xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / net / tls / tls_main.c
blobb0d5fcea47e73488b355b479022f77cb6b97f1c8
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/module.h>
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
42 #include <net/tls.h>
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
48 enum {
49 TLS_BASE_TX,
50 TLS_SW_TX,
51 TLS_NUM_CONFIG,
54 static struct proto tls_prots[TLS_NUM_CONFIG];
56 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
58 sk->sk_prot = &tls_prots[ctx->tx_conf];
61 int wait_on_pending_writer(struct sock *sk, long *timeo)
63 int rc = 0;
64 DEFINE_WAIT_FUNC(wait, woken_wake_function);
66 add_wait_queue(sk_sleep(sk), &wait);
67 while (1) {
68 if (!*timeo) {
69 rc = -EAGAIN;
70 break;
73 if (signal_pending(current)) {
74 rc = sock_intr_errno(*timeo);
75 break;
78 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
79 break;
81 remove_wait_queue(sk_sleep(sk), &wait);
82 return rc;
85 int tls_push_sg(struct sock *sk,
86 struct tls_context *ctx,
87 struct scatterlist *sg,
88 u16 first_offset,
89 int flags)
91 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
92 int ret = 0;
93 struct page *p;
94 size_t size;
95 int offset = first_offset;
97 size = sg->length - offset;
98 offset += sg->offset;
100 while (1) {
101 if (sg_is_last(sg))
102 sendpage_flags = flags;
104 /* is sending application-limited? */
105 tcp_rate_check_app_limited(sk);
106 p = sg_page(sg);
107 retry:
108 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
110 if (ret != size) {
111 if (ret > 0) {
112 offset += ret;
113 size -= ret;
114 goto retry;
117 offset -= sg->offset;
118 ctx->partially_sent_offset = offset;
119 ctx->partially_sent_record = (void *)sg;
120 return ret;
123 put_page(p);
124 sk_mem_uncharge(sk, sg->length);
125 sg = sg_next(sg);
126 if (!sg)
127 break;
129 offset = sg->offset;
130 size = sg->length;
133 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
135 return 0;
138 static int tls_handle_open_record(struct sock *sk, int flags)
140 struct tls_context *ctx = tls_get_ctx(sk);
142 if (tls_is_pending_open_record(ctx))
143 return ctx->push_pending_record(sk, flags);
145 return 0;
148 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
149 unsigned char *record_type)
151 struct cmsghdr *cmsg;
152 int rc = -EINVAL;
154 for_each_cmsghdr(cmsg, msg) {
155 if (!CMSG_OK(msg, cmsg))
156 return -EINVAL;
157 if (cmsg->cmsg_level != SOL_TLS)
158 continue;
160 switch (cmsg->cmsg_type) {
161 case TLS_SET_RECORD_TYPE:
162 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
163 return -EINVAL;
165 if (msg->msg_flags & MSG_MORE)
166 return -EINVAL;
168 rc = tls_handle_open_record(sk, msg->msg_flags);
169 if (rc)
170 return rc;
172 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
173 rc = 0;
174 break;
175 default:
176 return -EINVAL;
180 return rc;
183 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
184 int flags, long *timeo)
186 struct scatterlist *sg;
187 u16 offset;
189 if (!tls_is_partially_sent_record(ctx))
190 return ctx->push_pending_record(sk, flags);
192 sg = ctx->partially_sent_record;
193 offset = ctx->partially_sent_offset;
195 ctx->partially_sent_record = NULL;
196 return tls_push_sg(sk, ctx, sg, offset, flags);
199 static void tls_write_space(struct sock *sk)
201 struct tls_context *ctx = tls_get_ctx(sk);
203 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
204 gfp_t sk_allocation = sk->sk_allocation;
205 int rc;
