2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
37 #include <asm/kvm_para.h>
39 #include <asm/virtext.h>
42 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44 MODULE_AUTHOR("Qumranet");
45 MODULE_LICENSE("GPL");
47 static const struct x86_cpu_id svm_cpu_id
[] = {
48 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
51 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
53 #define IOPM_ALLOC_ORDER 2
54 #define MSRPM_ALLOC_ORDER 1
56 #define SEG_TYPE_LDT 2
57 #define SEG_TYPE_BUSY_TSS16 3
59 #define SVM_FEATURE_NPT (1 << 0)
60 #define SVM_FEATURE_LBRV (1 << 1)
61 #define SVM_FEATURE_SVML (1 << 2)
62 #define SVM_FEATURE_NRIP (1 << 3)
63 #define SVM_FEATURE_TSC_RATE (1 << 4)
64 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
65 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
66 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
67 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
70 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
71 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
76 #define TSC_RATIO_MIN 0x0000000000000001ULL
77 #define TSC_RATIO_MAX 0x000000ffffffffffULL
79 static bool erratum_383_found __read_mostly
;
81 static const u32 host_save_user_msrs
[] = {
83 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
86 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
89 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
99 /* These are the merged vectors */
102 /* gpa pointers to the real vectors */
106 /* A VMEXIT is required but not yet emulated */
109 /* cache for intercepts of the guest */
112 u32 intercept_exceptions
;
115 /* Nested Paging related state */
119 #define MSRPM_OFFSETS 16
120 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
123 * Set osvw_len to higher value when updated Revision Guides
124 * are published and we know what the new status bits are
126 static uint64_t osvw_len
= 4, osvw_status
;
129 struct kvm_vcpu vcpu
;
131 unsigned long vmcb_pa
;
132 struct svm_cpu_data
*svm_data
;
133 uint64_t asid_generation
;
134 uint64_t sysenter_esp
;
135 uint64_t sysenter_eip
;
139 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
151 struct nested_state nested
;
155 unsigned int3_injected
;
156 unsigned long int3_rip
;
162 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
163 #define TSC_RATIO_DEFAULT 0x0100000000ULL
165 #define MSR_INVALID 0xffffffffU
167 static const struct svm_direct_access_msrs
{
168 u32 index
; /* Index of the MSR */
169 bool always
; /* True if intercept is always on */
170 } direct_access_msrs
[] = {
171 { .index
= MSR_STAR
, .always
= true },
172 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
174 { .index
= MSR_GS_BASE
, .always
= true },
175 { .index
= MSR_FS_BASE
, .always
= true },
176 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
177 { .index
= MSR_LSTAR
, .always
= true },
178 { .index
= MSR_CSTAR
, .always
= true },
179 { .index
= MSR_SYSCALL_MASK
, .always
= true },
181 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
182 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
183 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
184 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
185 { .index
= MSR_INVALID
, .always
= false },
188 /* enable NPT for AMD64 and X86 with PAE */
189 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
190 static bool npt_enabled
= true;
192 static bool npt_enabled
;
195 /* allow nested paging (virtualized MMU) for all guests */
196 static int npt
= true;
197 module_param(npt
, int, S_IRUGO
);
199 /* allow nested virtualization in KVM/SVM */
200 static int nested
= true;
201 module_param(nested
, int, S_IRUGO
);
203 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
204 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
206 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
207 static int nested_svm_intercept(struct vcpu_svm
*svm
);
208 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
209 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
210 bool has_error_code
, u32 error_code
);
211 static u64
__scale_tsc(u64 ratio
, u64 tsc
);
214 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
215 pause filter count */
216 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
217 VMCB_ASID
, /* ASID */
218 VMCB_INTR
, /* int_ctl, int_vector */
219 VMCB_NPT
, /* npt_en, nCR3, gPAT */
220 VMCB_CR
, /* CR0, CR3, CR4, EFER */
221 VMCB_DR
, /* DR6, DR7 */
222 VMCB_DT
, /* GDT, IDT */
223 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
224 VMCB_CR2
, /* CR2 only */
225 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229 /* TPR and CR2 are always written before VMRUN */
230 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232 static inline void mark_all_dirty(struct vmcb
*vmcb
)
234 vmcb
->control
.clean
= 0;
237 static inline void mark_all_clean(struct vmcb
*vmcb
)
239 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
240 & ~VMCB_ALWAYS_DIRTY_MASK
;
243 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
245 vmcb
->control
.clean
&= ~(1 << bit
);
248 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
250 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
253 static void recalc_intercepts(struct vcpu_svm
*svm
)
255 struct vmcb_control_area
*c
, *h
;
256 struct nested_state
*g
;
258 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
260 if (!is_guest_mode(&svm
->vcpu
))
263 c
= &svm
->vmcb
->control
;
264 h
= &svm
->nested
.hsave
->control
;
267 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
268 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
269 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
270 c
->intercept
= h
->intercept
| g
->intercept
;
273 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
275 if (is_guest_mode(&svm
->vcpu
))
276 return svm
->nested
.hsave
;
281 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
283 struct vmcb
*vmcb
= get_host_vmcb(svm
);
285 vmcb
->control
.intercept_cr
|= (1U << bit
);
287 recalc_intercepts(svm
);
290 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
292 struct vmcb
*vmcb
= get_host_vmcb(svm
);
294 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
296 recalc_intercepts(svm
);
299 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
301 struct vmcb
*vmcb
= get_host_vmcb(svm
);
303 return vmcb
->control
.intercept_cr
& (1U << bit
);
306 static inline void set_dr_intercept(struct vcpu_svm
*svm
, int bit
)
308 struct vmcb
*vmcb
= get_host_vmcb(svm
);
310 vmcb
->control
.intercept_dr
|= (1U << bit
);
312 recalc_intercepts(svm
);
315 static inline void clr_dr_intercept(struct vcpu_svm
*svm
, int bit
)
317 struct vmcb
*vmcb
= get_host_vmcb(svm
);
319 vmcb
->control
.intercept_dr
&= ~(1U << bit
);
321 recalc_intercepts(svm
);
324 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
326 struct vmcb
*vmcb
= get_host_vmcb(svm
);
328 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
330 recalc_intercepts(svm
);
333 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
335 struct vmcb
*vmcb
= get_host_vmcb(svm
);
337 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
339 recalc_intercepts(svm
);
342 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
344 struct vmcb
*vmcb
= get_host_vmcb(svm
);
346 vmcb
->control
.intercept
|= (1ULL << bit
);
348 recalc_intercepts(svm
);
351 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
353 struct vmcb
*vmcb
= get_host_vmcb(svm
);
355 vmcb
->control
.intercept
&= ~(1ULL << bit
);
357 recalc_intercepts(svm
);
360 static inline void enable_gif(struct vcpu_svm
*svm
)
362 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
365 static inline void disable_gif(struct vcpu_svm
*svm
)
367 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
370 static inline bool gif_set(struct vcpu_svm
*svm
)
372 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
375 static unsigned long iopm_base
;
377 struct kvm_ldttss_desc
{
380 unsigned base1
:8, type
:5, dpl
:2, p
:1;
381 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
384 } __attribute__((packed
));
386 struct svm_cpu_data
{
392 struct kvm_ldttss_desc
*tss_desc
;
394 struct page
*save_area
;
397 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
399 struct svm_init_data
{
404 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
406 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
407 #define MSRS_RANGE_SIZE 2048
408 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
410 static u32
svm_msrpm_offset(u32 msr
)
415 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
416 if (msr
< msrpm_ranges
[i
] ||
417 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
420 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
421 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
423 /* Now we have the u8 offset - but need the u32 offset */
427 /* MSR not in any range */
431 #define MAX_INST_SIZE 15
433 static inline void clgi(void)
435 asm volatile (__ex(SVM_CLGI
));
438 static inline void stgi(void)
440 asm volatile (__ex(SVM_STGI
));
443 static inline void invlpga(unsigned long addr
, u32 asid
)
445 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
448 static int get_npt_level(void)
451 return PT64_ROOT_LEVEL
;
453 return PT32E_ROOT_LEVEL
;
457 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
459 vcpu
->arch
.efer
= efer
;
460 if (!npt_enabled
&& !(efer
& EFER_LMA
))
463 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
464 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
467 static int is_external_interrupt(u32 info
)
469 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
470 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
473 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
475 struct vcpu_svm
*svm
= to_svm(vcpu
);
478 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
479 ret
|= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
483 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
485 struct vcpu_svm
*svm
= to_svm(vcpu
);
488 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
490 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
494 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
496 struct vcpu_svm
*svm
= to_svm(vcpu
);
498 if (svm
->vmcb
->control
.next_rip
!= 0)
499 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
501 if (!svm
->next_rip
) {
502 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
504 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
507 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
508 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
509 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
511 kvm_rip_write(vcpu
, svm
->next_rip
);
512 svm_set_interrupt_shadow(vcpu
, 0);
515 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
516 bool has_error_code
, u32 error_code
,
519 struct vcpu_svm
*svm
= to_svm(vcpu
);
522 * If we are within a nested VM we'd better #VMEXIT and let the guest
523 * handle the exception
526 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
529 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
530 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
533 * For guest debugging where we have to reinject #BP if some
534 * INT3 is guest-owned:
535 * Emulate nRIP by moving RIP forward. Will fail if injection
536 * raises a fault that is not intercepted. Still better than
537 * failing in all cases.
539 skip_emulated_instruction(&svm
->vcpu
);
540 rip
= kvm_rip_read(&svm
->vcpu
);
541 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
542 svm
->int3_injected
= rip
- old_rip
;
545 svm
->vmcb
->control
.event_inj
= nr
547 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
548 | SVM_EVTINJ_TYPE_EXEPT
;
549 svm
->vmcb
->control
.event_inj_err
= error_code
;
552 static void svm_init_erratum_383(void)
558 if (!cpu_has_amd_erratum(amd_erratum_383
))
561 /* Use _safe variants to not break nested virtualization */
562 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
568 low
= lower_32_bits(val
);
569 high
= upper_32_bits(val
);
571 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
573 erratum_383_found
= true;
576 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
579 * Guests should see errata 400 and 415 as fixed (assuming that
580 * HLT and IO instructions are intercepted).
582 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
583 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
586 * By increasing VCPU's osvw.length to 3 we are telling the guest that
587 * all osvw.status bits inside that length, including bit 0 (which is
588 * reserved for erratum 298), are valid. However, if host processor's
589 * osvw_len is 0 then osvw_status[0] carries no information. We need to
590 * be conservative here and therefore we tell the guest that erratum 298
591 * is present (because we really don't know).
