1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
15 #include <asm/fixmap.h>
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
23 #define FSEC_PER_NSEC 1000000L
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
37 unsigned long hpet_address
;
38 u8 hpet_blockid
; /* OS timer block num */
42 static unsigned long hpet_num_timers
;
44 static void __iomem
*hpet_virt_address
;
47 struct clock_event_device evt
;
55 inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
57 return container_of(evtdev
, struct hpet_dev
, evt
);
60 inline unsigned int hpet_readl(unsigned int a
)
62 return readl(hpet_virt_address
+ a
);
65 static inline void hpet_writel(unsigned int d
, unsigned int a
)
67 writel(d
, hpet_virt_address
+ a
);
71 #include <asm/pgtable.h>
74 static inline void hpet_set_mapping(void)
76 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
78 __set_fixmap(VSYSCALL_HPET
, hpet_address
, PAGE_KERNEL_VVAR_NOCACHE
);
82 static inline void hpet_clear_mapping(void)
84 iounmap(hpet_virt_address
);
85 hpet_virt_address
= NULL
;
89 * HPET command line enable / disable
91 static int boot_hpet_disable
;
93 static int hpet_verbose
;
95 static int __init
hpet_setup(char *str
)
98 char *next
= strchr(str
, ',');
102 if (!strncmp("disable", str
, 7))
103 boot_hpet_disable
= 1;
104 if (!strncmp("force", str
, 5))
106 if (!strncmp("verbose", str
, 7))
112 __setup("hpet=", hpet_setup
);
114 static int __init
disable_hpet(char *str
)
116 boot_hpet_disable
= 1;
119 __setup("nohpet", disable_hpet
);
121 static inline int is_hpet_capable(void)
123 return !boot_hpet_disable
&& hpet_address
;
127 * HPET timer interrupt enable / disable
129 static int hpet_legacy_int_enabled
;
132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
134 int is_hpet_enabled(void)
136 return is_hpet_capable() && hpet_legacy_int_enabled
;
138 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
140 static void _hpet_print_config(const char *function
, int line
)
143 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
144 l
= hpet_readl(HPET_ID
);
145 h
= hpet_readl(HPET_PERIOD
);
146 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
147 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
148 l
= hpet_readl(HPET_CFG
);
149 h
= hpet_readl(HPET_STATUS
);
150 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
151 l
= hpet_readl(HPET_COUNTER
);
152 h
= hpet_readl(HPET_COUNTER
+4);
153 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
155 for (i
= 0; i
< timers
; i
++) {
156 l
= hpet_readl(HPET_Tn_CFG(i
));
157 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
158 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
160 l
= hpet_readl(HPET_Tn_CMP(i
));
161 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
162 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
164 l
= hpet_readl(HPET_Tn_ROUTE(i
));
165 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
166 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
171 #define hpet_print_config() \
174 _hpet_print_config(__FUNCTION__, __LINE__); \
178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179 * timer 0 and timer 1 in case of RTC emulation.
183 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
185 static void hpet_reserve_platform_timers(unsigned int id
)
187 struct hpet __iomem
*hpet
= hpet_virt_address
;
188 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
189 unsigned int nrtimers
, i
;
192 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
194 memset(&hd
, 0, sizeof(hd
));
195 hd
.hd_phys_address
= hpet_address
;
196 hd
.hd_address
= hpet
;
197 hd
.hd_nirqs
= nrtimers
;
198 hpet_reserve_timer(&hd
, 0);
200 #ifdef CONFIG_HPET_EMULATE_RTC
201 hpet_reserve_timer(&hd
, 1);
205 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206 * is wrong for i8259!) not the output IRQ. Many BIOS writers
207 * don't bother configuring *any* comparator interrupts.
