Linux 4.16-rc1
[cris-mirror.git] / tools / perf / bench / numa.c
blob944070e98a2cd9dc4903e3be02278b1a7f8f3500
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * numa.c
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
12 #include "../perf.h"
13 #include "../builtin.h"
14 #include "../util/util.h"
15 #include <subcmd/parse-options.h>
16 #include "../util/cloexec.h"
18 #include "bench.h"
20 #include <errno.h>
21 #include <sched.h>
22 #include <stdio.h>
23 #include <assert.h>
24 #include <malloc.h>
25 #include <signal.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32 #include <sys/wait.h>
33 #include <sys/prctl.h>
34 #include <sys/types.h>
35 #include <linux/kernel.h>
36 #include <linux/time64.h>
38 #include <numa.h>
39 #include <numaif.h>
42 * Regular printout to the terminal, supressed if -q is specified:
44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
47 * Debug printf:
49 #undef dprintf
50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
52 struct thread_data {
53 int curr_cpu;
54 cpu_set_t bind_cpumask;
55 int bind_node;
56 u8 *process_data;
57 int process_nr;
58 int thread_nr;
59 int task_nr;
60 unsigned int loops_done;
61 u64 val;
62 u64 runtime_ns;
63 u64 system_time_ns;
64 u64 user_time_ns;
65 double speed_gbs;
66 pthread_mutex_t *process_lock;
69 /* Parameters set by options: */
71 struct params {
72 /* Startup synchronization: */
73 bool serialize_startup;
75 /* Task hierarchy: */
76 int nr_proc;
77 int nr_threads;
79 /* Working set sizes: */
80 const char *mb_global_str;
81 const char *mb_proc_str;
82 const char *mb_proc_locked_str;
83 const char *mb_thread_str;
85 double mb_global;
86 double mb_proc;
87 double mb_proc_locked;
88 double mb_thread;
90 /* Access patterns to the working set: */
91 bool data_reads;
92 bool data_writes;
93 bool data_backwards;
94 bool data_zero_memset;
95 bool data_rand_walk;
96 u32 nr_loops;
97 u32 nr_secs;
98 u32 sleep_usecs;
100 /* Working set initialization: */
101 bool init_zero;
102 bool init_random;
103 bool init_cpu0;
105 /* Misc options: */
106 int show_details;
107 int run_all;
108 int thp;
110 long bytes_global;
111 long bytes_process;
112 long bytes_process_locked;
113 long bytes_thread;
115 int nr_tasks;
116 bool show_quiet;
118 bool show_convergence;
119 bool measure_convergence;
121 int perturb_secs;
122 int nr_cpus;
123 int nr_nodes;
125 /* Affinity options -C and -N: */
126 char *cpu_list_str;
127 char *node_list_str;
131 /* Global, read-writable area, accessible to all processes and threads: */
133 struct global_info {
134 u8 *data;
136 pthread_mutex_t startup_mutex;
137 int nr_tasks_started;
139 pthread_mutex_t startup_done_mutex;
141 pthread_mutex_t start_work_mutex;
142 int nr_tasks_working;
144 pthread_mutex_t stop_work_mutex;
145 u64 bytes_done;
147 struct thread_data *threads;
149 /* Convergence latency measurement: */
150 bool all_converged;
151 bool stop_work;
153 int print_once;
155 struct params p;
158 static struct global_info *g = NULL;
160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
163 struct params p0;
165 static const struct option options[] = {
166 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
167 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
169 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
170 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
171 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
172 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
174 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
175 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
176 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
178 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
179 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
180 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
181 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
182 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
185 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
186 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
187 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
188 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
190 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
191 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
192 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
193 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
194 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
195 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
196 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
197 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
199 /* Special option string parsing callbacks: */
200 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
201 "bind the first N tasks to these specific cpus (the rest is unbound)",
202 parse_cpus_opt),
203 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
204 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
205 parse_nodes_opt),
206 OPT_END()
209 static const char * const bench_numa_usage[] = {
210 "perf bench numa <options>",
211 NULL
214 static const char * const numa_usage[] = {
215 "perf bench numa mem [<options>]",
216 NULL
220 * To get number of numa nodes present.
222 static int nr_numa_nodes(void)
224 int i, nr_nodes = 0;
226 for (i = 0; i < g->p.nr_nodes; i++) {
227 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
228 nr_nodes++;
231 return nr_nodes;
235 * To check if given numa node is present.
237 static int is_node_present(int node)
239 return numa_bitmask_isbitset(numa_nodes_ptr, node);
243 * To check given numa node has cpus.
