2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
275 #include <net/xfrm.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly
= TCP_FIN_TIMEOUT
;
285 struct percpu_counter tcp_orphan_count
;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
288 int sysctl_tcp_wmem
[3] __read_mostly
;
289 int sysctl_tcp_rmem
[3] __read_mostly
;
291 EXPORT_SYMBOL(sysctl_tcp_rmem
);
292 EXPORT_SYMBOL(sysctl_tcp_wmem
);
294 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated
);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated
;
301 EXPORT_SYMBOL(tcp_sockets_allocated
);
306 struct tcp_splice_state
{
307 struct pipe_inode_info
*pipe
;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly
;
319 EXPORT_SYMBOL(tcp_memory_pressure
);
321 void tcp_enter_memory_pressure(struct sock
*sk
)
323 if (!tcp_memory_pressure
) {
324 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
325 tcp_memory_pressure
= 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure
);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
336 int period
= timeout
;
339 while (seconds
> period
&& res
< 255) {
342 if (timeout
> rto_max
)
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
359 if (timeout
> rto_max
)
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock
*sk
)
374 struct inet_connection_sock
*icsk
= inet_csk(sk
);
375 struct tcp_sock
*tp
= tcp_sk(sk
);
377 skb_queue_head_init(&tp
->out_of_order_queue
);
378 tcp_init_xmit_timers(sk
);
379 tcp_prequeue_init(tp
);
380 INIT_LIST_HEAD(&tp
->tsq_node
);
382 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
383 tp
->mdev
= TCP_TIMEOUT_INIT
;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp
->snd_cwnd
= TCP_INIT_CWND
;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
396 tp
->snd_cwnd_clamp
= ~0;
397 tp
->mss_cache
= TCP_MSS_DEFAULT
;
399 tp
->reordering
= sysctl_tcp_reordering
;
400 tcp_enable_early_retrans(tp
);
401 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
403 sk
->sk_state
= TCP_CLOSE
;
405 sk
->sk_write_space
= sk_stream_write_space
;
406 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
408 icsk
->icsk_sync_mss
= tcp_sync_mss
;
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size
> 0) {
412 /* Default, cookies without s_data_payload. */
414 kzalloc(sizeof(*tp
->cookie_values
),
416 if (tp
->cookie_values
!= NULL
)
417 kref_init(&tp
->cookie_values
->kref
);
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
423 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
424 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
427 sock_update_memcg(sk
);
428 sk_sockets_allocated_inc(sk
);
431 EXPORT_SYMBOL(tcp_init_sock
);
434 * Wait for a TCP event.
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
440 unsigned int tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
443 struct sock
*sk
= sock
->sk
;
444 const struct tcp_sock
*tp
= tcp_sk(sk
);
446 sock_poll_wait(file
, sk_sleep(sk
), wait
);
447 if (sk
->sk_state
== TCP_LISTEN
)
448 return inet_csk_listen_poll(sk
);
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
484 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| sk
->sk_state
== TCP_CLOSE
)
486 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
487 mask
|= POLLIN
| POLLRDNORM
| POLLRDHUP
;
489 /* Connected or passive Fast Open socket? */
490 if (sk
->sk_state
!= TCP_SYN_SENT
&&
491 (sk
->sk_state
!= TCP_SYN_RECV
|| tp
->fastopen_rsk
!= NULL
)) {
492 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
494 if (tp
->urg_seq
== tp
->copied_seq
&&
495 !sock_flag(sk
, SOCK_URGINLINE
) &&
499 /* Potential race condition. If read of tp below will
500 * escape above sk->sk_state, we can be illegally awaken
501 * in SYN_* states. */
502 if (tp
->rcv_nxt
- tp
->copied_seq
>= target
)
503 mask
|= POLLIN
| POLLRDNORM
;
505 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
506 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
)) {
507 mask
|= POLLOUT
| POLLWRNORM
;
508 } else { /* send SIGIO later */
509 set_bit(SOCK_ASYNC_NOSPACE
,
510 &sk
->sk_socket
->flags
);
511 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
513 /* Race breaker. If space is freed after
514 * wspace test but before the flags are set,
515 * IO signal will be lost.
517 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
))
518 mask
|= POLLOUT
| POLLWRNORM
;
521 mask
|= POLLOUT
| POLLWRNORM
;
523 if (tp
->urg_data
& TCP_URG_VALID
)
526 /* This barrier is coupled with smp_wmb() in tcp_reset() */
533 EXPORT_SYMBOL(tcp_poll
);
535 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
537 struct tcp_sock
*tp
= tcp_sk(sk
);
543 if (sk
->sk_state
== TCP_LISTEN
)
546 slow
= lock_sock_fast(sk
);
547 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
549 else if (sock_flag(sk
, SOCK_URGINLINE
) ||
551 before(tp
->urg_seq
, tp
->copied_seq
) ||
552 !before(tp
->urg_seq
, tp
->rcv_nxt
)) {
554 answ
= tp
->rcv_nxt
- tp
->copied_seq
;
556 /* Subtract 1, if FIN was received */
557 if (answ
&& sock_flag(sk
, SOCK_DONE
))
560 answ
= tp
->urg_seq
- tp
->copied_seq
;
561 unlock_sock_fast(sk
, slow
);
564 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
567 if (sk
->sk_state
== TCP_LISTEN
)
570 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
573 answ
= tp
->write_seq
- tp
->snd_una
;
576 if (sk
->sk_state
== TCP_LISTEN
)
579 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
582 answ
= tp
->write_seq
- tp
->snd_nxt
;
588 return put_user(answ
, (int __user
*)arg
);
590 EXPORT_SYMBOL(tcp_ioctl
);
592 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
594 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
595 tp
->pushed_seq
= tp
->write_seq
;
598 static inline bool forced_push(const struct tcp_sock
*tp
)
600 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
603 static inline void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
605 struct tcp_sock
*tp
= tcp_sk(sk
);
606 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
609 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
610 tcb
->tcp_flags
= TCPHDR_ACK
;
612 skb_header_release(skb
);
613 tcp_add_write_queue_tail(sk
, skb
);
614 sk
->sk_wmem_queued
+= skb
->truesize
;
615 sk_mem_charge(sk
, skb
->truesize
);
616 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
617 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
620 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
623 tp
->snd_up
= tp
->write_seq
;
626 static inline void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
629 if (tcp_send_head(sk
)) {
630 struct tcp_sock
*tp
= tcp_sk(sk
);
632 if (!(flags
& MSG_MORE
) || forced_push(tp
))
633 tcp_mark_push(tp
, tcp_write_queue_tail(sk
));
635 tcp_mark_urg(tp
, flags
);
636 __tcp_push_pending_frames(sk
, mss_now
,
637 (flags
& MSG_MORE
) ? TCP_NAGLE_CORK
: nonagle
);
641 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
642 unsigned int offset
, size_t len
)
644 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
647 ret
= skb_splice_bits(skb
, offset
, tss
->pipe
, min(rd_desc
->count
, len
),
650 rd_desc
->count
-= ret
;
654 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc
= {
662 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
674 * Will read pages from given socket and fill them into a pipe.