206 long timeo = 0;
208 sk->sk_allocation = GFP_ATOMIC;
209 rc = tls_push_pending_closed_record(sk, ctx,
210 MSG_DONTWAIT |
211 MSG_NOSIGNAL,
212 &timeo);
213 sk->sk_allocation = sk_allocation;
215 if (rc < 0)
216 return;
219 ctx->sk_write_space(sk);
222 static void tls_sk_proto_close(struct sock *sk, long timeout)
224 struct tls_context *ctx = tls_get_ctx(sk);
225 long timeo = sock_sndtimeo(sk, 0);
226 void (*sk_proto_close)(struct sock *sk, long timeout);
228 lock_sock(sk);
229 sk_proto_close = ctx->sk_proto_close;
231 if (ctx->tx_conf == TLS_BASE_TX) {
232 kfree(ctx);
233 goto skip_tx_cleanup;
236 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
237 tls_handle_open_record(sk, 0);
239 if (ctx->partially_sent_record) {
240 struct scatterlist *sg = ctx->partially_sent_record;
242 while (1) {
243 put_page(sg_page(sg));
244 sk_mem_uncharge(sk, sg->length);
246 if (sg_is_last(sg))
247 break;
248 sg++;
252 kfree(ctx->rec_seq);
253 kfree(ctx->iv);
255 if (ctx->tx_conf == TLS_SW_TX)
256 tls_sw_free_tx_resources(sk);
258 skip_tx_cleanup:
259 release_sock(sk);
260 sk_proto_close(sk, timeout);
263 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
264 int __user *optlen)
266 int rc = 0;
267 struct tls_context *ctx = tls_get_ctx(sk);
268 struct tls_crypto_info *crypto_info;
269 int len;
271 if (get_user(len, optlen))
272 return -EFAULT;
274 if (!optval || (len < sizeof(*crypto_info))) {
275 rc = -EINVAL;
276 goto out;
279 if (!ctx) {
280 rc = -EBUSY;
281 goto out;
284 /* get user crypto info */
285 crypto_info = &ctx->crypto_send;
287 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
288 rc = -EBUSY;
289 goto out;
292 if (len == sizeof(*crypto_info)) {
293 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
294 rc = -EFAULT;
295 goto out;
298 switch (crypto_info->cipher_type) {
299 case TLS_CIPHER_AES_GCM_128: {
300 struct tls12_crypto_info_aes_gcm_128 *
301 crypto_info_aes_gcm_128 =
302 container_of(crypto_info,
303 struct tls12_crypto_info_aes_gcm_128,
304 info);
306 if (len != sizeof(*crypto_info_aes_gcm_128)) {
307 rc = -EINVAL;
308 goto out;
310 lock_sock(sk);
311 memcpy(crypto_info_aes_gcm_128->iv, ctx->iv,
312 TLS_CIPHER_AES_GCM_128_IV_SIZE);
313 release_sock(sk);
314 if (copy_to_user(optval,
315 crypto_info_aes_gcm_128,
316 sizeof(*crypto_info_aes_gcm_128)))
317 rc = -EFAULT;
318 break;
320 default:
321 rc = -EINVAL;
324 out:
325 return rc;
328 static int do_tls_getsockopt(struct sock *sk, int optname,
329 char __user *optval, int __user *optlen)
331 int rc = 0;
333 switch (optname) {
334 case TLS_TX:
335 rc = do_tls_getsockopt_tx(sk, optval, optlen);
336 break;
337 default:
338 rc = -ENOPROTOOPT;
339 break;
341 return rc;
344 static int tls_getsockopt(struct sock *sk, int level, int optname,
345 char __user *optval, int __user *optlen)
347 struct tls_context *ctx = tls_get_ctx(sk);
349 if (level != SOL_TLS)
350 return ctx->getsockopt(sk, level, optname, optval, optlen);
352 return do_tls_getsockopt(sk, optname, optval, optlen);
355 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
356 unsigned int optlen)
358 struct tls_crypto_info *crypto_info;
359 struct tls_context *ctx = tls_get_ctx(sk);
360 int rc = 0;
361 int tx_conf;
363 if (!optval || (optlen < sizeof(*crypto_info))) {
364 rc = -EINVAL;
365 goto out;
368 crypto_info = &ctx->crypto_send;
369 /* Currently we don't support set crypto info more than one time */
370 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