593 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
594 vcpu
->arch
.osvw
.status
|= 1;
597 static int has_svm(void)
601 if (!cpu_has_svm(&msg
)) {
602 printk(KERN_INFO
"has_svm: %s\n", msg
);
609 static void svm_hardware_disable(void *garbage
)
611 /* Make sure we clean up behind us */
612 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
613 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
617 amd_pmu_disable_virt();
620 static int svm_hardware_enable(void *garbage
)
623 struct svm_cpu_data
*sd
;
625 struct desc_ptr gdt_descr
;
626 struct desc_struct
*gdt
;
627 int me
= raw_smp_processor_id();
629 rdmsrl(MSR_EFER
, efer
);
630 if (efer
& EFER_SVME
)
634 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
637 sd
= per_cpu(svm_data
, me
);
639 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
643 sd
->asid_generation
= 1;
644 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
645 sd
->next_asid
= sd
->max_asid
+ 1;
647 native_store_gdt(&gdt_descr
);
648 gdt
= (struct desc_struct
*)gdt_descr
.address
;
649 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
651 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
653 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
655 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
656 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
657 __get_cpu_var(current_tsc_ratio
) = TSC_RATIO_DEFAULT
;
664 * Note that it is possible to have a system with mixed processor
665 * revisions and therefore different OSVW bits. If bits are not the same
666 * on different processors then choose the worst case (i.e. if erratum
667 * is present on one processor and not on another then assume that the
668 * erratum is present everywhere).
670 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
671 uint64_t len
, status
= 0;
674 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
676 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
680 osvw_status
= osvw_len
= 0;
684 osvw_status
|= status
;
685 osvw_status
&= (1ULL << osvw_len
) - 1;
688 osvw_status
= osvw_len
= 0;
690 svm_init_erratum_383();
692 amd_pmu_enable_virt();
697 static void svm_cpu_uninit(int cpu
)
699 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
704 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
705 __free_page(sd
->save_area
);
709 static int svm_cpu_init(int cpu
)
711 struct svm_cpu_data
*sd
;
714 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
718 sd
->save_area
= alloc_page(GFP_KERNEL
);
723 per_cpu(svm_data
, cpu
) = sd
;
733 static bool valid_msr_intercept(u32 index
)
737 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
738 if (direct_access_msrs
[i
].index
== index
)
744 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
747 u8 bit_read
, bit_write
;
752 * If this warning triggers extend the direct_access_msrs list at the
753 * beginning of the file
755 WARN_ON(!valid_msr_intercept(msr
));
757 offset
= svm_msrpm_offset(msr
);
758 bit_read
= 2 * (msr
& 0x0f);
759 bit_write
= 2 * (msr
& 0x0f) + 1;
762 BUG_ON(offset
== MSR_INVALID
);
764 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
765 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
770 static void svm_vcpu_init_msrpm(u32
*msrpm
)
774 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
776 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
777 if (!direct_access_msrs
[i
].always
)
780 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
784 static void add_msr_offset(u32 offset
)
788 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
790 /* Offset already in list? */
791 if (msrpm_offsets
[i
] == offset
)
794 /* Slot used by another offset? */
795 if (msrpm_offsets
[i
] != MSR_INVALID
)
798 /* Add offset to list */
799 msrpm_offsets
[i
] = offset
;
805 * If this BUG triggers the msrpm_offsets table has an overflow. Just
806 * increase MSRPM_OFFSETS in this case.
811 static void init_msrpm_offsets(void)
815 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
817 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
820 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
821 BUG_ON(offset
== MSR_INVALID
);
823 add_msr_offset(offset
);
827 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
829 u32
*msrpm
= svm
->msrpm
;
831 svm
->vmcb
->control
.lbr_ctl
= 1;
832 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
833 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
834 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
835 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
838 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
840 u32
*msrpm
= svm
->msrpm
;
842 svm
->vmcb
->control
.lbr_ctl
= 0;
843 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
844 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
845 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
846 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
849 static __init
int svm_hardware_setup(void)
852 struct page
*iopm_pages
;
856 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
861 iopm_va
= page_address(iopm_pages
);
862 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
863 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
865 init_msrpm_offsets();
867 if (boot_cpu_has(X86_FEATURE_NX
))
868 kvm_enable_efer_bits(EFER_NX
);
870 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
871 kvm_enable_efer_bits(EFER_FFXSR
);
873 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
876 kvm_has_tsc_control
= true;
879 * Make sure the user can only configure tsc_khz values that
880 * fit into a signed integer.
881 * A min value is not calculated needed because it will always
882 * be 1 on all machines and a value of 0 is used to disable
883 * tsc-scaling for the vcpu.
885 max
= min(0x7fffffffULL
, __scale_tsc(tsc_khz
, TSC_RATIO_MAX
));
887 kvm_max_guest_tsc_khz
= max
;
891 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
892 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
895 for_each_possible_cpu(cpu
) {
896 r
= svm_cpu_init(cpu
);
901 if (!boot_cpu_has(X86_FEATURE_NPT
))
904 if (npt_enabled
&& !npt
) {
905 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
910 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
918 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
923 static __exit
void svm_hardware_unsetup(void)
927 for_each_possible_cpu(cpu
)
930 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
934 static void init_seg(struct vmcb_seg
*seg
)
937 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
938 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
943 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
946 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
951 static u64
__scale_tsc(u64 ratio
, u64 tsc
)
953 u64 mult
, frac
, _tsc
;
956 frac
= ratio
& ((1ULL << 32) - 1);
960 _tsc
+= (tsc
>> 32) * frac
;
961 _tsc
+= ((tsc
& ((1ULL << 32) - 1)) * frac
) >> 32;
966 static u64
svm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
968 struct vcpu_svm
*svm
= to_svm(vcpu
);
971 if (svm
->tsc_ratio
!= TSC_RATIO_DEFAULT
)
972 _tsc
= __scale_tsc(svm
->tsc_ratio
, tsc
);
977 static void svm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
979 struct vcpu_svm
*svm
= to_svm(vcpu
);
983 /* Guest TSC same frequency as host TSC? */
985 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
989 /* TSC scaling supported? */
990 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
991 if (user_tsc_khz
> tsc_khz
) {
992 vcpu
->arch
.tsc_catchup
= 1;
993 vcpu
->arch
.tsc_always_catchup
= 1;
995 WARN(1, "user requested TSC rate below hardware speed\n");
1001 /* TSC scaling required - calculate ratio */
1003 do_div(ratio
, tsc_khz
);
1005 if (ratio
== 0 || ratio
& TSC_RATIO_RSVD
) {
1006 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1010 svm
->tsc_ratio
= ratio
;
1013 static u64
svm_read_tsc_offset(struct kvm_vcpu
*vcpu
)
1015 struct vcpu_svm
*svm
= to_svm(vcpu
);
1017 return svm
->vmcb
->control
.tsc_offset
;
1020 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1022 struct vcpu_svm
*svm
= to_svm(vcpu
);
1023 u64 g_tsc_offset
= 0;
1025 if (is_guest_mode(vcpu
)) {
1026 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1027 svm
->nested
.hsave
->control
.tsc_offset
;
1028 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1031 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1033 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1036 static void svm_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
1038 struct vcpu_svm
*svm
= to_svm(vcpu
);
1040 WARN_ON(adjustment
< 0);
1042 adjustment
= svm_scale_tsc(vcpu
, adjustment
);
1044 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
1045 if (is_guest_mode(vcpu
))
1046 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
1047 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1050 static u64
svm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1054 tsc
= svm_scale_tsc(vcpu
, native_read_tsc());
1056 return target_tsc
- tsc
;
1059 static void init_vmcb(struct vcpu_svm
*svm
)
1061 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1062 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1064 svm
->vcpu
.fpu_active
= 1;
1065 svm
->vcpu
.arch
.hflags
= 0;
1067 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1068 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1069 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1070 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1071 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1072 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1073 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1075 set_dr_intercept(svm
, INTERCEPT_DR0_READ
);
1076 set_dr_intercept(svm
, INTERCEPT_DR1_READ
);
1077 set_dr_intercept(svm
, INTERCEPT_DR2_READ
);
1078 set_dr_intercept(svm
, INTERCEPT_DR3_READ
);
1079 set_dr_intercept(svm
, INTERCEPT_DR4_READ
);
1080 set_dr_intercept(svm
, INTERCEPT_DR5_READ
);
1081 set_dr_intercept(svm
, INTERCEPT_DR6_READ
);
1082 set_dr_intercept(svm
, INTERCEPT_DR7_READ
);
1084 set_dr_intercept(svm
, INTERCEPT_DR0_WRITE
);
1085 set_dr_intercept(svm
, INTERCEPT_DR1_WRITE
);
1086 set_dr_intercept(svm
, INTERCEPT_DR2_WRITE
);
1087 set_dr_intercept(svm
, INTERCEPT_DR3_WRITE
);
1088 set_dr_intercept(svm
, INTERCEPT_DR4_WRITE
);
1089 set_dr_intercept(svm
, INTERCEPT_DR5_WRITE
);
1090 set_dr_intercept(svm
, INTERCEPT_DR6_WRITE
);
1091 set_dr_intercept(svm
, INTERCEPT_DR7_WRITE
);
1093 set_exception_intercept(svm
, PF_VECTOR
);
1094 set_exception_intercept(svm
, UD_VECTOR
);
1095 set_exception_intercept(svm
, MC_VECTOR
);
1097 set_intercept(svm
, INTERCEPT_INTR
);
1098 set_intercept(svm
, INTERCEPT_NMI
);
1099 set_intercept(svm
, INTERCEPT_SMI
);
1100 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1101 set_intercept(svm
, INTERCEPT_RDPMC
);
1102 set_intercept(svm
, INTERCEPT_CPUID
);
1103 set_intercept(svm
, INTERCEPT_INVD
);
1104 set_intercept(svm
, INTERCEPT_HLT
);
1105 set_intercept(svm
, INTERCEPT_INVLPG
);
1106 set_intercept(svm
, INTERCEPT_INVLPGA
);
1107 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1108 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1109 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1110 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1111 set_intercept(svm
, INTERCEPT_VMRUN
);
1112 set_intercept(svm
, INTERCEPT_VMMCALL
);
1113 set_intercept(svm
, INTERCEPT_VMLOAD
);
1114 set_intercept(svm
, INTERCEPT_VMSAVE
);
1115 set_intercept(svm
, INTERCEPT_STGI
);
1116 set_intercept(svm
, INTERCEPT_CLGI
);
1117 set_intercept(svm
, INTERCEPT_SKINIT
);
1118 set_intercept(svm
, INTERCEPT_WBINVD
);
1119 set_intercept(svm
, INTERCEPT_MONITOR
);
1120 set_intercept(svm
, INTERCEPT_MWAIT
);
1121 set_intercept(svm
, INTERCEPT_XSETBV
);
1123 control
->iopm_base_pa
= iopm_base
;
1124 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1125 control
->int_ctl
= V_INTR_MASKING_MASK
;
1127 init_seg(&save
->es
);
1128 init_seg(&save
->ss
);
1129 init_seg(&save
->ds
);
1130 init_seg(&save
->fs
);
1131 init_seg(&save
->gs
);
1133 save
->cs
.selector
= 0xf000;
1134 /* Executable/Readable Code Segment */
1135 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1136 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1137 save
->cs
.limit
= 0xffff;
1139 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1140 * be consistent with it.
1142 * Replace when we have real mode working for vmx.
1144 save
->cs
.base
= 0xf0000;
1146 save
->gdtr
.limit
= 0xffff;
1147 save
->idtr
.limit
= 0xffff;
1149 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1150 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1152 svm_set_efer(&svm
->vcpu
, 0);
1153 save
->dr6
= 0xffff0ff0;
1154 kvm_set_rflags(&svm
->vcpu
, 2);
1155 save
->rip
= 0x0000fff0;
1156 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1159 * This is the guest-visible cr0 value.
