Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / xen / enlighten.c
blob138e5667409a3415492e860c8cfa708028d6d467
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
84 EXPORT_SYMBOL_GPL(hypercall_page);
86 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
87 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
89 enum xen_domain_type xen_domain_type = XEN_NATIVE;
90 EXPORT_SYMBOL_GPL(xen_domain_type);
92 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
93 EXPORT_SYMBOL(machine_to_phys_mapping);
94 unsigned long machine_to_phys_nr;
95 EXPORT_SYMBOL(machine_to_phys_nr);
97 struct start_info *xen_start_info;
98 EXPORT_SYMBOL_GPL(xen_start_info);
100 struct shared_info xen_dummy_shared_info;
102 void *xen_initial_gdt;
104 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
105 __read_mostly int xen_have_vector_callback;
106 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
109 * Point at some empty memory to start with. We map the real shared_info
110 * page as soon as fixmap is up and running.
112 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
115 * Flag to determine whether vcpu info placement is available on all
116 * VCPUs. We assume it is to start with, and then set it to zero on
117 * the first failure. This is because it can succeed on some VCPUs
118 * and not others, since it can involve hypervisor memory allocation,
119 * or because the guest failed to guarantee all the appropriate
120 * constraints on all VCPUs (ie buffer can't cross a page boundary).
122 * Note that any particular CPU may be using a placed vcpu structure,
123 * but we can only optimise if the all are.
125 * 0: not available, 1: available
127 static int have_vcpu_info_placement = 1;
129 struct tls_descs {
130 struct desc_struct desc[3];
134 * Updating the 3 TLS descriptors in the GDT on every task switch is
135 * surprisingly expensive so we avoid updating them if they haven't
136 * changed. Since Xen writes different descriptors than the one
137 * passed in the update_descriptor hypercall we keep shadow copies to
138 * compare against.
140 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
142 static void clamp_max_cpus(void)
144 #ifdef CONFIG_SMP
145 if (setup_max_cpus > MAX_VIRT_CPUS)
146 setup_max_cpus = MAX_VIRT_CPUS;
147 #endif
150 static void xen_vcpu_setup(int cpu)
152 struct vcpu_register_vcpu_info info;
153 int err;
154 struct vcpu_info *vcpup;
156 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
158 if (cpu < MAX_VIRT_CPUS)
159 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
161 if (!have_vcpu_info_placement) {
162 if (cpu >= MAX_VIRT_CPUS)
163 clamp_max_cpus();
164 return;
167 vcpup = &per_cpu(xen_vcpu_info, cpu);
168 info.mfn = arbitrary_virt_to_mfn(vcpup);
169 info.offset = offset_in_page(vcpup);
171 /* Check to see if the hypervisor will put the vcpu_info
172 structure where we want it, which allows direct access via
173 a percpu-variable. */
174 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
176 if (err) {
177 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
178 have_vcpu_info_placement = 0;
179 clamp_max_cpus();
180 } else {
181 /* This cpu is using the registered vcpu info, even if
182 later ones fail to. */
183 per_cpu(xen_vcpu, cpu) = vcpup;
188 * On restore, set the vcpu placement up again.
189 * If it fails, then we're in a bad state, since
190 * we can't back out from using it...
192 void xen_vcpu_restore(void)
194 int cpu;
196 for_each_possible_cpu(cpu) {
197 bool other_cpu = (cpu != smp_processor_id());
198 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
200 if (other_cpu && is_up &&
201 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
202 BUG();
204 xen_setup_runstate_info(cpu);
206 if (have_vcpu_info_placement)
207 xen_vcpu_setup(cpu);
209 if (other_cpu && is_up &&
210 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
211 BUG();
215 static void __init xen_banner(void)
217 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
218 struct xen_extraversion extra;
219 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
221 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
222 pv_info.name);
223 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
224 version >> 16, version & 0xffff, extra.extraversion,
225 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
227 /* Check if running on Xen version (major, minor) or later */
228 bool
229 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
231 unsigned int version;
233 if (!xen_domain())
234 return false;
236 version = HYPERVISOR_xen_version(XENVER_version, NULL);
237 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
238 ((version >> 16) > major))
239 return true;
240 return false;
243 #define CPUID_THERM_POWER_LEAF 6
244 #define APERFMPERF_PRESENT 0
246 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
247 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
249 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
250 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
251 static __read_mostly unsigned int cpuid_leaf5_edx_val;
253 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
254 unsigned int *cx, unsigned int *dx)
256 unsigned maskebx = ~0;
257 unsigned maskecx = ~0;
258 unsigned maskedx = ~0;
259 unsigned setecx = 0;
261 * Mask out inconvenient features, to try and disable as many
262 * unsupported kernel subsystems as possible.