245 static bool node_has_cpus(int node)
247 struct bitmask *cpu = numa_allocate_cpumask();
248 unsigned int i;
250 if (cpu && !numa_node_to_cpus(node, cpu)) {
251 for (i = 0; i < cpu->size; i++) {
252 if (numa_bitmask_isbitset(cpu, i))
253 return true;
257 return false; /* lets fall back to nocpus safely */
260 static cpu_set_t bind_to_cpu(int target_cpu)
262 cpu_set_t orig_mask, mask;
263 int ret;
265 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
266 BUG_ON(ret);
268 CPU_ZERO(&mask);
270 if (target_cpu == -1) {
271 int cpu;
273 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
274 CPU_SET(cpu, &mask);
275 } else {
276 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
277 CPU_SET(target_cpu, &mask);
280 ret = sched_setaffinity(0, sizeof(mask), &mask);
281 BUG_ON(ret);
283 return orig_mask;
286 static cpu_set_t bind_to_node(int target_node)
288 int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
289 cpu_set_t orig_mask, mask;
290 int cpu;
291 int ret;
293 BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
294 BUG_ON(!cpus_per_node);
296 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
297 BUG_ON(ret);
299 CPU_ZERO(&mask);
301 if (target_node == -1) {
302 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
303 CPU_SET(cpu, &mask);
304 } else {
305 int cpu_start = (target_node + 0) * cpus_per_node;
306 int cpu_stop = (target_node + 1) * cpus_per_node;
308 BUG_ON(cpu_stop > g->p.nr_cpus);
310 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
311 CPU_SET(cpu, &mask);
314 ret = sched_setaffinity(0, sizeof(mask), &mask);
315 BUG_ON(ret);
317 return orig_mask;
320 static void bind_to_cpumask(cpu_set_t mask)
322 int ret;
324 ret = sched_setaffinity(0, sizeof(mask), &mask);
325 BUG_ON(ret);
328 static void mempol_restore(void)
330 int ret;
332 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
334 BUG_ON(ret);
337 static void bind_to_memnode(int node)
339 unsigned long nodemask;
340 int ret;
342 if (node == -1)
343 return;
345 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
346 nodemask = 1L << node;
348 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
349 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
351 BUG_ON(ret);
354 #define HPSIZE (2*1024*1024)
356 #define set_taskname(fmt...) \
357 do { \
358 char name[20]; \
360 snprintf(name, 20, fmt); \
361 prctl(PR_SET_NAME, name); \
362 } while (0)
364 static u8 *alloc_data(ssize_t bytes0, int map_flags,
365 int init_zero, int init_cpu0, int thp, int init_random)
367 cpu_set_t orig_mask;
368 ssize_t bytes;
369 u8 *buf;
370 int ret;
372 if (!bytes0)
373 return NULL;
375 /* Allocate and initialize all memory on CPU#0: */
376 if (init_cpu0) {
377 orig_mask = bind_to_node(0);
378 bind_to_memnode(0);
381 bytes = bytes0 + HPSIZE;
383 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
384 BUG_ON(buf == (void *)-1);
386 if (map_flags == MAP_PRIVATE) {
387 if (thp > 0) {
388 ret = madvise(buf, bytes, MADV_HUGEPAGE);
389 if (ret && !g->print_once) {
390 g->print_once = 1;
391 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
394 if (thp < 0) {
395 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
396 if (ret && !g->print_once) {
397 g->print_once = 1;
398 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
403 if (init_zero) {
404 bzero(buf, bytes);
405 } else {
406 /* Initialize random contents, different in each word: */
407 if (init_random) {
408 u64 *wbuf = (void *)buf;
409 long off = rand();
410 long i;
412 for (i = 0; i < bytes/8; i++)
413 wbuf[i] = i + off;
417 /* Align to 2MB boundary: */
418 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
420 /* Restore affinity: */
421 if (init_cpu0) {
422 bind_to_cpumask(orig_mask);
423 mempol_restore();
426 return buf;
429 static void free_data(void *data, ssize_t bytes)
431 int ret;
433 if (!data)
434 return;
436 ret = munmap(data, bytes);
437 BUG_ON(ret);
441 * Create a shared memory buffer that can be shared between processes, zeroed:
443 static void * zalloc_shared_data(ssize_t bytes)
445 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
449 * Create a shared memory buffer that can be shared between processes:
451 static void * setup_shared_data(ssize_t bytes)
453 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
457 * Allocate process-local memory - this will either be shared between
458 * threads of this process, or only be accessed by this thread:
460 static void * setup_private_data(ssize_t bytes)
462 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
466 * Return a process-shared (global) mutex:
468 static void init_global_mutex(pthread_mutex_t *mutex)
470 pthread_mutexattr_t attr;
472 pthread_mutexattr_init(&attr);
473 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
474 pthread_mutex_init(mutex, &attr);
477 static int parse_cpu_list(const char *arg)
479 p0.cpu_list_str = strdup(arg);
481 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
483 return 0;
486 static int parse_setup_cpu_list(void)
488 struct thread_data *td;
489 char *str0, *str;
490 int t;
492 if (!g->p.cpu_list_str)
493 return 0;
495 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
497 str0 = str = strdup(g->p.cpu_list_str);
498 t = 0;
500 BUG_ON(!str);
502 tprintf("# binding tasks to CPUs:\n");
503 tprintf("# ");
505 while (true) {
506 int bind_cpu, bind_cpu_0, bind_cpu_1;
507 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
508 int bind_len;
509 int step;
510 int mul;
512 tok = strsep(&str, ",");
513 if (!tok)
514 break;
516 tok_end = strstr(tok, "-");
518 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
519 if (!tok_end) {
520 /* Single CPU specified: */
521 bind_cpu_0 = bind_cpu_1 = atol(tok);
522 } else {
523 /* CPU range specified (for example: "5-11"): */
524 bind_cpu_0 = atol(tok);
525 bind_cpu_1 = atol(tok_end + 1);
528 step = 1;
529 tok_step = strstr(tok, "#");
530 if (tok_step) {
531 step = atol(tok_step + 1);
532 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
536 * Mask length.
