1 /* Generic MTRR (Memory Type Range Register) driver.
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
50 #include <asm/processor.h>
59 unsigned int mtrr_usage_table
[MTRR_MAX_VAR_RANGES
];
60 static DEFINE_MUTEX(mtrr_mutex
);
62 u64 size_or_mask
, size_and_mask
;
63 static bool mtrr_aps_delayed_init
;
65 static const struct mtrr_ops
*mtrr_ops
[X86_VENDOR_NUM
];
67 const struct mtrr_ops
*mtrr_if
;
69 static void set_mtrr(unsigned int reg
, unsigned long base
,
70 unsigned long size
, mtrr_type type
);
72 void set_mtrr_ops(const struct mtrr_ops
*ops
)
74 if (ops
->vendor
&& ops
->vendor
< X86_VENDOR_NUM
)
75 mtrr_ops
[ops
->vendor
] = ops
;
78 /* Returns non-zero if we have the write-combining memory type */
79 static int have_wrcomb(void)
83 dev
= pci_get_class(PCI_CLASS_BRIDGE_HOST
<< 8, NULL
);
86 * ServerWorks LE chipsets < rev 6 have problems with
87 * write-combining. Don't allow it and leave room for other
88 * chipsets to be tagged
90 if (dev
->vendor
== PCI_VENDOR_ID_SERVERWORKS
&&
91 dev
->device
== PCI_DEVICE_ID_SERVERWORKS_LE
&&
93 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
98 * Intel 450NX errata # 23. Non ascending cacheline evictions to
99 * write combining memory may resulting in data corruption
101 if (dev
->vendor
== PCI_VENDOR_ID_INTEL
&&
102 dev
->device
== PCI_DEVICE_ID_INTEL_82451NX
) {
103 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
109 return mtrr_if
->have_wrcomb
? mtrr_if
->have_wrcomb() : 0;
112 /* This function returns the number of variable MTRRs */
113 static void __init
set_num_var_ranges(void)
115 unsigned long config
= 0, dummy
;
118 rdmsr(MSR_MTRRcap
, config
, dummy
);
119 else if (is_cpu(AMD
))
121 else if (is_cpu(CYRIX
) || is_cpu(CENTAUR
))
124 num_var_ranges
= config
& 0xff;
127 static void __init
init_table(void)
131 max
= num_var_ranges
;
132 for (i
= 0; i
< max
; i
++)
133 mtrr_usage_table
[i
] = 1;
136 struct set_mtrr_data
{
137 unsigned long smp_base
;
138 unsigned long smp_size
;
139 unsigned int smp_reg
;
144 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
146 * @info: pointer to mtrr configuration data
150 static int mtrr_rendezvous_handler(void *info
)
152 struct set_mtrr_data
*data
= info
;
155 * We use this same function to initialize the mtrrs during boot,
156 * resume, runtime cpu online and on an explicit request to set a
159 * During boot or suspend, the state of the boot cpu's mtrrs has been
160 * saved, and we want to replicate that across all the cpus that come
161 * online (either at the end of boot or resume or during a runtime cpu
162 * online). If we're doing that, @reg is set to something special and on
163 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
164 * started the boot/resume sequence, this might be a duplicate
167 if (data
->smp_reg
!= ~0U) {
168 mtrr_if
->set(data
->smp_reg
, data
->smp_base
,
169 data
->smp_size
, data
->smp_type
);
170 } else if (mtrr_aps_delayed_init
|| !cpu_online(smp_processor_id())) {
176 static inline int types_compatible(mtrr_type type1
, mtrr_type type2
)
178 return type1
== MTRR_TYPE_UNCACHABLE
||
179 type2
== MTRR_TYPE_UNCACHABLE
||
180 (type1
== MTRR_TYPE_WRTHROUGH
&& type2
== MTRR_TYPE_WRBACK
) ||
181 (type1
== MTRR_TYPE_WRBACK
&& type2
== MTRR_TYPE_WRTHROUGH
);
185 * set_mtrr - update mtrrs on all processors
186 * @reg: mtrr in question
191 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
193 * 1. Queue work to do the following on all processors:
194 * 2. Disable Interrupts
195 * 3. Wait for all procs to do so
196 * 4. Enter no-fill cache mode
200 * 8. Disable all range registers
201 * 9. Update the MTRRs
202 * 10. Enable all range registers
203 * 11. Flush all TLBs and caches again
204 * 12. Enter normal cache mode and reenable caching
206 * 14. Wait for buddies to catch up
207 * 15. Enable interrupts.