264 switch (*ax) {
265 case 1:
266 maskecx = cpuid_leaf1_ecx_mask;
267 setecx = cpuid_leaf1_ecx_set_mask;
268 maskedx = cpuid_leaf1_edx_mask;
269 break;
271 case CPUID_MWAIT_LEAF:
272 /* Synthesize the values.. */
273 *ax = 0;
274 *bx = 0;
275 *cx = cpuid_leaf5_ecx_val;
276 *dx = cpuid_leaf5_edx_val;
277 return;
279 case CPUID_THERM_POWER_LEAF:
280 /* Disabling APERFMPERF for kernel usage */
281 maskecx = ~(1 << APERFMPERF_PRESENT);
282 break;
284 case 0xb:
285 /* Suppress extended topology stuff */
286 maskebx = 0;
287 break;
290 asm(XEN_EMULATE_PREFIX "cpuid"
291 : "=a" (*ax),
292 "=b" (*bx),
293 "=c" (*cx),
294 "=d" (*dx)
295 : "0" (*ax), "2" (*cx));
297 *bx &= maskebx;
298 *cx &= maskecx;
299 *cx |= setecx;
300 *dx &= maskedx;
304 static bool __init xen_check_mwait(void)
306 #ifdef CONFIG_ACPI
307 struct xen_platform_op op = {
308 .cmd = XENPF_set_processor_pminfo,
309 .u.set_pminfo.id = -1,
310 .u.set_pminfo.type = XEN_PM_PDC,
312 uint32_t buf[3];
313 unsigned int ax, bx, cx, dx;
314 unsigned int mwait_mask;
316 /* We need to determine whether it is OK to expose the MWAIT
317 * capability to the kernel to harvest deeper than C3 states from ACPI
318 * _CST using the processor_harvest_xen.c module. For this to work, we
319 * need to gather the MWAIT_LEAF values (which the cstate.c code
320 * checks against). The hypervisor won't expose the MWAIT flag because
321 * it would break backwards compatibility; so we will find out directly
322 * from the hardware and hypercall.
324 if (!xen_initial_domain())
325 return false;
328 * When running under platform earlier than Xen4.2, do not expose
329 * mwait, to avoid the risk of loading native acpi pad driver
331 if (!xen_running_on_version_or_later(4, 2))
332 return false;
334 ax = 1;
335 cx = 0;
337 native_cpuid(&ax, &bx, &cx, &dx);
339 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
340 (1 << (X86_FEATURE_MWAIT % 32));
342 if ((cx & mwait_mask) != mwait_mask)
343 return false;
345 /* We need to emulate the MWAIT_LEAF and for that we need both
346 * ecx and edx. The hypercall provides only partial information.
349 ax = CPUID_MWAIT_LEAF;
350 bx = 0;
351 cx = 0;
352 dx = 0;
354 native_cpuid(&ax, &bx, &cx, &dx);
356 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
357 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
359 buf[0] = ACPI_PDC_REVISION_ID;
360 buf[1] = 1;
361 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
363 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
365 if ((HYPERVISOR_dom0_op(&op) == 0) &&
366 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
367 cpuid_leaf5_ecx_val = cx;
368 cpuid_leaf5_edx_val = dx;
370 return true;
371 #else
372 return false;
373 #endif
375 static void __init xen_init_cpuid_mask(void)
377 unsigned int ax, bx, cx, dx;
378 unsigned int xsave_mask;
380 cpuid_leaf1_edx_mask =
381 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
382 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
384 if (!xen_initial_domain())
385 cpuid_leaf1_edx_mask &=
386 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
387 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
388 ax = 1;
389 cx = 0;
390 xen_cpuid(&ax, &bx, &cx, &dx);
392 xsave_mask =
393 (1 << (X86_FEATURE_XSAVE % 32)) |
394 (1 << (X86_FEATURE_OSXSAVE % 32));
396 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
397 if ((cx & xsave_mask) != xsave_mask)
398 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
399 if (xen_check_mwait())
400 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
403 static void xen_set_debugreg(int reg, unsigned long val)
405 HYPERVISOR_set_debugreg(reg, val);
408 static unsigned long xen_get_debugreg(int reg)
410 return HYPERVISOR_get_debugreg(reg);
413 static void xen_end_context_switch(struct task_struct *next)
415 xen_mc_flush();
416 paravirt_end_context_switch(next);
419 static unsigned long xen_store_tr(void)
421 return 0;
425 * Set the page permissions for a particular virtual address. If the
426 * address is a vmalloc mapping (or other non-linear mapping), then
427 * find the linear mapping of the page and also set its protections to
428 * match.
430 static void set_aliased_prot(void *v, pgprot_t prot)
432 int level;
433 pte_t *ptep;
434 pte_t pte;
435 unsigned long pfn;
436 struct page *page;
438 ptep = lookup_address((unsigned long)v, &level);
439 BUG_ON(ptep == NULL);
441 pfn = pte_pfn(*ptep);
442 page = pfn_to_page(pfn);
444 pte = pfn_pte(pfn, prot);
446 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
447 BUG();
449 if (!PageHighMem(page)) {
450 void *av = __va(PFN_PHYS(pfn));
452 if (av != v)
453 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
454 BUG();
455 } else
456 kmap_flush_unused();
459 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
461 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
462 int i;
464 for(i = 0; i < entries; i += entries_per_page)
465 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
468 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
470 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
471 int i;
473 for(i = 0; i < entries; i += entries_per_page)
474 set_aliased_prot(ldt + i, PAGE_KERNEL);
477 static void xen_set_ldt(const void *addr, unsigned entries)
479 struct mmuext_op *op;
480 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
482 trace_xen_cpu_set_ldt(addr, entries);
484 op = mcs.args;
485 op->cmd = MMUEXT_SET_LDT;
486 op->arg1.linear_addr = (unsigned long)addr;
487 op->arg2.nr_ents = entries;
489 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
491 xen_mc_issue(PARAVIRT_LAZY_CPU);
494 static void xen_load_gdt(const struct desc_ptr *dtr)
496 unsigned long va = dtr->address;
497 unsigned int size = dtr->size + 1;
498 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
499 unsigned long frames[pages];
500 int f;
503 * A GDT can be up to 64k in size, which corresponds to 8192
504 * 8-byte entries, or 16 4k pages..