677 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
678 struct pipe_inode_info
*pipe
, size_t len
,
681 struct sock
*sk
= sock
->sk
;
682 struct tcp_splice_state tss
= {
691 sock_rps_record_flow(sk
);
693 * We can't seek on a socket input
702 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
704 ret
= __tcp_splice_read(sk
, &tss
);
710 if (sock_flag(sk
, SOCK_DONE
))
713 ret
= sock_error(sk
);
716 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
718 if (sk
->sk_state
== TCP_CLOSE
) {
720 * This occurs when user tries to read
721 * from never connected socket.
723 if (!sock_flag(sk
, SOCK_DONE
))
731 sk_wait_data(sk
, &timeo
);
732 if (signal_pending(current
)) {
733 ret
= sock_intr_errno(timeo
);
746 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
747 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
748 signal_pending(current
))
759 EXPORT_SYMBOL(tcp_splice_read
);
761 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
)
765 /* The TCP header must be at least 32-bit aligned. */
766 size
= ALIGN(size
, 4);
768 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
770 if (sk_wmem_schedule(sk
, skb
->truesize
)) {
771 skb_reserve(skb
, sk
->sk_prot
->max_header
);
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
776 skb
->avail_size
= size
;
781 sk
->sk_prot
->enter_memory_pressure(sk
);
782 sk_stream_moderate_sndbuf(sk
);
787 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
790 struct tcp_sock
*tp
= tcp_sk(sk
);
791 u32 xmit_size_goal
, old_size_goal
;
793 xmit_size_goal
= mss_now
;
795 if (large_allowed
&& sk_can_gso(sk
)) {
796 xmit_size_goal
= ((sk
->sk_gso_max_size
- 1) -
797 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
798 inet_csk(sk
)->icsk_ext_hdr_len
-
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal
= min_t(u32
, xmit_size_goal
,
803 sysctl_tcp_limit_output_bytes
>> 1);
805 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
807 /* We try hard to avoid divides here */
808 old_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
810 if (likely(old_size_goal
<= xmit_size_goal
&&
811 old_size_goal
+ mss_now
> xmit_size_goal
)) {
812 xmit_size_goal
= old_size_goal
;
814 tp
->xmit_size_goal_segs
=
815 min_t(u16
, xmit_size_goal
/ mss_now
,
816 sk
->sk_gso_max_segs
);
817 xmit_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
821 return max(xmit_size_goal
, mss_now
);
824 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
828 mss_now
= tcp_current_mss(sk
);
829 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
834 static ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
835 size_t size
, int flags
)
837 struct tcp_sock
*tp
= tcp_sk(sk
);
838 int mss_now
, size_goal
;
841 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
843 /* Wait for a connection to finish. One exception is TCP Fast Open
844 * (passive side) where data is allowed to be sent before a connection
845 * is fully established.
847 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
848 !tcp_passive_fastopen(sk
)) {
849 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
853 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
855 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
859 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
863 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
867 if (!tcp_send_head(sk
) || (copy
= size_goal
- skb
->len
) <= 0) {
869 if (!sk_stream_memory_free(sk
))
870 goto wait_for_sndbuf
;
872 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
);
874 goto wait_for_memory
;
883 i
= skb_shinfo(skb
)->nr_frags
;
884 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
885 if (!can_coalesce
&& i
>= MAX_SKB_FRAGS
) {
886 tcp_mark_push(tp
, skb
);
889 if (!sk_wmem_schedule(sk
, copy
))
890 goto wait_for_memory
;
893 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
896 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
900 skb
->data_len
+= copy
;
901 skb
->truesize
+= copy
;
902 sk
->sk_wmem_queued
+= copy
;
903 sk_mem_charge(sk
, copy
);
904 skb
->ip_summed
= CHECKSUM_PARTIAL
;
905 tp
->write_seq
+= copy
;
906 TCP_SKB_CB(skb
)->end_seq
+= copy
;
907 skb_shinfo(skb
)->gso_segs
= 0;
910 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
917 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
920 if (forced_push(tp
)) {
921 tcp_mark_push(tp
, skb
);
922 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
923 } else if (skb
== tcp_send_head(sk
))
924 tcp_push_one(sk
, mss_now
);
928 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
930 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
, TCP_NAGLE_PUSH
);
932 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
935 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
939 if (copied
&& !(flags
& MSG_SENDPAGE_NOTLAST
))
940 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
);
947 return sk_stream_error(sk
, flags
, err
);
950 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
951 size_t size
, int flags
)
955 if (!(sk
->sk_route_caps
& NETIF_F_SG
) ||
956 !(sk
->sk_route_caps
& NETIF_F_ALL_CSUM
))
957 return sock_no_sendpage(sk
->sk_socket
, page
, offset
, size
,
961 res
= do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
965 EXPORT_SYMBOL(tcp_sendpage
);
967 static inline int select_size(const struct sock
*sk
, bool sg
)
969 const struct tcp_sock
*tp
= tcp_sk(sk
);
970 int tmp
= tp
->mss_cache
;
973 if (sk_can_gso(sk
)) {
974 /* Small frames wont use a full page:
975 * Payload will immediately follow tcp header.
977 tmp
= SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
979 int pgbreak
= SKB_MAX_HEAD(MAX_TCP_HEADER
);
981 if (tmp
>= pgbreak
&&
982 tmp
<= pgbreak
+ (MAX_SKB_FRAGS
- 1) * PAGE_SIZE
)
990 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
992 if (tp
->fastopen_req
!= NULL
) {
993 kfree(tp
->fastopen_req
);
994 tp
->fastopen_req
= NULL
;
998 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
, int *size
)
1000 struct tcp_sock
*tp
= tcp_sk(sk
);
1003 if (!(sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
))
1005 if (tp
->fastopen_req
!= NULL
)
1006 return -EALREADY
; /* Another Fast Open is in progress */
1008 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1010 if (unlikely(tp
->fastopen_req
== NULL
))
1012 tp
->fastopen_req
->data
= msg
;
1014 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1015 err
= __inet_stream_connect(sk
->sk_socket
, msg
->msg_name
,
1016 msg
->msg_namelen
, flags
);
1017 *size
= tp
->fastopen_req
->copied
;
1018 tcp_free_fastopen_req(tp
);
1022 int tcp_sendmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1026 struct tcp_sock
*tp
= tcp_sk(sk
);
1027 struct sk_buff
*skb
;
1028 int iovlen
, flags
, err
, copied
= 0;
1029 int mss_now
= 0, size_goal
, copied_syn
= 0, offset
= 0;
1035 flags
= msg
->msg_flags
;
1036 if (flags
& MSG_FASTOPEN
) {
1037 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
);
1038 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1042 offset
= copied_syn
;
1045 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1047 /* Wait for a connection to finish. One exception is TCP Fast Open
1048 * (passive side) where data is allowed to be sent before a connection
1049 * is fully established.
1051 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1052 !tcp_passive_fastopen(sk
)) {
1053 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
1057 if (unlikely(tp
->repair
)) {
1058 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1059 copied
= tcp_send_rcvq(sk
, msg
, size
);
1064 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1067 /* 'common' sending to sendq */
1070 /* This should be in poll */
1071 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1073 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1075 /* Ok commence sending. */
1076 iovlen
= msg
->msg_iovlen
;
1081 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1084 sg
= !!(sk
->sk_route_caps
& NETIF_F_SG
);
1086 while (--iovlen
>= 0) {
1087 size_t seglen
= iov
->iov_len
;
1088 unsigned char __user
*from
= iov
->iov_base
;
1091 if (unlikely(offset
> 0)) { /* Skip bytes copied in SYN */
1092 if (offset
>= seglen
) {
1101 while (seglen
> 0) {
1103 int max
= size_goal
;
1105 skb
= tcp_write_queue_tail(sk
);
1106 if (tcp_send_head(sk
)) {
1107 if (skb
->ip_summed
== CHECKSUM_NONE
)
1109 copy
= max
- skb
->len
;
1114 /* Allocate new segment. If the interface is SG,
1115 * allocate skb fitting to single page.
