoder);
1532 drm_modeset_unlock_all(dev);
1535 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1536 bool rpm_resume);
1537 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1539 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1541 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1542 if (acpi_target_system_state() < ACPI_STATE_S3)
1543 return true;
1544 #endif
1545 return false;
1548 static int i915_drm_suspend(struct drm_device *dev)
1550 struct drm_i915_private *dev_priv = to_i915(dev);
1551 struct pci_dev *pdev = dev_priv->drm.pdev;
1552 pci_power_t opregion_target_state;
1553 int error;
1555 /* ignore lid events during suspend */
1556 mutex_lock(&dev_priv->modeset_restore_lock);
1557 dev_priv->modeset_restore = MODESET_SUSPENDED;
1558 mutex_unlock(&dev_priv->modeset_restore_lock);
1560 disable_rpm_wakeref_asserts(dev_priv);
1562 /* We do a lot of poking in a lot of registers, make sure they work
1563 * properly. */
1564 intel_display_set_init_power(dev_priv, true);
1566 drm_kms_helper_poll_disable(dev);
1568 pci_save_state(pdev);
1570 error = i915_gem_suspend(dev_priv);
1571 if (error) {
1572 dev_err(&pdev->dev,
1573 "GEM idle failed, resume might fail\n");
1574 goto out;
1577 intel_display_suspend(dev);
1579 intel_dp_mst_suspend(dev);
1581 intel_runtime_pm_disable_interrupts(dev_priv);
1582 intel_hpd_cancel_work(dev_priv);
1584 intel_suspend_encoders(dev_priv);
1586 intel_suspend_hw(dev_priv);
1588 i915_gem_suspend_gtt_mappings(dev_priv);
1590 i915_save_state(dev_priv);
1592 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1593 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1595 intel_uncore_suspend(dev_priv);
1596 intel_opregion_unregister(dev_priv);
1598 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1600 dev_priv->suspend_count++;
1602 intel_csr_ucode_suspend(dev_priv);
1604 out:
1605 enable_rpm_wakeref_asserts(dev_priv);
1607 return error;
1610 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1612 struct drm_i915_private *dev_priv = to_i915(dev);
1613 struct pci_dev *pdev = dev_priv->drm.pdev;
1614 bool fw_csr;
1615 int ret;
1617 disable_rpm_wakeref_asserts(dev_priv);
1619 intel_display_set_init_power(dev_priv, false);
1621 fw_csr = !IS_GEN9_LP(dev_priv) && !hibernation &&
1622 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1624 * In case of firmware assisted context save/restore don't manually
1625 * deinit the power domains. This also means the CSR/DMC firmware will
1626 * stay active, it will power down any HW resources as required and
1627 * also enable deeper system power states that would be blocked if the
1628 * firmware was inactive.
1630 if (!fw_csr)
1631 intel_power_domains_suspend(dev_priv);
1633 ret = 0;
1634 if (IS_GEN9_LP(dev_priv))
1635 bxt_enable_dc9(dev_priv);
1636 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1637 hsw_enable_pc8(dev_priv);
1638 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1639 ret = vlv_suspend_complete(dev_priv);
1641 if (ret) {
1642 DRM_ERROR("Suspend complete failed: %d\n", ret);
1643 if (!fw_csr)
1644 intel_power_domains_init_hw(dev_priv, true);
1646 goto out;
1649 pci_disable_device(pdev);
1651 * During hibernation on some platforms the BIOS may try to access
1652 * the device even though it's already in D3 and hang the machine. So
1653 * leave the device in D0 on those platforms and hope the BIOS will
1654 * power down the device properly. The issue was seen on multiple old
1655 * GENs with different BIOS vendors, so having an explicit blacklist
1656 * is inpractical; apply the workaround on everything pre GEN6. The
1657 * platforms where the issue was seen:
1658 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1659 * Fujitsu FSC S7110
1660 * Acer Aspire 1830T
1662 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1663 pci_set_power_state(pdev, PCI_D3hot);
1665 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1667 out:
1668 enable_rpm_wakeref_asserts(dev_priv);
1670 return ret;
1673 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1675 int error;
1677 if (!dev) {
1678 DRM_ERROR("dev: %p\n", dev);
1679 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1680 return -ENODEV;
1683 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1684 state.event != PM_EVENT_FREEZE))
1685 return -EINVAL;
1687 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1688 return 0;
1690 error = i915_drm_suspend(dev);
1691 if (error)
1692 return error;
1694 return i915_drm_suspend_late(dev, false);
1697 static int i915_drm_resume(struct drm_device *dev)
1699 struct drm_i915_private *dev_priv = to_i915(dev);
1700 int ret;
1702 disable_rpm_wakeref_asserts(dev_priv);
1703 intel_sanitize_gt_powersave(dev_priv);
1705 ret = i915_ggtt_enable_hw(dev_priv);
1706 if (ret)
1707 DRM_ERROR("failed to re-enable GGTT\n");
1709 intel_csr_ucode_resume(dev_priv);
1711 i915_restore_state(dev_priv);
1712 intel_pps_unlock_regs_wa(dev_priv);
1713 intel_opregion_setup(dev_priv);
1715 intel_init_pch_refclk(dev_priv);
1718 * Interrupts have to be enabled before any batches are run. If not the
1719 * GPU will hang. i915_gem_init_hw() will initiate batches to
1720 * update/restore the context.