537 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
538 * where the _4 means the next 4 CPUs are allowed.
540 bind_len = 1;
541 tok_len = strstr(tok, "_");
542 if (tok_len) {
543 bind_len = atol(tok_len + 1);
544 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
547 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
548 mul = 1;
549 tok_mul = strstr(tok, "x");
550 if (tok_mul) {
551 mul = atol(tok_mul + 1);
552 BUG_ON(mul <= 0);
555 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
557 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
558 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
559 return -1;
562 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
563 BUG_ON(bind_cpu_0 > bind_cpu_1);
565 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
566 int i;
568 for (i = 0; i < mul; i++) {
569 int cpu;
571 if (t >= g->p.nr_tasks) {
572 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
573 goto out;
575 td = g->threads + t;
577 if (t)
578 tprintf(",");
579 if (bind_len > 1) {
580 tprintf("%2d/%d", bind_cpu, bind_len);
581 } else {
582 tprintf("%2d", bind_cpu);
585 CPU_ZERO(&td->bind_cpumask);
586 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
587 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
588 CPU_SET(cpu, &td->bind_cpumask);
590 t++;
594 out:
596 tprintf("\n");
598 if (t < g->p.nr_tasks)
599 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
601 free(str0);
602 return 0;
605 static int parse_cpus_opt(const struct option *opt __maybe_unused,
606 const char *arg, int unset __maybe_unused)
608 if (!arg)
609 return -1;
611 return parse_cpu_list(arg);
614 static int parse_node_list(const char *arg)
616 p0.node_list_str = strdup(arg);
618 dprintf("got NODE list: {%s}\n", p0.node_list_str);
620 return 0;
623 static int parse_setup_node_list(void)
625 struct thread_data *td;
626 char *str0, *str;
627 int t;
629 if (!g->p.node_list_str)
630 return 0;
632 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
634 str0 = str = strdup(g->p.node_list_str);
635 t = 0;
637 BUG_ON(!str);
639 tprintf("# binding tasks to NODEs:\n");
640 tprintf("# ");
642 while (true) {
643 int bind_node, bind_node_0, bind_node_1;
644 char *tok, *tok_end, *tok_step, *tok_mul;
645 int step;
646 int mul;
648 tok = strsep(&str, ",");
649 if (!tok)
650 break;
652 tok_end = strstr(tok, "-");
654 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
655 if (!tok_end) {
656 /* Single NODE specified: */
657 bind_node_0 = bind_node_1 = atol(tok);
658 } else {
659 /* NODE range specified (for example: "5-11"): */
660 bind_node_0 = atol(tok);
661 bind_node_1 = atol(tok_end + 1);
664 step = 1;
665 tok_step = strstr(tok, "#");
666 if (tok_step) {
667 step = atol(tok_step + 1);
668 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
671 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
672 mul = 1;
673 tok_mul = strstr(tok, "x");
674 if (tok_mul) {
675 mul = atol(tok_mul + 1);
676 BUG_ON(mul <= 0);
679 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
681 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
682 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
683 return -1;
686 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
687 BUG_ON(bind_node_0 > bind_node_1);
689 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
690 int i;
692 for (i = 0; i < mul; i++) {
693 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
694 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
695 goto out;
697 td = g->threads + t;
699 if (!t)
700 tprintf(" %2d", bind_node);
701 else
702 tprintf(",%2d", bind_node);
704 td->bind_node = bind_node;
705 t++;
709 out:
711 tprintf("\n");
713 if (t < g->p.nr_tasks)
714 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
716 free(str0);
717 return 0;
720 static int parse_nodes_opt(const struct option *opt __maybe_unused,
721 const char *arg, int unset __maybe_unused)
723 if (!arg)
724 return -1;
726 return parse_node_list(arg);
728 return 0;
731 #define BIT(x) (1ul << x)
733 static inline uint32_t lfsr_32(uint32_t lfsr)
735 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
736 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
740 * Make sure there's real data dependency to RAM (when read
741 * accesses are enabled), so the compiler, the CPU and the
742 * kernel (KSM, zero page, etc.) cannot optimize away RAM
743 * accesses:
745 static inline u64 access_data(u64 *data, u64 val)
747 if (g->p.data_reads)
748 val += *data;
749 if (g->p.data_writes)
750 *data = val + 1;
751 return val;
755 * The worker process does two types of work, a forwards going
756 * loop and a backwards going loop.
758 * We do this so that on multiprocessor systems we do not create
759 * a 'train' of processing, with highly synchronized processes,
760 * skewing the whole benchmark.