1117 if (!sk_stream_memory_free(sk
))
1118 goto wait_for_sndbuf
;
1120 skb
= sk_stream_alloc_skb(sk
,
1121 select_size(sk
, sg
),
1124 goto wait_for_memory
;
1127 * Check whether we can use HW checksum.
1129 if (sk
->sk_route_caps
& NETIF_F_ALL_CSUM
)
1130 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1132 skb_entail(sk
, skb
);
1137 /* Try to append data to the end of skb. */
1141 /* Where to copy to? */
1142 if (skb_availroom(skb
) > 0) {
1143 /* We have some space in skb head. Superb! */
1144 copy
= min_t(int, copy
, skb_availroom(skb
));
1145 err
= skb_add_data_nocache(sk
, skb
, from
, copy
);
1150 int i
= skb_shinfo(skb
)->nr_frags
;
1151 struct page_frag
*pfrag
= sk_page_frag(sk
);
1153 if (!sk_page_frag_refill(sk
, pfrag
))
1154 goto wait_for_memory
;
1156 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1158 if (i
== MAX_SKB_FRAGS
|| !sg
) {
1159 tcp_mark_push(tp
, skb
);
1165 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1167 if (!sk_wmem_schedule(sk
, copy
))
1168 goto wait_for_memory
;
1170 err
= skb_copy_to_page_nocache(sk
, from
, skb
,
1177 /* Update the skb. */
1179 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1181 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1182 pfrag
->offset
, copy
);
1183 get_page(pfrag
->page
);
1185 pfrag
->offset
+= copy
;
1189 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1191 tp
->write_seq
+= copy
;
1192 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1193 skb_shinfo(skb
)->gso_segs
= 0;
1197 if ((seglen
-= copy
) == 0 && iovlen
== 0)
1200 if (skb
->len
< max
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1203 if (forced_push(tp
)) {
1204 tcp_mark_push(tp
, skb
);
1205 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1206 } else if (skb
== tcp_send_head(sk
))
1207 tcp_push_one(sk
, mss_now
);
1211 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1214 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
, TCP_NAGLE_PUSH
);
1216 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
1219 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1225 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
);
1227 return copied
+ copied_syn
;
1231 tcp_unlink_write_queue(skb
, sk
);
1232 /* It is the one place in all of TCP, except connection
1233 * reset, where we can be unlinking the send_head.
1235 tcp_check_send_head(sk
, skb
);
1236 sk_wmem_free_skb(sk
, skb
);
1240 if (copied
+ copied_syn
)
1243 err
= sk_stream_error(sk
, flags
, err
);
1247 EXPORT_SYMBOL(tcp_sendmsg
);
1250 * Handle reading urgent data. BSD has very simple semantics for
1251 * this, no blocking and very strange errors 8)
1254 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1256 struct tcp_sock
*tp
= tcp_sk(sk
);
1258 /* No URG data to read. */
1259 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1260 tp
->urg_data
== TCP_URG_READ
)
1261 return -EINVAL
; /* Yes this is right ! */
1263 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1266 if (tp
->urg_data
& TCP_URG_VALID
) {
1268 char c
= tp
->urg_data
;
1270 if (!(flags
& MSG_PEEK
))
1271 tp
->urg_data
= TCP_URG_READ
;
1273 /* Read urgent data. */
1274 msg
->msg_flags
|= MSG_OOB
;
1277 if (!(flags
& MSG_TRUNC
))
1278 err
= memcpy_toiovec(msg
->msg_iov
, &c
, 1);
1281 msg
->msg_flags
|= MSG_TRUNC
;
1283 return err
? -EFAULT
: len
;
1286 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1289 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1290 * the available implementations agree in this case:
1291 * this call should never block, independent of the
1292 * blocking state of the socket.
1293 * Mike <pall@rz.uni-karlsruhe.de>
1298 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1300 struct sk_buff
*skb
;
1301 int copied
= 0, err
= 0;
1303 /* XXX -- need to support SO_PEEK_OFF */
1305 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1306 err
= skb_copy_datagram_iovec(skb
, 0, msg
->msg_iov
, skb
->len
);
1313 return err
?: copied
;
1316 /* Clean up the receive buffer for full frames taken by the user,
1317 * then send an ACK if necessary. COPIED is the number of bytes
1318 * tcp_recvmsg has given to the user so far, it speeds up the
1319 * calculation of whether or not we must ACK for the sake of
1322 void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1324 struct tcp_sock
*tp
= tcp_sk(sk
);
1325 bool time_to_ack
= false;
1327 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1329 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1330 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1331 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1333 if (inet_csk_ack_scheduled(sk
)) {
1334 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1335 /* Delayed ACKs frequently hit locked sockets during bulk
1337 if (icsk
->icsk_ack
.blocked
||
1338 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1339 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1341 * If this read emptied read buffer, we send ACK, if
1342 * connection is not bidirectional, user drained
1343 * receive buffer and there was a small segment
1347 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1348 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1349 !icsk
->icsk_ack
.pingpong
)) &&
1350 !atomic_read(&sk
->sk_rmem_alloc
)))
1354 /* We send an ACK if we can now advertise a non-zero window
1355 * which has been raised "significantly".
1357 * Even if window raised up to infinity, do not send window open ACK
1358 * in states, where we will not receive more. It is useless.
1360 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1361 __u32 rcv_window_now
= tcp_receive_window(tp
);
1363 /* Optimize, __tcp_select_window() is not cheap. */
1364 if (2*rcv_window_now
<= tp
->window_clamp
) {
1365 __u32 new_window
= __tcp_select_window(sk
);
1367 /* Send ACK now, if this read freed lots of space
1368 * in our buffer. Certainly, new_window is new window.
1369 * We can advertise it now, if it is not less than current one.
1370 * "Lots" means "at least twice" here.
1372 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1380 static void tcp_prequeue_process(struct sock
*sk
)
1382 struct sk_buff
*skb
;
1383 struct tcp_sock
*tp
= tcp_sk(sk
);
1385 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPPREQUEUED
);
1387 /* RX process wants to run with disabled BHs, though it is not
1390 while ((skb
= __skb_dequeue(&tp
->ucopy
.prequeue
)) != NULL
)
1391 sk_backlog_rcv(sk
, skb
);
1394 /* Clear memory counter. */
1395 tp
->ucopy
.memory
= 0;
1398 #ifdef CONFIG_NET_DMA
1399 static void tcp_service_net_dma(struct sock
*sk
, bool wait
)
1401 dma_cookie_t done
, used
;
1402 dma_cookie_t last_issued
;
1403 struct tcp_sock
*tp
= tcp_sk(sk
);
1405 if (!tp
->ucopy
.dma_chan
)
1408 last_issued
= tp
->ucopy
.dma_cookie
;
1409 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1412 if (dma_async_memcpy_complete(tp
->ucopy
.dma_chan
,
1414 &used
) == DMA_SUCCESS
) {
1415 /* Safe to free early-copied skbs now */
1416 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1419 struct sk_buff
*skb
;
1420 while ((skb
= skb_peek(&sk
->sk_async_wait_queue
)) &&
1421 (dma_async_is_complete(skb
->dma_cookie
, done
,
1422 used
) == DMA_SUCCESS
)) {
1423 __skb_dequeue(&sk
->sk_async_wait_queue
);
1431 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1433 struct sk_buff
*skb
;
1436 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1437 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1438 if (tcp_hdr(skb
)->syn
)
1440 if (offset
< skb
->len
|| tcp_hdr(skb
)->fin
) {
1444 /* This looks weird, but this can happen if TCP collapsing
1445 * splitted a fat GRO packet, while we released socket lock
1446 * in skb_splice_bits()
1448 sk_eat_skb(sk
, skb
, false);
1454 * This routine provides an alternative to tcp_recvmsg() for routines
1455 * that would like to handle copying from skbuffs directly in 'sendfile'
1458 * - It is assumed that the socket was locked by the caller.