1722 * drm_mode_config_reset() needs AUX interrupts.
1724 * Modeset enabling in intel_modeset_init_hw() also needs working
1725 * interrupts.
1727 intel_runtime_pm_enable_interrupts(dev_priv);
1729 drm_mode_config_reset(dev);
1731 i915_gem_resume(dev_priv);
1733 intel_modeset_init_hw(dev);
1734 intel_init_clock_gating(dev_priv);
1736 spin_lock_irq(&dev_priv->irq_lock);
1737 if (dev_priv->display.hpd_irq_setup)
1738 dev_priv->display.hpd_irq_setup(dev_priv);
1739 spin_unlock_irq(&dev_priv->irq_lock);
1741 intel_dp_mst_resume(dev);
1743 intel_display_resume(dev);
1745 drm_kms_helper_poll_enable(dev);
1748 * ... but also need to make sure that hotplug processing
1749 * doesn't cause havoc. Like in the driver load code we don't
1750 * bother with the tiny race here where we might loose hotplug
1751 * notifications.
1752 * */
1753 intel_hpd_init(dev_priv);
1755 intel_opregion_register(dev_priv);
1757 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1759 mutex_lock(&dev_priv->modeset_restore_lock);
1760 dev_priv->modeset_restore = MODESET_DONE;
1761 mutex_unlock(&dev_priv->modeset_restore_lock);
1763 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1765 enable_rpm_wakeref_asserts(dev_priv);
1767 return 0;
1770 static int i915_drm_resume_early(struct drm_device *dev)
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 struct pci_dev *pdev = dev_priv->drm.pdev;
1774 int ret;
1777 * We have a resume ordering issue with the snd-hda driver also
1778 * requiring our device to be power up. Due to the lack of a
1779 * parent/child relationship we currently solve this with an early
1780 * resume hook.
1782 * FIXME: This should be solved with a special hdmi sink device or
1783 * similar so that power domains can be employed.
1787 * Note that we need to set the power state explicitly, since we
1788 * powered off the device during freeze and the PCI core won't power
1789 * it back up for us during thaw. Powering off the device during
1790 * freeze is not a hard requirement though, and during the
1791 * suspend/resume phases the PCI core makes sure we get here with the
1792 * device powered on. So in case we change our freeze logic and keep
1793 * the device powered we can also remove the following set power state
1794 * call.
1796 ret = pci_set_power_state(pdev, PCI_D0);
1797 if (ret) {
1798 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1799 goto out;
1803 * Note that pci_enable_device() first enables any parent bridge
1804 * device and only then sets the power state for this device. The
1805 * bridge enabling is a nop though, since bridge devices are resumed
1806 * first. The order of enabling power and enabling the device is
1807 * imposed by the PCI core as described above, so here we preserve the
1808 * same order for the freeze/thaw phases.
1810 * TODO: eventually we should remove pci_disable_device() /
1811 * pci_enable_enable_device() from suspend/resume. Due to how they
1812 * depend on the device enable refcount we can't anyway depend on them
1813 * disabling/enabling the device.