209 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
210 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
212 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
213 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
214 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
217 hpet_reserve_msi_timers(&hd
);
223 static void hpet_reserve_platform_timers(unsigned int id
) { }
229 static unsigned long hpet_freq
;
231 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
232 struct clock_event_device
*evt
);
233 static int hpet_legacy_next_event(unsigned long delta
,
234 struct clock_event_device
*evt
);
237 * The hpet clock event device
239 static struct clock_event_device hpet_clockevent
= {
241 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
242 .set_mode
= hpet_legacy_set_mode
,
243 .set_next_event
= hpet_legacy_next_event
,
248 static void hpet_stop_counter(void)
250 unsigned long cfg
= hpet_readl(HPET_CFG
);
251 cfg
&= ~HPET_CFG_ENABLE
;
252 hpet_writel(cfg
, HPET_CFG
);
255 static void hpet_reset_counter(void)
257 hpet_writel(0, HPET_COUNTER
);
258 hpet_writel(0, HPET_COUNTER
+ 4);
261 static void hpet_start_counter(void)
263 unsigned int cfg
= hpet_readl(HPET_CFG
);
264 cfg
|= HPET_CFG_ENABLE
;
265 hpet_writel(cfg
, HPET_CFG
);
268 static void hpet_restart_counter(void)
271 hpet_reset_counter();
272 hpet_start_counter();
275 static void hpet_resume_device(void)
280 static void hpet_resume_counter(struct clocksource
*cs
)
282 hpet_resume_device();
283 hpet_restart_counter();
286 static void hpet_enable_legacy_int(void)
288 unsigned int cfg
= hpet_readl(HPET_CFG
);
290 cfg
|= HPET_CFG_LEGACY
;
291 hpet_writel(cfg
, HPET_CFG
);
292 hpet_legacy_int_enabled
= 1;
295 static void hpet_legacy_clockevent_register(void)
297 /* Start HPET legacy interrupts */
298 hpet_enable_legacy_int();
301 * Start hpet with the boot cpu mask and make it
302 * global after the IO_APIC has been initialized.
304 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
305 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
306 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
307 global_clock_event
= &hpet_clockevent
;
308 printk(KERN_DEBUG
"hpet clockevent registered\n");
311 static int hpet_setup_msi_irq(unsigned int irq
);
313 static void hpet_set_mode(enum clock_event_mode mode
,
314 struct clock_event_device
*evt
, int timer
)
316 unsigned int cfg
, cmp
, now
;
320 case CLOCK_EVT_MODE_PERIODIC
:
322 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
323 delta
>>= evt
->shift
;
324 now
= hpet_readl(HPET_COUNTER
);
325 cmp
= now
+ (unsigned int) delta
;
326 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
327 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
328 HPET_TN_SETVAL
| HPET_TN_32BIT
;
329 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
330 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
333 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
334 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
335 * bit is automatically cleared after the first write.
336 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
337 * Publication # 24674)
339 hpet_writel((unsigned int) delta
, HPET_Tn_CMP(timer
));
340 hpet_start_counter();
344 case CLOCK_EVT_MODE_ONESHOT
:
345 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
346 cfg
&= ~HPET_TN_PERIODIC
;
347 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
348 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
351 case CLOCK_EVT_MODE_UNUSED
:
352 case CLOCK_EVT_MODE_SHUTDOWN
:
353 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
354 cfg
&= ~HPET_TN_ENABLE
;
355 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
358 case CLOCK_EVT_MODE_RESUME
:
360 hpet_enable_legacy_int();
362 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
363 hpet_setup_msi_irq(hdev
->irq
);
364 disable_irq(hdev
->irq
);
365 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
366 enable_irq(hdev
->irq
);
373 static int hpet_next_event(unsigned long delta
,
374 struct clock_event_device
*evt
, int timer
)
379 cnt
= hpet_readl(HPET_COUNTER
);
381 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
384 * HPETs are a complete disaster. The compare register is
385 * based on a equal comparison and neither provides a less
386 * than or equal functionality (which would require to take
387 * the wraparound into account) nor a simple count down event
388 * mode. Further the write to the comparator register is
389 * delayed internally up to two HPET clock cycles in certain
390 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
391 * longer delays. We worked around that by reading back the
392 * compare register, but that required another workaround for
393 * ICH9,10 chips where the first readout after write can
394 * return the old stale value. We already had a minimum