1160 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1162 svm
->vcpu
.arch
.cr0
= 0;
1163 (void)kvm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1165 save
->cr4
= X86_CR4_PAE
;
1169 /* Setup VMCB for Nested Paging */
1170 control
->nested_ctl
= 1;
1171 clr_intercept(svm
, INTERCEPT_INVLPG
);
1172 clr_exception_intercept(svm
, PF_VECTOR
);
1173 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1174 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1175 save
->g_pat
= 0x0007040600070406ULL
;
1179 svm
->asid_generation
= 0;
1181 svm
->nested
.vmcb
= 0;
1182 svm
->vcpu
.arch
.hflags
= 0;
1184 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1185 control
->pause_filter_count
= 3000;
1186 set_intercept(svm
, INTERCEPT_PAUSE
);
1189 mark_all_dirty(svm
->vmcb
);
1194 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
1196 struct vcpu_svm
*svm
= to_svm(vcpu
);
1202 if (!kvm_vcpu_is_bsp(vcpu
)) {
1203 kvm_rip_write(vcpu
, 0);
1204 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
1205 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
1208 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
);
1209 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1214 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1216 struct vcpu_svm
*svm
;
1218 struct page
*msrpm_pages
;
1219 struct page
*hsave_page
;
1220 struct page
*nested_msrpm_pages
;
1223 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1229 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1231 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1236 page
= alloc_page(GFP_KERNEL
);
1240 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1244 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1245 if (!nested_msrpm_pages
)
1248 hsave_page
= alloc_page(GFP_KERNEL
);
1252 svm
->nested
.hsave
= page_address(hsave_page
);
1254 svm
->msrpm
= page_address(msrpm_pages
);
1255 svm_vcpu_init_msrpm(svm
->msrpm
);
1257 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1258 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1260 svm
->vmcb
= page_address(page
);
1261 clear_page(svm
->vmcb
);
1262 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1263 svm
->asid_generation
= 0;
1266 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1267 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
1268 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1270 svm_init_osvw(&svm
->vcpu
);
1275 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1277 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1281 kvm_vcpu_uninit(&svm
->vcpu
);
1283 kmem_cache_free(kvm_vcpu_cache
, svm
);
1285 return ERR_PTR(err
);
1288 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1290 struct vcpu_svm
*svm
= to_svm(vcpu
);
1292 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1293 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1294 __free_page(virt_to_page(svm
->nested
.hsave
));
1295 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1296 kvm_vcpu_uninit(vcpu
);
1297 kmem_cache_free(kvm_vcpu_cache
, svm
);
1300 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1302 struct vcpu_svm
*svm
= to_svm(vcpu
);
1305 if (unlikely(cpu
!= vcpu
->cpu
)) {
1306 svm
->asid_generation
= 0;
1307 mark_all_dirty(svm
->vmcb
);
1310 #ifdef CONFIG_X86_64
1311 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1313 savesegment(fs
, svm
->host
.fs
);
1314 savesegment(gs
, svm
->host
.gs
);
1315 svm
->host
.ldt
= kvm_read_ldt();
1317 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1318 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1320 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
) &&
1321 svm
->tsc_ratio
!= __get_cpu_var(current_tsc_ratio
)) {
1322 __get_cpu_var(current_tsc_ratio
) = svm
->tsc_ratio
;
1323 wrmsrl(MSR_AMD64_TSC_RATIO
, svm
->tsc_ratio
);
1327 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1329 struct vcpu_svm
*svm
= to_svm(vcpu
);
1332 ++vcpu
->stat
.host_state_reload
;
1333 kvm_load_ldt(svm
->host
.ldt
);
1334 #ifdef CONFIG_X86_64
1335 loadsegment(fs
, svm
->host
.fs
);
1336 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1337 load_gs_index(svm
->host
.gs
);
1339 #ifdef CONFIG_X86_32_LAZY_GS
1340 loadsegment(gs
, svm
->host
.gs
);
1343 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1344 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1347 static void svm_update_cpl(struct kvm_vcpu
*vcpu
)
1349 struct vcpu_svm
*svm
= to_svm(vcpu
);
1352 if (!is_protmode(vcpu
))
1354 else if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_VM
)
1357 cpl
= svm
->vmcb
->save
.cs
.selector
& 0x3;
1359 svm
->vmcb
->save
.cpl
= cpl
;
1362 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1364 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1367 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1369 unsigned long old_rflags
= to_svm(vcpu
)->vmcb
->save
.rflags
;
1371 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1372 if ((old_rflags
^ rflags
) & X86_EFLAGS_VM
)
1373 svm_update_cpl(vcpu
);
1376 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1379 case VCPU_EXREG_PDPTR
:
1380 BUG_ON(!npt_enabled
);
1381 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1388 static void svm_set_vintr(struct vcpu_svm
*svm
)
1390 set_intercept(svm
, INTERCEPT_VINTR
);
1393 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1395 clr_intercept(svm
, INTERCEPT_VINTR
);
1398 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1400 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1403 case VCPU_SREG_CS
: return &save
->cs
;
1404 case VCPU_SREG_DS
: return &save
->ds
;
1405 case VCPU_SREG_ES
: return &save
->es
;
1406 case VCPU_SREG_FS
: return &save
->fs
;
1407 case VCPU_SREG_GS
: return &save
->gs
;
1408 case VCPU_SREG_SS
: return &save
->ss
;
1409 case VCPU_SREG_TR
: return &save
->tr
;
1410 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1416 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1418 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1423 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1424 struct kvm_segment
*var
, int seg
)
1426 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1428 var
->base
= s
->base
;
1429 var
->limit
= s
->limit
;
1430 var
->selector
= s
->selector
;
1431 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1432 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1433 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1434 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1435 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1436 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1437 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1438 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
1441 * AMD's VMCB does not have an explicit unusable field, so emulate it
1442 * for cross vendor migration purposes by "not present"
1444 var
->unusable
= !var
->present
|| (var
->type
== 0);
1449 * SVM always stores 0 for the 'G' bit in the CS selector in
1450 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1451 * Intel's VMENTRY has a check on the 'G' bit.
1453 var
->g
= s
->limit
> 0xfffff;
1457 * Work around a bug where the busy flag in the tr selector
1467 * The accessed bit must always be set in the segment
1468 * descriptor cache, although it can be cleared in the
1469 * descriptor, the cached bit always remains at 1. Since
1470 * Intel has a check on this, set it here to support
1471 * cross-vendor migration.
1478 * On AMD CPUs sometimes the DB bit in the segment
1479 * descriptor is left as 1, although the whole segment has
1480 * been made unusable. Clear it here to pass an Intel VMX
1481 * entry check when cross vendor migrating.
1489 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1491 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1496 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1498 struct vcpu_svm
*svm
= to_svm(vcpu
);
1500 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1501 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1504 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1506 struct vcpu_svm
*svm
= to_svm(vcpu
);
1508 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1509 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1510 mark_dirty(svm
->vmcb
, VMCB_DT
);
1513 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1515 struct vcpu_svm
*svm
= to_svm(vcpu
);
1517 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1518 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1521 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1523 struct vcpu_svm
*svm
= to_svm(vcpu
);
1525 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1526 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1527 mark_dirty(svm
->vmcb
, VMCB_DT
);
1530 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1534 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1538 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1542 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1544 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1545 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1547 if (!svm
->vcpu
.fpu_active
)
1548 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1550 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1551 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1553 mark_dirty(svm
->vmcb
, VMCB_CR
);
1555 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1556 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1557 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1559 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1560 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1564 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1566 struct vcpu_svm
*svm
= to_svm(vcpu
);
1568 #ifdef CONFIG_X86_64
1569 if (vcpu
->arch
.efer
& EFER_LME
) {
1570 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1571 vcpu
->arch
.efer
|= EFER_LMA
;
1572 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1575 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1576 vcpu
->arch
.efer
&= ~EFER_LMA
;
1577 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1581 vcpu
->arch
.cr0
= cr0
;
1584 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1586 if (!vcpu
->fpu_active
)
1589 * re-enable caching here because the QEMU bios
1590 * does not do it - this results in some delay at
1593 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1594 svm
->vmcb
->save
.cr0
= cr0
;
1595 mark_dirty(svm
->vmcb
, VMCB_CR
);
1596 update_cr0_intercept(svm
);
1599 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1601 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1602 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1604 if (cr4
& X86_CR4_VMXE
)
1607 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1608 svm_flush_tlb(vcpu
);
1610 vcpu
->arch
.cr4
= cr4
;
1613 cr4
|= host_cr4_mce
;
1614 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1615 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1619 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1620 struct kvm_segment
*var
, int seg
)
1622 struct vcpu_svm
*svm
= to_svm(vcpu
);
1623 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1625 s
->base
= var
->base
;
1626 s
->limit
= var
->limit
;
1627 s
->selector
= var
->selector
;
1631 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1632 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1633 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1634 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1635 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1636 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1637 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1638 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1640 if (seg
== VCPU_SREG_CS
)
1641 svm_update_cpl(vcpu
);
1643 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1646 static void update_db_bp_intercept(struct kvm_vcpu
*vcpu
)
1648 struct vcpu_svm
*svm
= to_svm(vcpu
);
1650 clr_exception_intercept(svm
, DB_VECTOR
);
1651 clr_exception_intercept(svm
, BP_VECTOR
);
1653 if (svm
->nmi_singlestep
)
1654 set_exception_intercept(svm
, DB_VECTOR
);
1656 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1657 if (vcpu
->guest_debug
&
1658 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1659 set_exception_intercept(svm
, DB_VECTOR
);
1660 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1661 set_exception_intercept(svm
, BP_VECTOR
);
1663 vcpu
->guest_debug
= 0;
1666 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1668 if (sd
->next_asid
> sd
->max_asid
) {
1669 ++sd
->asid_generation
;
1671 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1674 svm
->asid_generation
= sd
->asid_generation
;
1675 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1677 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1680 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1682 struct vcpu_svm
*svm
= to_svm(vcpu
);
1684 svm
->vmcb
->save
.dr7
= value
;
1685 mark_dirty(svm
->vmcb
, VMCB_DR
);
1688 static int pf_interception(struct vcpu_svm
*svm
)
1690 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1694 switch (svm
->apf_reason
) {
1696 error_code
= svm
->vmcb
->control
.exit_info_1
;
1698 trace_kvm_page_fault(fault_address
, error_code
);
1699 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1700 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1701 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1702 svm
->vmcb
->control
.insn_bytes
,
1703 svm
->vmcb
->control
.insn_len
);
1705 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1706 svm
->apf_reason
= 0;
1707 local_irq_disable();
1708 kvm_async_pf_task_wait(fault_address
);
1711 case KVM_PV_REASON_PAGE_READY
:
1712 svm
->apf_reason
= 0;
1713 local_irq_disable();
1714 kvm_async_pf_task_wake(fault_address
);
1721 static int db_interception(struct vcpu_svm
*svm
)
1723 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1725 if (!(svm
->vcpu
.guest_debug
&
1726 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1727 !svm
->nmi_singlestep
) {
1728 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1732 if (svm
->nmi_singlestep
) {
1733 svm
->nmi_singlestep
= false;
1734 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1735 svm
->vmcb
->save
.rflags
&=
1736 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1737 update_db_bp_intercept(&svm
->vcpu
);
1740 if (svm
->vcpu
.guest_debug
&
1741 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1742 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1743 kvm_run
->debug
.arch
.pc
=
1744 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1745 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1752 static int bp_interception(struct vcpu_svm
*svm
)
1754 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1756 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1757 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1758 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1762 static int ud_interception(struct vcpu_svm
*svm
)
1766 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1767 if (er
!= EMULATE_DONE
)
1768 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1772 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1774 struct vcpu_svm
*svm
= to_svm(vcpu
);
1776 clr_exception_intercept(svm
, NM_VECTOR
);
1778 svm
->vcpu
.fpu_active
= 1;
1779 update_cr0_intercept(svm
);
1782 static int nm_interception(struct vcpu_svm
*svm
)
1784 svm_fpu_activate(&svm
->vcpu
);
1788 static bool is_erratum_383(void)
1793 if (!erratum_383_found
)
1796 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1800 /* Bit 62 may or may not be set for this mce */
1801 value
&= ~(1ULL << 62);
1803 if (value
!= 0xb600000000010015ULL
)
1806 /* Clear MCi_STATUS registers */
1807 for (i
= 0; i
< 6; ++i
)
1808 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1810 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1814 value
&= ~(1ULL << 2);
1815 low
= lower_32_bits(value
);
1816 high
= upper_32_bits(value
);
1818 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1821 /* Flush tlb to evict multi-match entries */
1827 static void svm_handle_mce(struct vcpu_svm
*svm
)
1829 if (is_erratum_383()) {
1831 * Erratum 383 triggered. Guest state is corrupt so kill the
1834 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1836 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1842 * On an #MC intercept the MCE handler is not called automatically in
1843 * the host. So do it by hand here.
