Linux 4.16-rc1
[cris-mirror.git] / fs / ubifs / file.c
blobcf348ba9923858927d6f19a92b65985184285dc3
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 struct ubifs_data_node *dn)
60 struct ubifs_info *c = inode->i_sb->s_fs_info;
61 int err, len, out_len;
62 union ubifs_key key;
63 unsigned int dlen;
65 data_key_init(c, &key, inode->i_ino, block);
66 err = ubifs_tnc_lookup(c, &key, dn);
67 if (err) {
68 if (err == -ENOENT)
69 /* Not found, so it must be a hole */
70 memset(addr, 0, UBIFS_BLOCK_SIZE);
71 return err;
74 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75 ubifs_inode(inode)->creat_sqnum);
76 len = le32_to_cpu(dn->size);
77 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 goto dump;
80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 if (ubifs_crypt_is_encrypted(inode)) {
83 err = ubifs_decrypt(inode, dn, &dlen, block);
84 if (err)
85 goto dump;
88 out_len = UBIFS_BLOCK_SIZE;
89 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 le16_to_cpu(dn->compr_type));
91 if (err || len != out_len)
92 goto dump;
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
99 if (len < UBIFS_BLOCK_SIZE)
100 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
102 return 0;
104 dump:
105 ubifs_err(c, "bad data node (block %u, inode %lu)",
106 block, inode->i_ino);
107 ubifs_dump_node(c, dn);
108 return -EINVAL;
111 static int do_readpage(struct page *page)
113 void *addr;
114 int err = 0, i;
115 unsigned int block, beyond;
116 struct ubifs_data_node *dn;
117 struct inode *inode = page->mapping->host;
118 loff_t i_size = i_size_read(inode);
120 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
121 inode->i_ino, page->index, i_size, page->flags);
122 ubifs_assert(!PageChecked(page));
123 ubifs_assert(!PagePrivate(page));
125 addr = kmap(page);
127 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
128 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
129 if (block >= beyond) {
130 /* Reading beyond inode */
131 SetPageChecked(page);
132 memset(addr, 0, PAGE_SIZE);
133 goto out;
136 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
137 if (!dn) {
138 err = -ENOMEM;
139 goto error;
142 i = 0;
143 while (1) {
144 int ret;
146 if (block >= beyond) {
147 /* Reading beyond inode */
148 err = -ENOENT;
149 memset(addr, 0, UBIFS_BLOCK_SIZE);
150 } else {
151 ret = read_block(inode, addr, block, dn);
152 if (ret) {
153 err = ret;
154 if (err != -ENOENT)
155 break;
156 } else if (block + 1 == beyond) {
157 int dlen = le32_to_cpu(dn->size);
158 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
160 if (ilen && ilen < dlen)
161 memset(addr + ilen, 0, dlen - ilen);
164 if (++i >= UBIFS_BLOCKS_PER_PAGE)
165 break;
166 block += 1;
167 addr += UBIFS_BLOCK_SIZE;
169 if (err) {
170 struct ubifs_info *c = inode->i_sb->s_fs_info;
171 if (err == -ENOENT) {
172 /* Not found, so it must be a hole */
173 SetPageChecked(page);
174 dbg_gen("hole");
175 goto out_free;
177 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
178 page->index, inode->i_ino, err);
179 goto error;
182 out_free:
183 kfree(dn);
184 out:
185 SetPageUptodate(page);
186 ClearPageError(page);
187 flush_dcache_page(page);
188 kunmap(page);
189 return 0;
191 error:
192 kfree(dn);
193 ClearPageUptodate(page);
194 SetPageError(page);
195 flush_dcache_page(page);
196 kunmap(page);
197 return err;
201 * release_new_page_budget - release budget of a new page.
202 * @c: UBIFS file-system description object
204 * This is a helper function which releases budget corresponding to the budget
205 * of one new page of data.
207 static void release_new_page_budget(struct ubifs_info *c)
209 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
211 ubifs_release_budget(c, &req);
215 * release_existing_page_budget - release budget of an existing page.
216 * @c: UBIFS file-system description object
218 * This is a helper function which releases budget corresponding to the budget
219 * of changing one one page of data which already exists on the flash media.
221 static void release_existing_page_budget(struct ubifs_info *c)
223 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
225 ubifs_release_budget(c, &req);
228 static int write_begin_slow(struct address_space *mapping,
229 loff_t pos, unsigned len, struct page **pagep,
230 unsigned flags)
232 struct inode *inode = mapping->host;
233 struct ubifs_info *c = inode->i_sb->s_fs_info;
234 pgoff_t index = pos >> PAGE_SHIFT;
235 struct ubifs_budget_req req = { .new_page = 1 };
236 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
237 struct page *page;
239 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
240 inode->i_ino, pos, len, inode->i_size);
243 * At the slow path we have to budget before locking the page, because
244 * budgeting may force write-back, which would wait on locked pages and
245 * deadlock if we had the page locked. At this point we do not know
246 * anything about the page, so assume that this is a new page which is
247 * written to a hole. This corresponds to largest budget. Later the
248 * budget will be amended if this is not true.
250 if (appending)
251 /* We are appending data, budget for inode change */
252 req.dirtied_ino = 1;
254 err = ubifs_budget_space(c, &req);
255 if (unlikely(err))
256 return err;
258 page = grab_cache_page_write_begin(mapping, index, flags);
259 if (unlikely(!page)) {
260 ubifs_release_budget(c, &req);
261 return -ENOMEM;
264 if (!PageUptodate(page)) {
265 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
266 SetPageChecked(page);
267 else {
268 err = do_readpage(page);
269 if (err) {
270 unlock_page(page);
271 put_page(page);
272 ubifs_release_budget(c, &req);
273 return err;
277 SetPageUptodate(page);
278 ClearPageError(page);
281 if (PagePrivate(page))
283 * The page is dirty, which means it was budgeted twice:
284 * o first time the budget was allocated by the task which
285 * made the page dirty and set the PG_private flag;
286 * o and then we budgeted for it for the second time at the
287 * very beginning of this function.