1815 if (pci_enable_device(pdev)) {
1816 ret = -EIO;
1817 goto out;
1820 pci_set_master(pdev);
1822 disable_rpm_wakeref_asserts(dev_priv);
1824 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1825 ret = vlv_resume_prepare(dev_priv, false);
1826 if (ret)
1827 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1828 ret);
1830 intel_uncore_resume_early(dev_priv);
1832 if (IS_GEN9_LP(dev_priv)) {
1833 if (!dev_priv->suspended_to_idle)
1834 gen9_sanitize_dc_state(dev_priv);
1835 bxt_disable_dc9(dev_priv);
1836 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1837 hsw_disable_pc8(dev_priv);
1840 intel_uncore_sanitize(dev_priv);
1842 if (IS_GEN9_LP(dev_priv) ||
1843 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1844 intel_power_domains_init_hw(dev_priv, true);
1845 else
1846 intel_display_set_init_power(dev_priv, true);
1848 i915_gem_sanitize(dev_priv);
1850 enable_rpm_wakeref_asserts(dev_priv);
1852 out:
1853 dev_priv->suspended_to_idle = false;
1855 return ret;
1858 static int i915_resume_switcheroo(struct drm_device *dev)
1860 int ret;
1862 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1863 return 0;
1865 ret = i915_drm_resume_early(dev);
1866 if (ret)
1867 return ret;
1869 return i915_drm_resume(dev);
1873 * i915_reset - reset chip after a hang
1874 * @i915: #drm_i915_private to reset
1875 * @flags: Instructions
1877 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1878 * on failure.
1880 * Caller must hold the struct_mutex.
1882 * Procedure is fairly simple:
1883 * - reset the chip using the reset reg
1884 * - re-init context state
1885 * - re-init hardware status page
1886 * - re-init ring buffer
1887 * - re-init interrupt state
1888 * - re-init display
1890 void i915_reset(struct drm_i915_private *i915, unsigned int flags)
1892 struct i915_gpu_error *error = &i915->gpu_error;
1893 int ret;
1894 int i;
1896 might_sleep();
1897 lockdep_assert_held(&i915->drm.struct_mutex);
1898 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1900 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1901 return;
1903 /* Clear any previous failed attempts at recovery. Time to try again. */
1904 if (!i915_gem_unset_wedged(i915))
1905 goto wakeup;
1907 if (!(flags & I915_RESET_QUIET))
1908 dev_notice(i915->drm.dev, "Resetting chip after gpu hang\n");
1909 error->reset_count++;
1911 disable_irq(i915->drm.irq);
1912 ret = i915_gem_reset_prepare(i915);
1913 if (ret) {
1914 dev_err(i915->drm.dev, "GPU recovery failed\n");
1915 intel_gpu_reset(i915, ALL_ENGINES);
1916 goto taint;
1919 if (!intel_has_gpu_reset(i915)) {
1920 if (i915_modparams.reset)
1921 dev_err(i915->drm.dev, "GPU reset not supported\n");
1922 else
1923 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1924 goto error;
1927 for (i = 0; i < 3; i++) {
1928 ret = intel_gpu_reset(i915, ALL_ENGINES);
1929 if (ret == 0)
1930 break;
1932 msleep(100);
1934 if (ret) {
1935 dev_err(i915->drm.dev, "Failed to reset chip\n");
1936 goto taint;
1939 /* Ok, now get things going again... */
1942 * Everything depends on having the GTT running, so we need to start
1943 * there.
1945 ret = i915_ggtt_enable_hw(i915);
1946 if (ret) {
1947 DRM_ERROR("Failed to re-enable GGTT following reset %d\n", ret);
1948 goto error;
1951 i915_gem_reset(i915);
1952 intel_overlay_reset(i915);
1955 * Next we need to restore the context, but we don't use those
1956 * yet either...
1958 * Ring buffer needs to be re-initialized in the KMS case, or if X
1959 * was running at the time of the reset (i.e. we weren't VT
1960 * switched away).
1962 ret = i915_gem_init_hw(i915);
1963 if (ret) {
1964 DRM_ERROR("Failed hw init on reset %d\n", ret);
1965 goto error;
1968 i915_queue_hangcheck(i915);
1970 finish:
1971 i915_gem_reset_finish(i915);
1972 enable_irq(i915->drm.irq);
1974 wakeup:
1975 clear_bit(I915_RESET_HANDOFF, &error->flags);
1976 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1977 return;
1979 taint:
1981 * History tells us that if we cannot reset the GPU now, we
1982 * never will. This then impacts everything that is run
1983 * subsequently. On failing the reset, we mark the driver
1984 * as wedged, preventing further execution on the GPU.