1847 /* not sure if we ever come back to this point */
1852 static int mc_interception(struct vcpu_svm
*svm
)
1857 static int shutdown_interception(struct vcpu_svm
*svm
)
1859 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1862 * VMCB is undefined after a SHUTDOWN intercept
1863 * so reinitialize it.
1865 clear_page(svm
->vmcb
);
1868 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1872 static int io_interception(struct vcpu_svm
*svm
)
1874 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1875 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1876 int size
, in
, string
;
1879 ++svm
->vcpu
.stat
.io_exits
;
1880 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1881 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1883 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1885 port
= io_info
>> 16;
1886 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1887 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1888 skip_emulated_instruction(&svm
->vcpu
);
1890 return kvm_fast_pio_out(vcpu
, size
, port
);
1893 static int nmi_interception(struct vcpu_svm
*svm
)
1898 static int intr_interception(struct vcpu_svm
*svm
)
1900 ++svm
->vcpu
.stat
.irq_exits
;
1904 static int nop_on_interception(struct vcpu_svm
*svm
)
1909 static int halt_interception(struct vcpu_svm
*svm
)
1911 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1912 skip_emulated_instruction(&svm
->vcpu
);
1913 return kvm_emulate_halt(&svm
->vcpu
);
1916 static int vmmcall_interception(struct vcpu_svm
*svm
)
1918 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1919 skip_emulated_instruction(&svm
->vcpu
);
1920 kvm_emulate_hypercall(&svm
->vcpu
);
1924 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1926 struct vcpu_svm
*svm
= to_svm(vcpu
);
1928 return svm
->nested
.nested_cr3
;
1931 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
1933 struct vcpu_svm
*svm
= to_svm(vcpu
);
1934 u64 cr3
= svm
->nested
.nested_cr3
;
1938 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa_to_gfn(cr3
), &pdpte
,
1939 offset_in_page(cr3
) + index
* 8, 8);
1945 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1948 struct vcpu_svm
*svm
= to_svm(vcpu
);
1950 svm
->vmcb
->control
.nested_cr3
= root
;
1951 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1952 svm_flush_tlb(vcpu
);
1955 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1956 struct x86_exception
*fault
)
1958 struct vcpu_svm
*svm
= to_svm(vcpu
);
1960 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1961 svm
->vmcb
->control
.exit_code_hi
= 0;
1962 svm
->vmcb
->control
.exit_info_1
= fault
->error_code
;
1963 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1965 nested_svm_vmexit(svm
);
1968 static int nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
1972 r
= kvm_init_shadow_mmu(vcpu
, &vcpu
->arch
.mmu
);
1974 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
1975 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
1976 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
1977 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
1978 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
1979 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
1984 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
1986 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
1989 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1991 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
1992 || !is_paging(&svm
->vcpu
)) {
1993 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1997 if (svm
->vmcb
->save
.cpl
) {
1998 kvm_inject_gp(&svm
->vcpu
, 0);
2005 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
2006 bool has_error_code
, u32 error_code
)
2010 if (!is_guest_mode(&svm
->vcpu
))
2013 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
2014 svm
->vmcb
->control
.exit_code_hi
= 0;
2015 svm
->vmcb
->control
.exit_info_1
= error_code
;
2016 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
2018 vmexit
= nested_svm_intercept(svm
);
2019 if (vmexit
== NESTED_EXIT_DONE
)
2020 svm
->nested
.exit_required
= true;
2025 /* This function returns true if it is save to enable the irq window */
2026 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
2028 if (!is_guest_mode(&svm
->vcpu
))
2031 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2034 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
2038 * if vmexit was already requested (by intercepted exception
2039 * for instance) do not overwrite it with "external interrupt"
2042 if (svm
->nested
.exit_required
)
2045 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
2046 svm
->vmcb
->control
.exit_info_1
= 0;
2047 svm
->vmcb
->control
.exit_info_2
= 0;
2049 if (svm
->nested
.intercept
& 1ULL) {
2051 * The #vmexit can't be emulated here directly because this
2052 * code path runs with irqs and preemption disabled. A
2053 * #vmexit emulation might sleep. Only signal request for
2056 svm
->nested
.exit_required
= true;
2057 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2064 /* This function returns true if it is save to enable the nmi window */
2065 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2067 if (!is_guest_mode(&svm
->vcpu
))
2070 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2073 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2074 svm
->nested
.exit_required
= true;
2079 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2085 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
2086 if (is_error_page(page
))
2094 kvm_inject_gp(&svm
->vcpu
, 0);
2099 static void nested_svm_unmap(struct page
*page
)
2102 kvm_release_page_dirty(page
);
2105 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2111 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2112 return NESTED_EXIT_HOST
;
2114 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2115 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2119 if (kvm_read_guest(svm
->vcpu
.kvm
, gpa
, &val
, 1))
2122 return val
? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2125 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2127 u32 offset
, msr
, value
;
2130 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2131 return NESTED_EXIT_HOST
;
2133 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2134 offset
= svm_msrpm_offset(msr
);
2135 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2136 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2138 if (offset
== MSR_INVALID
)
2139 return NESTED_EXIT_DONE
;
2141 /* Offset is in 32 bit units but need in 8 bit units */
2144 if (kvm_read_guest(svm
->vcpu
.kvm
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2145 return NESTED_EXIT_DONE
;
2147 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2150 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2152 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2154 switch (exit_code
) {
2157 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2158 return NESTED_EXIT_HOST
;
2160 /* For now we are always handling NPFs when using them */
2162 return NESTED_EXIT_HOST
;
2164 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2165 /* When we're shadowing, trap PFs, but not async PF */
2166 if (!npt_enabled
&& svm
->apf_reason
== 0)
2167 return NESTED_EXIT_HOST
;
2169 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
2170 nm_interception(svm
);
2176 return NESTED_EXIT_CONTINUE
;
2180 * If this function returns true, this #vmexit was already handled
2182 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2184 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2185 int vmexit
= NESTED_EXIT_HOST
;
2187 switch (exit_code
) {
2189 vmexit
= nested_svm_exit_handled_msr(svm
);
2192 vmexit
= nested_svm_intercept_ioio(svm
);
2194 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2195 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2196 if (svm
->nested
.intercept_cr
& bit
)
2197 vmexit
= NESTED_EXIT_DONE
;
2200 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2201 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2202 if (svm
->nested
.intercept_dr
& bit
)
2203 vmexit
= NESTED_EXIT_DONE
;
2206 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2207 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2208 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2209 vmexit
= NESTED_EXIT_DONE
;
2210 /* async page fault always cause vmexit */
2211 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2212 svm
->apf_reason
!= 0)
2213 vmexit
= NESTED_EXIT_DONE
;
2216 case SVM_EXIT_ERR
: {
2217 vmexit
= NESTED_EXIT_DONE
;
2221 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2222 if (svm
->nested
.intercept
& exit_bits
)
2223 vmexit
= NESTED_EXIT_DONE
;
2230 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2234 vmexit
= nested_svm_intercept(svm
);
2236 if (vmexit
== NESTED_EXIT_DONE
)
2237 nested_svm_vmexit(svm
);
2242 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2244 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2245 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2247 dst
->intercept_cr
= from
->intercept_cr
;
2248 dst
->intercept_dr
= from
->intercept_dr
;
2249 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2250 dst
->intercept
= from
->intercept
;
2251 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2252 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2253 dst
->tsc_offset
= from
->tsc_offset
;
2254 dst
->asid
= from
->asid
;
2255 dst
->tlb_ctl
= from
->tlb_ctl
;
2256 dst
->int_ctl
= from
->int_ctl
;
2257 dst
->int_vector
= from
->int_vector
;
2258 dst
->int_state
= from
->int_state
;
2259 dst
->exit_code
= from
->exit_code
;
2260 dst
->exit_code_hi
= from
->exit_code_hi
;
2261 dst
->exit_info_1
= from
->exit_info_1
;
2262 dst
->exit_info_2
= from
->exit_info_2
;
2263 dst
->exit_int_info
= from
->exit_int_info
;
2264 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2265 dst
->nested_ctl
= from
->nested_ctl
;
2266 dst
->event_inj
= from
->event_inj
;
2267 dst
->event_inj_err
= from
->event_inj_err
;
2268 dst
->nested_cr3
= from
->nested_cr3
;
2269 dst
->lbr_ctl
= from
->lbr_ctl
;
2272 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2274 struct vmcb
*nested_vmcb
;
2275 struct vmcb
*hsave
= svm
->nested
.hsave
;
2276 struct vmcb
*vmcb
= svm
->vmcb
;
2279 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2280 vmcb
->control
.exit_info_1
,
2281 vmcb
->control
.exit_info_2
,
2282 vmcb
->control
.exit_int_info
,
2283 vmcb
->control
.exit_int_info_err
,
2286 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2290 /* Exit Guest-Mode */
2291 leave_guest_mode(&svm
->vcpu
);
2292 svm
->nested
.vmcb
= 0;
2294 /* Give the current vmcb to the guest */
2297 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2298 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2299 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2300 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2301 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2302 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2303 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2304 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2305 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2306 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2307 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2308 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2309 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2310 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2311 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2312 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2313 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2314 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2316 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2317 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2318 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2319 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2320 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2321 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2322 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2323 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2324 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2325 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2328 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2329 * to make sure that we do not lose injected events. So check event_inj
2330 * here and copy it to exit_int_info if it is valid.
2331 * Exit_int_info and event_inj can't be both valid because the case
2332 * below only happens on a VMRUN instruction intercept which has
2333 * no valid exit_int_info set.