289 * So what we have to do is to release the page budget we
290 * allocated.
292 release_new_page_budget(c);
293 else if (!PageChecked(page))
295 * We are changing a page which already exists on the media.
296 * This means that changing the page does not make the amount
297 * of indexing information larger, and this part of the budget
298 * which we have already acquired may be released.
300 ubifs_convert_page_budget(c);
302 if (appending) {
303 struct ubifs_inode *ui = ubifs_inode(inode);
306 * 'ubifs_write_end()' is optimized from the fast-path part of
307 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
308 * if data is appended.
310 mutex_lock(&ui->ui_mutex);
311 if (ui->dirty)
313 * The inode is dirty already, so we may free the
314 * budget we allocated.
316 ubifs_release_dirty_inode_budget(c, ui);
319 *pagep = page;
320 return 0;
324 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
325 * @c: UBIFS file-system description object
326 * @page: page to allocate budget for
327 * @ui: UBIFS inode object the page belongs to
328 * @appending: non-zero if the page is appended
330 * This is a helper function for 'ubifs_write_begin()' which allocates budget
331 * for the operation. The budget is allocated differently depending on whether
332 * this is appending, whether the page is dirty or not, and so on. This
333 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
334 * in case of success and %-ENOSPC in case of failure.
336 static int allocate_budget(struct ubifs_info *c, struct page *page,
337 struct ubifs_inode *ui, int appending)
339 struct ubifs_budget_req req = { .fast = 1 };
341 if (PagePrivate(page)) {
342 if (!appending)
344 * The page is dirty and we are not appending, which
345 * means no budget is needed at all.
347 return 0;
349 mutex_lock(&ui->ui_mutex);
350 if (ui->dirty)
352 * The page is dirty and we are appending, so the inode
353 * has to be marked as dirty. However, it is already
354 * dirty, so we do not need any budget. We may return,
355 * but @ui->ui_mutex hast to be left locked because we
356 * should prevent write-back from flushing the inode
357 * and freeing the budget. The lock will be released in
358 * 'ubifs_write_end()'.
360 return 0;
363 * The page is dirty, we are appending, the inode is clean, so
364 * we need to budget the inode change.
366 req.dirtied_ino = 1;
367 } else {
368 if (PageChecked(page))
370 * The page corresponds to a hole and does not
371 * exist on the media. So changing it makes
372 * make the amount of indexing information
373 * larger, and we have to budget for a new
374 * page.
376 req.new_page = 1;
377 else
379 * Not a hole, the change will not add any new
380 * indexing information, budget for page
381 * change.
383 req.dirtied_page = 1;
385 if (appending) {
386 mutex_lock(&ui->ui_mutex);
387 if (!ui->dirty)
389 * The inode is clean but we will have to mark
390 * it as dirty because we are appending. This
391 * needs a budget.
393 req.dirtied_ino = 1;
397 return ubifs_budget_space(c, &req);
401 * This function is called when a page of data is going to be written. Since
402 * the page of data will not necessarily go to the flash straight away, UBIFS
403 * has to reserve space on the media for it, which is done by means of
404 * budgeting.
406 * This is the hot-path of the file-system and we are trying to optimize it as
407 * much as possible. For this reasons it is split on 2 parts - slow and fast.
409 * There many budgeting cases:
410 * o a new page is appended - we have to budget for a new page and for
411 * changing the inode; however, if the inode is already dirty, there is
412 * no need to budget for it;
413 * o an existing clean page is changed - we have budget for it; if the page
414 * does not exist on the media (a hole), we have to budget for a new
415 * page; otherwise, we may budget for changing an existing page; the
416 * difference between these cases is that changing an existing page does
417 * not introduce anything new to the FS indexing information, so it does
418 * not grow, and smaller budget is acquired in this case;
419 * o an existing dirty page is changed - no need to budget at all, because
420 * the page budget has been acquired by earlier, when the page has been
421 * marked dirty.
423 * UBIFS budgeting sub-system may force write-back if it thinks there is no
424 * space to reserve. This imposes some locking restrictions and makes it
425 * impossible to take into account the above cases, and makes it impossible to
426 * optimize budgeting.
428 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
429 * there is a plenty of flash space and the budget will be acquired quickly,
430 * without forcing write-back. The slow path does not make this assumption.
432 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
433 loff_t pos, unsigned len, unsigned flags,
434 struct page **pagep, void **fsdata)
436 struct inode *inode = mapping->host;
437 struct ubifs_info *c = inode->i_sb->s_fs_info;
438 struct ubifs_inode *ui = ubifs_inode(inode);
439 pgoff_t index = pos >> PAGE_SHIFT;
440 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
441 int skipped_read = 0;
442 struct page *page;
444 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
445 ubifs_assert(!c->ro_media && !c->ro_mount);
447 if (unlikely(c->ro_error))
448 return -EROFS;
450 /* Try out the fast-path part first */
451 page = grab_cache_page_write_begin(mapping, index, flags);
452 if (unlikely(!page))
453 return -ENOMEM;
455 if (!PageUptodate(page)) {
456 /* The page is not loaded from the flash */
457 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
459 * We change whole page so no need to load it. But we
460 * do not know whether this page exists on the media or
461 * not, so we assume the latter because it requires
462 * larger budget. The assumption is that it is better
463 * to budget a bit more than to read the page from the
464 * media. Thus, we are setting the @PG_checked flag
465 * here.