507 BUG_ON(size > 65536);
508 BUG_ON(va & ~PAGE_MASK);
510 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
511 int level;
512 pte_t *ptep;
513 unsigned long pfn, mfn;
514 void *virt;
517 * The GDT is per-cpu and is in the percpu data area.
518 * That can be virtually mapped, so we need to do a
519 * page-walk to get the underlying MFN for the
520 * hypercall. The page can also be in the kernel's
521 * linear range, so we need to RO that mapping too.
523 ptep = lookup_address(va, &level);
524 BUG_ON(ptep == NULL);
526 pfn = pte_pfn(*ptep);
527 mfn = pfn_to_mfn(pfn);
528 virt = __va(PFN_PHYS(pfn));
530 frames[f] = mfn;
532 make_lowmem_page_readonly((void *)va);
533 make_lowmem_page_readonly(virt);
536 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
537 BUG();
541 * load_gdt for early boot, when the gdt is only mapped once
543 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
545 unsigned long va = dtr->address;
546 unsigned int size = dtr->size + 1;
547 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
548 unsigned long frames[pages];
549 int f;
552 * A GDT can be up to 64k in size, which corresponds to 8192
553 * 8-byte entries, or 16 4k pages..
556 BUG_ON(size > 65536);
557 BUG_ON(va & ~PAGE_MASK);
559 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
560 pte_t pte;
561 unsigned long pfn, mfn;
563 pfn = virt_to_pfn(va);
564 mfn = pfn_to_mfn(pfn);
566 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
568 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
569 BUG();
571 frames[f] = mfn;
574 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
575 BUG();
578 static inline bool desc_equal(const struct desc_struct *d1,
579 const struct desc_struct *d2)
581 return d1->a == d2->a && d1->b == d2->b;
584 static void load_TLS_descriptor(struct thread_struct *t,
585 unsigned int cpu, unsigned int i)
587 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
588 struct desc_struct *gdt;
589 xmaddr_t maddr;
590 struct multicall_space mc;
592 if (desc_equal(shadow, &t->tls_array[i]))
593 return;
595 *shadow = t->tls_array[i];
597 gdt = get_cpu_gdt_table(cpu);
598 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
599 mc = __xen_mc_entry(0);
601 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
604 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
607 * XXX sleazy hack: If we're being called in a lazy-cpu zone
608 * and lazy gs handling is enabled, it means we're in a
609 * context switch, and %gs has just been saved. This means we
610 * can zero it out to prevent faults on exit from the
611 * hypervisor if the next process has no %gs. Either way, it
612 * has been saved, and the new value will get loaded properly.
613 * This will go away as soon as Xen has been modified to not
614 * save/restore %gs for normal hypercalls.
616 * On x86_64, this hack is not used for %gs, because gs points
617 * to KERNEL_GS_BASE (and uses it for PDA references), so we
618 * must not zero %gs on x86_64
620 * For x86_64, we need to zero %fs, otherwise we may get an
621 * exception between the new %fs descriptor being loaded and
622 * %fs being effectively cleared at __switch_to().
624 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
625 #ifdef CONFIG_X86_32
626 lazy_load_gs(0);
627 #else
628 loadsegment(fs, 0);
629 #endif
632 xen_mc_batch();
634 load_TLS_descriptor(t, cpu, 0);
635 load_TLS_descriptor(t, cpu, 1);
636 load_TLS_descriptor(t, cpu, 2);
638 xen_mc_issue(PARAVIRT_LAZY_CPU);
641 #ifdef CONFIG_X86_64
642 static void xen_load_gs_index(unsigned int idx)
644 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
645 BUG();
647 #endif
649 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
650 const void *ptr)
652 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
653 u64 entry = *(u64 *)ptr;
655 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
657 preempt_disable();
659 xen_mc_flush();
660 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
661 BUG();
663 preempt_enable();
666 static int cvt_gate_to_trap(int vector, const gate_desc *val,
667 struct trap_info *info)
669 unsigned long addr;
671 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
672 return 0;
674 info->vector = vector;
676 addr = gate_offset(*val);
677 #ifdef CONFIG_X86_64
679 * Look for known traps using IST, and substitute them
680 * appropriately. The debugger ones are the only ones we care
681 * about. Xen will handle faults like double_fault,
682 * so we should never see them. Warn if
683 * there's an unexpected IST-using fault handler.