209 * What does that mean for us? Well, stop_machine() will ensure that
210 * the rendezvous handler is started on each CPU. And in lockstep they
211 * do the state transition of disabling interrupts, updating MTRR's
212 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
213 * callback and let them take care of it.) and enabling interrupts.
215 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
219 set_mtrr(unsigned int reg
, unsigned long base
, unsigned long size
, mtrr_type type
)
221 struct set_mtrr_data data
= { .smp_reg
= reg
,
227 stop_machine(mtrr_rendezvous_handler
, &data
, cpu_online_mask
);
230 static void set_mtrr_from_inactive_cpu(unsigned int reg
, unsigned long base
,
231 unsigned long size
, mtrr_type type
)
233 struct set_mtrr_data data
= { .smp_reg
= reg
,
239 stop_machine_from_inactive_cpu(mtrr_rendezvous_handler
, &data
,
244 * mtrr_add_page - Add a memory type region
245 * @base: Physical base address of region in pages (in units of 4 kB!)
246 * @size: Physical size of region in pages (4 kB)
247 * @type: Type of MTRR desired
248 * @increment: If this is true do usage counting on the region
250 * Memory type region registers control the caching on newer Intel and
251 * non Intel processors. This function allows drivers to request an
252 * MTRR is added. The details and hardware specifics of each processor's
253 * implementation are hidden from the caller, but nevertheless the
254 * caller should expect to need to provide a power of two size on an
255 * equivalent power of two boundary.
257 * If the region cannot be added either because all regions are in use
258 * or the CPU cannot support it a negative value is returned. On success
259 * the register number for this entry is returned, but should be treated
262 * On a multiprocessor machine the changes are made to all processors.
263 * This is required on x86 by the Intel processors.
265 * The available types are
267 * %MTRR_TYPE_UNCACHABLE - No caching
269 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
271 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
273 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
275 * BUGS: Needs a quiet flag for the cases where drivers do not mind
276 * failures and do not wish system log messages to be sent.
278 int mtrr_add_page(unsigned long base
, unsigned long size
,
279 unsigned int type
, bool increment
)
281 unsigned long lbase
, lsize
;
282 int i
, replace
, error
;
288 error
= mtrr_if
->validate_add_page(base
, size
, type
);
292 if (type
>= MTRR_NUM_TYPES
) {
293 pr_warning("mtrr: type: %u invalid\n", type
);
297 /* If the type is WC, check that this processor supports it */
298 if ((type
== MTRR_TYPE_WRCOMB
) && !have_wrcomb()) {
299 pr_warning("mtrr: your processor doesn't support write-combining\n");
304 pr_warning("mtrr: zero sized request\n");
308 if (base
& size_or_mask
|| size
& size_or_mask
) {
309 pr_warning("mtrr: base or size exceeds the MTRR width\n");
316 /* No CPU hotplug when we change MTRR entries */
319 /* Search for existing MTRR */
320 mutex_lock(&mtrr_mutex
);
321 for (i
= 0; i
< num_var_ranges
; ++i
) {
322 mtrr_if
->get(i
, &lbase
, &lsize
, <ype
);
323 if (!lsize
|| base
> lbase
+ lsize
- 1 ||
324 base
+ size
- 1 < lbase
)
327 * At this point we know there is some kind of
330 if (base
< lbase
|| base
+ size
- 1 > lbase
+ lsize
- 1) {
332 base
+ size
- 1 >= lbase
+ lsize
- 1) {
333 /* New region encloses an existing region */
335 replace
= replace
== -1 ? i
: -2;
337 } else if (types_compatible(type
, ltype
))
340 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
341 " 0x%lx000,0x%lx000\n", base
, size
, lbase
,
345 /* New region is enclosed by an existing region */
347 if (types_compatible(type
, ltype
))
349 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
350 base
, size
, mtrr_attrib_to_str(ltype
),
351 mtrr_attrib_to_str(type
));
355 ++mtrr_usage_table
[i
];
359 /* Search for an empty MTRR */
360 i
= mtrr_if
->get_free_region(base
, size
, replace
);
362 set_mtrr(i
, base
, size
, type
);
363 if (likely(replace
< 0)) {
364 mtrr_usage_table
[i
] = 1;
366 mtrr_usage_table
[i
] = mtrr_usage_table
[replace
];
368 mtrr_usage_table
[i
]++;
369 if (unlikely(replace
!= i
)) {
370 set_mtrr(replace
, 0, 0, 0);
371 mtrr_usage_table
[replace
] = 0;
375 pr_info("mtrr: no more MTRRs available\n");
379 mutex_unlock(&mtrr_mutex
);
384 static int mtrr_check(unsigned long base
, unsigned long size
)
386 if ((base
& (PAGE_SIZE
- 1)) || (size
& (PAGE_SIZE
- 1))) {
387 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
388 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size
, base
);
396 * mtrr_add - Add a memory type region
397 * @base: Physical base address of region
398 * @size: Physical size of region
399 * @type: Type of MTRR desired
400 * @increment: If this is true do usage counting on the region
402 * Memory type region registers control the caching on newer Intel and
403 * non Intel processors. This function allows drivers to request an
404 * MTRR is added. The details and hardware specifics of each processor's
405 * implementation are hidden from the caller, but nevertheless the
406 * caller should expect to need to provide a power of two size on an
407 * equivalent power of two boundary.