762 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
764 long words = bytes/sizeof(u64);
765 u64 *data = (void *)__data;
766 long chunk_0, chunk_1;
767 u64 *d0, *d, *d1;
768 long off;
769 long i;
771 BUG_ON(!data && words);
772 BUG_ON(data && !words);
774 if (!data)
775 return val;
777 /* Very simple memset() work variant: */
778 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
779 bzero(data, bytes);
780 return val;
783 /* Spread out by PID/TID nr and by loop nr: */
784 chunk_0 = words/nr_max;
785 chunk_1 = words/g->p.nr_loops;
786 off = nr*chunk_0 + loop*chunk_1;
788 while (off >= words)
789 off -= words;
791 if (g->p.data_rand_walk) {
792 u32 lfsr = nr + loop + val;
793 int j;
795 for (i = 0; i < words/1024; i++) {
796 long start, end;
798 lfsr = lfsr_32(lfsr);
800 start = lfsr % words;
801 end = min(start + 1024, words-1);
803 if (g->p.data_zero_memset) {
804 bzero(data + start, (end-start) * sizeof(u64));
805 } else {
806 for (j = start; j < end; j++)
807 val = access_data(data + j, val);
810 } else if (!g->p.data_backwards || (nr + loop) & 1) {
812 d0 = data + off;
813 d = data + off + 1;
814 d1 = data + words;
816 /* Process data forwards: */
817 for (;;) {
818 if (unlikely(d >= d1))
819 d = data;
820 if (unlikely(d == d0))
821 break;
823 val = access_data(d, val);
825 d++;
827 } else {
828 /* Process data backwards: */
830 d0 = data + off;
831 d = data + off - 1;
832 d1 = data + words;
834 /* Process data forwards: */
835 for (;;) {
836 if (unlikely(d < data))
837 d = data + words-1;
838 if (unlikely(d == d0))
839 break;
841 val = access_data(d, val);
843 d--;
847 return val;
850 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
852 unsigned int cpu;
854 cpu = sched_getcpu();
856 g->threads[task_nr].curr_cpu = cpu;
857 prctl(0, bytes_worked);
860 #define MAX_NR_NODES 64
863 * Count the number of nodes a process's threads
864 * are spread out on.
866 * A count of 1 means that the process is compressed
867 * to a single node. A count of g->p.nr_nodes means it's
868 * spread out on the whole system.
870 static int count_process_nodes(int process_nr)
872 char node_present[MAX_NR_NODES] = { 0, };
873 int nodes;
874 int n, t;
876 for (t = 0; t < g->p.nr_threads; t++) {
877 struct thread_data *td;
878 int task_nr;
879 int node;
881 task_nr = process_nr*g->p.nr_threads + t;
882 td = g->threads + task_nr;
884 node = numa_node_of_cpu(td->curr_cpu);
885 if (node < 0) /* curr_cpu was likely still -1 */
886 return 0;
888 node_present[node] = 1;
891 nodes = 0;
893 for (n = 0; n < MAX_NR_NODES; n++)
894 nodes += node_present[n];
896 return nodes;
900 * Count the number of distinct process-threads a node contains.
902 * A count of 1 means that the node contains only a single
903 * process. If all nodes on the system contain at most one
904 * process then we are well-converged.
906 static int count_node_processes(int node)
908 int processes = 0;
909 int t, p;
911 for (p = 0; p < g->p.nr_proc; p++) {
912 for (t = 0; t < g->p.nr_threads; t++) {
913 struct thread_data *td;
914 int task_nr;
915 int n;
917 task_nr = p*g->p.nr_threads + t;
918 td = g->threads + task_nr;
920 n = numa_node_of_cpu(td->curr_cpu);
921 if (n == node) {
922 processes++;
923 break;
928 return processes;
931 static void calc_convergence_compression(int *strong)
933 unsigned int nodes_min, nodes_max;
934 int p;
936 nodes_min = -1;
937 nodes_max = 0;
939 for (p = 0; p < g->p.nr_proc; p++) {
940 unsigned int nodes = count_process_nodes(p);
942 if (!nodes) {
943 *strong = 0;
944 return;
947 nodes_min = min(nodes, nodes_min);
948 nodes_max = max(nodes, nodes_max);
951 /* Strong convergence: all threads compress on a single node: */
952 if (nodes_min == 1 && nodes_max == 1) {
953 *strong = 1;
954 } else {
955 *strong = 0;
956 tprintf(" {%d-%d}", nodes_min, nodes_max);
960 static void calc_convergence(double runtime_ns_max, double *convergence)
962 unsigned int loops_done_min, loops_done_max;
963 int process_groups;
964 int nodes[MAX_NR_NODES];
965 int distance;
966 int nr_min;
967 int nr_max;
968 int strong;
969 int sum;
970 int nr;
971 int node;
972 int cpu;
973 int t;
975 if (!g->p.show_convergence && !g->p.measure_convergence)
976 return;
978 for (node = 0; node < g->p.nr_nodes; node++)
979 nodes[node] = 0;
981 loops_done_min = -1;
982 loops_done_max = 0;
984 for (t = 0; t < g->p.nr_tasks; t++) {
985 struct thread_data *td = g->threads + t;
986 unsigned int loops_done;
988 cpu = td->curr_cpu;
990 /* Not all threads have written it yet: */
991 if (cpu < 0)
992 continue;
994 node = numa_node_of_cpu(cpu);
996 nodes[node]++;
998 loops_done = td->loops_done;
999 loops_done_min = min(loops_done, loops_done_min);
1000 loops_done_max = max(loops_done, loops_done_max);
1003 nr_max = 0;
1004 nr_min = g->p.nr_tasks;
1005 sum = 0;
1007 for (node = 0; node < g->p.nr_nodes; node++) {
1008 if (!is_node_present(node))
1009 continue;
1010 nr = nodes[node];
1011 nr_min = min(nr, nr_min);
1012 nr_max = max(nr, nr_max);
1013 sum += nr;
1015 BUG_ON(nr_min > nr_max);
1017 BUG_ON(sum > g->p.nr_tasks);
1019 if (0 && (sum < g->p.nr_tasks))
1020 return;
1023 * Count the number of distinct process groups present
1024 * on nodes - when we are converged this will decrease
1025 * to g->p.nr_proc:
1027 process_groups = 0;
1029 for (node = 0; node < g->p.nr_nodes; node++) {
1030 int processes;
1032 if (!is_node_present(node))
1033 continue;
1034 processes = count_node_processes(node);