685 if (addr == (unsigned long)debug)
686 addr = (unsigned long)xen_debug;
687 else if (addr == (unsigned long)int3)
688 addr = (unsigned long)xen_int3;
689 else if (addr == (unsigned long)stack_segment)
690 addr = (unsigned long)xen_stack_segment;
691 else if (addr == (unsigned long)double_fault ||
692 addr == (unsigned long)nmi) {
693 /* Don't need to handle these */
694 return 0;
695 #ifdef CONFIG_X86_MCE
696 } else if (addr == (unsigned long)machine_check) {
698 * when xen hypervisor inject vMCE to guest,
699 * use native mce handler to handle it
702 #endif
703 } else {
704 /* Some other trap using IST? */
705 if (WARN_ON(val->ist != 0))
706 return 0;
708 #endif /* CONFIG_X86_64 */
709 info->address = addr;
711 info->cs = gate_segment(*val);
712 info->flags = val->dpl;
713 /* interrupt gates clear IF */
714 if (val->type == GATE_INTERRUPT)
715 info->flags |= 1 << 2;
717 return 1;
720 /* Locations of each CPU's IDT */
721 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
723 /* Set an IDT entry. If the entry is part of the current IDT, then
724 also update Xen. */
725 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
727 unsigned long p = (unsigned long)&dt[entrynum];
728 unsigned long start, end;
730 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
732 preempt_disable();
734 start = __this_cpu_read(idt_desc.address);
735 end = start + __this_cpu_read(idt_desc.size) + 1;
737 xen_mc_flush();
739 native_write_idt_entry(dt, entrynum, g);
741 if (p >= start && (p + 8) <= end) {
742 struct trap_info info[2];
744 info[1].address = 0;
746 if (cvt_gate_to_trap(entrynum, g, &info[0]))
747 if (HYPERVISOR_set_trap_table(info))
748 BUG();
751 preempt_enable();
754 static void xen_convert_trap_info(const struct desc_ptr *desc,
755 struct trap_info *traps)
757 unsigned in, out, count;
759 count = (desc->size+1) / sizeof(gate_desc);
760 BUG_ON(count > 256);
762 for (in = out = 0; in < count; in++) {
763 gate_desc *entry = (gate_desc*)(desc->address) + in;
765 if (cvt_gate_to_trap(in, entry, &traps[out]))
766 out++;
768 traps[out].address = 0;
771 void xen_copy_trap_info(struct trap_info *traps)
773 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
775 xen_convert_trap_info(desc, traps);
778 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
779 hold a spinlock to protect the static traps[] array (static because
780 it avoids allocation, and saves stack space). */
781 static void xen_load_idt(const struct desc_ptr *desc)
783 static DEFINE_SPINLOCK(lock);
784 static struct trap_info traps[257];
786 trace_xen_cpu_load_idt(desc);
788 spin_lock(&lock);
790 __get_cpu_var(idt_desc) = *desc;
792 xen_convert_trap_info(desc, traps);
794 xen_mc_flush();
795 if (HYPERVISOR_set_trap_table(traps))
796 BUG();
798 spin_unlock(&lock);
801 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
802 they're handled differently. */
803 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
804 const void *desc, int type)
806 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
808 preempt_disable();
810 switch (type) {
811 case DESC_LDT:
812 case DESC_TSS:
813 /* ignore */
814 break;
816 default: {
817 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
819 xen_mc_flush();
820 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
821 BUG();
826 preempt_enable();
830 * Version of write_gdt_entry for use at early boot-time needed to
831 * update an entry as simply as possible.
833 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
834 const void *desc, int type)
836 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
838 switch (type) {
839 case DESC_LDT:
840 case DESC_TSS:
841 /* ignore */
842 break;
844 default: {
845 xmaddr_t maddr = virt_to_machine(&dt[entry]);
847 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
848 dt[entry] = *(struct desc_struct *)desc;
854 static void xen_load_sp0(struct tss_struct *tss,
855 struct thread_struct *thread)
857 struct multicall_space mcs;
859 mcs = xen_mc_entry(0);
860 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
861 xen_mc_issue(PARAVIRT_LAZY_CPU);
864 static void xen_set_iopl_mask(unsigned mask)
866 struct physdev_set_iopl set_iopl;
868 /* Force the change at ring 0. */
869 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
870 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
873 static void xen_io_delay(void)
877 #ifdef CONFIG_X86_LOCAL_APIC
878 static unsigned long xen_set_apic_id(unsigned int x)
880 WARN_ON(1);
881 return x;
883 static unsigned int xen_get_apic_id(unsigned long x)
885 return ((x)>>24) & 0xFFu;
887 static u32 xen_apic_read(u32 reg)
889 struct xen_platform_op op = {
890 .cmd = XENPF_get_cpuinfo,
891 .interface_version = XENPF_INTERFACE_VERSION,
892 .u.pcpu_info.xen_cpuid = 0,
894 int ret = 0;