395 * programming delta of 5us enforced, but a NMI or SMI hitting
396 * between the counter readout and the comparator write can
397 * move us behind that point easily. Now instead of reading
398 * the compare register back several times, we make the ETIME
399 * decision based on the following: Return ETIME if the
400 * counter value after the write is less than HPET_MIN_CYCLES
401 * away from the event or if the counter is already ahead of
402 * the event. The minimum programming delta for the generic
403 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
405 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
407 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
410 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
411 struct clock_event_device
*evt
)
413 hpet_set_mode(mode
, evt
, 0);
416 static int hpet_legacy_next_event(unsigned long delta
,
417 struct clock_event_device
*evt
)
419 return hpet_next_event(delta
, evt
, 0);
425 #ifdef CONFIG_PCI_MSI
427 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
428 static struct hpet_dev
*hpet_devs
;
430 void hpet_msi_unmask(struct irq_data
*data
)
432 struct hpet_dev
*hdev
= data
->handler_data
;
436 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
437 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
438 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
441 void hpet_msi_mask(struct irq_data
*data
)
443 struct hpet_dev
*hdev
= data
->handler_data
;
447 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
448 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
449 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
452 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
454 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
455 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
458 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
460 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
461 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
465 static void hpet_msi_set_mode(enum clock_event_mode mode
,
466 struct clock_event_device
*evt
)
468 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
469 hpet_set_mode(mode
, evt
, hdev
->num
);
472 static int hpet_msi_next_event(unsigned long delta
,
473 struct clock_event_device
*evt
)
475 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
476 return hpet_next_event(delta
, evt
, hdev
->num
);
479 static int hpet_setup_msi_irq(unsigned int irq
)
481 if (arch_setup_hpet_msi(irq
, hpet_blockid
)) {
488 static int hpet_assign_irq(struct hpet_dev
*dev
)
492 irq
= create_irq_nr(0, -1);
496 irq_set_handler_data(irq
, dev
);
498 if (hpet_setup_msi_irq(irq
))
505 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
507 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
508 struct clock_event_device
*hevt
= &dev
->evt
;
510 if (!hevt
->event_handler
) {
511 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
516 hevt
->event_handler(hevt
);
520 static int hpet_setup_irq(struct hpet_dev
*dev
)
523 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
524 IRQF_TIMER
| IRQF_DISABLED
| IRQF_NOBALANCING
,
528 disable_irq(dev
->irq
);
529 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
530 enable_irq(dev
->irq
);
532 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
533 dev
->name
, dev
->irq
);
538 /* This should be called in specific @cpu */
539 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
541 struct clock_event_device
*evt
= &hdev
->evt
;
543 WARN_ON(cpu
!= smp_processor_id());
544 if (!(hdev
->flags
& HPET_DEV_VALID
))
547 if (hpet_setup_msi_irq(hdev
->irq
))
551 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
552 evt
->name
= hdev
->name
;
553 hpet_setup_irq(hdev
);
554 evt
->irq
= hdev
->irq
;
557 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
558 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
559 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
561 evt
->set_mode
= hpet_msi_set_mode
;
562 evt
->set_next_event
= hpet_msi_next_event
;
563 evt
->cpumask
= cpumask_of(hdev
->cpu
);
565 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
570 /* Reserve at least one timer for userspace (/dev/hpet) */
571 #define RESERVE_TIMERS 1
573 #define RESERVE_TIMERS 0
576 static void hpet_msi_capability_lookup(unsigned int start_timer
)
579 unsigned int num_timers
;
580 unsigned int num_timers_used
= 0;
583 if (hpet_msi_disable
)
586 if (boot_cpu_has(X86_FEATURE_ARAT
))
588 id
= hpet_readl(HPET_ID
);
590 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
591 num_timers
++; /* Value read out starts from 0 */
594 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
598 hpet_num_timers
= num_timers
;
600 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
601 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