1985 * We also want to go one step further and add a taint to the
1986 * kernel so that any subsequent faults can be traced back to
1987 * this failure. This is important for CI, where if the
1988 * GPU/driver fails we would like to reboot and restart testing
1989 * rather than continue on into oblivion. For everyone else,
1990 * the system should still plod along, but they have been warned!
1992 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1993 error:
1994 i915_gem_set_wedged(i915);
1995 i915_gem_retire_requests(i915);
1996 goto finish;
1999 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2000 struct intel_engine_cs *engine)
2002 return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2006 * i915_reset_engine - reset GPU engine to recover from a hang
2007 * @engine: engine to reset
2008 * @flags: options
2010 * Reset a specific GPU engine. Useful if a hang is detected.
2011 * Returns zero on successful reset or otherwise an error code.
2013 * Procedure is:
2014 * - identifies the request that caused the hang and it is dropped
2015 * - reset engine (which will force the engine to idle)
2016 * - re-init/configure engine
2018 int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags)
2020 struct i915_gpu_error *error = &engine->i915->gpu_error;
2021 struct drm_i915_gem_request *active_request;
2022 int ret;
2024 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2026 active_request = i915_gem_reset_prepare_engine(engine);
2027 if (IS_ERR_OR_NULL(active_request)) {
2028 /* Either the previous reset failed, or we pardon the reset. */
2029 ret = PTR_ERR(active_request);
2030 goto out;
2033 if (!(flags & I915_RESET_QUIET)) {
2034 dev_notice(engine->i915->drm.dev,
2035 "Resetting %s after gpu hang\n", engine->name);
2037 error->reset_engine_count[engine->id]++;
2039 if (!engine->i915->guc.execbuf_client)
2040 ret = intel_gt_reset_engine(engine->i915, engine);
2041 else
2042 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2043 if (ret) {
2044 /* If we fail here, we expect to fallback to a global reset */
2045 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2046 engine->i915->guc.execbuf_client ? "GuC " : "",
2047 engine->name, ret);
2048 goto out;
2052 * The request that caused the hang is stuck on elsp, we know the
2053 * active request and can drop it, adjust head to skip the offending
2054 * request to resume executing remaining requests in the queue.
2056 i915_gem_reset_engine(engine, active_request);
2059 * The engine and its registers (and workarounds in case of render)
2060 * have been reset to their default values. Follow the init_ring
2061 * process to program RING_MODE, HWSP and re-enable submission.
2063 ret = engine->init_hw(engine);
2064 if (ret)
2065 goto out;
2067 out:
2068 i915_gem_reset_finish_engine(engine);
2069 return ret;
2072 static int i915_pm_suspend(struct device *kdev)
2074 struct pci_dev *pdev = to_pci_dev(kdev);
2075 struct drm_device *dev = pci_get_drvdata(pdev);
2077 if (!dev) {
2078 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2079 return -ENODEV;
2082 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2083 return 0;
2085 return i915_drm_suspend(dev);
2088 static int i915_pm_suspend_late(struct device *kdev)
2090 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2093 * We have a suspend ordering issue with the snd-hda driver also
2094 * requiring our device to be power up. Due to the lack of a
2095 * parent/child relationship we currently solve this with an late
2096 * suspend hook.
2098 * FIXME: This should be solved with a special hdmi sink device or
2099 * similar so that power domains can be employed.