896 /* Shouldn't need this as APIC is turned off for PV, and we only
897 * get called on the bootup processor. But just in case. */
898 if (!xen_initial_domain() || smp_processor_id())
899 return 0;
901 if (reg == APIC_LVR)
902 return 0x10;
904 if (reg != APIC_ID)
905 return 0;
907 ret = HYPERVISOR_dom0_op(&op);
908 if (ret)
909 return 0;
911 return op.u.pcpu_info.apic_id << 24;
914 static void xen_apic_write(u32 reg, u32 val)
916 /* Warn to see if there's any stray references */
917 WARN_ON(1);
920 static u64 xen_apic_icr_read(void)
922 return 0;
925 static void xen_apic_icr_write(u32 low, u32 id)
927 /* Warn to see if there's any stray references */
928 WARN_ON(1);
931 static void xen_apic_wait_icr_idle(void)
933 return;
936 static u32 xen_safe_apic_wait_icr_idle(void)
938 return 0;
941 static void set_xen_basic_apic_ops(void)
943 apic->read = xen_apic_read;
944 apic->write = xen_apic_write;
945 apic->icr_read = xen_apic_icr_read;
946 apic->icr_write = xen_apic_icr_write;
947 apic->wait_icr_idle = xen_apic_wait_icr_idle;
948 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
949 apic->set_apic_id = xen_set_apic_id;
950 apic->get_apic_id = xen_get_apic_id;
952 #ifdef CONFIG_SMP
953 apic->send_IPI_allbutself = xen_send_IPI_allbutself;
954 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
955 apic->send_IPI_mask = xen_send_IPI_mask;
956 apic->send_IPI_all = xen_send_IPI_all;
957 apic->send_IPI_self = xen_send_IPI_self;
958 #endif
961 #endif
963 static void xen_clts(void)
965 struct multicall_space mcs;
967 mcs = xen_mc_entry(0);
969 MULTI_fpu_taskswitch(mcs.mc, 0);
971 xen_mc_issue(PARAVIRT_LAZY_CPU);
974 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
976 static unsigned long xen_read_cr0(void)
978 unsigned long cr0 = this_cpu_read(xen_cr0_value);
980 if (unlikely(cr0 == 0)) {
981 cr0 = native_read_cr0();
982 this_cpu_write(xen_cr0_value, cr0);
985 return cr0;
988 static void xen_write_cr0(unsigned long cr0)
990 struct multicall_space mcs;
992 this_cpu_write(xen_cr0_value, cr0);
994 /* Only pay attention to cr0.TS; everything else is
995 ignored. */
996 mcs = xen_mc_entry(0);
998 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1000 xen_mc_issue(PARAVIRT_LAZY_CPU);
1003 static void xen_write_cr4(unsigned long cr4)
1005 cr4 &= ~X86_CR4_PGE;
1006 cr4 &= ~X86_CR4_PSE;
1008 native_write_cr4(cr4);
1010 #ifdef CONFIG_X86_64
1011 static inline unsigned long xen_read_cr8(void)
1013 return 0;
1015 static inline void xen_write_cr8(unsigned long val)
1017 BUG_ON(val);
1019 #endif
1020 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1022 int ret;
1024 ret = 0;
1026 switch (msr) {
1027 #ifdef CONFIG_X86_64
1028 unsigned which;
1029 u64 base;
1031 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1032 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1033 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1035 set:
1036 base = ((u64)high << 32) | low;
1037 if (HYPERVISOR_set_segment_base(which, base) != 0)
1038 ret = -EIO;
1039 break;
1040 #endif
1042 case MSR_STAR:
1043 case MSR_CSTAR:
1044 case MSR_LSTAR:
1045 case MSR_SYSCALL_MASK:
1046 case MSR_IA32_SYSENTER_CS:
1047 case MSR_IA32_SYSENTER_ESP:
1048 case MSR_IA32_SYSENTER_EIP:
1049 /* Fast syscall setup is all done in hypercalls, so
1050 these are all ignored. Stub them out here to stop
1051 Xen console noise. */
1052 break;
1054 case MSR_IA32_CR_PAT:
1055 if (smp_processor_id() == 0)
1056 xen_set_pat(((u64)high << 32) | low);
1057 break;
1059 default:
1060 ret = native_write_msr_safe(msr, low, high);
1063 return ret;
1066 void xen_setup_shared_info(void)
1068 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1069 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1070 xen_start_info->shared_info);
1072 HYPERVISOR_shared_info =
1073 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1074 } else
1075 HYPERVISOR_shared_info =
1076 (struct shared_info *)__va(xen_start_info->shared_info);
1078 #ifndef CONFIG_SMP
1079 /* In UP this is as good a place as any to set up shared info */
1080 xen_setup_vcpu_info_placement();
1081 #endif
1083 xen_setup_mfn_list_list();
1086 /* This is called once we have the cpu_possible_mask */
1087 void xen_setup_vcpu_info_placement(void)
1089 int cpu;
1091 for_each_possible_cpu(cpu)
1092 xen_vcpu_setup(cpu);
1094 /* xen_vcpu_setup managed to place the vcpu_info within the
1095 percpu area for all cpus, so make use of it */
1096 if (have_vcpu_info_placement) {
1097 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1098 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1099 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1100 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1101 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1105 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1106 unsigned long addr, unsigned len)