467 SetPageChecked(page);
468 skipped_read = 1;
469 } else {
470 err = do_readpage(page);
471 if (err) {
472 unlock_page(page);
473 put_page(page);
474 return err;
478 SetPageUptodate(page);
479 ClearPageError(page);
482 err = allocate_budget(c, page, ui, appending);
483 if (unlikely(err)) {
484 ubifs_assert(err == -ENOSPC);
486 * If we skipped reading the page because we were going to
487 * write all of it, then it is not up to date.
489 if (skipped_read) {
490 ClearPageChecked(page);
491 ClearPageUptodate(page);
494 * Budgeting failed which means it would have to force
495 * write-back but didn't, because we set the @fast flag in the
496 * request. Write-back cannot be done now, while we have the
497 * page locked, because it would deadlock. Unlock and free
498 * everything and fall-back to slow-path.
500 if (appending) {
501 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
502 mutex_unlock(&ui->ui_mutex);
504 unlock_page(page);
505 put_page(page);
507 return write_begin_slow(mapping, pos, len, pagep, flags);
511 * Whee, we acquired budgeting quickly - without involving
512 * garbage-collection, committing or forcing write-back. We return
513 * with @ui->ui_mutex locked if we are appending pages, and unlocked
514 * otherwise. This is an optimization (slightly hacky though).
516 *pagep = page;
517 return 0;
522 * cancel_budget - cancel budget.
523 * @c: UBIFS file-system description object
524 * @page: page to cancel budget for
525 * @ui: UBIFS inode object the page belongs to
526 * @appending: non-zero if the page is appended
528 * This is a helper function for a page write operation. It unlocks the
529 * @ui->ui_mutex in case of appending.
531 static void cancel_budget(struct ubifs_info *c, struct page *page,
532 struct ubifs_inode *ui, int appending)
534 if (appending) {
535 if (!ui->dirty)
536 ubifs_release_dirty_inode_budget(c, ui);
537 mutex_unlock(&ui->ui_mutex);
539 if (!PagePrivate(page)) {
540 if (PageChecked(page))
541 release_new_page_budget(c);
542 else
543 release_existing_page_budget(c);
547 static int ubifs_write_end(struct file *file, struct address_space *mapping,
548 loff_t pos, unsigned len, unsigned copied,
549 struct page *page, void *fsdata)
551 struct inode *inode = mapping->host;
552 struct ubifs_inode *ui = ubifs_inode(inode);
553 struct ubifs_info *c = inode->i_sb->s_fs_info;
554 loff_t end_pos = pos + len;
555 int appending = !!(end_pos > inode->i_size);
557 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
558 inode->i_ino, pos, page->index, len, copied, inode->i_size);
560 if (unlikely(copied < len && len == PAGE_SIZE)) {
562 * VFS copied less data to the page that it intended and
563 * declared in its '->write_begin()' call via the @len
564 * argument. If the page was not up-to-date, and @len was
565 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
566 * not load it from the media (for optimization reasons). This
567 * means that part of the page contains garbage. So read the
568 * page now.
570 dbg_gen("copied %d instead of %d, read page and repeat",
571 copied, len);
572 cancel_budget(c, page, ui, appending);
573 ClearPageChecked(page);
576 * Return 0 to force VFS to repeat the whole operation, or the
577 * error code if 'do_readpage()' fails.
579 copied = do_readpage(page);
580 goto out;
583 if (!PagePrivate(page)) {
584 SetPagePrivate(page);
585 atomic_long_inc(&c->dirty_pg_cnt);
586 __set_page_dirty_nobuffers(page);
589 if (appending) {
590 i_size_write(inode, end_pos);
591 ui->ui_size = end_pos;
593 * Note, we do not set @I_DIRTY_PAGES (which means that the
594 * inode has dirty pages), this has been done in
595 * '__set_page_dirty_nobuffers()'.
597 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
598 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
599 mutex_unlock(&ui->ui_mutex);
602 out:
603 unlock_page(page);
604 put_page(page);
605 return copied;
609 * populate_page - copy data nodes into a page for bulk-read.
610 * @c: UBIFS file-system description object
611 * @page: page
612 * @bu: bulk-read information
613 * @n: next zbranch slot
615 * This function returns %0 on success and a negative error code on failure.
617 static int populate_page(struct ubifs_info *c, struct page *page,
618 struct bu_info *bu, int *n)
620 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
621 struct inode *inode = page->mapping->host;
622 loff_t i_size = i_size_read(inode);
623 unsigned int page_block;
624 void *addr, *zaddr;
625 pgoff_t end_index;
627 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
628 inode->i_ino, page->index, i_size, page->flags);
630 addr = zaddr = kmap(page);
632 end_index = (i_size - 1) >> PAGE_SHIFT;
633 if (!i_size || page->index > end_index) {
634 hole = 1;
635 memset(addr, 0, PAGE_SIZE);
636 goto out_hole;
639 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
640 while (1) {
641 int err, len, out_len, dlen;
643 if (nn >= bu->cnt) {
644 hole = 1;
645 memset(addr, 0, UBIFS_BLOCK_SIZE);
646 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
647 struct ubifs_data_node *dn;
649 dn = bu->buf + (bu->zbranch[nn].offs - offs);
651 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
652 ubifs_inode(inode)->creat_sqnum);
654 len = le32_to_cpu(dn->size);
655 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
656 goto out_err;
658 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
659 out_len = UBIFS_BLOCK_SIZE;
661 if (ubifs_crypt_is_encrypted(inode)) {
662 err = ubifs_decrypt(inode, dn, &dlen, page_block);
663 if (err)
664 goto out_err;
667 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
668 le16_to_cpu(dn->compr_type));
669 if (err || len != out_len)
670 goto out_err;
672 if (len < UBIFS_BLOCK_SIZE)
673 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
675 nn += 1;
676 read = (i << UBIFS_BLOCK_SHIFT) + len;
677 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
678 nn += 1;
679 continue;
680 } else {
681 hole = 1;
682 memset(addr, 0, UBIFS_BLOCK_SIZE);
684 if (++i >= UBIFS_BLOCKS_PER_PAGE)
685 break;
686 addr += UBIFS_BLOCK_SIZE;
687 page_block += 1;
690 if (end_index == page->index) {
691 int len = i_size & (PAGE_SIZE - 1);
693 if (len && len < read)
694 memset(zaddr + len, 0, read - len);
697 out_hole:
698 if (hole) {
699 SetPageChecked(page);
700 dbg_gen("hole");
703 SetPageUptodate(page);
704 ClearPageError(page);
705 flush_dcache_page(page);
706 kunmap(page);
707 *n = nn;
708 return 0;
710 out_err:
711 ClearPageUptodate(page);
712 SetPageError(page);
713 flush_dcache_page(page);
714 kunmap(page);
715 ubifs_err(c, "bad data node (block %u, inode %lu)",
716 page_block, inode->i_ino);
717 return -EINVAL;
721 * ubifs_do_bulk_read - do bulk-read.