602 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
604 /* Only consider HPET timer with MSI support */
605 if (!(cfg
& HPET_TN_FSB_CAP
))
609 if (cfg
& HPET_TN_PERIODIC_CAP
)
610 hdev
->flags
|= HPET_DEV_PERI_CAP
;
613 sprintf(hdev
->name
, "hpet%d", i
);
614 if (hpet_assign_irq(hdev
))
617 hdev
->flags
|= HPET_DEV_FSB_CAP
;
618 hdev
->flags
|= HPET_DEV_VALID
;
620 if (num_timers_used
== num_possible_cpus())
624 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
625 num_timers
, num_timers_used
);
629 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
636 for (i
= 0; i
< hpet_num_timers
; i
++) {
637 struct hpet_dev
*hdev
= &hpet_devs
[i
];
639 if (!(hdev
->flags
& HPET_DEV_VALID
))
642 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
643 hpet_reserve_timer(hd
, hdev
->num
);
648 static struct hpet_dev
*hpet_get_unused_timer(void)
655 for (i
= 0; i
< hpet_num_timers
; i
++) {
656 struct hpet_dev
*hdev
= &hpet_devs
[i
];
658 if (!(hdev
->flags
& HPET_DEV_VALID
))
660 if (test_and_set_bit(HPET_DEV_USED_BIT
,
661 (unsigned long *)&hdev
->flags
))
668 struct hpet_work_struct
{
669 struct delayed_work work
;
670 struct completion complete
;
673 static void hpet_work(struct work_struct
*w
)
675 struct hpet_dev
*hdev
;
676 int cpu
= smp_processor_id();
677 struct hpet_work_struct
*hpet_work
;
679 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
681 hdev
= hpet_get_unused_timer();
683 init_one_hpet_msi_clockevent(hdev
, cpu
);
685 complete(&hpet_work
->complete
);
688 static int hpet_cpuhp_notify(struct notifier_block
*n
,
689 unsigned long action
, void *hcpu
)
691 unsigned long cpu
= (unsigned long)hcpu
;
692 struct hpet_work_struct work
;
693 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
695 switch (action
& 0xf) {
697 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
698 init_completion(&work
.complete
);
699 /* FIXME: add schedule_work_on() */
700 schedule_delayed_work_on(cpu
, &work
.work
, 0);
701 wait_for_completion(&work
.complete
);
702 destroy_timer_on_stack(&work
.work
.timer
);
706 free_irq(hdev
->irq
, hdev
);
707 hdev
->flags
&= ~HPET_DEV_USED
;
708 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
716 static int hpet_setup_msi_irq(unsigned int irq
)
720 static void hpet_msi_capability_lookup(unsigned int start_timer
)
726 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
732 static int hpet_cpuhp_notify(struct notifier_block
*n
,
733 unsigned long action
, void *hcpu
)
741 * Clock source related code
743 static cycle_t
read_hpet(struct clocksource
*cs
)
745 return (cycle_t
)hpet_readl(HPET_COUNTER
);
748 static struct clocksource clocksource_hpet
= {
753 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
754 .resume
= hpet_resume_counter
,
756 .archdata
= { .vclock_mode
= VCLOCK_HPET
},
760 static int hpet_clocksource_register(void)
765 /* Start the counter */
766 hpet_restart_counter();
768 /* Verify whether hpet counter works */
769 t1
= hpet_readl(HPET_COUNTER
);
773 * We don't know the TSC frequency yet, but waiting for
774 * 200000 TSC cycles is safe:
781 } while ((now
- start
) < 200000UL);
783 if (t1
== hpet_readl(HPET_COUNTER
)) {
785 "HPET counter not counting. HPET disabled\n");
789 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
793 static u32
*hpet_boot_cfg
;
796 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
798 int __init
hpet_enable(void)
800 u32 hpet_period
, cfg
, id
;
802 unsigned int i
, last
;
804 if (!is_hpet_capable())
810 * Read the period and check for a sane value:
812 hpet_period
= hpet_readl(HPET_PERIOD
);
815 * AMD SB700 based systems with spread spectrum enabled use a
816 * SMM based HPET emulation to provide proper frequency
817 * setting. The SMM code is initialized with the first HPET
818 * register access and takes some time to complete. During
819 * this time the config register reads 0xffffffff. We check
820 * for max. 1000 loops whether the config register reads a non
821 * 0xffffffff value to make sure that HPET is up and running
822 * before we go further. A counting loop is safe, as the HPET
823 * access takes thousands of CPU cycles. On non SB700 based
824 * machines this check is only done once and has no side
827 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
830 "HPET config register value = 0xFFFFFFFF. "
836 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
840 * The period is a femto seconds value. Convert it to a
844 do_div(freq
, hpet_period
);
848 * Read the HPET ID register to retrieve the IRQ routing
849 * information and the number of channels
851 id
= hpet_readl(HPET_ID
);
854 last
= (id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
;
856 #ifdef CONFIG_HPET_EMULATE_RTC
858 * The legacy routing mode needs at least two channels, tick timer
859 * and the rtc emulation channel.