409 * If the region cannot be added either because all regions are in use
410 * or the CPU cannot support it a negative value is returned. On success
411 * the register number for this entry is returned, but should be treated
414 * On a multiprocessor machine the changes are made to all processors.
415 * This is required on x86 by the Intel processors.
417 * The available types are
419 * %MTRR_TYPE_UNCACHABLE - No caching
421 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
423 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
425 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
427 * BUGS: Needs a quiet flag for the cases where drivers do not mind
428 * failures and do not wish system log messages to be sent.
430 int mtrr_add(unsigned long base
, unsigned long size
, unsigned int type
,
433 if (mtrr_check(base
, size
))
435 return mtrr_add_page(base
>> PAGE_SHIFT
, size
>> PAGE_SHIFT
, type
,
438 EXPORT_SYMBOL(mtrr_add
);
441 * mtrr_del_page - delete a memory type region
442 * @reg: Register returned by mtrr_add
443 * @base: Physical base address
444 * @size: Size of region
446 * If register is supplied then base and size are ignored. This is
447 * how drivers should call it.
449 * Releases an MTRR region. If the usage count drops to zero the
450 * register is freed and the region returns to default state.
451 * On success the register is returned, on failure a negative error
454 int mtrr_del_page(int reg
, unsigned long base
, unsigned long size
)
458 unsigned long lbase
, lsize
;
464 max
= num_var_ranges
;
465 /* No CPU hotplug when we change MTRR entries */
467 mutex_lock(&mtrr_mutex
);
469 /* Search for existing MTRR */
470 for (i
= 0; i
< max
; ++i
) {
471 mtrr_if
->get(i
, &lbase
, &lsize
, <ype
);
472 if (lbase
== base
&& lsize
== size
) {
478 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
484 pr_warning("mtrr: register: %d too big\n", reg
);
487 mtrr_if
->get(reg
, &lbase
, &lsize
, <ype
);
489 pr_warning("mtrr: MTRR %d not used\n", reg
);
492 if (mtrr_usage_table
[reg
] < 1) {
493 pr_warning("mtrr: reg: %d has count=0\n", reg
);
496 if (--mtrr_usage_table
[reg
] < 1)
497 set_mtrr(reg
, 0, 0, 0);
500 mutex_unlock(&mtrr_mutex
);
506 * mtrr_del - delete a memory type region
507 * @reg: Register returned by mtrr_add
508 * @base: Physical base address
509 * @size: Size of region
511 * If register is supplied then base and size are ignored. This is
512 * how drivers should call it.
514 * Releases an MTRR region. If the usage count drops to zero the
515 * register is freed and the region returns to default state.
516 * On success the register is returned, on failure a negative error
519 int mtrr_del(int reg
, unsigned long base
, unsigned long size
)
521 if (mtrr_check(base
, size
))
523 return mtrr_del_page(reg
, base
>> PAGE_SHIFT
, size
>> PAGE_SHIFT
);
525 EXPORT_SYMBOL(mtrr_del
);
529 * These should be called implicitly, but we can't yet until all the initcall
532 static void __init
init_ifs(void)
534 #ifndef CONFIG_X86_64
541 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
542 * MTRR driver doesn't require this
550 static struct mtrr_value mtrr_value
[MTRR_MAX_VAR_RANGES
];
552 static int mtrr_save(void)
556 for (i
= 0; i
< num_var_ranges
; i
++) {
557 mtrr_if
->get(i
, &mtrr_value
[i
].lbase
,
558 &mtrr_value
[i
].lsize
,
559 &mtrr_value
[i
].ltype
);
564 static void mtrr_restore(void)
568 for (i
= 0; i
< num_var_ranges
; i
++) {
569 if (mtrr_value
[i
].lsize
) {
570 set_mtrr(i
, mtrr_value
[i
].lbase
,
572 mtrr_value
[i
].ltype
);
579 static struct syscore_ops mtrr_syscore_ops
= {
580 .suspend
= mtrr_save
,
581 .resume
= mtrr_restore
,
584 int __initdata changed_by_mtrr_cleanup
;
587 * mtrr_bp_init - initialize mtrrs on the boot CPU
589 * This needs to be called early; before any of the other CPUs are
590 * initialized (i.e. before smp_init()).