722 * @c: UBIFS file-system description object
723 * @bu: bulk-read information
724 * @page1: first page to read
726 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
728 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
729 struct page *page1)
731 pgoff_t offset = page1->index, end_index;
732 struct address_space *mapping = page1->mapping;
733 struct inode *inode = mapping->host;
734 struct ubifs_inode *ui = ubifs_inode(inode);
735 int err, page_idx, page_cnt, ret = 0, n = 0;
736 int allocate = bu->buf ? 0 : 1;
737 loff_t isize;
738 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
740 err = ubifs_tnc_get_bu_keys(c, bu);
741 if (err)
742 goto out_warn;
744 if (bu->eof) {
745 /* Turn off bulk-read at the end of the file */
746 ui->read_in_a_row = 1;
747 ui->bulk_read = 0;
750 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
751 if (!page_cnt) {
753 * This happens when there are multiple blocks per page and the
754 * blocks for the first page we are looking for, are not
755 * together. If all the pages were like this, bulk-read would
756 * reduce performance, so we turn it off for a while.
758 goto out_bu_off;
761 if (bu->cnt) {
762 if (allocate) {
764 * Allocate bulk-read buffer depending on how many data
765 * nodes we are going to read.
767 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
768 bu->zbranch[bu->cnt - 1].len -
769 bu->zbranch[0].offs;
770 ubifs_assert(bu->buf_len > 0);
771 ubifs_assert(bu->buf_len <= c->leb_size);
772 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
773 if (!bu->buf)
774 goto out_bu_off;
777 err = ubifs_tnc_bulk_read(c, bu);
778 if (err)
779 goto out_warn;
782 err = populate_page(c, page1, bu, &n);
783 if (err)
784 goto out_warn;
786 unlock_page(page1);
787 ret = 1;
789 isize = i_size_read(inode);
790 if (isize == 0)
791 goto out_free;
792 end_index = ((isize - 1) >> PAGE_SHIFT);
794 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
795 pgoff_t page_offset = offset + page_idx;
796 struct page *page;
798 if (page_offset > end_index)
799 break;
800 page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
801 if (!page)
802 break;
803 if (!PageUptodate(page))
804 err = populate_page(c, page, bu, &n);
805 unlock_page(page);
806 put_page(page);
807 if (err)
808 break;
811 ui->last_page_read = offset + page_idx - 1;
813 out_free:
814 if (allocate)
815 kfree(bu->buf);
816 return ret;
818 out_warn:
819 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
820 goto out_free;
822 out_bu_off:
823 ui->read_in_a_row = ui->bulk_read = 0;
824 goto out_free;
828 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
829 * @page: page from which to start bulk-read.
831 * Some flash media are capable of reading sequentially at faster rates. UBIFS
832 * bulk-read facility is designed to take advantage of that, by reading in one
833 * go consecutive data nodes that are also located consecutively in the same
834 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
836 static int ubifs_bulk_read(struct page *page)
838 struct inode *inode = page->mapping->host;
839 struct ubifs_info *c = inode->i_sb->s_fs_info;
840 struct ubifs_inode *ui = ubifs_inode(inode);
841 pgoff_t index = page->index, last_page_read = ui->last_page_read;
842 struct bu_info *bu;
843 int err = 0, allocated = 0;
845 ui->last_page_read = index;
846 if (!c->bulk_read)
847 return 0;
850 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
851 * so don't bother if we cannot lock the mutex.
853 if (!mutex_trylock(&ui->ui_mutex))
854 return 0;
856 if (index != last_page_read + 1) {
857 /* Turn off bulk-read if we stop reading sequentially */
858 ui->read_in_a_row = 1;
859 if (ui->bulk_read)
860 ui->bulk_read = 0;
861 goto out_unlock;
864 if (!ui->bulk_read) {
865 ui->read_in_a_row += 1;
866 if (ui->read_in_a_row < 3)
867 goto out_unlock;
868 /* Three reads in a row, so switch on bulk-read */
869 ui->bulk_read = 1;
873 * If possible, try to use pre-allocated bulk-read information, which
874 * is protected by @c->bu_mutex.