865 cfg
= hpet_readl(HPET_CFG
);
866 hpet_boot_cfg
= kmalloc((last
+ 2) * sizeof(*hpet_boot_cfg
),
869 *hpet_boot_cfg
= cfg
;
871 pr_warn("HPET initial state will not be saved\n");
872 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
873 hpet_writel(cfg
, HPET_CFG
);
875 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
878 for (i
= 0; i
<= last
; ++i
) {
879 cfg
= hpet_readl(HPET_Tn_CFG(i
));
881 hpet_boot_cfg
[i
+ 1] = cfg
;
882 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
883 hpet_writel(cfg
, HPET_Tn_CFG(i
));
884 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
885 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
886 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
888 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
893 if (hpet_clocksource_register())
896 if (id
& HPET_ID_LEGSUP
) {
897 hpet_legacy_clockevent_register();
903 hpet_clear_mapping();
909 * Needs to be late, as the reserve_timer code calls kalloc !
911 * Not a problem on i386 as hpet_enable is called from late_time_init,
912 * but on x86_64 it is necessary !
914 static __init
int hpet_late_init(void)
918 if (boot_hpet_disable
)
922 if (!force_hpet_address
)
925 hpet_address
= force_hpet_address
;
929 if (!hpet_virt_address
)
932 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
933 hpet_msi_capability_lookup(2);
935 hpet_msi_capability_lookup(0);
937 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
940 if (hpet_msi_disable
)
943 if (boot_cpu_has(X86_FEATURE_ARAT
))
946 for_each_online_cpu(cpu
) {
947 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
950 /* This notifier should be called after workqueue is ready */
951 hotcpu_notifier(hpet_cpuhp_notify
, -20);
955 fs_initcall(hpet_late_init
);
957 void hpet_disable(void)
959 if (is_hpet_capable() && hpet_virt_address
) {
960 unsigned int cfg
= hpet_readl(HPET_CFG
), id
, last
;
963 cfg
= *hpet_boot_cfg
;
964 else if (hpet_legacy_int_enabled
) {
965 cfg
&= ~HPET_CFG_LEGACY
;
966 hpet_legacy_int_enabled
= 0;
968 cfg
&= ~HPET_CFG_ENABLE
;
969 hpet_writel(cfg
, HPET_CFG
);
974 id
= hpet_readl(HPET_ID
);
975 last
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
977 for (id
= 0; id
<= last
; ++id
)
978 hpet_writel(hpet_boot_cfg
[id
+ 1], HPET_Tn_CFG(id
));
980 if (*hpet_boot_cfg
& HPET_CFG_ENABLE
)
981 hpet_writel(*hpet_boot_cfg
, HPET_CFG
);
985 #ifdef CONFIG_HPET_EMULATE_RTC
987 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
988 * is enabled, we support RTC interrupt functionality in software.
989 * RTC has 3 kinds of interrupts:
990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
994 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
995 * (1) and (2) above are implemented using polling at a frequency of
996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
997 * overhead. (DEFAULT_RTC_INT_FREQ)
998 * For (3), we use interrupts at 64Hz or user specified periodic
999 * frequency, whichever is higher.
1001 #include <linux/mc146818rtc.h>
1002 #include <linux/rtc.h>
1003 #include <asm/rtc.h>
1005 #define DEFAULT_RTC_INT_FREQ 64
1006 #define DEFAULT_RTC_SHIFT 6
1007 #define RTC_NUM_INTS 1
1009 static unsigned long hpet_rtc_flags
;
1010 static int hpet_prev_update_sec
;
1011 static struct rtc_time hpet_alarm_time
;
1012 static unsigned long hpet_pie_count
;
1013 static u32 hpet_t1_cmp
;
1014 static u32 hpet_default_delta
;
1015 static u32 hpet_pie_delta
;
1016 static unsigned long hpet_pie_limit
;
1018 static rtc_irq_handler irq_handler
;
1021 * Check that the hpet counter c1 is ahead of the c2
1023 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1025 return (s32
)(c2
- c1
) < 0;
1029 * Registers a IRQ handler.