2101 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2102 return 0;
2104 return i915_drm_suspend_late(dev, false);
2107 static int i915_pm_poweroff_late(struct device *kdev)
2109 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2111 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2112 return 0;
2114 return i915_drm_suspend_late(dev, true);
2117 static int i915_pm_resume_early(struct device *kdev)
2119 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2121 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2122 return 0;
2124 return i915_drm_resume_early(dev);
2127 static int i915_pm_resume(struct device *kdev)
2129 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2131 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2132 return 0;
2134 return i915_drm_resume(dev);
2137 /* freeze: before creating the hibernation_image */
2138 static int i915_pm_freeze(struct device *kdev)
2140 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2141 int ret;
2143 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2144 ret = i915_drm_suspend(dev);
2145 if (ret)
2146 return ret;
2149 ret = i915_gem_freeze(kdev_to_i915(kdev));
2150 if (ret)
2151 return ret;
2153 return 0;
2156 static int i915_pm_freeze_late(struct device *kdev)
2158 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2159 int ret;
2161 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2162 ret = i915_drm_suspend_late(dev, true);
2163 if (ret)
2164 return ret;
2167 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2168 if (ret)
2169 return ret;
2171 return 0;
2174 /* thaw: called after creating the hibernation image, but before turning off. */
2175 static int i915_pm_thaw_early(struct device *kdev)
2177 return i915_pm_resume_early(kdev);
2180 static int i915_pm_thaw(struct device *kdev)
2182 return i915_pm_resume(kdev);
2185 /* restore: called after loading the hibernation image. */
2186 static int i915_pm_restore_early(struct device *kdev)
2188 return i915_pm_resume_early(kdev);
2191 static int i915_pm_restore(struct device *kdev)
2193 return i915_pm_resume(kdev);
2197 * Save all Gunit registers that may be lost after a D3 and a subsequent
2198 * S0i[R123] transition. The list of registers needing a save/restore is
2199 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2200 * registers in the following way:
2201 * - Driver: saved/restored by the driver
2202 * - Punit : saved/restored by the Punit firmware
2203 * - No, w/o marking: no need to save/restore, since the register is R/O or
2204 * used internally by the HW in a way that doesn't depend
2205 * keeping the content across a suspend/resume.
2206 * - Debug : used for debugging
2208 * We save/restore all registers marked with 'Driver', with the following
2209 * exceptions:
2210 * - Registers out of use, including also registers marked with 'Debug'.
2211 * These have no effect on the driver's operation, so we don't save/restore
2212 * them to reduce the overhead.
2213 * - Registers that are fully setup by an initialization function called from
2214 * the resume path. For example many clock gating and RPS/RC6 registers.
2215 * - Registers that provide the right functionality with their reset defaults.
2217 * TODO: Except for registers that based on the above 3 criteria can be safely
2218 * ignored, we save/restore all others, practically treating the HW context as
2219 * a black-box for the driver. Further investigation is needed to reduce the
2220 * saved/restored registers even further, by following the same 3 criteria.
2222 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2224 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2225 int i;
2227 /* GAM 0x4000-0x4770 */
2228 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2229 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2230 s->arb_mode = I915_READ(ARB_MODE);
2231 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2232 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2234 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2235 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2237 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2238 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2240 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2241 s->ecochk = I915_READ(GAM_ECOCHK);
2242 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2243 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2245 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2247 /* MBC 0x9024-0x91D0, 0x8500 */
2248 s->g3dctl = I915_READ(VLV_G3DCTL);
2249 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2250 s->mbctl = I915_READ(GEN6_MBCTL);
2252 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2253 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2254 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2255 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2256 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2257 s->rstctl = I915_READ(GEN6_RSTCTL);
2258 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2260 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2261 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2262 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2263 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2264 s->ecobus = I915_READ(ECOBUS);
2265 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2266 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2267 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2268 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2269 s->rcedata = I915_READ(VLV_RCEDATA);
2270 s->spare2gh = I915_READ(VLV_SPAREG2H);
2272 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2273 s->gt_imr = I915_READ(GTIMR);
2274 s->gt_ier = I915_READ(GTIER);
2275 s->pm_imr = I915_READ(GEN6_PMIMR);
2276 s->pm_ier = I915_READ(GEN6_PMIER);
2278 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2279 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2281 /* GT SA CZ domain, 0x100000-0x138124 */
2282 s->tilectl = I915_READ(TILECTL);
2283 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2284 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2285 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2286 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2288 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2289 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2290 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2291 s->pcbr = I915_READ(VLV_PCBR);
2292 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2295 * Not saving any of:
2296 * DFT, 0x9800-0x9EC0
2297 * SARB, 0xB000-0xB1FC
2298 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2299 * PCI CFG
2303 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2305 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2306 u32 val;
2307 int i;
2309 /* GAM 0x4000-0x4770 */
2310 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2311 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2312 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2313 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2314 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2316 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2317 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2319 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2320 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2322 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2323 I915_WRITE(GAM_ECOCHK, s->ecochk);
2324 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2325 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2327 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2329 /* MBC 0x9024-0x91D0, 0x8500 */
2330 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2331 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2332 I915_WRITE(GEN6_MBCTL, s->mbctl);
2334 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2335 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2336 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2337 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2338 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2339 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2340 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2342 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2343 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2344 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2345 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2346 I915_WRITE(ECOBUS, s->ecobus);
2347 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2348 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2349 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2350 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2351 I915_WRITE(VLV_RCEDATA, s->rcedata);
2352 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2354 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2355 I915_WRITE(GTIMR, s->gt_imr);
2356 I915_WRITE(GTIER, s->gt_ier);
2357 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2358 I915_WRITE(GEN6_PMIER, s->pm_ier);
2360 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2361 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2363 /* GT SA CZ domain, 0x100000-0x138124 */
2364 I915_WRITE(TILECTL, s->tilectl);
2365 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2367 * Preserve the GT allow wake and GFX force clock bit, they are not
2368 * be restored, as they are used to control the s0ix suspend/resume
2369 * sequence by the caller.