1035 nr = nodes[node];
1036 tprintf(" %2d/%-2d", nr, processes);
1038 process_groups += processes;
1041 distance = nr_max - nr_min;
1043 tprintf(" [%2d/%-2d]", distance, process_groups);
1045 tprintf(" l:%3d-%-3d (%3d)",
1046 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1048 if (loops_done_min && loops_done_max) {
1049 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1051 tprintf(" [%4.1f%%]", skew * 100.0);
1054 calc_convergence_compression(&strong);
1056 if (strong && process_groups == g->p.nr_proc) {
1057 if (!*convergence) {
1058 *convergence = runtime_ns_max;
1059 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1060 if (g->p.measure_convergence) {
1061 g->all_converged = true;
1062 g->stop_work = true;
1065 } else {
1066 if (*convergence) {
1067 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1068 *convergence = 0;
1070 tprintf("\n");
1074 static void show_summary(double runtime_ns_max, int l, double *convergence)
1076 tprintf("\r # %5.1f%% [%.1f mins]",
1077 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1079 calc_convergence(runtime_ns_max, convergence);
1081 if (g->p.show_details >= 0)
1082 fflush(stdout);
1085 static void *worker_thread(void *__tdata)
1087 struct thread_data *td = __tdata;
1088 struct timeval start0, start, stop, diff;
1089 int process_nr = td->process_nr;
1090 int thread_nr = td->thread_nr;
1091 unsigned long last_perturbance;
1092 int task_nr = td->task_nr;
1093 int details = g->p.show_details;
1094 int first_task, last_task;
1095 double convergence = 0;
1096 u64 val = td->val;
1097 double runtime_ns_max;
1098 u8 *global_data;
1099 u8 *process_data;
1100 u8 *thread_data;
1101 u64 bytes_done;
1102 long work_done;
1103 u32 l;
1104 struct rusage rusage;
1106 bind_to_cpumask(td->bind_cpumask);
1107 bind_to_memnode(td->bind_node);
1109 set_taskname("thread %d/%d", process_nr, thread_nr);
1111 global_data = g->data;
1112 process_data = td->process_data;
1113 thread_data = setup_private_data(g->p.bytes_thread);
1115 bytes_done = 0;
1117 last_task = 0;
1118 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1119 last_task = 1;
1121 first_task = 0;
1122 if (process_nr == 0 && thread_nr == 0)
1123 first_task = 1;
1125 if (details >= 2) {
1126 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1127 process_nr, thread_nr, global_data, process_data, thread_data);
1130 if (g->p.serialize_startup) {
1131 pthread_mutex_lock(&g->startup_mutex);
1132 g->nr_tasks_started++;
1133 pthread_mutex_unlock(&g->startup_mutex);
1135 /* Here we will wait for the main process to start us all at once: */
1136 pthread_mutex_lock(&g->start_work_mutex);
1137 g->nr_tasks_working++;
1139 /* Last one wake the main process: */
1140 if (g->nr_tasks_working == g->p.nr_tasks)
1141 pthread_mutex_unlock(&g->startup_done_mutex);
1143 pthread_mutex_unlock(&g->start_work_mutex);
1146 gettimeofday(&start0, NULL);
1148 start = stop = start0;
1149 last_perturbance = start.tv_sec;
1151 for (l = 0; l < g->p.nr_loops; l++) {
1152 start = stop;
1154 if (g->stop_work)
1155 break;
1157 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1158 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1159 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1161 if (g->p.sleep_usecs) {
1162 pthread_mutex_lock(td->process_lock);
1163 usleep(g->p.sleep_usecs);
1164 pthread_mutex_unlock(td->process_lock);
1167 * Amount of work to be done under a process-global lock:
1169 if (g->p.bytes_process_locked) {
1170 pthread_mutex_lock(td->process_lock);
1171 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1172 pthread_mutex_unlock(td->process_lock);
1175 work_done = g->p.bytes_global + g->p.bytes_process +
1176 g->p.bytes_process_locked + g->p.bytes_thread;
1178 update_curr_cpu(task_nr, work_done);
1179 bytes_done += work_done;
1181 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1182 continue;
1184 td->loops_done = l;
1186 gettimeofday(&stop, NULL);
1188 /* Check whether our max runtime timed out: */
1189 if (g->p.nr_secs) {
1190 timersub(&stop, &start0, &diff);
1191 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1192 g->stop_work = true;
1193 break;
1197 /* Update the summary at most once per second: */
1198 if (start.tv_sec == stop.tv_sec)
1199 continue;
1202 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1203 * by migrating to CPU#0:
1205 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1206 cpu_set_t orig_mask;
1207 int target_cpu;
1208 int this_cpu;
1210 last_perturbance = stop.tv_sec;
1213 * Depending on where we are running, move into
1214 * the other half of the system, to create some
1215 * real disturbance:
1217 this_cpu = g->threads[task_nr].curr_cpu;
1218 if (this_cpu < g->p.nr_cpus/2)
1219 target_cpu = g->p.nr_cpus-1;
1220 else
1221 target_cpu = 0;
1223 orig_mask = bind_to_cpu(target_cpu);
1225 /* Here we are running on the target CPU already */
1226 if (details >= 1)
1227 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1229 bind_to_cpumask(orig_mask);
1232 if (details >= 3) {
1233 timersub(&stop, &start, &diff);
1234 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1235 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1237 if (details >= 0) {
1238 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1239 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1241 fflush(stdout);
1243 if (!last_task)
1244 continue;
1246 timersub(&stop, &start0, &diff);