876 if (mutex_trylock(&c->bu_mutex))
877 bu = &c->bu;
878 else {
879 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
880 if (!bu)
881 goto out_unlock;
883 bu->buf = NULL;
884 allocated = 1;
887 bu->buf_len = c->max_bu_buf_len;
888 data_key_init(c, &bu->key, inode->i_ino,
889 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
890 err = ubifs_do_bulk_read(c, bu, page);
892 if (!allocated)
893 mutex_unlock(&c->bu_mutex);
894 else
895 kfree(bu);
897 out_unlock:
898 mutex_unlock(&ui->ui_mutex);
899 return err;
902 static int ubifs_readpage(struct file *file, struct page *page)
904 if (ubifs_bulk_read(page))
905 return 0;
906 do_readpage(page);
907 unlock_page(page);
908 return 0;
911 static int do_writepage(struct page *page, int len)
913 int err = 0, i, blen;
914 unsigned int block;
915 void *addr;
916 union ubifs_key key;
917 struct inode *inode = page->mapping->host;
918 struct ubifs_info *c = inode->i_sb->s_fs_info;
920 #ifdef UBIFS_DEBUG
921 struct ubifs_inode *ui = ubifs_inode(inode);
922 spin_lock(&ui->ui_lock);
923 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT);
924 spin_unlock(&ui->ui_lock);
925 #endif
927 /* Update radix tree tags */
928 set_page_writeback(page);
930 addr = kmap(page);
931 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
932 i = 0;
933 while (len) {
934 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
935 data_key_init(c, &key, inode->i_ino, block);
936 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
937 if (err)
938 break;
939 if (++i >= UBIFS_BLOCKS_PER_PAGE)
940 break;
941 block += 1;
942 addr += blen;
943 len -= blen;
945 if (err) {
946 SetPageError(page);
947 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
948 page->index, inode->i_ino, err);
949 ubifs_ro_mode(c, err);
952 ubifs_assert(PagePrivate(page));
953 if (PageChecked(page))
954 release_new_page_budget(c);
955 else
956 release_existing_page_budget(c);
958 atomic_long_dec(&c->dirty_pg_cnt);
959 ClearPagePrivate(page);
960 ClearPageChecked(page);
962 kunmap(page);
963 unlock_page(page);
964 end_page_writeback(page);
965 return err;
969 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
970 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
971 * situation when a we have an inode with size 0, then a megabyte of data is
972 * appended to the inode, then write-back starts and flushes some amount of the
973 * dirty pages, the journal becomes full, commit happens and finishes, and then
974 * an unclean reboot happens. When the file system is mounted next time, the
975 * inode size would still be 0, but there would be many pages which are beyond
976 * the inode size, they would be indexed and consume flash space. Because the
977 * journal has been committed, the replay would not be able to detect this
978 * situation and correct the inode size. This means UBIFS would have to scan
979 * whole index and correct all inode sizes, which is long an unacceptable.
981 * To prevent situations like this, UBIFS writes pages back only if they are
982 * within the last synchronized inode size, i.e. the size which has been
983 * written to the flash media last time. Otherwise, UBIFS forces inode
984 * write-back, thus making sure the on-flash inode contains current inode size,
985 * and then keeps writing pages back.
987 * Some locking issues explanation. 'ubifs_writepage()' first is called with
988 * the page locked, and it locks @ui_mutex. However, write-back does take inode
989 * @i_mutex, which means other VFS operations may be run on this inode at the
990 * same time. And the problematic one is truncation to smaller size, from where
991 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
992 * then drops the truncated pages. And while dropping the pages, it takes the
993 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
994 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
995 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
997 * XXX(truncate): with the new truncate sequence this is not true anymore,
998 * and the calls to truncate_setsize can be move around freely. They should
999 * be moved to the very end of the truncate sequence.
1001 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1002 * inode size. How do we do this if @inode->i_size may became smaller while we
1003 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1004 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1005 * internally and updates it under @ui_mutex.
1007 * Q: why we do not worry that if we race with truncation, we may end up with a
1008 * situation when the inode is truncated while we are in the middle of
1009 * 'do_writepage()', so we do write beyond inode size?
1010 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1011 * on the page lock and it would not write the truncated inode node to the
1012 * journal before we have finished.
1014 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1016 struct inode *inode = page->mapping->host;
1017 struct ubifs_inode *ui = ubifs_inode(inode);
1018 loff_t i_size = i_size_read(inode), synced_i_size;
1019 pgoff_t end_index = i_size >> PAGE_SHIFT;
1020 int err, len = i_size & (PAGE_SIZE - 1);
1021 void *kaddr;
1023 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1024 inode->i_ino, page->index, page->flags);
1025 ubifs_assert(PagePrivate(page));
1027 /* Is the page fully outside @i_size? (truncate in progress) */
1028 if (page->index > end_index || (page->index == end_index && !len)) {
1029 err = 0;
1030 goto out_unlock;
1033 spin_lock(&ui->ui_lock);
1034 synced_i_size = ui->synced_i_size;
1035 spin_unlock(&ui->ui_lock);
1037 /* Is the page fully inside @i_size? */
1038 if (page->index < end_index) {
1039 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1040 err = inode->i_sb->s_op->write_inode(inode, NULL);
1041 if (err)
1042 goto out_unlock;
1044 * The inode has been written, but the write-buffer has
1045 * not been synchronized, so in case of an unclean
1046 * reboot we may end up with some pages beyond inode
1047 * size, but they would be in the journal (because
1048 * commit flushes write buffers) and recovery would deal
1049 * with this.
1052 return do_writepage(page, PAGE_SIZE);
1056 * The page straddles @i_size. It must be zeroed out on each and every
1057 * writepage invocation because it may be mmapped. "A file is mapped
1058 * in multiples of the page size. For a file that is not a multiple of
1059 * the page size, the remaining memory is zeroed when mapped, and
1060 * writes to that region are not written out to the file."