1459 * - The routine does not block.
1460 * - At present, there is no support for reading OOB data
1461 * or for 'peeking' the socket using this routine
1462 * (although both would be easy to implement).
1464 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1465 sk_read_actor_t recv_actor
)
1467 struct sk_buff
*skb
;
1468 struct tcp_sock
*tp
= tcp_sk(sk
);
1469 u32 seq
= tp
->copied_seq
;
1473 if (sk
->sk_state
== TCP_LISTEN
)
1475 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1476 if (offset
< skb
->len
) {
1480 len
= skb
->len
- offset
;
1481 /* Stop reading if we hit a patch of urgent data */
1483 u32 urg_offset
= tp
->urg_seq
- seq
;
1484 if (urg_offset
< len
)
1489 used
= recv_actor(desc
, skb
, offset
, len
);
1494 } else if (used
<= len
) {
1499 /* If recv_actor drops the lock (e.g. TCP splice
1500 * receive) the skb pointer might be invalid when
1501 * getting here: tcp_collapse might have deleted it
1502 * while aggregating skbs from the socket queue.
1504 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1507 /* TCP coalescing might have appended data to the skb.
1508 * Try to splice more frags
1510 if (offset
+ 1 != skb
->len
)
1513 if (tcp_hdr(skb
)->fin
) {
1514 sk_eat_skb(sk
, skb
, false);
1518 sk_eat_skb(sk
, skb
, false);
1521 tp
->copied_seq
= seq
;
1523 tp
->copied_seq
= seq
;
1525 tcp_rcv_space_adjust(sk
);
1527 /* Clean up data we have read: This will do ACK frames. */
1529 tcp_recv_skb(sk
, seq
, &offset
);
1530 tcp_cleanup_rbuf(sk
, copied
);
1534 EXPORT_SYMBOL(tcp_read_sock
);
1537 * This routine copies from a sock struct into the user buffer.
1539 * Technical note: in 2.3 we work on _locked_ socket, so that
1540 * tricks with *seq access order and skb->users are not required.
1541 * Probably, code can be easily improved even more.
1544 int tcp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1545 size_t len
, int nonblock
, int flags
, int *addr_len
)
1547 struct tcp_sock
*tp
= tcp_sk(sk
);
1553 int target
; /* Read at least this many bytes */
1555 struct task_struct
*user_recv
= NULL
;
1556 bool copied_early
= false;
1557 struct sk_buff
*skb
;
1563 if (sk
->sk_state
== TCP_LISTEN
)
1566 timeo
= sock_rcvtimeo(sk
, nonblock
);
1568 /* Urgent data needs to be handled specially. */
1569 if (flags
& MSG_OOB
)
1572 if (unlikely(tp
->repair
)) {
1574 if (!(flags
& MSG_PEEK
))
1577 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
1581 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1584 /* 'common' recv queue MSG_PEEK-ing */
1587 seq
= &tp
->copied_seq
;
1588 if (flags
& MSG_PEEK
) {
1589 peek_seq
= tp
->copied_seq
;
1593 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1595 #ifdef CONFIG_NET_DMA
1596 tp
->ucopy
.dma_chan
= NULL
;
1598 skb
= skb_peek_tail(&sk
->sk_receive_queue
);
1603 available
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- (*seq
);
1604 if ((available
< target
) &&
1605 (len
> sysctl_tcp_dma_copybreak
) && !(flags
& MSG_PEEK
) &&
1606 !sysctl_tcp_low_latency
&&
1607 net_dma_find_channel()) {
1608 preempt_enable_no_resched();
1609 tp
->ucopy
.pinned_list
=
1610 dma_pin_iovec_pages(msg
->msg_iov
, len
);
1612 preempt_enable_no_resched();
1620 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1621 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1624 if (signal_pending(current
)) {
1625 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1630 /* Next get a buffer. */
1632 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1633 /* Now that we have two receive queues this
1636 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
1637 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1638 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
1642 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1643 if (tcp_hdr(skb
)->syn
)
1645 if (offset
< skb
->len
)
1647 if (tcp_hdr(skb
)->fin
)
1649 WARN(!(flags
& MSG_PEEK
),
1650 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1651 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
1654 /* Well, if we have backlog, try to process it now yet. */
1656 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
1661 sk
->sk_state
== TCP_CLOSE
||
1662 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1664 signal_pending(current
))
1667 if (sock_flag(sk
, SOCK_DONE
))
1671 copied
= sock_error(sk
);
1675 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1678 if (sk
->sk_state
== TCP_CLOSE
) {
1679 if (!sock_flag(sk
, SOCK_DONE
)) {
1680 /* This occurs when user tries to read
1681 * from never connected socket.
1694 if (signal_pending(current
)) {
1695 copied
= sock_intr_errno(timeo
);
1700 tcp_cleanup_rbuf(sk
, copied
);
1702 if (!sysctl_tcp_low_latency
&& tp
->ucopy
.task
== user_recv
) {
1703 /* Install new reader */
1704 if (!user_recv
&& !(flags
& (MSG_TRUNC
| MSG_PEEK
))) {
1705 user_recv
= current
;
1706 tp
->ucopy
.task
= user_recv
;
1707 tp
->ucopy
.iov
= msg
->msg_iov
;
1710 tp
->ucopy
.len
= len
;
1712 WARN_ON(tp
->copied_seq
!= tp
->rcv_nxt
&&
1713 !(flags
& (MSG_PEEK
| MSG_TRUNC
)));
1715 /* Ugly... If prequeue is not empty, we have to
1716 * process it before releasing socket, otherwise
1717 * order will be broken at second iteration.
1718 * More elegant solution is required!!!
1720 * Look: we have the following (pseudo)queues:
1722 * 1. packets in flight
1727 * Each queue can be processed only if the next ones
1728 * are empty. At this point we have empty receive_queue.
1729 * But prequeue _can_ be not empty after 2nd iteration,
1730 * when we jumped to start of loop because backlog
1731 * processing added something to receive_queue.
1732 * We cannot release_sock(), because backlog contains
1733 * packets arrived _after_ prequeued ones.