1247 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1248 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1250 show_summary(runtime_ns_max, l, &convergence);
1253 gettimeofday(&stop, NULL);
1254 timersub(&stop, &start0, &diff);
1255 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1256 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1257 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1259 getrusage(RUSAGE_THREAD, &rusage);
1260 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1261 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1262 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1263 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1265 free_data(thread_data, g->p.bytes_thread);
1267 pthread_mutex_lock(&g->stop_work_mutex);
1268 g->bytes_done += bytes_done;
1269 pthread_mutex_unlock(&g->stop_work_mutex);
1271 return NULL;
1275 * A worker process starts a couple of threads:
1277 static void worker_process(int process_nr)
1279 pthread_mutex_t process_lock;
1280 struct thread_data *td;
1281 pthread_t *pthreads;
1282 u8 *process_data;
1283 int task_nr;
1284 int ret;
1285 int t;
1287 pthread_mutex_init(&process_lock, NULL);
1288 set_taskname("process %d", process_nr);
1291 * Pick up the memory policy and the CPU binding of our first thread,
1292 * so that we initialize memory accordingly:
1294 task_nr = process_nr*g->p.nr_threads;
1295 td = g->threads + task_nr;
1297 bind_to_memnode(td->bind_node);
1298 bind_to_cpumask(td->bind_cpumask);
1300 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1301 process_data = setup_private_data(g->p.bytes_process);
1303 if (g->p.show_details >= 3) {
1304 printf(" # process %2d global mem: %p, process mem: %p\n",
1305 process_nr, g->data, process_data);
1308 for (t = 0; t < g->p.nr_threads; t++) {
1309 task_nr = process_nr*g->p.nr_threads + t;
1310 td = g->threads + task_nr;
1312 td->process_data = process_data;
1313 td->process_nr = process_nr;
1314 td->thread_nr = t;
1315 td->task_nr = task_nr;
1316 td->val = rand();
1317 td->curr_cpu = -1;
1318 td->process_lock = &process_lock;
1320 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1321 BUG_ON(ret);
1324 for (t = 0; t < g->p.nr_threads; t++) {
1325 ret = pthread_join(pthreads[t], NULL);
1326 BUG_ON(ret);
1329 free_data(process_data, g->p.bytes_process);
1330 free(pthreads);
1333 static void print_summary(void)
1335 if (g->p.show_details < 0)
1336 return;
1338 printf("\n ###\n");
1339 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1340 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1341 printf(" # %5dx %5ldMB global shared mem operations\n",
1342 g->p.nr_loops, g->p.bytes_global/1024/1024);
1343 printf(" # %5dx %5ldMB process shared mem operations\n",
1344 g->p.nr_loops, g->p.bytes_process/1024/1024);
1345 printf(" # %5dx %5ldMB thread local mem operations\n",
1346 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1348 printf(" ###\n");
1350 printf("\n ###\n"); fflush(stdout);
1353 static void init_thread_data(void)
1355 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1356 int t;
1358 g->threads = zalloc_shared_data(size);
1360 for (t = 0; t < g->p.nr_tasks; t++) {
1361 struct thread_data *td = g->threads + t;
1362 int cpu;
1364 /* Allow all nodes by default: */
1365 td->bind_node = -1;
1367 /* Allow all CPUs by default: */
1368 CPU_ZERO(&td->bind_cpumask);
1369 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1370 CPU_SET(cpu, &td->bind_cpumask);
1374 static void deinit_thread_data(void)
1376 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1378 free_data(g->threads, size);
1381 static int init(void)
1383 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1385 /* Copy over options: */
1386 g->p = p0;
1388 g->p.nr_cpus = numa_num_configured_cpus();
1390 g->p.nr_nodes = numa_max_node() + 1;
1392 /* char array in count_process_nodes(): */
1393 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1395 if (g->p.show_quiet && !g->p.show_details)
1396 g->p.show_details = -1;
1398 /* Some memory should be specified: */
1399 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1400 return -1;
1402 if (g->p.mb_global_str) {
1403 g->p.mb_global = atof(g->p.mb_global_str);
1404 BUG_ON(g->p.mb_global < 0);
1407 if (g->p.mb_proc_str) {
1408 g->p.mb_proc = atof(g->p.mb_proc_str);
1409 BUG_ON(g->p.mb_proc < 0);
1412 if (g->p.mb_proc_locked_str) {
1413 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1414 BUG_ON(g->p.mb_proc_locked < 0);
1415 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1418 if (g->p.mb_thread_str) {
1419 g->p.mb_thread = atof(g->p.mb_thread_str);
1420 BUG_ON(g->p.mb_thread < 0);
1423 BUG_ON(g->p.nr_threads <= 0);
1424 BUG_ON(g->p.nr_proc <= 0);
1426 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1428 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1429 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1430 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1431 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1433 g->data = setup_shared_data(g->p.bytes_global);
1435 /* Startup serialization: */
1436 init_global_mutex(&g->start_work_mutex);
1437 init_global_mutex(&g->startup_mutex);
1438 init_global_mutex(&g->startup_done_mutex);
1439 init_global_mutex(&g->stop_work_mutex);
1441 init_thread_data();
1443 tprintf("#\n");
1444 if (parse_setup_cpu_list() || parse_setup_node_list())
1445 return -1;
1446 tprintf("#\n");