2335 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2336 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2338 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2339 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2342 nested_vmcb
->control
.tlb_ctl
= 0;
2343 nested_vmcb
->control
.event_inj
= 0;
2344 nested_vmcb
->control
.event_inj_err
= 0;
2346 /* We always set V_INTR_MASKING and remember the old value in hflags */
2347 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2348 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2350 /* Restore the original control entries */
2351 copy_vmcb_control_area(vmcb
, hsave
);
2353 kvm_clear_exception_queue(&svm
->vcpu
);
2354 kvm_clear_interrupt_queue(&svm
->vcpu
);
2356 svm
->nested
.nested_cr3
= 0;
2358 /* Restore selected save entries */
2359 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2360 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2361 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2362 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2363 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2364 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2365 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2366 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2367 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2368 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2370 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2371 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2373 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2375 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2376 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2377 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2378 svm
->vmcb
->save
.dr7
= 0;
2379 svm
->vmcb
->save
.cpl
= 0;
2380 svm
->vmcb
->control
.exit_int_info
= 0;
2382 mark_all_dirty(svm
->vmcb
);
2384 nested_svm_unmap(page
);
2386 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2387 kvm_mmu_reset_context(&svm
->vcpu
);
2388 kvm_mmu_load(&svm
->vcpu
);
2393 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2396 * This function merges the msr permission bitmaps of kvm and the
2397 * nested vmcb. It is optimized in that it only merges the parts where
2398 * the kvm msr permission bitmap may contain zero bits
2402 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2405 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2409 if (msrpm_offsets
[i
] == 0xffffffff)
2412 p
= msrpm_offsets
[i
];
2413 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2415 if (kvm_read_guest(svm
->vcpu
.kvm
, offset
, &value
, 4))
2418 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2421 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2426 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2428 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2431 if (vmcb
->control
.asid
== 0)
2434 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2440 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2442 struct vmcb
*nested_vmcb
;
2443 struct vmcb
*hsave
= svm
->nested
.hsave
;
2444 struct vmcb
*vmcb
= svm
->vmcb
;
2448 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2450 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2454 if (!nested_vmcb_checks(nested_vmcb
)) {
2455 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2456 nested_vmcb
->control
.exit_code_hi
= 0;
2457 nested_vmcb
->control
.exit_info_1
= 0;
2458 nested_vmcb
->control
.exit_info_2
= 0;
2460 nested_svm_unmap(page
);
2465 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2466 nested_vmcb
->save
.rip
,
2467 nested_vmcb
->control
.int_ctl
,
2468 nested_vmcb
->control
.event_inj
,
2469 nested_vmcb
->control
.nested_ctl
);
2471 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2472 nested_vmcb
->control
.intercept_cr
>> 16,
2473 nested_vmcb
->control
.intercept_exceptions
,
2474 nested_vmcb
->control
.intercept
);
2476 /* Clear internal status */
2477 kvm_clear_exception_queue(&svm
->vcpu
);
2478 kvm_clear_interrupt_queue(&svm
->vcpu
);
2481 * Save the old vmcb, so we don't need to pick what we save, but can
2482 * restore everything when a VMEXIT occurs
2484 hsave
->save
.es
= vmcb
->save
.es
;
2485 hsave
->save
.cs
= vmcb
->save
.cs
;
2486 hsave
->save
.ss
= vmcb
->save
.ss
;
2487 hsave
->save
.ds
= vmcb
->save
.ds
;
2488 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2489 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2490 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2491 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2492 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2493 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2494 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2495 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2496 hsave
->save
.rax
= vmcb
->save
.rax
;
2498 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2500 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2502 copy_vmcb_control_area(hsave
, vmcb
);
2504 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2505 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2507 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2509 if (nested_vmcb
->control
.nested_ctl
) {
2510 kvm_mmu_unload(&svm
->vcpu
);
2511 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2512 nested_svm_init_mmu_context(&svm
->vcpu
);
2515 /* Load the nested guest state */
2516 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2517 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2518 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2519 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2520 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2521 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2522 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2523 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2524 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2525 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2527 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2528 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2530 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2532 /* Guest paging mode is active - reset mmu */
2533 kvm_mmu_reset_context(&svm
->vcpu
);
2535 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2536 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2537 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2538 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2540 /* In case we don't even reach vcpu_run, the fields are not updated */
2541 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2542 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2543 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2544 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2545 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2546 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2548 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2549 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2551 /* cache intercepts */
2552 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2553 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2554 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2555 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2557 svm_flush_tlb(&svm
->vcpu
);
2558 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2559 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2560 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2562 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2564 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2565 /* We only want the cr8 intercept bits of the guest */
2566 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2567 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2570 /* We don't want to see VMMCALLs from a nested guest */
2571 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2573 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2574 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2575 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2576 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2577 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2578 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2580 nested_svm_unmap(page
);
2582 /* Enter Guest-Mode */
2583 enter_guest_mode(&svm
->vcpu
);
2586 * Merge guest and host intercepts - must be called with vcpu in
2587 * guest-mode to take affect here
2589 recalc_intercepts(svm
);
2591 svm
->nested
.vmcb
= vmcb_gpa
;
2595 mark_all_dirty(svm
->vmcb
);
2600 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2602 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2603 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2604 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2605 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2606 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2607 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2608 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2609 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2610 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2611 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2612 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2613 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2616 static int vmload_interception(struct vcpu_svm
*svm
)
2618 struct vmcb
*nested_vmcb
;
2621 if (nested_svm_check_permissions(svm
))
2624 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2628 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2629 skip_emulated_instruction(&svm
->vcpu
);
2631 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2632 nested_svm_unmap(page
);
2637 static int vmsave_interception(struct vcpu_svm
*svm
)
2639 struct vmcb
*nested_vmcb
;
2642 if (nested_svm_check_permissions(svm
))
2645 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2649 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2650 skip_emulated_instruction(&svm
->vcpu
);
2652 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2653 nested_svm_unmap(page
);
2658 static int vmrun_interception(struct vcpu_svm
*svm
)
2660 if (nested_svm_check_permissions(svm
))
2663 /* Save rip after vmrun instruction */
2664 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2666 if (!nested_svm_vmrun(svm
))
2669 if (!nested_svm_vmrun_msrpm(svm
))
2676 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2677 svm
->vmcb
->control
.exit_code_hi
= 0;
2678 svm
->vmcb
->control
.exit_info_1
= 0;
2679 svm
->vmcb
->control
.exit_info_2
= 0;
2681 nested_svm_vmexit(svm
);
2686 static int stgi_interception(struct vcpu_svm
*svm
)
2688 if (nested_svm_check_permissions(svm
))
2691 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2692 skip_emulated_instruction(&svm
->vcpu
);
2693 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2700 static int clgi_interception(struct vcpu_svm
*svm
)
2702 if (nested_svm_check_permissions(svm
))
2705 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2706 skip_emulated_instruction(&svm
->vcpu
);
2710 /* After a CLGI no interrupts should come */
2711 svm_clear_vintr(svm
);
2712 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2714 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2719 static int invlpga_interception(struct vcpu_svm
*svm
)
2721 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2723 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2724 vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2726 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2727 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2729 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2730 skip_emulated_instruction(&svm
->vcpu
);
2734 static int skinit_interception(struct vcpu_svm
*svm
)
2736 trace_kvm_skinit(svm
->vmcb
->save
.rip
, svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
]);
2738 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2742 static int xsetbv_interception(struct vcpu_svm
*svm
)
2744 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2745 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2747 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2748 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2749 skip_emulated_instruction(&svm
->vcpu
);
2755 static int invalid_op_interception(struct vcpu_svm
*svm
)
2757 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2761 static int task_switch_interception(struct vcpu_svm
*svm
)
2765 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2766 SVM_EXITINTINFO_TYPE_MASK
;
2767 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2769 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2771 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2772 bool has_error_code
= false;
2775 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2777 if (svm
->vmcb
->control
.exit_info_2
&
2778 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2779 reason
= TASK_SWITCH_IRET
;
2780 else if (svm
->vmcb
->control
.exit_info_2
&
2781 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2782 reason
= TASK_SWITCH_JMP
;
2784 reason
= TASK_SWITCH_GATE
;
2786 reason
= TASK_SWITCH_CALL
;
2788 if (reason
== TASK_SWITCH_GATE
) {
2790 case SVM_EXITINTINFO_TYPE_NMI
:
2791 svm
->vcpu
.arch
.nmi_injected
= false;
2793 case SVM_EXITINTINFO_TYPE_EXEPT
:
2794 if (svm
->vmcb
->control
.exit_info_2
&
2795 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2796 has_error_code
= true;
2798 (u32
)svm
->vmcb
->control
.exit_info_2
;
2800 kvm_clear_exception_queue(&svm
->vcpu
);
2802 case SVM_EXITINTINFO_TYPE_INTR
:
2803 kvm_clear_interrupt_queue(&svm
->vcpu
);
2810 if (reason
!= TASK_SWITCH_GATE
||
2811 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2812 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2813 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2814 skip_emulated_instruction(&svm
->vcpu
);
2816 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
2819 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
2820 has_error_code
, error_code
) == EMULATE_FAIL
) {