1735 * Shortly, algorithm is clear --- to process all
1736 * the queues in order. We could make it more directly,
1737 * requeueing packets from backlog to prequeue, if
1738 * is not empty. It is more elegant, but eats cycles,
1741 if (!skb_queue_empty(&tp
->ucopy
.prequeue
))
1744 /* __ Set realtime policy in scheduler __ */
1747 #ifdef CONFIG_NET_DMA
1748 if (tp
->ucopy
.dma_chan
) {
1749 if (tp
->rcv_wnd
== 0 &&
1750 !skb_queue_empty(&sk
->sk_async_wait_queue
)) {
1751 tcp_service_net_dma(sk
, true);
1752 tcp_cleanup_rbuf(sk
, copied
);
1754 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1757 if (copied
>= target
) {
1758 /* Do not sleep, just process backlog. */
1762 sk_wait_data(sk
, &timeo
);
1764 #ifdef CONFIG_NET_DMA
1765 tcp_service_net_dma(sk
, false); /* Don't block */
1766 tp
->ucopy
.wakeup
= 0;
1772 /* __ Restore normal policy in scheduler __ */
1774 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1775 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG
, chunk
);
1780 if (tp
->rcv_nxt
== tp
->copied_seq
&&
1781 !skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1783 tcp_prequeue_process(sk
);
1785 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1786 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1792 if ((flags
& MSG_PEEK
) &&
1793 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
1794 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1796 task_pid_nr(current
));
1797 peek_seq
= tp
->copied_seq
;
1802 /* Ok so how much can we use? */
1803 used
= skb
->len
- offset
;
1807 /* Do we have urgent data here? */
1809 u32 urg_offset
= tp
->urg_seq
- *seq
;
1810 if (urg_offset
< used
) {
1812 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
1825 if (!(flags
& MSG_TRUNC
)) {
1826 #ifdef CONFIG_NET_DMA
1827 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1828 tp
->ucopy
.dma_chan
= net_dma_find_channel();
1830 if (tp
->ucopy
.dma_chan
) {
1831 tp
->ucopy
.dma_cookie
= dma_skb_copy_datagram_iovec(
1832 tp
->ucopy
.dma_chan
, skb
, offset
,
1834 tp
->ucopy
.pinned_list
);
1836 if (tp
->ucopy
.dma_cookie
< 0) {
1838 pr_alert("%s: dma_cookie < 0\n",
1841 /* Exception. Bailout! */
1847 dma_async_memcpy_issue_pending(tp
->ucopy
.dma_chan
);
1849 if ((offset
+ used
) == skb
->len
)
1850 copied_early
= true;
1855 err
= skb_copy_datagram_iovec(skb
, offset
,
1856 msg
->msg_iov
, used
);
1858 /* Exception. Bailout! */
1870 tcp_rcv_space_adjust(sk
);
1873 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
1875 tcp_fast_path_check(sk
);
1877 if (used
+ offset
< skb
->len
)
1880 if (tcp_hdr(skb
)->fin
)
1882 if (!(flags
& MSG_PEEK
)) {
1883 sk_eat_skb(sk
, skb
, copied_early
);
1884 copied_early
= false;
1889 /* Process the FIN. */
1891 if (!(flags
& MSG_PEEK
)) {
1892 sk_eat_skb(sk
, skb
, copied_early
);
1893 copied_early
= false;
1899 if (!skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1902 tp
->ucopy
.len
= copied
> 0 ? len
: 0;
1904 tcp_prequeue_process(sk
);
1906 if (copied
> 0 && (chunk
= len
- tp
->ucopy
.len
) != 0) {
1907 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1913 tp
->ucopy
.task
= NULL
;
1917 #ifdef CONFIG_NET_DMA
1918 tcp_service_net_dma(sk
, true); /* Wait for queue to drain */
1919 tp
->ucopy
.dma_chan
= NULL
;
1921 if (tp
->ucopy
.pinned_list
) {
1922 dma_unpin_iovec_pages(tp
->ucopy
.pinned_list
);
1923 tp
->ucopy
.pinned_list
= NULL
;
1927 /* According to UNIX98, msg_name/msg_namelen are ignored
1928 * on connected socket. I was just happy when found this 8) --ANK
1931 /* Clean up data we have read: This will do ACK frames. */
1932 tcp_cleanup_rbuf(sk
, copied
);
1942 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
1946 err
= tcp_peek_sndq(sk
, msg
, len
);
1949 EXPORT_SYMBOL(tcp_recvmsg
);
1951 void tcp_set_state(struct sock
*sk
, int state
)
1953 int oldstate
= sk
->sk_state
;
1956 case TCP_ESTABLISHED
:
1957 if (oldstate
!= TCP_ESTABLISHED
)
1958 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
1962 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
1963 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
1965 sk
->sk_prot
->unhash(sk
);
1966 if (inet_csk(sk
)->icsk_bind_hash
&&
1967 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
1971 if (oldstate
== TCP_ESTABLISHED
)
1972 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
1975 /* Change state AFTER socket is unhashed to avoid closed
1976 * socket sitting in hash tables.
1978 sk
->sk_state
= state
;
1981 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
1984 EXPORT_SYMBOL_GPL(tcp_set_state
);
1987 * State processing on a close. This implements the state shift for
1988 * sending our FIN frame. Note that we only send a FIN for some
1989 * states. A shutdown() may have already sent the FIN, or we may be
1993 static const unsigned char new_state
[16] = {
1994 /* current state: new state: action: */
1995 /* (Invalid) */ TCP_CLOSE
,
1996 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
1997 /* TCP_SYN_SENT */ TCP_CLOSE
,
1998 /* TCP_SYN_RECV */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
1999 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1
,
2000 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2
,
2001 /* TCP_TIME_WAIT */ TCP_CLOSE
,
2002 /* TCP_CLOSE */ TCP_CLOSE
,
2003 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK
| TCP_ACTION_FIN
,
2004 /* TCP_LAST_ACK */ TCP_LAST_ACK
,
2005 /* TCP_LISTEN */ TCP_CLOSE
,
2006 /* TCP_CLOSING */ TCP_CLOSING
,
2009 static int tcp_close_state(struct sock
*sk
)
2011 int next
= (int)new_state
[sk
->sk_state
];
2012 int ns
= next
& TCP_STATE_MASK
;
2014 tcp_set_state(sk
, ns
);
2016 return next
& TCP_ACTION_FIN
;
2020 * Shutdown the sending side of a connection. Much like close except
2021 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2024 void tcp_shutdown(struct sock
*sk
, int how
)
2026 /* We need to grab some memory, and put together a FIN,
2027 * and then put it into the queue to be sent.
2028 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2030 if (!(how
& SEND_SHUTDOWN
))
2033 /* If we've already sent a FIN, or it's a closed state, skip this. */
2034 if ((1 << sk
->sk_state
) &
2035 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2036 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2037 /* Clear out any half completed packets. FIN if needed. */
2038 if (tcp_close_state(sk
))
2042 EXPORT_SYMBOL(tcp_shutdown
);
2044 bool tcp_check_oom(struct sock
*sk
, int shift
)
2046 bool too_many_orphans
, out_of_socket_memory
;
2048 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2049 out_of_socket_memory
= tcp_out_of_memory(sk
);
2051 if (too_many_orphans
)
2052 net_info_ratelimited("too many orphaned sockets\n");
2053 if (out_of_socket_memory
)
2054 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2055 return too_many_orphans
|| out_of_socket_memory
;
2058 void tcp_close(struct sock
*sk
, long timeout
)
2060 struct sk_buff
*skb
;
2061 int data_was_unread
= 0;
2065 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2067 if (sk
->sk_state
== TCP_LISTEN
) {
2068 tcp_set_state(sk
, TCP_CLOSE
);
2071 inet_csk_listen_stop(sk
);
2073 goto adjudge_to_death
;
2076 /* We need to flush the recv. buffs. We do this only on the
2077 * descriptor close, not protocol-sourced closes, because the
2078 * reader process may not have drained the data yet!