2371 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2372 val &= VLV_GTLC_ALLOWWAKEREQ;
2373 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2374 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2376 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2377 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2378 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2379 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2381 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2383 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2384 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2385 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2386 I915_WRITE(VLV_PCBR, s->pcbr);
2387 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2390 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2391 u32 mask, u32 val)
2393 /* The HW does not like us polling for PW_STATUS frequently, so
2394 * use the sleeping loop rather than risk the busy spin within
2395 * intel_wait_for_register().
2397 * Transitioning between RC6 states should be at most 2ms (see
2398 * valleyview_enable_rps) so use a 3ms timeout.
2400 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2404 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2406 u32 val;
2407 int err;
2409 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2410 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2411 if (force_on)
2412 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2413 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2415 if (!force_on)
2416 return 0;
2418 err = intel_wait_for_register(dev_priv,
2419 VLV_GTLC_SURVIVABILITY_REG,
2420 VLV_GFX_CLK_STATUS_BIT,
2421 VLV_GFX_CLK_STATUS_BIT,
2422 20);
2423 if (err)
2424 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2425 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2427 return err;
2430 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2432 u32 mask;
2433 u32 val;
2434 int err;
2436 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2437 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2438 if (allow)
2439 val |= VLV_GTLC_ALLOWWAKEREQ;
2440 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2441 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2443 mask = VLV_GTLC_ALLOWWAKEACK;
2444 val = allow ? mask : 0;
2446 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2447 if (err)
2448 DRM_ERROR("timeout disabling GT waking\n");
2450 return err;
2453 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2454 bool wait_for_on)
2456 u32 mask;
2457 u32 val;
2459 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2460 val = wait_for_on ? mask : 0;
2463 * RC6 transitioning can be delayed up to 2 msec (see
2464 * valleyview_enable_rps), use 3 msec for safety.
2466 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2467 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2468 onoff(wait_for_on));
2471 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2473 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2474 return;
2476 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2477 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2480 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2482 u32 mask;
2483 int err;
2486 * Bspec defines the following GT well on flags as debug only, so
2487 * don't treat them as hard failures.
2489 vlv_wait_for_gt_wells(dev_priv, false);
2491 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2492 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2494 vlv_check_no_gt_access(dev_priv);
2496 err = vlv_force_gfx_clock(dev_priv, true);
2497 if (err)
2498 goto err1;
2500 err = vlv_allow_gt_wake(dev_priv, false);
2501 if (err)
2502 goto err2;
2504 if (!IS_CHERRYVIEW(dev_priv))
2505 vlv_save_gunit_s0ix_state(dev_priv);
2507 err = vlv_force_gfx_clock(dev_priv, false);
2508 if (err)
2509 goto err2;
2511 return 0;
2513 err2:
2514 /* For safety always re-enable waking and disable gfx clock forcing */
2515 vlv_allow_gt_wake(dev_priv, true);
2516 err1:
2517 vlv_force_gfx_clock(dev_priv, false);
2519 return err;
2522 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2523 bool rpm_resume)
2525 int err;
2526 int ret;
2529 * If any of the steps fail just try to continue, that's the best we
2530 * can do at this point. Return the first error code (which will also
2531 * leave RPM permanently disabled).