371 rc = -EBUSY;
372 goto out;
375 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
376 if (rc) {
377 rc = -EFAULT;
378 goto out;
381 /* check version */
382 if (crypto_info->version != TLS_1_2_VERSION) {
383 rc = -ENOTSUPP;
384 goto err_crypto_info;
387 switch (crypto_info->cipher_type) {
388 case TLS_CIPHER_AES_GCM_128: {
389 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
390 rc = -EINVAL;
391 goto err_crypto_info;
393 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
394 optlen - sizeof(*crypto_info));
395 if (rc) {
396 rc = -EFAULT;
397 goto err_crypto_info;
399 break;
401 default:
402 rc = -EINVAL;
403 goto err_crypto_info;
406 /* currently SW is default, we will have ethtool in future */
407 rc = tls_set_sw_offload(sk, ctx);
408 tx_conf = TLS_SW_TX;
409 if (rc)
410 goto err_crypto_info;
412 ctx->tx_conf = tx_conf;
413 update_sk_prot(sk, ctx);
414 ctx->sk_write_space = sk->sk_write_space;
415 sk->sk_write_space = tls_write_space;
416 goto out;
418 err_crypto_info:
419 memset(crypto_info, 0, sizeof(*crypto_info));
420 out:
421 return rc;
424 static int do_tls_setsockopt(struct sock *sk, int optname,
425 char __user *optval, unsigned int optlen)
427 int rc = 0;
429 switch (optname) {
430 case TLS_TX:
431 lock_sock(sk);
432 rc = do_tls_setsockopt_tx(sk, optval, optlen);
433 release_sock(sk);
434 break;
435 default:
436 rc = -ENOPROTOOPT;
437 break;
439 return rc;
442 static int tls_setsockopt(struct sock *sk, int level, int optname,
443 char __user *optval, unsigned int optlen)
445 struct tls_context *ctx = tls_get_ctx(sk);
447 if (level != SOL_TLS)
448 return ctx->setsockopt(sk, level, optname, optval, optlen);
450 return do_tls_setsockopt(sk, optname, optval, optlen);
453 static int tls_init(struct sock *sk)
455 struct inet_connection_sock *icsk = inet_csk(sk);
456 struct tls_context *ctx;
457 int rc = 0;
459 /* The TLS ulp is currently supported only for TCP sockets
460 * in ESTABLISHED state.
461 * Supporting sockets in LISTEN state will require us
462 * to modify the accept implementation to clone rather then
463 * share the ulp context.
465 if (sk->sk_state != TCP_ESTABLISHED)
466 return -ENOTSUPP;
468 /* allocate tls context */
469 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
470 if (!ctx) {
471 rc = -ENOMEM;
472 goto out;
474 icsk->icsk_ulp_data = ctx;
475 ctx->setsockopt = sk->sk_prot->setsockopt;
476 ctx->getsockopt = sk->sk_prot->getsockopt;
477 ctx->sk_proto_close = sk->sk_prot->close;
479 ctx->tx_conf = TLS_BASE_TX;
480 update_sk_prot(sk, ctx);
481 out:
482 return rc;
485 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
486 .name = "tls",
487 .uid = TCP_ULP_TLS,
488 .user_visible = true,
489 .owner = THIS_MODULE,
490 .init = tls_init,
493 static void build_protos(struct proto *prot, struct proto *base)
495 prot[TLS_BASE_TX] = *base;
496 prot[TLS_BASE_TX].setsockopt = tls_setsockopt;
497 prot[TLS_BASE_TX].getsockopt = tls_getsockopt;
498 prot[TLS_BASE_TX].close = tls_sk_proto_close;
500 prot[TLS_SW_TX] = prot[TLS_BASE_TX];
501 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
502 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
505 static int __init tls_register(void)
507 build_protos(tls_prots, &tcp_prot);
509 tcp_register_ulp(&tcp_tls_ulp_ops);
511 return 0;
514 static void __exit tls_unregister(void)
516 tcp_unregister_ulp(&tcp_tls_ulp_ops);
519 module_init(tls_register);
520 module_exit(tls_unregister);