2821 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2822 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2823 svm
->vcpu
.run
->internal
.ndata
= 0;
2829 static int cpuid_interception(struct vcpu_svm
*svm
)
2831 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2832 kvm_emulate_cpuid(&svm
->vcpu
);
2836 static int iret_interception(struct vcpu_svm
*svm
)
2838 ++svm
->vcpu
.stat
.nmi_window_exits
;
2839 clr_intercept(svm
, INTERCEPT_IRET
);
2840 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2841 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2845 static int invlpg_interception(struct vcpu_svm
*svm
)
2847 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2848 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2850 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2851 skip_emulated_instruction(&svm
->vcpu
);
2855 static int emulate_on_interception(struct vcpu_svm
*svm
)
2857 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2860 static int rdpmc_interception(struct vcpu_svm
*svm
)
2864 if (!static_cpu_has(X86_FEATURE_NRIPS
))
2865 return emulate_on_interception(svm
);
2867 err
= kvm_rdpmc(&svm
->vcpu
);
2868 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2873 bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
, unsigned long val
)
2875 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2879 intercept
= svm
->nested
.intercept
;
2881 if (!is_guest_mode(&svm
->vcpu
) ||
2882 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2885 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2886 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2889 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2890 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2896 #define CR_VALID (1ULL << 63)
2898 static int cr_interception(struct vcpu_svm
*svm
)
2904 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2905 return emulate_on_interception(svm
);
2907 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2908 return emulate_on_interception(svm
);
2910 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2911 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2914 if (cr
>= 16) { /* mov to cr */
2916 val
= kvm_register_read(&svm
->vcpu
, reg
);
2919 if (!check_selective_cr0_intercepted(svm
, val
))
2920 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2926 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2929 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2932 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2935 WARN(1, "unhandled write to CR%d", cr
);
2936 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2939 } else { /* mov from cr */
2942 val
= kvm_read_cr0(&svm
->vcpu
);
2945 val
= svm
->vcpu
.arch
.cr2
;
2948 val
= kvm_read_cr3(&svm
->vcpu
);
2951 val
= kvm_read_cr4(&svm
->vcpu
);
2954 val
= kvm_get_cr8(&svm
->vcpu
);
2957 WARN(1, "unhandled read from CR%d", cr
);
2958 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2961 kvm_register_write(&svm
->vcpu
, reg
, val
);
2963 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2968 static int dr_interception(struct vcpu_svm
*svm
)
2974 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2975 return emulate_on_interception(svm
);
2977 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2978 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2980 if (dr
>= 16) { /* mov to DRn */
2981 val
= kvm_register_read(&svm
->vcpu
, reg
);
2982 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
2984 err
= kvm_get_dr(&svm
->vcpu
, dr
, &val
);
2986 kvm_register_write(&svm
->vcpu
, reg
, val
);
2989 skip_emulated_instruction(&svm
->vcpu
);
2994 static int cr8_write_interception(struct vcpu_svm
*svm
)
2996 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2999 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
3000 /* instruction emulation calls kvm_set_cr8() */
3001 r
= cr_interception(svm
);
3002 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
3003 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3006 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
3008 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
3012 u64
svm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
3014 struct vmcb
*vmcb
= get_host_vmcb(to_svm(vcpu
));
3015 return vmcb
->control
.tsc_offset
+
3016 svm_scale_tsc(vcpu
, host_tsc
);
3019 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
3021 struct vcpu_svm
*svm
= to_svm(vcpu
);
3024 case MSR_IA32_TSC
: {
3025 *data
= svm
->vmcb
->control
.tsc_offset
+
3026 svm_scale_tsc(vcpu
, native_read_tsc());
3031 *data
= svm
->vmcb
->save
.star
;
3033 #ifdef CONFIG_X86_64
3035 *data
= svm
->vmcb
->save
.lstar
;
3038 *data
= svm
->vmcb
->save
.cstar
;
3040 case MSR_KERNEL_GS_BASE
:
3041 *data
= svm
->vmcb
->save
.kernel_gs_base
;
3043 case MSR_SYSCALL_MASK
:
3044 *data
= svm
->vmcb
->save
.sfmask
;
3047 case MSR_IA32_SYSENTER_CS
:
3048 *data
= svm
->vmcb
->save
.sysenter_cs
;
3050 case MSR_IA32_SYSENTER_EIP
:
3051 *data
= svm
->sysenter_eip
;
3053 case MSR_IA32_SYSENTER_ESP
:
3054 *data
= svm
->sysenter_esp
;
3057 * Nobody will change the following 5 values in the VMCB so we can
3058 * safely return them on rdmsr. They will always be 0 until LBRV is
3061 case MSR_IA32_DEBUGCTLMSR
:
3062 *data
= svm
->vmcb
->save
.dbgctl
;
3064 case MSR_IA32_LASTBRANCHFROMIP
:
3065 *data
= svm
->vmcb
->save
.br_from
;
3067 case MSR_IA32_LASTBRANCHTOIP
:
3068 *data
= svm
->vmcb
->save
.br_to
;
3070 case MSR_IA32_LASTINTFROMIP
:
3071 *data
= svm
->vmcb
->save
.last_excp_from
;
3073 case MSR_IA32_LASTINTTOIP
:
3074 *data
= svm
->vmcb
->save
.last_excp_to
;
3076 case MSR_VM_HSAVE_PA
:
3077 *data
= svm
->nested
.hsave_msr
;
3080 *data
= svm
->nested
.vm_cr_msr
;
3082 case MSR_IA32_UCODE_REV
:
3086 return kvm_get_msr_common(vcpu
, ecx
, data
);
3091 static int rdmsr_interception(struct vcpu_svm
*svm
)
3093 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3096 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
3097 trace_kvm_msr_read_ex(ecx
);
3098 kvm_inject_gp(&svm
->vcpu
, 0);
3100 trace_kvm_msr_read(ecx
, data
);
3102 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
3103 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
3104 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3105 skip_emulated_instruction(&svm
->vcpu
);
3110 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3112 struct vcpu_svm
*svm
= to_svm(vcpu
);
3113 int svm_dis
, chg_mask
;
3115 if (data
& ~SVM_VM_CR_VALID_MASK
)
3118 chg_mask
= SVM_VM_CR_VALID_MASK
;
3120 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3121 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3123 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3124 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3126 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3128 /* check for svm_disable while efer.svme is set */
3129 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3135 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
3137 struct vcpu_svm
*svm
= to_svm(vcpu
);
3139 u32 ecx
= msr
->index
;
3140 u64 data
= msr
->data
;
3143 kvm_write_tsc(vcpu
, msr
);
3146 svm
->vmcb
->save
.star
= data
;
3148 #ifdef CONFIG_X86_64
3150 svm
->vmcb
->save
.lstar
= data
;
3153 svm
->vmcb
->save
.cstar
= data
;
3155 case MSR_KERNEL_GS_BASE
:
3156 svm
->vmcb
->save
.kernel_gs_base
= data
;
3158 case MSR_SYSCALL_MASK
:
3159 svm
->vmcb
->save
.sfmask
= data
;
3162 case MSR_IA32_SYSENTER_CS
:
3163 svm
->vmcb
->save
.sysenter_cs
= data
;
3165 case MSR_IA32_SYSENTER_EIP
:
3166 svm
->sysenter_eip
= data
;
3167 svm
->vmcb
->save
.sysenter_eip
= data
;
3169 case MSR_IA32_SYSENTER_ESP
:
3170 svm
->sysenter_esp
= data
;
3171 svm
->vmcb
->save
.sysenter_esp
= data
;
3173 case MSR_IA32_DEBUGCTLMSR
:
3174 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3175 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3179 if (data
& DEBUGCTL_RESERVED_BITS
)
3182 svm
->vmcb
->save
.dbgctl
= data
;
3183 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3184 if (data
& (1ULL<<0))
3185 svm_enable_lbrv(svm
);
3187 svm_disable_lbrv(svm
);
3189 case MSR_VM_HSAVE_PA
:
3190 svm
->nested
.hsave_msr
= data
;
3193 return svm_set_vm_cr(vcpu
, data
);
3195 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3198 return kvm_set_msr_common(vcpu
, msr
);
3203 static int wrmsr_interception(struct vcpu_svm
*svm
)
3205 struct msr_data msr
;
3206 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3207 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
3208 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3212 msr
.host_initiated
= false;
3214 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3215 if (svm_set_msr(&svm
->vcpu
, &msr
)) {
3216 trace_kvm_msr_write_ex(ecx
, data
);
3217 kvm_inject_gp(&svm
->vcpu
, 0);
3219 trace_kvm_msr_write(ecx
, data
);
3220 skip_emulated_instruction(&svm
->vcpu
);
3225 static int msr_interception(struct vcpu_svm
*svm
)
3227 if (svm
->vmcb
->control
.exit_info_1
)
3228 return wrmsr_interception(svm
);
3230 return rdmsr_interception(svm
);
3233 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3235 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3237 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3238 svm_clear_vintr(svm
);
3239 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3240 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3241 ++svm
->vcpu
.stat
.irq_window_exits
;
3243 * If the user space waits to inject interrupts, exit as soon as
3246 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
3247 kvm_run
->request_interrupt_window
&&
3248 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
3249 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3256 static int pause_interception(struct vcpu_svm
*svm
)
3258 kvm_vcpu_on_spin(&(svm
->vcpu
));
3262 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3263 [SVM_EXIT_READ_CR0
] = cr_interception
,
3264 [SVM_EXIT_READ_CR3
] = cr_interception
,
3265 [SVM_EXIT_READ_CR4
] = cr_interception
,
3266 [SVM_EXIT_READ_CR8
] = cr_interception
,
3267 [SVM_EXIT_CR0_SEL_WRITE
] = emulate_on_interception
,
3268 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
3269 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3270 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3271 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3272 [SVM_EXIT_READ_DR0
] = dr_interception
,
3273 [SVM_EXIT_READ_DR1
] = dr_interception
,
3274 [SVM_EXIT_READ_DR2
] = dr_interception
,
3275 [SVM_EXIT_READ_DR3
] = dr_interception
,
3276 [SVM_EXIT_READ_DR4
] = dr_interception
,
3277 [SVM_EXIT_READ_DR5
] = dr_interception
,
3278 [SVM_EXIT_READ_DR6
] = dr_interception
,
3279 [SVM_EXIT_READ_DR7
] = dr_interception
,
3280 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3281 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3282 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3283 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3284 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3285 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3286 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3287 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3288 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3289 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3290 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3291 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3292 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3293 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3294 [SVM_EXIT_INTR
] = intr_interception
,
3295 [SVM_EXIT_NMI
] = nmi_interception
,
3296 [SVM_EXIT_SMI
] = nop_on_interception
,
3297 [SVM_EXIT_INIT
] = nop_on_interception
,
3298 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3299 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
3300 [SVM_EXIT_CPUID
] = cpuid_interception
,
3301 [SVM_EXIT_IRET
] = iret_interception
,
3302 [SVM_EXIT_INVD
] = emulate_on_interception
,
3303 [SVM_EXIT_PAUSE
] = pause_interception
,
3304 [SVM_EXIT_HLT
] = halt_interception
,
3305 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3306 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3307 [SVM_EXIT_IOIO
] = io_interception
,
3308 [SVM_EXIT_MSR
] = msr_interception
,
3309 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3310 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3311 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3312 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3313 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3314 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3315 [SVM_EXIT_STGI
] = stgi_interception
,
3316 [SVM_EXIT_CLGI
] = clgi_interception
,
3317 [SVM_EXIT_SKINIT
] = skinit_interception
,
3318 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
3319 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
3320 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
3321 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3322 [SVM_EXIT_NPF
] = pf_interception
,
3325 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
3327 struct vcpu_svm
*svm
= to_svm(vcpu
);
3328 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3329 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3331 pr_err("VMCB Control Area:\n");
3332 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
3333 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
3334 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
3335 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
3336 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
3337 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
3338 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
3339 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
3340 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
3341 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
3342 pr_err("%-20s%d\n", "asid:", control
->asid
);
3343 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
3344 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
3345 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
3346 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
3347 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