2533 ret = vlv_force_gfx_clock(dev_priv, true);
2535 if (!IS_CHERRYVIEW(dev_priv))
2536 vlv_restore_gunit_s0ix_state(dev_priv);
2538 err = vlv_allow_gt_wake(dev_priv, true);
2539 if (!ret)
2540 ret = err;
2542 err = vlv_force_gfx_clock(dev_priv, false);
2543 if (!ret)
2544 ret = err;
2546 vlv_check_no_gt_access(dev_priv);
2548 if (rpm_resume)
2549 intel_init_clock_gating(dev_priv);
2551 return ret;
2554 static int intel_runtime_suspend(struct device *kdev)
2556 struct pci_dev *pdev = to_pci_dev(kdev);
2557 struct drm_device *dev = pci_get_drvdata(pdev);
2558 struct drm_i915_private *dev_priv = to_i915(dev);
2559 int ret;
2561 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2562 return -ENODEV;
2564 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2565 return -ENODEV;
2567 DRM_DEBUG_KMS("Suspending device\n");
2569 disable_rpm_wakeref_asserts(dev_priv);
2572 * We are safe here against re-faults, since the fault handler takes
2573 * an RPM reference.
2575 i915_gem_runtime_suspend(dev_priv);
2577 intel_guc_suspend(dev_priv);
2579 intel_runtime_pm_disable_interrupts(dev_priv);
2581 intel_uncore_suspend(dev_priv);
2583 ret = 0;
2584 if (IS_GEN9_LP(dev_priv)) {
2585 bxt_display_core_uninit(dev_priv);
2586 bxt_enable_dc9(dev_priv);
2587 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2588 hsw_enable_pc8(dev_priv);
2589 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2590 ret = vlv_suspend_complete(dev_priv);
2593 if (ret) {
2594 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2595 intel_uncore_runtime_resume(dev_priv);
2597 intel_runtime_pm_enable_interrupts(dev_priv);
2599 enable_rpm_wakeref_asserts(dev_priv);
2601 return ret;
2604 enable_rpm_wakeref_asserts(dev_priv);
2605 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2607 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2608 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2610 dev_priv->runtime_pm.suspended = true;
2613 * FIXME: We really should find a document that references the arguments
2614 * used below!
2616 if (IS_BROADWELL(dev_priv)) {
2618 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2619 * being detected, and the call we do at intel_runtime_resume()
2620 * won't be able to restore them. Since PCI_D3hot matches the
2621 * actual specification and appears to be working, use it.
2623 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2624 } else {
2626 * current versions of firmware which depend on this opregion
2627 * notification have repurposed the D1 definition to mean
2628 * "runtime suspended" vs. what you would normally expect (D3)
2629 * to distinguish it from notifications that might be sent via
2630 * the suspend path.
2632 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2635 assert_forcewakes_inactive(dev_priv);
2637 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2638 intel_hpd_poll_init(dev_priv);
2640 DRM_DEBUG_KMS("Device suspended\n");
2641 return 0;
2644 static int intel_runtime_resume(struct device *kdev)
2646 struct pci_dev *pdev = to_pci_dev(kdev);
2647 struct drm_device *dev = pci_get_drvdata(pdev);
2648 struct drm_i915_private *dev_priv = to_i915(dev);
2649 int ret = 0;
2651 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2652 return -ENODEV;
2654 DRM_DEBUG_KMS("Resuming device\n");
2656 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2657 disable_rpm_wakeref_asserts(dev_priv);
2659 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2660 dev_priv->runtime_pm.suspended = false;
2661 if (intel_uncore_unclaimed_mmio(dev_priv))
2662 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2664 intel_guc_resume(dev_priv);
2666 if (IS_GEN9_LP(dev_priv)) {
2667 bxt_disable_dc9(dev_priv);
2668 bxt_display_core_init(dev_priv, true);
2669 if (dev_priv->csr.dmc_payload &&
2670 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2671 gen9_enable_dc5(dev_priv);
2672 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2673 hsw_disable_pc8(dev_priv);
2674 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2675 ret = vlv_resume_prepare(dev_priv, true);
2678 intel_uncore_runtime_resume(dev_priv);
2681 * No point of rolling back things in case of an error, as the best
2682 * we can do is to hope that things will still work (and disable RPM).
2684 i915_gem_init_swizzling(dev_priv);
2685 i915_gem_restore_fences(dev_priv);
2687 intel_runtime_pm_enable_interrupts(dev_priv);
2690 * On VLV/CHV display interrupts are part of the display
2691 * power well, so hpd is reinitialized from there. For
2692 * everyone else do it here.