1448 print_summary();
1450 return 0;
1453 static void deinit(void)
1455 free_data(g->data, g->p.bytes_global);
1456 g->data = NULL;
1458 deinit_thread_data();
1460 free_data(g, sizeof(*g));
1461 g = NULL;
1465 * Print a short or long result, depending on the verbosity setting:
1467 static void print_res(const char *name, double val,
1468 const char *txt_unit, const char *txt_short, const char *txt_long)
1470 if (!name)
1471 name = "main,";
1473 if (!g->p.show_quiet)
1474 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1475 else
1476 printf(" %14.3f %s\n", val, txt_long);
1479 static int __bench_numa(const char *name)
1481 struct timeval start, stop, diff;
1482 u64 runtime_ns_min, runtime_ns_sum;
1483 pid_t *pids, pid, wpid;
1484 double delta_runtime;
1485 double runtime_avg;
1486 double runtime_sec_max;
1487 double runtime_sec_min;
1488 int wait_stat;
1489 double bytes;
1490 int i, t, p;
1492 if (init())
1493 return -1;
1495 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1496 pid = -1;
1498 /* All threads try to acquire it, this way we can wait for them to start up: */
1499 pthread_mutex_lock(&g->start_work_mutex);
1501 if (g->p.serialize_startup) {
1502 tprintf(" #\n");
1503 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1506 gettimeofday(&start, NULL);
1508 for (i = 0; i < g->p.nr_proc; i++) {
1509 pid = fork();
1510 dprintf(" # process %2d: PID %d\n", i, pid);
1512 BUG_ON(pid < 0);
1513 if (!pid) {
1514 /* Child process: */
1515 worker_process(i);
1517 exit(0);
1519 pids[i] = pid;
1522 /* Wait for all the threads to start up: */
1523 while (g->nr_tasks_started != g->p.nr_tasks)
1524 usleep(USEC_PER_MSEC);
1526 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1528 if (g->p.serialize_startup) {
1529 double startup_sec;
1531 pthread_mutex_lock(&g->startup_done_mutex);
1533 /* This will start all threads: */
1534 pthread_mutex_unlock(&g->start_work_mutex);
1536 /* This mutex is locked - the last started thread will wake us: */
1537 pthread_mutex_lock(&g->startup_done_mutex);
1539 gettimeofday(&stop, NULL);
1541 timersub(&stop, &start, &diff);
1543 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1544 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1545 startup_sec /= NSEC_PER_SEC;
1547 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1548 tprintf(" #\n");
1550 start = stop;
1551 pthread_mutex_unlock(&g->startup_done_mutex);
1552 } else {
1553 gettimeofday(&start, NULL);
1556 /* Parent process: */
1559 for (i = 0; i < g->p.nr_proc; i++) {
1560 wpid = waitpid(pids[i], &wait_stat, 0);
1561 BUG_ON(wpid < 0);
1562 BUG_ON(!WIFEXITED(wait_stat));
1566 runtime_ns_sum = 0;
1567 runtime_ns_min = -1LL;
1569 for (t = 0; t < g->p.nr_tasks; t++) {
1570 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1572 runtime_ns_sum += thread_runtime_ns;
1573 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1576 gettimeofday(&stop, NULL);
1577 timersub(&stop, &start, &diff);
1579 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1581 tprintf("\n ###\n");
1582 tprintf("\n");
1584 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1585 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1586 runtime_sec_max /= NSEC_PER_SEC;
1588 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1590 bytes = g->bytes_done;
1591 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1593 if (g->p.measure_convergence) {
1594 print_res(name, runtime_sec_max,
1595 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1598 print_res(name, runtime_sec_max,
1599 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1601 print_res(name, runtime_sec_min,
1602 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1604 print_res(name, runtime_avg,
1605 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1607 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1608 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1609 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1611 print_res(name, bytes / g->p.nr_tasks / 1e9,
1612 "GB,", "data/thread", "GB data processed, per thread");
1614 print_res(name, bytes / 1e9,
1615 "GB,", "data-total", "GB data processed, total");
1617 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1618 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1620 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1621 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1623 print_res(name, bytes / runtime_sec_max / 1e9,
1624 "GB/sec,", "total-speed", "GB/sec total speed");
1626 if (g->p.show_details >= 2) {
1627 char tname[14 + 2 * 10 + 1];
1628 struct thread_data *td;
1629 for (p = 0; p < g->p.nr_proc; p++) {
1630 for (t = 0; t < g->p.nr_threads; t++) {
1631 memset(tname, 0, sizeof(tname));
1632 td = g->threads + p*g->p.nr_threads + t;
1633 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1634 print_res(tname, td->speed_gbs,
1635 "GB/sec", "thread-speed", "GB/sec/thread speed");
1636 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1637 "secs", "thread-system-time", "system CPU time/thread");
1638 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1639 "secs", "thread-user-time", "user CPU time/thread");
1644 free(pids);
1646 deinit();
1648 return 0;
1651 #define MAX_ARGS 50
1653 static int command_size(const char **argv)
1655 int size = 0;
1657 while (*argv) {
1658 size++;
1659 argv++;
1662 BUG_ON(size >= MAX_ARGS);
1664 return size;
1667 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1669 int i;