593 void __init
mtrr_bp_init(void)
602 mtrr_if
= &generic_mtrr_ops
;
603 size_or_mask
= 0xff000000; /* 36 bits */
604 size_and_mask
= 0x00f00000;
608 * This is an AMD specific MSR, but we assume(hope?) that
609 * Intel will implement it too when they extend the address
612 if (cpuid_eax(0x80000000) >= 0x80000008) {
613 phys_addr
= cpuid_eax(0x80000008) & 0xff;
614 /* CPUID workaround for Intel 0F33/0F34 CPU */
615 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
616 boot_cpu_data
.x86
== 0xF &&
617 boot_cpu_data
.x86_model
== 0x3 &&
618 (boot_cpu_data
.x86_mask
== 0x3 ||
619 boot_cpu_data
.x86_mask
== 0x4))
622 size_or_mask
= ~((1ULL << (phys_addr
- PAGE_SHIFT
)) - 1);
623 size_and_mask
= ~size_or_mask
& 0xfffff00000ULL
;
624 } else if (boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
&&
625 boot_cpu_data
.x86
== 6) {
627 * VIA C* family have Intel style MTRRs,
628 * but don't support PAE
630 size_or_mask
= 0xfff00000; /* 32 bits */
635 switch (boot_cpu_data
.x86_vendor
) {
637 if (cpu_has_k6_mtrr
) {
638 /* Pre-Athlon (K6) AMD CPU MTRRs */
639 mtrr_if
= mtrr_ops
[X86_VENDOR_AMD
];
640 size_or_mask
= 0xfff00000; /* 32 bits */
644 case X86_VENDOR_CENTAUR
:
645 if (cpu_has_centaur_mcr
) {
646 mtrr_if
= mtrr_ops
[X86_VENDOR_CENTAUR
];
647 size_or_mask
= 0xfff00000; /* 32 bits */
651 case X86_VENDOR_CYRIX
:
652 if (cpu_has_cyrix_arr
) {
653 mtrr_if
= mtrr_ops
[X86_VENDOR_CYRIX
];
654 size_or_mask
= 0xfff00000; /* 32 bits */
664 set_num_var_ranges();
669 if (mtrr_cleanup(phys_addr
)) {
670 changed_by_mtrr_cleanup
= 1;
677 void mtrr_ap_init(void)
679 if (!use_intel() || mtrr_aps_delayed_init
)
682 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
683 * changed, but this routine will be called in cpu boot time,
684 * holding the lock breaks it.
686 * This routine is called in two cases:
688 * 1. very earily time of software resume, when there absolutely
689 * isn't mtrr entry changes;
691 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
692 * lock to prevent mtrr entry changes
694 set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
698 * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
700 void mtrr_save_state(void)
705 first_cpu
= cpumask_first(cpu_online_mask
);
706 smp_call_function_single(first_cpu
, mtrr_save_fixed_ranges
, NULL
, 1);
710 void set_mtrr_aps_delayed_init(void)
715 mtrr_aps_delayed_init
= true;
719 * Delayed MTRR initialization for all AP's
721 void mtrr_aps_init(void)
727 * Check if someone has requested the delay of AP MTRR initialization,
728 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
731 if (!mtrr_aps_delayed_init
)
734 set_mtrr(~0U, 0, 0, 0);
735 mtrr_aps_delayed_init
= false;
738 void mtrr_bp_restore(void)
746 static int __init
mtrr_init_finialize(void)
752 if (!changed_by_mtrr_cleanup
)
758 * The CPU has no MTRR and seems to not support SMP. They have
759 * specific drivers, we use a tricky method to support
760 * suspend/resume for them.
762 * TBD: is there any system with such CPU which supports
763 * suspend/resume? If no, we should remove the code.
765 register_syscore_ops(&mtrr_syscore_ops
);
769 subsys_initcall(mtrr_init_finialize
);