1108 char *start, *end, *reloc;
1109 unsigned ret;
1111 start = end = reloc = NULL;
1113 #define SITE(op, x) \
1114 case PARAVIRT_PATCH(op.x): \
1115 if (have_vcpu_info_placement) { \
1116 start = (char *)xen_##x##_direct; \
1117 end = xen_##x##_direct_end; \
1118 reloc = xen_##x##_direct_reloc; \
1120 goto patch_site
1122 switch (type) {
1123 SITE(pv_irq_ops, irq_enable);
1124 SITE(pv_irq_ops, irq_disable);
1125 SITE(pv_irq_ops, save_fl);
1126 SITE(pv_irq_ops, restore_fl);
1127 #undef SITE
1129 patch_site:
1130 if (start == NULL || (end-start) > len)
1131 goto default_patch;
1133 ret = paravirt_patch_insns(insnbuf, len, start, end);
1135 /* Note: because reloc is assigned from something that
1136 appears to be an array, gcc assumes it's non-null,
1137 but doesn't know its relationship with start and
1138 end. */
1139 if (reloc > start && reloc < end) {
1140 int reloc_off = reloc - start;
1141 long *relocp = (long *)(insnbuf + reloc_off);
1142 long delta = start - (char *)addr;
1144 *relocp += delta;
1146 break;
1148 default_patch:
1149 default:
1150 ret = paravirt_patch_default(type, clobbers, insnbuf,
1151 addr, len);
1152 break;
1155 return ret;
1158 static const struct pv_info xen_info __initconst = {
1159 .paravirt_enabled = 1,
1160 .shared_kernel_pmd = 0,
1162 #ifdef CONFIG_X86_64
1163 .extra_user_64bit_cs = FLAT_USER_CS64,
1164 #endif
1166 .name = "Xen",
1169 static const struct pv_init_ops xen_init_ops __initconst = {
1170 .patch = xen_patch,
1173 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1174 .cpuid = xen_cpuid,
1176 .set_debugreg = xen_set_debugreg,
1177 .get_debugreg = xen_get_debugreg,
1179 .clts = xen_clts,
1181 .read_cr0 = xen_read_cr0,
1182 .write_cr0 = xen_write_cr0,
1184 .read_cr4 = native_read_cr4,
1185 .read_cr4_safe = native_read_cr4_safe,
1186 .write_cr4 = xen_write_cr4,
1188 #ifdef CONFIG_X86_64
1189 .read_cr8 = xen_read_cr8,
1190 .write_cr8 = xen_write_cr8,
1191 #endif
1193 .wbinvd = native_wbinvd,
1195 .read_msr = native_read_msr_safe,
1196 .write_msr = xen_write_msr_safe,
1198 .read_tsc = native_read_tsc,
1199 .read_pmc = native_read_pmc,
1201 .read_tscp = native_read_tscp,
1203 .iret = xen_iret,
1204 .irq_enable_sysexit = xen_sysexit,
1205 #ifdef CONFIG_X86_64
1206 .usergs_sysret32 = xen_sysret32,
1207 .usergs_sysret64 = xen_sysret64,
1208 #endif
1210 .load_tr_desc = paravirt_nop,
1211 .set_ldt = xen_set_ldt,
1212 .load_gdt = xen_load_gdt,
1213 .load_idt = xen_load_idt,
1214 .load_tls = xen_load_tls,
1215 #ifdef CONFIG_X86_64
1216 .load_gs_index = xen_load_gs_index,
1217 #endif
1219 .alloc_ldt = xen_alloc_ldt,
1220 .free_ldt = xen_free_ldt,
1222 .store_gdt = native_store_gdt,
1223 .store_idt = native_store_idt,
1224 .store_tr = xen_store_tr,
1226 .write_ldt_entry = xen_write_ldt_entry,
1227 .write_gdt_entry = xen_write_gdt_entry,
1228 .write_idt_entry = xen_write_idt_entry,
1229 .load_sp0 = xen_load_sp0,
1231 .set_iopl_mask = xen_set_iopl_mask,
1232 .io_delay = xen_io_delay,
1234 /* Xen takes care of %gs when switching to usermode for us */
1235 .swapgs = paravirt_nop,
1237 .start_context_switch = paravirt_start_context_switch,
1238 .end_context_switch = xen_end_context_switch,
1241 static const struct pv_apic_ops xen_apic_ops __initconst = {
1242 #ifdef CONFIG_X86_LOCAL_APIC
1243 .startup_ipi_hook = paravirt_nop,
1244 #endif
1247 static void xen_reboot(int reason)
1249 struct sched_shutdown r = { .reason = reason };
1251 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1252 BUG();
1255 static void xen_restart(char *msg)
1257 xen_reboot(SHUTDOWN_reboot);
1260 static void xen_emergency_restart(void)
1262 xen_reboot(SHUTDOWN_reboot);
1265 static void xen_machine_halt(void)
1267 xen_reboot(SHUTDOWN_poweroff);
1270 static void xen_machine_power_off(void)
1272 if (pm_power_off)
1273 pm_power_off();
1274 xen_reboot(SHUTDOWN_poweroff);
1277 static void xen_crash_shutdown(struct pt_regs *regs)
1279 xen_reboot(SHUTDOWN_crash);
1282 static int
1283 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1285 xen_reboot(SHUTDOWN_crash);
1286 return NOTIFY_DONE;
1289 static struct notifier_block xen_panic_block = {
1290 .notifier_call= xen_panic_event,
1293 int xen_panic_handler_init(void)
1295 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1296 return 0;
1299 static const struct machine_ops xen_machine_ops __initconst = {
1300 .restart = xen_restart,
1301 .halt = xen_machine_halt,
1302 .power_off = xen_machine_power_off,
1303 .shutdown = xen_machine_halt,
1304 .crash_shutdown = xen_crash_shutdown,
1305 .emergency_restart = xen_emergency_restart,
1309 * Set up the GDT and segment registers for -fstack-protector. Until
1310 * we do this, we have to be careful not to call any stack-protected
1311 * function, which is most of the kernel.