2080 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2081 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
-
2083 data_was_unread
+= len
;
2089 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2090 if (sk
->sk_state
== TCP_CLOSE
)
2091 goto adjudge_to_death
;
2093 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2094 * data was lost. To witness the awful effects of the old behavior of
2095 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2096 * GET in an FTP client, suspend the process, wait for the client to
2097 * advertise a zero window, then kill -9 the FTP client, wheee...
2098 * Note: timeout is always zero in such a case.
2100 if (unlikely(tcp_sk(sk
)->repair
)) {
2101 sk
->sk_prot
->disconnect(sk
, 0);
2102 } else if (data_was_unread
) {
2103 /* Unread data was tossed, zap the connection. */
2104 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2105 tcp_set_state(sk
, TCP_CLOSE
);
2106 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2107 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2108 /* Check zero linger _after_ checking for unread data. */
2109 sk
->sk_prot
->disconnect(sk
, 0);
2110 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2111 } else if (tcp_close_state(sk
)) {
2112 /* We FIN if the application ate all the data before
2113 * zapping the connection.
2116 /* RED-PEN. Formally speaking, we have broken TCP state
2117 * machine. State transitions:
2119 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2120 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2121 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2123 * are legal only when FIN has been sent (i.e. in window),
2124 * rather than queued out of window. Purists blame.
2126 * F.e. "RFC state" is ESTABLISHED,
2127 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2129 * The visible declinations are that sometimes
2130 * we enter time-wait state, when it is not required really
2131 * (harmless), do not send active resets, when they are
2132 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2133 * they look as CLOSING or LAST_ACK for Linux)
2134 * Probably, I missed some more holelets.
2136 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2137 * in a single packet! (May consider it later but will
2138 * probably need API support or TCP_CORK SYN-ACK until
2139 * data is written and socket is closed.)
2144 sk_stream_wait_close(sk
, timeout
);
2147 state
= sk
->sk_state
;
2151 /* It is the last release_sock in its life. It will remove backlog. */
2155 /* Now socket is owned by kernel and we acquire BH lock
2156 to finish close. No need to check for user refs.
2160 WARN_ON(sock_owned_by_user(sk
));
2162 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2164 /* Have we already been destroyed by a softirq or backlog? */
2165 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2168 /* This is a (useful) BSD violating of the RFC. There is a
2169 * problem with TCP as specified in that the other end could
2170 * keep a socket open forever with no application left this end.
2171 * We use a 3 minute timeout (about the same as BSD) then kill
2172 * our end. If they send after that then tough - BUT: long enough
2173 * that we won't make the old 4*rto = almost no time - whoops
2176 * Nope, it was not mistake. It is really desired behaviour
2177 * f.e. on http servers, when such sockets are useless, but
2178 * consume significant resources. Let's do it with special
2179 * linger2 option. --ANK
2182 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2183 struct tcp_sock
*tp
= tcp_sk(sk
);
2184 if (tp
->linger2
< 0) {
2185 tcp_set_state(sk
, TCP_CLOSE
);
2186 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2187 NET_INC_STATS_BH(sock_net(sk
),
2188 LINUX_MIB_TCPABORTONLINGER
);
2190 const int tmo
= tcp_fin_time(sk
);
2192 if (tmo
> TCP_TIMEWAIT_LEN
) {
2193 inet_csk_reset_keepalive_timer(sk
,
2194 tmo
- TCP_TIMEWAIT_LEN
);
2196 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2201 if (sk
->sk_state
!= TCP_CLOSE
) {
2203 if (tcp_check_oom(sk
, 0)) {
2204 tcp_set_state(sk
, TCP_CLOSE
);
2205 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2206 NET_INC_STATS_BH(sock_net(sk
),
2207 LINUX_MIB_TCPABORTONMEMORY
);
2211 if (sk
->sk_state
== TCP_CLOSE
) {
2212 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
2213 /* We could get here with a non-NULL req if the socket is
2214 * aborted (e.g., closed with unread data) before 3WHS
2218 reqsk_fastopen_remove(sk
, req
, false);
2219 inet_csk_destroy_sock(sk
);
2221 /* Otherwise, socket is reprieved until protocol close. */
2228 EXPORT_SYMBOL(tcp_close
);
2230 /* These states need RST on ABORT according to RFC793 */
2232 static inline bool tcp_need_reset(int state
)
2234 return (1 << state
) &
2235 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2236 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2239 int tcp_disconnect(struct sock
*sk
, int flags
)
2241 struct inet_sock
*inet
= inet_sk(sk
);
2242 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2243 struct tcp_sock
*tp
= tcp_sk(sk
);
2245 int old_state
= sk
->sk_state
;
2247 if (old_state
!= TCP_CLOSE
)
2248 tcp_set_state(sk
, TCP_CLOSE
);
2250 /* ABORT function of RFC793 */
2251 if (old_state
== TCP_LISTEN
) {
2252 inet_csk_listen_stop(sk
);
2253 } else if (unlikely(tp
->repair
)) {
2254 sk
->sk_err
= ECONNABORTED
;
2255 } else if (tcp_need_reset(old_state
) ||
2256 (tp
->snd_nxt
!= tp
->write_seq
&&
2257 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2258 /* The last check adjusts for discrepancy of Linux wrt. RFC
2261 tcp_send_active_reset(sk
, gfp_any());
2262 sk
->sk_err
= ECONNRESET
;
2263 } else if (old_state
== TCP_SYN_SENT
)
2264 sk
->sk_err
= ECONNRESET
;
2266 tcp_clear_xmit_timers(sk
);
2267 __skb_queue_purge(&sk
->sk_receive_queue
);
2268 tcp_write_queue_purge(sk
);
2269 __skb_queue_purge(&tp
->out_of_order_queue
);
2270 #ifdef CONFIG_NET_DMA
2271 __skb_queue_purge(&sk
->sk_async_wait_queue
);
2274 inet
->inet_dport
= 0;
2276 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2277 inet_reset_saddr(sk
);
2279 sk
->sk_shutdown
= 0;
2280 sock_reset_flag(sk
, SOCK_DONE
);
2282 if ((tp
->write_seq
+= tp
->max_window
+ 2) == 0)
2284 icsk
->icsk_backoff
= 0;
2286 icsk
->icsk_probes_out
= 0;
2287 tp
->packets_out
= 0;
2288 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2289 tp
->snd_cwnd_cnt
= 0;
2290 tp
->bytes_acked
= 0;
2291 tp
->window_clamp
= 0;
2292 tcp_set_ca_state(sk
, TCP_CA_Open
);
2293 tcp_clear_retrans(tp
);
2294 inet_csk_delack_init(sk
);
2295 tcp_init_send_head(sk
);
2296 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2299 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2301 sk
->sk_error_report(sk
);
2304 EXPORT_SYMBOL(tcp_disconnect
);
2306 void tcp_sock_destruct(struct sock
*sk
)
2308 inet_sock_destruct(sk
);
2310 kfree(inet_csk(sk
)->icsk_accept_queue
.fastopenq
);
2313 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
2315 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
2316 ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_ESTABLISHED
));
2319 static int tcp_repair_options_est(struct tcp_sock
*tp
,
2320 struct tcp_repair_opt __user
*optbuf
, unsigned int len
)
2322 struct tcp_repair_opt opt
;
2324 while (len
>= sizeof(opt
)) {
2325 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2331 switch (opt
.opt_code
) {
2333 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
2337 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
2338 u16 rcv_wscale
= opt
.opt_val
>> 16;
2340 if (snd_wscale
> 14 || rcv_wscale
> 14)
2343 tp
->rx_opt
.snd_wscale
= snd_wscale
;
2344 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2345 tp
->rx_opt
.wscale_ok
= 1;
2348 case TCPOPT_SACK_PERM
:
2349 if (opt
.opt_val
!= 0)
2352 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
2353 if (sysctl_tcp_fack
)
2354 tcp_enable_fack(tp
);
2356 case TCPOPT_TIMESTAMP
:
2357 if (opt
.opt_val
!= 0)
2360 tp
->rx_opt
.tstamp_ok
= 1;
2369 * Socket option code for TCP.