3348 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
3349 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
3350 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
3351 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
3352 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
3353 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
3354 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
3355 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
3356 pr_err("%-20s%lld\n", "lbr_ctl:", control
->lbr_ctl
);
3357 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
3358 pr_err("VMCB State Save Area:\n");
3359 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361 save
->es
.selector
, save
->es
.attrib
,
3362 save
->es
.limit
, save
->es
.base
);
3363 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365 save
->cs
.selector
, save
->cs
.attrib
,
3366 save
->cs
.limit
, save
->cs
.base
);
3367 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369 save
->ss
.selector
, save
->ss
.attrib
,
3370 save
->ss
.limit
, save
->ss
.base
);
3371 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373 save
->ds
.selector
, save
->ds
.attrib
,
3374 save
->ds
.limit
, save
->ds
.base
);
3375 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377 save
->fs
.selector
, save
->fs
.attrib
,
3378 save
->fs
.limit
, save
->fs
.base
);
3379 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381 save
->gs
.selector
, save
->gs
.attrib
,
3382 save
->gs
.limit
, save
->gs
.base
);
3383 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3386 save
->gdtr
.limit
, save
->gdtr
.base
);
3387 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3390 save
->ldtr
.limit
, save
->ldtr
.base
);
3391 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393 save
->idtr
.selector
, save
->idtr
.attrib
,
3394 save
->idtr
.limit
, save
->idtr
.base
);
3395 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397 save
->tr
.selector
, save
->tr
.attrib
,
3398 save
->tr
.limit
, save
->tr
.base
);
3399 pr_err("cpl: %d efer: %016llx\n",
3400 save
->cpl
, save
->efer
);
3401 pr_err("%-15s %016llx %-13s %016llx\n",
3402 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
3403 pr_err("%-15s %016llx %-13s %016llx\n",
3404 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
3405 pr_err("%-15s %016llx %-13s %016llx\n",
3406 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
3407 pr_err("%-15s %016llx %-13s %016llx\n",
3408 "rip:", save
->rip
, "rflags:", save
->rflags
);
3409 pr_err("%-15s %016llx %-13s %016llx\n",
3410 "rsp:", save
->rsp
, "rax:", save
->rax
);
3411 pr_err("%-15s %016llx %-13s %016llx\n",
3412 "star:", save
->star
, "lstar:", save
->lstar
);
3413 pr_err("%-15s %016llx %-13s %016llx\n",
3414 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
3415 pr_err("%-15s %016llx %-13s %016llx\n",
3416 "kernel_gs_base:", save
->kernel_gs_base
,
3417 "sysenter_cs:", save
->sysenter_cs
);
3418 pr_err("%-15s %016llx %-13s %016llx\n",
3419 "sysenter_esp:", save
->sysenter_esp
,
3420 "sysenter_eip:", save
->sysenter_eip
);
3421 pr_err("%-15s %016llx %-13s %016llx\n",
3422 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
3423 pr_err("%-15s %016llx %-13s %016llx\n",
3424 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
3425 pr_err("%-15s %016llx %-13s %016llx\n",
3426 "excp_from:", save
->last_excp_from
,
3427 "excp_to:", save
->last_excp_to
);
3430 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3432 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3434 *info1
= control
->exit_info_1
;
3435 *info2
= control
->exit_info_2
;
3438 static int handle_exit(struct kvm_vcpu
*vcpu
)
3440 struct vcpu_svm
*svm
= to_svm(vcpu
);
3441 struct kvm_run
*kvm_run
= vcpu
->run
;
3442 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3444 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3445 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3447 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3449 if (unlikely(svm
->nested
.exit_required
)) {
3450 nested_svm_vmexit(svm
);
3451 svm
->nested
.exit_required
= false;
3456 if (is_guest_mode(vcpu
)) {
3459 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3460 svm
->vmcb
->control
.exit_info_1
,
3461 svm
->vmcb
->control
.exit_info_2
,
3462 svm
->vmcb
->control
.exit_int_info
,
3463 svm
->vmcb
->control
.exit_int_info_err
,
3466 vmexit
= nested_svm_exit_special(svm
);
3468 if (vmexit
== NESTED_EXIT_CONTINUE
)
3469 vmexit
= nested_svm_exit_handled(svm
);
3471 if (vmexit
== NESTED_EXIT_DONE
)
3475 svm_complete_interrupts(svm
);
3477 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3478 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3479 kvm_run
->fail_entry
.hardware_entry_failure_reason
3480 = svm
->vmcb
->control
.exit_code
;
3481 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3486 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3487 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3488 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3489 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3490 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
3492 __func__
, svm
->vmcb
->control
.exit_int_info
,
3495 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3496 || !svm_exit_handlers
[exit_code
]) {
3497 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3498 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
3502 return svm_exit_handlers
[exit_code
](svm
);
3505 static void reload_tss(struct kvm_vcpu
*vcpu
)
3507 int cpu
= raw_smp_processor_id();
3509 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3510 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3514 static void pre_svm_run(struct vcpu_svm
*svm
)
3516 int cpu
= raw_smp_processor_id();
3518 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3520 /* FIXME: handle wraparound of asid_generation */
3521 if (svm
->asid_generation
!= sd
->asid_generation
)
3525 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3527 struct vcpu_svm
*svm
= to_svm(vcpu
);
3529 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3530 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3531 set_intercept(svm
, INTERCEPT_IRET
);
3532 ++vcpu
->stat
.nmi_injections
;
3535 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3537 struct vmcb_control_area
*control
;
3539 control
= &svm
->vmcb
->control
;
3540 control
->int_vector
= irq
;
3541 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3542 control
->int_ctl
|= V_IRQ_MASK
|
3543 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3544 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3547 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3549 struct vcpu_svm
*svm
= to_svm(vcpu
);
3551 BUG_ON(!(gif_set(svm
)));
3553 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3554 ++vcpu
->stat
.irq_injections
;
3556 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3557 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3560 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3562 struct vcpu_svm
*svm
= to_svm(vcpu
);
3564 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3571 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3574 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3576 struct vcpu_svm
*svm
= to_svm(vcpu
);
3577 struct vmcb
*vmcb
= svm
->vmcb
;
3579 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3580 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3581 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3586 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3588 struct vcpu_svm
*svm
= to_svm(vcpu
);
3590 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3593 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3595 struct vcpu_svm
*svm
= to_svm(vcpu
);
3598 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3599 set_intercept(svm
, INTERCEPT_IRET
);
3601 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3602 clr_intercept(svm
, INTERCEPT_IRET
);
3606 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3608 struct vcpu_svm
*svm
= to_svm(vcpu
);
3609 struct vmcb
*vmcb
= svm
->vmcb
;
3612 if (!gif_set(svm
) ||
3613 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3616 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3618 if (is_guest_mode(vcpu
))
3619 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3624 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3626 struct vcpu_svm
*svm
= to_svm(vcpu
);
3629 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3630 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3631 * get that intercept, this function will be called again though and
3632 * we'll get the vintr intercept.
3634 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3636 svm_inject_irq(svm
, 0x0);
3640 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3642 struct vcpu_svm
*svm
= to_svm(vcpu
);
3644 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3646 return; /* IRET will cause a vm exit */
3649 * Something prevents NMI from been injected. Single step over possible
3650 * problem (IRET or exception injection or interrupt shadow)
3652 svm
->nmi_singlestep
= true;
3653 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3654 update_db_bp_intercept(vcpu
);
3657 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3662 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3664 struct vcpu_svm
*svm
= to_svm(vcpu
);
3666 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3667 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3669 svm
->asid_generation
--;
3672 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3676 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3678 struct vcpu_svm
*svm
= to_svm(vcpu
);
3680 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3683 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3684 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3685 kvm_set_cr8(vcpu
, cr8
);
3689 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3691 struct vcpu_svm
*svm
= to_svm(vcpu
);
3694 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3697 cr8
= kvm_get_cr8(vcpu
);
3698 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3699 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3702 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3706 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3707 unsigned int3_injected
= svm
->int3_injected
;
3709 svm
->int3_injected
= 0;
3712 * If we've made progress since setting HF_IRET_MASK, we've
3713 * executed an IRET and can allow NMI injection.
3715 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3716 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3717 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3718 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3721 svm
->vcpu
.arch
.nmi_injected
= false;
3722 kvm_clear_exception_queue(&svm
->vcpu
);
3723 kvm_clear_interrupt_queue(&svm
->vcpu
);
3725 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3728 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3730 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3731 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3734 case SVM_EXITINTINFO_TYPE_NMI
:
3735 svm
->vcpu
.arch
.nmi_injected
= true;
3737 case SVM_EXITINTINFO_TYPE_EXEPT
:
3739 * In case of software exceptions, do not reinject the vector,
3740 * but re-execute the instruction instead. Rewind RIP first
3741 * if we emulated INT3 before.
3743 if (kvm_exception_is_soft(vector
)) {
3744 if (vector
== BP_VECTOR
&& int3_injected
&&
3745 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3746 kvm_rip_write(&svm
->vcpu
,
3747 kvm_rip_read(&svm
->vcpu
) -
3751 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3752 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3753 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3756 kvm_requeue_exception(&svm
->vcpu
, vector
);
3758 case SVM_EXITINTINFO_TYPE_INTR
:
3759 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3766 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3768 struct vcpu_svm
*svm
= to_svm(vcpu
);
3769 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3771 control
->exit_int_info
= control
->event_inj
;
3772 control
->exit_int_info_err
= control
->event_inj_err
;
3773 control
->event_inj
= 0;
3774 svm_complete_interrupts(svm
);
3777 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3779 struct vcpu_svm
*svm
= to_svm(vcpu
);
3781 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3782 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3783 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3786 * A vmexit emulation is required before the vcpu can be executed
3789 if (unlikely(svm
->nested
.exit_required
))
3794 sync_lapic_to_cr8(vcpu
);
3796 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3803 "push %%" _ASM_BP
"; \n\t"
3804 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
3805 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
3806 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
3807 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
3808 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
3809 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
3810 #ifdef CONFIG_X86_64
3811 "mov %c[r8](%[svm]), %%r8 \n\t"
3812 "mov %c[r9](%[svm]), %%r9 \n\t"
3813 "mov %c[r10](%[svm]), %%r10 \n\t"
3814 "mov %c[r11](%[svm]), %%r11 \n\t"
3815 "mov %c[r12](%[svm]), %%r12 \n\t"
3816 "mov %c[r13](%[svm]), %%r13 \n\t"
3817 "mov %c[r14](%[svm]), %%r14 \n\t"
3818 "mov %c[r15](%[svm]), %%r15 \n\t"
3821 /* Enter guest mode */
3822 "push %%" _ASM_AX
" \n\t"
3823 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
3824 __ex(SVM_VMLOAD
) "\n\t"
3825 __ex(SVM_VMRUN
) "\n\t"
3826 __ex(SVM_VMSAVE
) "\n\t"
3827 "pop %%" _ASM_AX
" \n\t"
3829 /* Save guest registers, load host registers */
3830 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
3831 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
3832 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
3833 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
3834 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
3835 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