1313 static void __init xen_setup_stackprotector(void)
1315 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1316 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1318 setup_stack_canary_segment(0);
1319 switch_to_new_gdt(0);
1321 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1322 pv_cpu_ops.load_gdt = xen_load_gdt;
1325 /* First C function to be called on Xen boot */
1326 asmlinkage void __init xen_start_kernel(void)
1328 struct physdev_set_iopl set_iopl;
1329 int rc;
1331 if (!xen_start_info)
1332 return;
1334 xen_domain_type = XEN_PV_DOMAIN;
1336 xen_setup_machphys_mapping();
1338 /* Install Xen paravirt ops */
1339 pv_info = xen_info;
1340 pv_init_ops = xen_init_ops;
1341 pv_cpu_ops = xen_cpu_ops;
1342 pv_apic_ops = xen_apic_ops;
1344 x86_init.resources.memory_setup = xen_memory_setup;
1345 x86_init.oem.arch_setup = xen_arch_setup;
1346 x86_init.oem.banner = xen_banner;
1348 xen_init_time_ops();
1351 * Set up some pagetable state before starting to set any ptes.
1354 xen_init_mmu_ops();
1356 /* Prevent unwanted bits from being set in PTEs. */
1357 __supported_pte_mask &= ~_PAGE_GLOBAL;
1358 #if 0
1359 if (!xen_initial_domain())
1360 #endif
1361 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1363 __supported_pte_mask |= _PAGE_IOMAP;
1366 * Prevent page tables from being allocated in highmem, even
1367 * if CONFIG_HIGHPTE is enabled.
1369 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1371 /* Work out if we support NX */
1372 x86_configure_nx();
1374 xen_setup_features();
1376 /* Get mfn list */
1377 if (!xen_feature(XENFEAT_auto_translated_physmap))
1378 xen_build_dynamic_phys_to_machine();
1381 * Set up kernel GDT and segment registers, mainly so that
1382 * -fstack-protector code can be executed.
1384 xen_setup_stackprotector();
1386 xen_init_irq_ops();
1387 xen_init_cpuid_mask();
1389 #ifdef CONFIG_X86_LOCAL_APIC
1391 * set up the basic apic ops.
1393 set_xen_basic_apic_ops();
1394 #endif
1396 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1397 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1398 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1401 machine_ops = xen_machine_ops;
1404 * The only reliable way to retain the initial address of the
1405 * percpu gdt_page is to remember it here, so we can go and
1406 * mark it RW later, when the initial percpu area is freed.
1408 xen_initial_gdt = &per_cpu(gdt_page, 0);
1410 xen_smp_init();
1412 #ifdef CONFIG_ACPI_NUMA
1414 * The pages we from Xen are not related to machine pages, so
1415 * any NUMA information the kernel tries to get from ACPI will
1416 * be meaningless. Prevent it from trying.
1418 acpi_numa = -1;
1419 #endif
1421 /* Don't do the full vcpu_info placement stuff until we have a
1422 possible map and a non-dummy shared_info. */
1423 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1425 local_irq_disable();
1426 early_boot_irqs_disabled = true;
1428 xen_raw_console_write("mapping kernel into physical memory\n");
1429 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1431 /* Allocate and initialize top and mid mfn levels for p2m structure */
1432 xen_build_mfn_list_list();
1434 /* keep using Xen gdt for now; no urgent need to change it */
1436 #ifdef CONFIG_X86_32
1437 pv_info.kernel_rpl = 1;
1438 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1439 pv_info.kernel_rpl = 0;
1440 #else
1441 pv_info.kernel_rpl = 0;
1442 #endif
1443 /* set the limit of our address space */
1444 xen_reserve_top();
1446 /* We used to do this in xen_arch_setup, but that is too late on AMD
1447 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1448 * which pokes 0xcf8 port.
1450 set_iopl.iopl = 1;
1451 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1452 if (rc != 0)
1453 xen_raw_printk("physdev_op failed %d\n", rc);
1455 #ifdef CONFIG_X86_32
1456 /* set up basic CPUID stuff */
1457 cpu_detect(&new_cpu_data);
1458 new_cpu_data.hard_math = 1;
1459 new_cpu_data.wp_works_ok = 1;
1460 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1461 #endif
1463 /* Poke various useful things into boot_params */
1464 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1465 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1466 ? __pa(xen_start_info->mod_start) : 0;
1467 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1468 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1470 if (!xen_initial_domain()) {
1471 add_preferred_console("xenboot", 0, NULL);
1472 add_preferred_console("tty", 0, NULL);
1473 add_preferred_console("hvc", 0, NULL);
1474 if (pci_xen)
1475 x86_init.pci.arch_init = pci_xen_init;
1476 } else {
1477 const struct dom0_vga_console_info *info =
1478 (void *)((char *)xen_start_info +
1479 xen_start_info->console.dom0.info_off);
1480 struct xen_platform_op op = {
1481 .cmd = XENPF_firmware_info,
1482 .interface_version = XENPF_INTERFACE_VERSION,
1483 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1486 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1487 xen_start_info->console.domU.mfn = 0;