1031 int hpet_register_irq_handler(rtc_irq_handler handler
)
1033 if (!is_hpet_enabled())
1038 irq_handler
= handler
;
1042 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1048 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1050 if (!is_hpet_enabled())
1056 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060 * is not supported by all HPET implementations for timer 1.
1062 * hpet_rtc_timer_init() is called when the rtc is initialized.
1064 int hpet_rtc_timer_init(void)
1066 unsigned int cfg
, cnt
, delta
;
1067 unsigned long flags
;
1069 if (!is_hpet_enabled())
1072 if (!hpet_default_delta
) {
1075 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1076 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1077 hpet_default_delta
= clc
;
1080 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1081 delta
= hpet_default_delta
;
1083 delta
= hpet_pie_delta
;
1085 local_irq_save(flags
);
1087 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1088 hpet_writel(cnt
, HPET_T1_CMP
);
1091 cfg
= hpet_readl(HPET_T1_CFG
);
1092 cfg
&= ~HPET_TN_PERIODIC
;
1093 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1094 hpet_writel(cfg
, HPET_T1_CFG
);
1096 local_irq_restore(flags
);
1100 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1102 static void hpet_disable_rtc_channel(void)
1105 cfg
= hpet_readl(HPET_T1_CFG
);
1106 cfg
&= ~HPET_TN_ENABLE
;
1107 hpet_writel(cfg
, HPET_T1_CFG
);
1111 * The functions below are called from rtc driver.
1112 * Return 0 if HPET is not being used.
1113 * Otherwise do the necessary changes and return 1.
1115 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1117 if (!is_hpet_enabled())
1120 hpet_rtc_flags
&= ~bit_mask
;
1121 if (unlikely(!hpet_rtc_flags
))
1122 hpet_disable_rtc_channel();
1126 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1128 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1130 unsigned long oldbits
= hpet_rtc_flags
;
1132 if (!is_hpet_enabled())
1135 hpet_rtc_flags
|= bit_mask
;
1137 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1138 hpet_prev_update_sec
= -1;
1141 hpet_rtc_timer_init();
1145 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1147 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1150 if (!is_hpet_enabled())
1153 hpet_alarm_time
.tm_hour
= hrs
;
1154 hpet_alarm_time
.tm_min
= min
;
1155 hpet_alarm_time
.tm_sec
= sec
;
1159 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1161 int hpet_set_periodic_freq(unsigned long freq
)
1165 if (!is_hpet_enabled())
1168 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1169 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1171 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1173 clc
>>= hpet_clockevent
.shift
;
1174 hpet_pie_delta
= clc
;
1179 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1181 int hpet_rtc_dropped_irq(void)
1183 return is_hpet_enabled();
1185 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1187 static void hpet_rtc_timer_reinit(void)
1192 if (unlikely(!hpet_rtc_flags
))
1193 hpet_disable_rtc_channel();
1195 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1196 delta
= hpet_default_delta
;
1198 delta
= hpet_pie_delta
;
1201 * Increment the comparator value until we are ahead of the
1205 hpet_t1_cmp
+= delta
;
1206 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1208 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1211 if (hpet_rtc_flags
& RTC_PIE
)
1212 hpet_pie_count
+= lost_ints
;
1213 if (printk_ratelimit())
1214 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1219 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1221 struct rtc_time curr_time
;
1222 unsigned long rtc_int_flag
= 0;
1224 hpet_rtc_timer_reinit();
1225 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1227 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1228 get_rtc_time(&curr_time
);
1230 if (hpet_rtc_flags
& RTC_UIE
&&
1231 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1232 if (hpet_prev_update_sec
>= 0)
1233 rtc_int_flag
= RTC_UF
;
1234 hpet_prev_update_sec
= curr_time
.tm_sec
;
1237 if (hpet_rtc_flags
& RTC_PIE
&&
1238 ++hpet_pie_count
>= hpet_pie_limit
) {
1239 rtc_int_flag
|= RTC_PF
;
1243 if (hpet_rtc_flags
& RTC_AIE
&&
1244 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1245 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1246 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1247 rtc_int_flag
|= RTC_AF
;
1250 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1252 irq_handler(rtc_int_flag
, dev_id
);
1256 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);