3836 #ifdef CONFIG_X86_64
3837 "mov %%r8, %c[r8](%[svm]) \n\t"
3838 "mov %%r9, %c[r9](%[svm]) \n\t"
3839 "mov %%r10, %c[r10](%[svm]) \n\t"
3840 "mov %%r11, %c[r11](%[svm]) \n\t"
3841 "mov %%r12, %c[r12](%[svm]) \n\t"
3842 "mov %%r13, %c[r13](%[svm]) \n\t"
3843 "mov %%r14, %c[r14](%[svm]) \n\t"
3844 "mov %%r15, %c[r15](%[svm]) \n\t"
3849 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3850 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3851 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3852 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3853 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3854 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3855 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3856 #ifdef CONFIG_X86_64
3857 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3858 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3859 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3860 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3861 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3862 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3863 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3864 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3867 #ifdef CONFIG_X86_64
3868 , "rbx", "rcx", "rdx", "rsi", "rdi"
3869 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3871 , "ebx", "ecx", "edx", "esi", "edi"
3875 #ifdef CONFIG_X86_64
3876 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3878 loadsegment(fs
, svm
->host
.fs
);
3879 #ifndef CONFIG_X86_32_LAZY_GS
3880 loadsegment(gs
, svm
->host
.gs
);
3886 local_irq_disable();
3888 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3889 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3890 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3891 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3893 trace_kvm_exit(svm
->vmcb
->control
.exit_code
, vcpu
, KVM_ISA_SVM
);
3895 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3896 kvm_before_handle_nmi(&svm
->vcpu
);
3900 /* Any pending NMI will happen here */
3902 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3903 kvm_after_handle_nmi(&svm
->vcpu
);
3905 sync_cr8_to_lapic(vcpu
);
3909 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3911 /* if exit due to PF check for async PF */
3912 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3913 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
3916 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3917 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3921 * We need to handle MC intercepts here before the vcpu has a chance to
3922 * change the physical cpu
3924 if (unlikely(svm
->vmcb
->control
.exit_code
==
3925 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3926 svm_handle_mce(svm
);
3928 mark_all_clean(svm
->vmcb
);
3931 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3933 struct vcpu_svm
*svm
= to_svm(vcpu
);
3935 svm
->vmcb
->save
.cr3
= root
;
3936 mark_dirty(svm
->vmcb
, VMCB_CR
);
3937 svm_flush_tlb(vcpu
);
3940 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3942 struct vcpu_svm
*svm
= to_svm(vcpu
);
3944 svm
->vmcb
->control
.nested_cr3
= root
;
3945 mark_dirty(svm
->vmcb
, VMCB_NPT
);
3947 /* Also sync guest cr3 here in case we live migrate */
3948 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
3949 mark_dirty(svm
->vmcb
, VMCB_CR
);
3951 svm_flush_tlb(vcpu
);
3954 static int is_disabled(void)
3958 rdmsrl(MSR_VM_CR
, vm_cr
);
3959 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
3966 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3969 * Patch in the VMMCALL instruction:
3971 hypercall
[0] = 0x0f;
3972 hypercall
[1] = 0x01;
3973 hypercall
[2] = 0xd9;
3976 static void svm_check_processor_compat(void *rtn
)
3981 static bool svm_cpu_has_accelerated_tpr(void)
3986 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3991 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
3995 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4000 entry
->ecx
|= (1 << 2); /* Set SVM bit */
4003 entry
->eax
= 1; /* SVM revision 1 */
4004 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
4005 ASID emulation to nested SVM */
4006 entry
->ecx
= 0; /* Reserved */
4007 entry
->edx
= 0; /* Per default do not support any
4008 additional features */
4010 /* Support next_rip if host supports it */
4011 if (boot_cpu_has(X86_FEATURE_NRIPS
))
4012 entry
->edx
|= SVM_FEATURE_NRIP
;
4014 /* Support NPT for the guest if enabled */
4016 entry
->edx
|= SVM_FEATURE_NPT
;
4022 static int svm_get_lpage_level(void)
4024 return PT_PDPE_LEVEL
;
4027 static bool svm_rdtscp_supported(void)
4032 static bool svm_invpcid_supported(void)
4037 static bool svm_has_wbinvd_exit(void)
4042 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
4044 struct vcpu_svm
*svm
= to_svm(vcpu
);
4046 set_exception_intercept(svm
, NM_VECTOR
);
4047 update_cr0_intercept(svm
);
4050 #define PRE_EX(exit) { .exit_code = (exit), \
4051 .stage = X86_ICPT_PRE_EXCEPT, }
4052 #define POST_EX(exit) { .exit_code = (exit), \
4053 .stage = X86_ICPT_POST_EXCEPT, }
4054 #define POST_MEM(exit) { .exit_code = (exit), \
4055 .stage = X86_ICPT_POST_MEMACCESS, }
4057 static const struct __x86_intercept
{
4059 enum x86_intercept_stage stage
;
4060 } x86_intercept_map
[] = {
4061 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
4062 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4063 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4064 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4065 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
4066 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
4067 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
4068 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
4069 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
4070 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
4071 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
4072 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
4073 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
4074 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
4075 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
4076 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
4077 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
4078 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
4079 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
4080 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
4081 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
4082 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
4083 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
4084 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
4085 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
4086 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
4087 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
4088 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
4089 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
4090 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
4091 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
4092 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
4093 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
4094 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
4095 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
4096 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
4097 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
4098 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
4099 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
4100 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
4101 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
4102 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
4103 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
4104 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
4105 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
4106 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
4113 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
4114 struct x86_instruction_info
*info
,
4115 enum x86_intercept_stage stage
)
4117 struct vcpu_svm
*svm
= to_svm(vcpu
);
4118 int vmexit
, ret
= X86EMUL_CONTINUE
;
4119 struct __x86_intercept icpt_info
;
4120 struct vmcb
*vmcb
= svm
->vmcb
;
4122 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
4125 icpt_info
= x86_intercept_map
[info
->intercept
];
4127 if (stage
!= icpt_info
.stage
)
4130 switch (icpt_info
.exit_code
) {
4131 case SVM_EXIT_READ_CR0
:
4132 if (info
->intercept
== x86_intercept_cr_read
)
4133 icpt_info
.exit_code
+= info
->modrm_reg
;
4135 case SVM_EXIT_WRITE_CR0
: {
4136 unsigned long cr0
, val
;
4139 if (info
->intercept
== x86_intercept_cr_write
)
4140 icpt_info
.exit_code
+= info
->modrm_reg
;
4142 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
)
4145 intercept
= svm
->nested
.intercept
;
4147 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
4150 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
4151 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
4153 if (info
->intercept
== x86_intercept_lmsw
) {
4156 /* lmsw can't clear PE - catch this here */
4157 if (cr0
& X86_CR0_PE
)
4162 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
4166 case SVM_EXIT_READ_DR0
:
4167 case SVM_EXIT_WRITE_DR0
:
4168 icpt_info
.exit_code
+= info
->modrm_reg
;
4171 if (info
->intercept
== x86_intercept_wrmsr
)
4172 vmcb
->control
.exit_info_1
= 1;
4174 vmcb
->control
.exit_info_1
= 0;
4176 case SVM_EXIT_PAUSE
:
4178 * We get this for NOP only, but pause
4179 * is rep not, check this here
4181 if (info
->rep_prefix
!= REPE_PREFIX
)
4183 case SVM_EXIT_IOIO
: {
4187 exit_info
= (vcpu
->arch
.regs
[VCPU_REGS_RDX
] & 0xffff) << 16;
4189 if (info
->intercept
== x86_intercept_in
||
4190 info
->intercept
== x86_intercept_ins
) {
4191 exit_info
|= SVM_IOIO_TYPE_MASK
;
4192 bytes
= info
->src_bytes
;
4194 bytes
= info
->dst_bytes
;
4197 if (info
->intercept
== x86_intercept_outs
||
4198 info
->intercept
== x86_intercept_ins
)
4199 exit_info
|= SVM_IOIO_STR_MASK
;
4201 if (info
->rep_prefix
)
4202 exit_info
|= SVM_IOIO_REP_MASK
;
4204 bytes
= min(bytes
, 4u);
4206 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
4208 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
4210 vmcb
->control
.exit_info_1
= exit_info
;
4211 vmcb
->control
.exit_info_2
= info
->next_rip
;
4219 vmcb
->control
.next_rip
= info
->next_rip
;
4220 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
4221 vmexit
= nested_svm_exit_handled(svm
);
4223 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
4230 static struct kvm_x86_ops svm_x86_ops
= {
4231 .cpu_has_kvm_support
= has_svm
,
4232 .disabled_by_bios
= is_disabled
,
4233 .hardware_setup
= svm_hardware_setup
,
4234 .hardware_unsetup
= svm_hardware_unsetup
,
4235 .check_processor_compatibility
= svm_check_processor_compat
,
4236 .hardware_enable
= svm_hardware_enable
,
4237 .hardware_disable
= svm_hardware_disable
,
4238 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
4240 .vcpu_create
= svm_create_vcpu
,
4241 .vcpu_free
= svm_free_vcpu
,
4242 .vcpu_reset
= svm_vcpu_reset
,
4244 .prepare_guest_switch
= svm_prepare_guest_switch
,
4245 .vcpu_load
= svm_vcpu_load
,
4246 .vcpu_put
= svm_vcpu_put
,
4248 .update_db_bp_intercept
= update_db_bp_intercept
,
4249 .get_msr
= svm_get_msr
,
4250 .set_msr
= svm_set_msr
,
4251 .get_segment_base
= svm_get_segment_base
,
4252 .get_segment
= svm_get_segment
,
4253 .set_segment
= svm_set_segment
,
4254 .get_cpl
= svm_get_cpl
,
4255 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
4256 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
4257 .decache_cr3
= svm_decache_cr3
,
4258 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
4259 .set_cr0
= svm_set_cr0
,
4260 .set_cr3
= svm_set_cr3
,
4261 .set_cr4
= svm_set_cr4
,
4262 .set_efer
= svm_set_efer
,
4263 .get_idt
= svm_get_idt
,
4264 .set_idt
= svm_set_idt
,
4265 .get_gdt
= svm_get_gdt
,
4266 .set_gdt
= svm_set_gdt
,
4267 .set_dr7
= svm_set_dr7
,
4268 .cache_reg
= svm_cache_reg
,
4269 .get_rflags
= svm_get_rflags
,
4270 .set_rflags
= svm_set_rflags
,
4271 .fpu_activate
= svm_fpu_activate
,
4272 .fpu_deactivate
= svm_fpu_deactivate
,
4274 .tlb_flush
= svm_flush_tlb
,
4276 .run
= svm_vcpu_run
,
4277 .handle_exit
= handle_exit
,
4278 .skip_emulated_instruction
= skip_emulated_instruction
,
4279 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
4280 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
4281 .patch_hypercall
= svm_patch_hypercall
,
4282 .set_irq
= svm_set_irq
,
4283 .set_nmi
= svm_inject_nmi
,
4284 .queue_exception
= svm_queue_exception
,
4285 .cancel_injection
= svm_cancel_injection
,
4286 .interrupt_allowed
= svm_interrupt_allowed
,
4287 .nmi_allowed
= svm_nmi_allowed
,
4288 .get_nmi_mask
= svm_get_nmi_mask
,
4289 .set_nmi_mask
= svm_set_nmi_mask
,
4290 .enable_nmi_window
= enable_nmi_window
,
4291 .enable_irq_window
= enable_irq_window
,
4292 .update_cr8_intercept
= update_cr8_intercept
,
4294 .set_tss_addr
= svm_set_tss_addr
,
4295 .get_tdp_level
= get_npt_level
,
4296 .get_mt_mask
= svm_get_mt_mask
,
4298 .get_exit_info
= svm_get_exit_info
,
4300 .get_lpage_level
= svm_get_lpage_level
,
4302 .cpuid_update
= svm_cpuid_update
,
4304 .rdtscp_supported
= svm_rdtscp_supported
,
4305 .invpcid_supported
= svm_invpcid_supported
,
4307 .set_supported_cpuid
= svm_set_supported_cpuid
,
4309 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
4311 .set_tsc_khz
= svm_set_tsc_khz
,
4312 .read_tsc_offset
= svm_read_tsc_offset
,
4313 .write_tsc_offset
= svm_write_tsc_offset
,
4314 .adjust_tsc_offset
= svm_adjust_tsc_offset
,
4315 .compute_tsc_offset
= svm_compute_tsc_offset
,
4316 .read_l1_tsc
= svm_read_l1_tsc
,
4318 .set_tdp_cr3
= set_tdp_cr3
,
4320 .check_intercept
= svm_check_intercept
,
4323 static int __init
svm_init(void)
4325 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
4326 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4329 static void __exit
svm_exit(void)
4334 module_init(svm_init
)
4335 module_exit(svm_exit
)