2694 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2695 intel_hpd_init(dev_priv);
2697 intel_enable_ipc(dev_priv);
2699 enable_rpm_wakeref_asserts(dev_priv);
2701 if (ret)
2702 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2703 else
2704 DRM_DEBUG_KMS("Device resumed\n");
2706 return ret;
2709 const struct dev_pm_ops i915_pm_ops = {
2711 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2712 * PMSG_RESUME]
2714 .suspend = i915_pm_suspend,
2715 .suspend_late = i915_pm_suspend_late,
2716 .resume_early = i915_pm_resume_early,
2717 .resume = i915_pm_resume,
2720 * S4 event handlers
2721 * @freeze, @freeze_late : called (1) before creating the
2722 * hibernation image [PMSG_FREEZE] and
2723 * (2) after rebooting, before restoring
2724 * the image [PMSG_QUIESCE]
2725 * @thaw, @thaw_early : called (1) after creating the hibernation
2726 * image, before writing it [PMSG_THAW]
2727 * and (2) after failing to create or
2728 * restore the image [PMSG_RECOVER]
2729 * @poweroff, @poweroff_late: called after writing the hibernation
2730 * image, before rebooting [PMSG_HIBERNATE]
2731 * @restore, @restore_early : called after rebooting and restoring the
2732 * hibernation image [PMSG_RESTORE]
2734 .freeze = i915_pm_freeze,
2735 .freeze_late = i915_pm_freeze_late,
2736 .thaw_early = i915_pm_thaw_early,
2737 .thaw = i915_pm_thaw,
2738 .poweroff = i915_pm_suspend,
2739 .poweroff_late = i915_pm_poweroff_late,
2740 .restore_early = i915_pm_restore_early,
2741 .restore = i915_pm_restore,
2743 /* S0ix (via runtime suspend) event handlers */
2744 .runtime_suspend = intel_runtime_suspend,
2745 .runtime_resume = intel_runtime_resume,
2748 static const struct vm_operations_struct i915_gem_vm_ops = {
2749 .fault = i915_gem_fault,
2750 .open = drm_gem_vm_open,
2751 .close = drm_gem_vm_close,
2754 static const struct file_operations i915_driver_fops = {
2755 .owner = THIS_MODULE,
2756 .open = drm_open,
2757 .release = drm_release,
2758 .unlocked_ioctl = drm_ioctl,
2759 .mmap = drm_gem_mmap,
2760 .poll = drm_poll,
2761 .read = drm_read,
2762 .compat_ioctl = i915_compat_ioctl,
2763 .llseek = noop_llseek,
2766 static int
2767 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2768 struct drm_file *file)
2770 return -ENODEV;
2773 static const struct drm_ioctl_desc i915_ioctls[] = {
2774 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2775 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2776 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2777 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2778 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2779 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2780 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2781 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2782 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2783 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2784 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2785 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2786 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2787 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2788 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2789 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2790 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2791 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2792 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2793 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2794 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2795 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2796 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2797 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2798 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2799 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2800 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2801 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2802 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2803 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2804 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2805 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2806 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2807 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2808 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2809 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2810 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2811 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2812 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2813 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2814 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2815 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2816 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2817 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2818 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2819 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2820 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2821 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2822 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2823 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2824 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2825 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2826 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2827 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2828 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2831 static struct drm_driver driver = {
2832 /* Don't use MTRRs here; the Xserver or userspace app should
2833 * deal with them for Intel hardware.
2835 .driver_features =
2836 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2837 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2838 .release = i915_driver_release,
2839 .open = i915_driver_open,
2840 .lastclose = i915_driver_lastclose,
2841 .postclose = i915_driver_postclose,
2843 .gem_close_object = i915_gem_close_object,
2844 .gem_free_object_unlocked = i915_gem_free_object,
2845 .gem_vm_ops = &i915_gem_vm_ops,
2847 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2848 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2849 .gem_prime_export = i915_gem_prime_export,
2850 .gem_prime_import = i915_gem_prime_import,
2852 .dumb_create = i915_gem_dumb_create,
2853 .dumb_map_offset = i915_gem_mmap_gtt,
2854 .ioctls = i915_ioctls,
2855 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2856 .fops = &i915_driver_fops,
2857 .name = DRIVER_NAME,
2858 .desc = DRIVER_DESC,
2859 .date = DRIVER_DATE,
2860 .major = DRIVER_MAJOR,
2861 .minor = DRIVER_MINOR,
2862 .patchlevel = DRIVER_PATCHLEVEL,
2865 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2866 #include "selftests/mock_drm.c"
2867 #endif