1062 kaddr = kmap_atomic(page);
1063 memset(kaddr + len, 0, PAGE_SIZE - len);
1064 flush_dcache_page(page);
1065 kunmap_atomic(kaddr);
1067 if (i_size > synced_i_size) {
1068 err = inode->i_sb->s_op->write_inode(inode, NULL);
1069 if (err)
1070 goto out_unlock;
1073 return do_writepage(page, len);
1075 out_unlock:
1076 unlock_page(page);
1077 return err;
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1085 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1087 if (attr->ia_valid & ATTR_UID)
1088 inode->i_uid = attr->ia_uid;
1089 if (attr->ia_valid & ATTR_GID)
1090 inode->i_gid = attr->ia_gid;
1091 if (attr->ia_valid & ATTR_ATIME)
1092 inode->i_atime = timespec_trunc(attr->ia_atime,
1093 inode->i_sb->s_time_gran);
1094 if (attr->ia_valid & ATTR_MTIME)
1095 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1096 inode->i_sb->s_time_gran);
1097 if (attr->ia_valid & ATTR_CTIME)
1098 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1099 inode->i_sb->s_time_gran);
1100 if (attr->ia_valid & ATTR_MODE) {
1101 umode_t mode = attr->ia_mode;
1103 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1104 mode &= ~S_ISGID;
1105 inode->i_mode = mode;
1110 * do_truncation - truncate an inode.
1111 * @c: UBIFS file-system description object
1112 * @inode: inode to truncate
1113 * @attr: inode attribute changes description
1115 * This function implements VFS '->setattr()' call when the inode is truncated
1116 * to a smaller size. Returns zero in case of success and a negative error code
1117 * in case of failure.
1119 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120 const struct iattr *attr)
1122 int err;
1123 struct ubifs_budget_req req;
1124 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126 struct ubifs_inode *ui = ubifs_inode(inode);
1128 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129 memset(&req, 0, sizeof(struct ubifs_budget_req));
1132 * If this is truncation to a smaller size, and we do not truncate on a
1133 * block boundary, budget for changing one data block, because the last
1134 * block will be re-written.
1136 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137 req.dirtied_page = 1;
1139 req.dirtied_ino = 1;
1140 /* A funny way to budget for truncation node */
1141 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142 err = ubifs_budget_space(c, &req);
1143 if (err) {
1145 * Treat truncations to zero as deletion and always allow them,
1146 * just like we do for '->unlink()'.
1148 if (new_size || err != -ENOSPC)
1149 return err;
1150 budgeted = 0;
1153 truncate_setsize(inode, new_size);
1155 if (offset) {
1156 pgoff_t index = new_size >> PAGE_SHIFT;
1157 struct page *page;
1159 page = find_lock_page(inode->i_mapping, index);
1160 if (page) {
1161 if (PageDirty(page)) {
1163 * 'ubifs_jnl_truncate()' will try to truncate
1164 * the last data node, but it contains
1165 * out-of-date data because the page is dirty.
1166 * Write the page now, so that
1167 * 'ubifs_jnl_truncate()' will see an already
1168 * truncated (and up to date) data node.
1170 ubifs_assert(PagePrivate(page));
1172 clear_page_dirty_for_io(page);
1173 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174 offset = new_size &
1175 (PAGE_SIZE - 1);
1176 err = do_writepage(page, offset);
1177 put_page(page);
1178 if (err)
1179 goto out_budg;
1181 * We could now tell 'ubifs_jnl_truncate()' not
1182 * to read the last block.
1184 } else {
1186 * We could 'kmap()' the page and pass the data
1187 * to 'ubifs_jnl_truncate()' to save it from
1188 * having to read it.
1190 unlock_page(page);
1191 put_page(page);
1196 mutex_lock(&ui->ui_mutex);
1197 ui->ui_size = inode->i_size;
1198 /* Truncation changes inode [mc]time */
1199 inode->i_mtime = inode->i_ctime = current_time(inode);
1200 /* Other attributes may be changed at the same time as well */
1201 do_attr_changes(inode, attr);
1202 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203 mutex_unlock(&ui->ui_mutex);
1205 out_budg:
1206 if (budgeted)
1207 ubifs_release_budget(c, &req);
1208 else {
1209 c->bi.nospace = c->bi.nospace_rp = 0;
1210 smp_wmb();
1212 return err;
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size. Returns zero in case of success and a negative
1223 * error code in case of failure.
1225 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1226 const struct iattr *attr)
1228 int err, release;
1229 loff_t new_size = attr->ia_size;
1230 struct ubifs_inode *ui = ubifs_inode(inode);
1231 struct ubifs_budget_req req = { .dirtied_ino = 1,
1232 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1234 err = ubifs_budget_space(c, &req);
1235 if (err)
1236 return err;
1238 if (attr->ia_valid & ATTR_SIZE) {
1239 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1240 truncate_setsize(inode, new_size);
1243 mutex_lock(&ui->ui_mutex);
1244 if (attr->ia_valid & ATTR_SIZE) {
1245 /* Truncation changes inode [mc]time */
1246 inode->i_mtime = inode->i_ctime = current_time(inode);
1247 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1248 ui->ui_size = inode->i_size;
1251 do_attr_changes(inode, attr);
1253 release = ui->dirty;
1254 if (attr->ia_valid & ATTR_SIZE)
1256 * Inode length changed, so we have to make sure
1257 * @I_DIRTY_DATASYNC is set.