1671 printf("\n # Running %s \"perf bench numa", name);
1673 for (i = 0; i < argc; i++)
1674 printf(" %s", argv[i]);
1676 printf("\"\n");
1678 memset(p, 0, sizeof(*p));
1680 /* Initialize nonzero defaults: */
1682 p->serialize_startup = 1;
1683 p->data_reads = true;
1684 p->data_writes = true;
1685 p->data_backwards = true;
1686 p->data_rand_walk = true;
1687 p->nr_loops = -1;
1688 p->init_random = true;
1689 p->mb_global_str = "1";
1690 p->nr_proc = 1;
1691 p->nr_threads = 1;
1692 p->nr_secs = 5;
1693 p->run_all = argc == 1;
1696 static int run_bench_numa(const char *name, const char **argv)
1698 int argc = command_size(argv);
1700 init_params(&p0, name, argc, argv);
1701 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1702 if (argc)
1703 goto err;
1705 if (__bench_numa(name))
1706 goto err;
1708 return 0;
1710 err:
1711 return -1;
1714 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1715 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1717 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1718 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1720 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1721 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1724 * The built-in test-suite executed by "perf bench numa -a".
1726 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1728 static const char *tests[][MAX_ARGS] = {
1729 /* Basic single-stream NUMA bandwidth measurements: */
1730 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1731 "-C" , "0", "-M", "0", OPT_BW_RAM },
1732 { "RAM-bw-local-NOTHP,",
1733 "mem", "-p", "1", "-t", "1", "-P", "1024",
1734 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1735 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1736 "-C" , "0", "-M", "1", OPT_BW_RAM },
1738 /* 2-stream NUMA bandwidth measurements: */
1739 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1740 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1741 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1742 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1744 /* Cross-stream NUMA bandwidth measurement: */
1745 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1746 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1748 /* Convergence latency measurements: */
1749 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1750 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1751 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1752 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1753 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1754 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1755 { " 4x4-convergence-NOTHP,",
1756 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1757 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1758 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1759 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1760 { " 8x4-convergence-NOTHP,",
1761 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1762 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1763 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1764 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1765 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1766 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1768 /* Various NUMA process/thread layout bandwidth measurements: */
1769 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1770 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1771 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1772 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1773 { " 8x1-bw-process-NOTHP,",
1774 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1775 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1777 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1778 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1779 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1780 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1782 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1783 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1784 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1785 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1786 { " 4x8-bw-thread-NOTHP,",
1787 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1788 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1789 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1791 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1792 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1794 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1795 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1796 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1797 { "numa01-bw-thread-NOTHP,",
1798 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1801 static int bench_all(void)
1803 int nr = ARRAY_SIZE(tests);
1804 int ret;
1805 int i;
1807 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1808 BUG_ON(ret < 0);
1810 for (i = 0; i < nr; i++) {
1811 run_bench_numa(tests[i][0], tests[i] + 1);
1814 printf("\n");
1816 return 0;
1819 int bench_numa(int argc, const char **argv)
1821 init_params(&p0, "main,", argc, argv);
1822 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1823 if (argc)
1824 goto err;
1826 if (p0.run_all)
1827 return bench_all();
1829 if (__bench_numa(NULL))
1830 goto err;
1832 return 0;
1834 err:
1835 usage_with_options(numa_usage, options);
1836 return -1;