2371 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2372 int optname
, char __user
*optval
, unsigned int optlen
)
2374 struct tcp_sock
*tp
= tcp_sk(sk
);
2375 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2379 /* These are data/string values, all the others are ints */
2381 case TCP_CONGESTION
: {
2382 char name
[TCP_CA_NAME_MAX
];
2387 val
= strncpy_from_user(name
, optval
,
2388 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2394 err
= tcp_set_congestion_control(sk
, name
);
2398 case TCP_COOKIE_TRANSACTIONS
: {
2399 struct tcp_cookie_transactions ctd
;
2400 struct tcp_cookie_values
*cvp
= NULL
;
2402 if (sizeof(ctd
) > optlen
)
2404 if (copy_from_user(&ctd
, optval
, sizeof(ctd
)))
2407 if (ctd
.tcpct_used
> sizeof(ctd
.tcpct_value
) ||
2408 ctd
.tcpct_s_data_desired
> TCP_MSS_DESIRED
)
2411 if (ctd
.tcpct_cookie_desired
== 0) {
2412 /* default to global value */
2413 } else if ((0x1 & ctd
.tcpct_cookie_desired
) ||
2414 ctd
.tcpct_cookie_desired
> TCP_COOKIE_MAX
||
2415 ctd
.tcpct_cookie_desired
< TCP_COOKIE_MIN
) {
2419 if (TCP_COOKIE_OUT_NEVER
& ctd
.tcpct_flags
) {
2420 /* Supercedes all other values */
2422 if (tp
->cookie_values
!= NULL
) {
2423 kref_put(&tp
->cookie_values
->kref
,
2424 tcp_cookie_values_release
);
2425 tp
->cookie_values
= NULL
;
2427 tp
->rx_opt
.cookie_in_always
= 0; /* false */
2428 tp
->rx_opt
.cookie_out_never
= 1; /* true */
2433 /* Allocate ancillary memory before locking.
2435 if (ctd
.tcpct_used
> 0 ||
2436 (tp
->cookie_values
== NULL
&&
2437 (sysctl_tcp_cookie_size
> 0 ||
2438 ctd
.tcpct_cookie_desired
> 0 ||
2439 ctd
.tcpct_s_data_desired
> 0))) {
2440 cvp
= kzalloc(sizeof(*cvp
) + ctd
.tcpct_used
,
2445 kref_init(&cvp
->kref
);
2448 tp
->rx_opt
.cookie_in_always
=
2449 (TCP_COOKIE_IN_ALWAYS
& ctd
.tcpct_flags
);
2450 tp
->rx_opt
.cookie_out_never
= 0; /* false */
2452 if (tp
->cookie_values
!= NULL
) {
2454 /* Changed values are recorded by a changed
2455 * pointer, ensuring the cookie will differ,
2456 * without separately hashing each value later.
2458 kref_put(&tp
->cookie_values
->kref
,
2459 tcp_cookie_values_release
);
2461 cvp
= tp
->cookie_values
;
2466 cvp
->cookie_desired
= ctd
.tcpct_cookie_desired
;
2468 if (ctd
.tcpct_used
> 0) {
2469 memcpy(cvp
->s_data_payload
, ctd
.tcpct_value
,
2471 cvp
->s_data_desired
= ctd
.tcpct_used
;
2472 cvp
->s_data_constant
= 1; /* true */
2474 /* No constant payload data. */
2475 cvp
->s_data_desired
= ctd
.tcpct_s_data_desired
;
2476 cvp
->s_data_constant
= 0; /* false */
2479 tp
->cookie_values
= cvp
;
2489 if (optlen
< sizeof(int))
2492 if (get_user(val
, (int __user
*)optval
))
2499 /* Values greater than interface MTU won't take effect. However
2500 * at the point when this call is done we typically don't yet
2501 * know which interface is going to be used */
2502 if (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
) {
2506 tp
->rx_opt
.user_mss
= val
;
2511 /* TCP_NODELAY is weaker than TCP_CORK, so that
2512 * this option on corked socket is remembered, but
2513 * it is not activated until cork is cleared.
2515 * However, when TCP_NODELAY is set we make
2516 * an explicit push, which overrides even TCP_CORK
2517 * for currently queued segments.
2519 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2520 tcp_push_pending_frames(sk
);
2522 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2526 case TCP_THIN_LINEAR_TIMEOUTS
:
2527 if (val
< 0 || val
> 1)
2533 case TCP_THIN_DUPACK
:
2534 if (val
< 0 || val
> 1)
2537 tp
->thin_dupack
= val
;
2538 if (tp
->thin_dupack
)
2539 tcp_disable_early_retrans(tp
);
2543 if (!tcp_can_repair_sock(sk
))
2545 else if (val
== 1) {
2547 sk
->sk_reuse
= SK_FORCE_REUSE
;
2548 tp
->repair_queue
= TCP_NO_QUEUE
;
2549 } else if (val
== 0) {
2551 sk
->sk_reuse
= SK_NO_REUSE
;
2552 tcp_send_window_probe(sk
);
2558 case TCP_REPAIR_QUEUE
:
2561 else if (val
< TCP_QUEUES_NR
)
2562 tp
->repair_queue
= val
;
2568 if (sk
->sk_state
!= TCP_CLOSE
)
2570 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2571 tp
->write_seq
= val
;
2572 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2578 case TCP_REPAIR_OPTIONS
:
2581 else if (sk
->sk_state
== TCP_ESTABLISHED
)
2582 err
= tcp_repair_options_est(tp
,
2583 (struct tcp_repair_opt __user
*)optval
,
2590 /* When set indicates to always queue non-full frames.
2591 * Later the user clears this option and we transmit
2592 * any pending partial frames in the queue. This is
2593 * meant to be used alongside sendfile() to get properly
2594 * filled frames when the user (for example) must write
2595 * out headers with a write() call first and then use
2596 * sendfile to send out the data parts.
2598 * TCP_CORK can be set together with TCP_NODELAY and it is
2599 * stronger than TCP_NODELAY.