1259 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1260 else
1261 mark_inode_dirty_sync(inode);
1262 mutex_unlock(&ui->ui_mutex);
1264 if (release)
1265 ubifs_release_budget(c, &req);
1266 if (IS_SYNC(inode))
1267 err = inode->i_sb->s_op->write_inode(inode, NULL);
1268 return err;
1271 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1273 int err;
1274 struct inode *inode = d_inode(dentry);
1275 struct ubifs_info *c = inode->i_sb->s_fs_info;
1277 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1278 inode->i_ino, inode->i_mode, attr->ia_valid);
1279 err = setattr_prepare(dentry, attr);
1280 if (err)
1281 return err;
1283 err = dbg_check_synced_i_size(c, inode);
1284 if (err)
1285 return err;
1287 err = fscrypt_prepare_setattr(dentry, attr);
1288 if (err)
1289 return err;
1291 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1292 /* Truncation to a smaller size */
1293 err = do_truncation(c, inode, attr);
1294 else
1295 err = do_setattr(c, inode, attr);
1297 return err;
1300 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1301 unsigned int length)
1303 struct inode *inode = page->mapping->host;
1304 struct ubifs_info *c = inode->i_sb->s_fs_info;
1306 ubifs_assert(PagePrivate(page));
1307 if (offset || length < PAGE_SIZE)
1308 /* Partial page remains dirty */
1309 return;
1311 if (PageChecked(page))
1312 release_new_page_budget(c);
1313 else
1314 release_existing_page_budget(c);
1316 atomic_long_dec(&c->dirty_pg_cnt);
1317 ClearPagePrivate(page);
1318 ClearPageChecked(page);
1321 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1323 struct inode *inode = file->f_mapping->host;
1324 struct ubifs_info *c = inode->i_sb->s_fs_info;
1325 int err;
1327 dbg_gen("syncing inode %lu", inode->i_ino);
1329 if (c->ro_mount)
1331 * For some really strange reasons VFS does not filter out
1332 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1334 return 0;
1336 err = file_write_and_wait_range(file, start, end);
1337 if (err)
1338 return err;
1339 inode_lock(inode);
1341 /* Synchronize the inode unless this is a 'datasync()' call. */
1342 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1343 err = inode->i_sb->s_op->write_inode(inode, NULL);
1344 if (err)
1345 goto out;
1349 * Nodes related to this inode may still sit in a write-buffer. Flush
1350 * them.
1352 err = ubifs_sync_wbufs_by_inode(c, inode);
1353 out:
1354 inode_unlock(inode);
1355 return err;
1359 * mctime_update_needed - check if mtime or ctime update is needed.
1360 * @inode: the inode to do the check for
1361 * @now: current time
1363 * This helper function checks if the inode mtime/ctime should be updated or
1364 * not. If current values of the time-stamps are within the UBIFS inode time
1365 * granularity, they are not updated. This is an optimization.
1367 static inline int mctime_update_needed(const struct inode *inode,
1368 const struct timespec *now)
1370 if (!timespec_equal(&inode->i_mtime, now) ||
1371 !timespec_equal(&inode->i_ctime, now))
1372 return 1;
1373 return 0;
1376 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1378 * ubifs_update_time - update time of inode.
1379 * @inode: inode to update
1381 * This function updates time of the inode.
1383 int ubifs_update_time(struct inode *inode, struct timespec *time,
1384 int flags)
1386 struct ubifs_inode *ui = ubifs_inode(inode);
1387 struct ubifs_info *c = inode->i_sb->s_fs_info;
1388 struct ubifs_budget_req req = { .dirtied_ino = 1,
1389 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1390 int iflags = I_DIRTY_TIME;
1391 int err, release;
1393 err = ubifs_budget_space(c, &req);
1394 if (err)
1395 return err;
1397 mutex_lock(&ui->ui_mutex);
1398 if (flags & S_ATIME)
1399 inode->i_atime = *time;
1400 if (flags & S_CTIME)
1401 inode->i_ctime = *time;
1402 if (flags & S_MTIME)
1403 inode->i_mtime = *time;
1405 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1406 iflags |= I_DIRTY_SYNC;
1408 release = ui->dirty;
1409 __mark_inode_dirty(inode, iflags);
1410 mutex_unlock(&ui->ui_mutex);
1411 if (release)
1412 ubifs_release_budget(c, &req);
1413 return 0;
1415 #endif
1418 * update_mctime - update mtime and ctime of an inode.
1419 * @inode: inode to update
1421 * This function updates mtime and ctime of the inode if it is not equivalent to
1422 * current time. Returns zero in case of success and a negative error code in
1423 * case of failure.
1425 static int update_mctime(struct inode *inode)
1427 struct timespec now = current_time(inode);
1428 struct ubifs_inode *ui = ubifs_inode(inode);
1429 struct ubifs_info *c = inode->i_sb->s_fs_info;
1431 if (mctime_update_needed(inode, &now)) {
1432 int err, release;
1433 struct ubifs_budget_req req = { .dirtied_ino = 1,
1434 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1436 err = ubifs_budget_space(c, &req);
1437 if (err)
1438 return err;
1440 mutex_lock(&ui->ui_mutex);
1441 inode->i_mtime = inode->i_ctime = current_time(inode);
1442 release = ui->dirty;
1443 mark_inode_dirty_sync(inode);
1444 mutex_unlock(&ui->ui_mutex);
1445 if (release)
1446 ubifs_release_budget(c, &req);
1449 return 0;
1452 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1454 int err = update_mctime(file_inode(iocb->ki_filp));
1455 if (err)
1456 return err;
1458 return generic_file_write_iter(iocb, from);
1461 static int ubifs_set_page_dirty(struct page *page)
1463 int ret;
1465 ret = __set_page_dirty_nobuffers(page);
1467 * An attempt to dirty a page without budgeting for it - should not
1468 * happen.
1470 ubifs_assert(ret == 0);
1471 return ret;
1474 #ifdef CONFIG_MIGRATION
1475 static int ubifs_migrate_page(struct address_space *mapping,
1476 struct page *newpage, struct page *page, enum migrate_mode mode)
1478 int rc;
1480 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1481 if (rc != MIGRATEPAGE_SUCCESS)
1482 return rc;
1484 if (PagePrivate(page)) {
1485 ClearPagePrivate(page);
1486 SetPagePrivate(newpage);
1489 if (mode != MIGRATE_SYNC_NO_COPY)
1490 migrate_page_copy(newpage, page);
1491 else
1492 migrate_page_states(newpage, page);
1493 return MIGRATEPAGE_SUCCESS;
1495 #endif
1497 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1500 * An attempt to release a dirty page without budgeting for it - should
1501 * not happen.
1503 if (PageWriteback(page))
1504 return 0;
1505 ubifs_assert(PagePrivate(page));
1506 ubifs_assert(0);
1507 ClearPagePrivate(page);
1508 ClearPageChecked(page);
1509 return 1;
1513 * mmap()d file has taken write protection fault and is being made writable.