1488 xen_start_info->console.domU.evtchn = 0;
1490 if (HYPERVISOR_dom0_op(&op) == 0)
1491 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1493 xen_init_apic();
1495 /* Make sure ACS will be enabled */
1496 pci_request_acs();
1498 xen_acpi_sleep_register();
1500 /* Avoid searching for BIOS MP tables */
1501 x86_init.mpparse.find_smp_config = x86_init_noop;
1502 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1504 #ifdef CONFIG_PCI
1505 /* PCI BIOS service won't work from a PV guest. */
1506 pci_probe &= ~PCI_PROBE_BIOS;
1507 #endif
1508 xen_raw_console_write("about to get started...\n");
1510 xen_setup_runstate_info(0);
1512 /* Start the world */
1513 #ifdef CONFIG_X86_32
1514 i386_start_kernel();
1515 #else
1516 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1517 #endif
1520 #ifdef CONFIG_XEN_PVHVM
1521 #define HVM_SHARED_INFO_ADDR 0xFE700000UL
1522 static struct shared_info *xen_hvm_shared_info;
1523 static unsigned long xen_hvm_sip_phys;
1524 static int xen_major, xen_minor;
1526 static void xen_hvm_connect_shared_info(unsigned long pfn)
1528 struct xen_add_to_physmap xatp;
1530 xatp.domid = DOMID_SELF;
1531 xatp.idx = 0;
1532 xatp.space = XENMAPSPACE_shared_info;
1533 xatp.gpfn = pfn;
1534 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1535 BUG();
1538 static void __init xen_hvm_set_shared_info(struct shared_info *sip)
1540 int cpu;
1542 HYPERVISOR_shared_info = sip;
1544 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1545 * page, we use it in the event channel upcall and in some pvclock
1546 * related functions. We don't need the vcpu_info placement
1547 * optimizations because we don't use any pv_mmu or pv_irq op on
1548 * HVM. */
1549 for_each_online_cpu(cpu)
1550 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1553 /* Reconnect the shared_info pfn to a (new) mfn */
1554 void xen_hvm_resume_shared_info(void)
1556 xen_hvm_connect_shared_info(xen_hvm_sip_phys >> PAGE_SHIFT);
1559 /* Xen tools prior to Xen 4 do not provide a E820_Reserved area for guest usage.
1560 * On these old tools the shared info page will be placed in E820_Ram.
1561 * Xen 4 provides a E820_Reserved area at 0xFC000000, and this code expects
1562 * that nothing is mapped up to HVM_SHARED_INFO_ADDR.
1563 * Xen 4.3+ provides an explicit 1MB area at HVM_SHARED_INFO_ADDR which is used
1564 * here for the shared info page. */
1565 static void __init xen_hvm_init_shared_info(void)
1567 if (xen_major < 4) {
1568 xen_hvm_shared_info = extend_brk(PAGE_SIZE, PAGE_SIZE);
1569 xen_hvm_sip_phys = __pa(xen_hvm_shared_info);
1570 } else {
1571 xen_hvm_sip_phys = HVM_SHARED_INFO_ADDR;
1572 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_hvm_sip_phys);
1573 xen_hvm_shared_info =
1574 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1576 xen_hvm_connect_shared_info(xen_hvm_sip_phys >> PAGE_SHIFT);
1577 xen_hvm_set_shared_info(xen_hvm_shared_info);
1580 static void __init init_hvm_pv_info(void)
1582 uint32_t ecx, edx, pages, msr, base;
1583 u64 pfn;
1585 base = xen_cpuid_base();
1586 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1588 pfn = __pa(hypercall_page);
1589 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1591 xen_setup_features();
1593 pv_info.name = "Xen HVM";
1595 xen_domain_type = XEN_HVM_DOMAIN;
1598 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1599 unsigned long action, void *hcpu)
1601 int cpu = (long)hcpu;
1602 switch (action) {
1603 case CPU_UP_PREPARE:
1604 xen_vcpu_setup(cpu);
1605 if (xen_have_vector_callback)
1606 xen_init_lock_cpu(cpu);
1607 break;
1608 default:
1609 break;
1611 return NOTIFY_OK;
1614 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1615 .notifier_call = xen_hvm_cpu_notify,
1618 static void __init xen_hvm_guest_init(void)
1620 init_hvm_pv_info();
1622 xen_hvm_init_shared_info();
1624 if (xen_feature(XENFEAT_hvm_callback_vector))
1625 xen_have_vector_callback = 1;
1626 xen_hvm_smp_init();
1627 register_cpu_notifier(&xen_hvm_cpu_notifier);
1628 xen_unplug_emulated_devices();
1629 x86_init.irqs.intr_init = xen_init_IRQ;
1630 xen_hvm_init_time_ops();
1631 xen_hvm_init_mmu_ops();
1634 static bool __init xen_hvm_platform(void)
1636 uint32_t eax, ebx, ecx, edx, base;
1638 if (xen_pv_domain())
1639 return false;
1641 base = xen_cpuid_base();
1642 if (!base)
1643 return false;
1645 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1647 xen_major = eax >> 16;
1648 xen_minor = eax & 0xffff;
1650 printk(KERN_INFO "Xen version %d.%d.\n", xen_major, xen_minor);
1652 return true;
1655 bool xen_hvm_need_lapic(void)
1657 if (xen_pv_domain())
1658 return false;
1659 if (!xen_hvm_domain())
1660 return false;
1661 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1662 return false;
1663 return true;
1665 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1667 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1668 .name = "Xen HVM",
1669 .detect = xen_hvm_platform,
1670 .init_platform = xen_hvm_guest_init,
1672 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1673 #endif