1514 * UBIFS must ensure page is budgeted for.
1516 static int ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1518 struct page *page = vmf->page;
1519 struct inode *inode = file_inode(vmf->vma->vm_file);
1520 struct ubifs_info *c = inode->i_sb->s_fs_info;
1521 struct timespec now = current_time(inode);
1522 struct ubifs_budget_req req = { .new_page = 1 };
1523 int err, update_time;
1525 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1526 i_size_read(inode));
1527 ubifs_assert(!c->ro_media && !c->ro_mount);
1529 if (unlikely(c->ro_error))
1530 return VM_FAULT_SIGBUS; /* -EROFS */
1533 * We have not locked @page so far so we may budget for changing the
1534 * page. Note, we cannot do this after we locked the page, because
1535 * budgeting may cause write-back which would cause deadlock.
1537 * At the moment we do not know whether the page is dirty or not, so we
1538 * assume that it is not and budget for a new page. We could look at
1539 * the @PG_private flag and figure this out, but we may race with write
1540 * back and the page state may change by the time we lock it, so this
1541 * would need additional care. We do not bother with this at the
1542 * moment, although it might be good idea to do. Instead, we allocate
1543 * budget for a new page and amend it later on if the page was in fact
1544 * dirty.
1546 * The budgeting-related logic of this function is similar to what we
1547 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1548 * for more comments.
1550 update_time = mctime_update_needed(inode, &now);
1551 if (update_time)
1553 * We have to change inode time stamp which requires extra
1554 * budgeting.
1556 req.dirtied_ino = 1;
1558 err = ubifs_budget_space(c, &req);
1559 if (unlikely(err)) {
1560 if (err == -ENOSPC)
1561 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1562 inode->i_ino);
1563 return VM_FAULT_SIGBUS;
1566 lock_page(page);
1567 if (unlikely(page->mapping != inode->i_mapping ||
1568 page_offset(page) > i_size_read(inode))) {
1569 /* Page got truncated out from underneath us */
1570 err = -EINVAL;
1571 goto out_unlock;
1574 if (PagePrivate(page))
1575 release_new_page_budget(c);
1576 else {
1577 if (!PageChecked(page))
1578 ubifs_convert_page_budget(c);
1579 SetPagePrivate(page);
1580 atomic_long_inc(&c->dirty_pg_cnt);
1581 __set_page_dirty_nobuffers(page);
1584 if (update_time) {
1585 int release;
1586 struct ubifs_inode *ui = ubifs_inode(inode);
1588 mutex_lock(&ui->ui_mutex);
1589 inode->i_mtime = inode->i_ctime = current_time(inode);
1590 release = ui->dirty;
1591 mark_inode_dirty_sync(inode);
1592 mutex_unlock(&ui->ui_mutex);
1593 if (release)
1594 ubifs_release_dirty_inode_budget(c, ui);
1597 wait_for_stable_page(page);
1598 return VM_FAULT_LOCKED;
1600 out_unlock:
1601 unlock_page(page);
1602 ubifs_release_budget(c, &req);
1603 if (err)
1604 err = VM_FAULT_SIGBUS;
1605 return err;
1608 static const struct vm_operations_struct ubifs_file_vm_ops = {
1609 .fault = filemap_fault,
1610 .map_pages = filemap_map_pages,
1611 .page_mkwrite = ubifs_vm_page_mkwrite,
1614 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1616 int err;
1618 err = generic_file_mmap(file, vma);
1619 if (err)
1620 return err;
1621 vma->vm_ops = &ubifs_file_vm_ops;
1622 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1623 file_accessed(file);
1624 #endif
1625 return 0;
1628 static const char *ubifs_get_link(struct dentry *dentry,
1629 struct inode *inode,
1630 struct delayed_call *done)
1632 struct ubifs_inode *ui = ubifs_inode(inode);
1634 if (!IS_ENCRYPTED(inode))
1635 return ui->data;
1637 if (!dentry)
1638 return ERR_PTR(-ECHILD);
1640 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1643 const struct address_space_operations ubifs_file_address_operations = {
1644 .readpage = ubifs_readpage,
1645 .writepage = ubifs_writepage,
1646 .write_begin = ubifs_write_begin,
1647 .write_end = ubifs_write_end,
1648 .invalidatepage = ubifs_invalidatepage,
1649 .set_page_dirty = ubifs_set_page_dirty,
1650 #ifdef CONFIG_MIGRATION
1651 .migratepage = ubifs_migrate_page,
1652 #endif
1653 .releasepage = ubifs_releasepage,
1656 const struct inode_operations ubifs_file_inode_operations = {
1657 .setattr = ubifs_setattr,
1658 .getattr = ubifs_getattr,
1659 .listxattr = ubifs_listxattr,
1660 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1661 .update_time = ubifs_update_time,
1662 #endif
1665 const struct inode_operations ubifs_symlink_inode_operations = {
1666 .get_link = ubifs_get_link,
1667 .setattr = ubifs_setattr,
1668 .getattr = ubifs_getattr,
1669 .listxattr = ubifs_listxattr,
1670 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1671 .update_time = ubifs_update_time,
1672 #endif
1675 const struct file_operations ubifs_file_operations = {
1676 .llseek = generic_file_llseek,
1677 .read_iter = generic_file_read_iter,
1678 .write_iter = ubifs_write_iter,
1679 .mmap = ubifs_file_mmap,
1680 .fsync = ubifs_fsync,
1681 .unlocked_ioctl = ubifs_ioctl,
1682 .splice_read = generic_file_splice_read,
1683 .splice_write = iter_file_splice_write,
1684 .open = fscrypt_file_open,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl = ubifs_compat_ioctl,
1687 #endif