2602 tp
->nonagle
|= TCP_NAGLE_CORK
;
2604 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2605 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2606 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2607 tcp_push_pending_frames(sk
);
2612 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2615 tp
->keepalive_time
= val
* HZ
;
2616 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2617 !((1 << sk
->sk_state
) &
2618 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2619 u32 elapsed
= keepalive_time_elapsed(tp
);
2620 if (tp
->keepalive_time
> elapsed
)
2621 elapsed
= tp
->keepalive_time
- elapsed
;
2624 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2629 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2632 tp
->keepalive_intvl
= val
* HZ
;
2635 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2638 tp
->keepalive_probes
= val
;
2641 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2644 icsk
->icsk_syn_retries
= val
;
2650 else if (val
> sysctl_tcp_fin_timeout
/ HZ
)
2653 tp
->linger2
= val
* HZ
;
2656 case TCP_DEFER_ACCEPT
:
2657 /* Translate value in seconds to number of retransmits */
2658 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2659 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2663 case TCP_WINDOW_CLAMP
:
2665 if (sk
->sk_state
!= TCP_CLOSE
) {
2669 tp
->window_clamp
= 0;
2671 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2672 SOCK_MIN_RCVBUF
/ 2 : val
;
2677 icsk
->icsk_ack
.pingpong
= 1;
2679 icsk
->icsk_ack
.pingpong
= 0;
2680 if ((1 << sk
->sk_state
) &
2681 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2682 inet_csk_ack_scheduled(sk
)) {
2683 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2684 tcp_cleanup_rbuf(sk
, 1);
2686 icsk
->icsk_ack
.pingpong
= 1;
2691 #ifdef CONFIG_TCP_MD5SIG
2693 /* Read the IP->Key mappings from userspace */
2694 err
= tp
->af_specific
->md5_parse(sk
, optval
, optlen
);
2697 case TCP_USER_TIMEOUT
:
2698 /* Cap the max timeout in ms TCP will retry/retrans
2699 * before giving up and aborting (ETIMEDOUT) a connection.
2704 icsk
->icsk_user_timeout
= msecs_to_jiffies(val
);
2708 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
2710 err
= fastopen_init_queue(sk
, val
);
2723 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2724 unsigned int optlen
)
2726 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2728 if (level
!= SOL_TCP
)
2729 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
2731 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2733 EXPORT_SYMBOL(tcp_setsockopt
);
2735 #ifdef CONFIG_COMPAT
2736 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
2737 char __user
*optval
, unsigned int optlen
)
2739 if (level
!= SOL_TCP
)
2740 return inet_csk_compat_setsockopt(sk
, level
, optname
,
2742 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2744 EXPORT_SYMBOL(compat_tcp_setsockopt
);
2747 /* Return information about state of tcp endpoint in API format. */
2748 void tcp_get_info(const struct sock
*sk
, struct tcp_info
*info
)
2750 const struct tcp_sock
*tp
= tcp_sk(sk
);
2751 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2752 u32 now
= tcp_time_stamp
;
2754 memset(info
, 0, sizeof(*info
));
2756 info
->tcpi_state
= sk
->sk_state
;
2757 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
2758 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
2759 info
->tcpi_probes
= icsk
->icsk_probes_out
;
2760 info
->tcpi_backoff
= icsk
->icsk_backoff
;
2762 if (tp
->rx_opt
.tstamp_ok
)
2763 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
2764 if (tcp_is_sack(tp
))
2765 info
->tcpi_options
|= TCPI_OPT_SACK
;
2766 if (tp
->rx_opt
.wscale_ok
) {
2767 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
2768 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
2769 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
2772 if (tp
->ecn_flags
& TCP_ECN_OK
)
2773 info
->tcpi_options
|= TCPI_OPT_ECN
;
2774 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
2775 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
2776 if (tp
->syn_data_acked
)
2777 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
2779 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
2780 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
2781 info
->tcpi_snd_mss
= tp
->mss_cache
;
2782 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
2784 if (sk
->sk_state
== TCP_LISTEN
) {
2785 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
2786 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
2788 info
->tcpi_unacked
= tp
->packets_out
;
2789 info
->tcpi_sacked
= tp
->sacked_out
;
2791 info
->tcpi_lost
= tp
->lost_out
;
2792 info
->tcpi_retrans
= tp
->retrans_out
;
2793 info
->tcpi_fackets
= tp
->fackets_out
;
2795 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
2796 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
2797 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
2799 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
2800 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
2801 info
->tcpi_rtt
= jiffies_to_usecs(tp
->srtt
)>>3;
2802 info
->tcpi_rttvar
= jiffies_to_usecs(tp
->mdev
)>>2;
2803 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
2804 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
2805 info
->tcpi_advmss
= tp
->advmss
;
2806 info
->tcpi_reordering
= tp
->reordering
;
2808 info
->tcpi_rcv_rtt
= jiffies_to_usecs(tp
->rcv_rtt_est
.rtt
)>>3;
2809 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
2811 info
->tcpi_total_retrans
= tp
->total_retrans
;
2813 EXPORT_SYMBOL_GPL(tcp_get_info
);
2815 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
2816 int optname
, char __user
*optval
, int __user
*optlen
)
2818 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2819 struct tcp_sock
*tp
= tcp_sk(sk
);
2822 if (get_user(len
, optlen
))
2825 len
= min_t(unsigned int, len
, sizeof(int));
2832 val
= tp
->mss_cache
;
2833 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
2834 val
= tp
->rx_opt
.user_mss
;
2836 val
= tp
->rx_opt
.mss_clamp
;
2839 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
2842 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
2845 val
= keepalive_time_when(tp
) / HZ
;
2848 val
= keepalive_intvl_when(tp
) / HZ
;
2851 val
= keepalive_probes(tp
);
2854 val
= icsk
->icsk_syn_retries
? : sysctl_tcp_syn_retries
;
2859 val
= (val
? : sysctl_tcp_fin_timeout
) / HZ
;
2861 case TCP_DEFER_ACCEPT
:
2862 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
2863 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
2865 case TCP_WINDOW_CLAMP
:
2866 val
= tp
->window_clamp
;
2869 struct tcp_info info
;
2871 if (get_user(len
, optlen
))
2874 tcp_get_info(sk
, &info
);
2876 len
= min_t(unsigned int, len
, sizeof(info
));
2877 if (put_user(len
, optlen
))
2879 if (copy_to_user(optval
, &info
, len
))
2884 val
= !icsk
->icsk_ack
.pingpong
;
2887 case TCP_CONGESTION
:
2888 if (get_user(len
, optlen
))
2890 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
2891 if (put_user(len
, optlen
))
2893 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
2897 case TCP_COOKIE_TRANSACTIONS
: {
2898 struct tcp_cookie_transactions ctd
;
2899 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
2901 if (get_user(len
, optlen
))
2903 if (len
< sizeof(ctd
))
2906 memset(&ctd
, 0, sizeof(ctd
));
2907 ctd
.tcpct_flags
= (tp
->rx_opt
.cookie_in_always
?
2908 TCP_COOKIE_IN_ALWAYS
: 0)
2909 | (tp
->rx_opt
.cookie_out_never
?
2910 TCP_COOKIE_OUT_NEVER
: 0);
2913 ctd
.tcpct_flags
|= (cvp
->s_data_in
?
2915 | (cvp
->s_data_out
?
2916 TCP_S_DATA_OUT
: 0);
2918 ctd
.tcpct_cookie_desired
= cvp
->cookie_desired
;
2919 ctd
.tcpct_s_data_desired
= cvp
->s_data_desired
;
2921 memcpy(&ctd
.tcpct_value
[0], &cvp
->cookie_pair
[0],
2922 cvp
->cookie_pair_size
);
2923 ctd
.tcpct_used
= cvp
->cookie_pair_size
;
2926 if (put_user(sizeof(ctd
), optlen
))
2928 if (copy_to_user(optval
, &ctd
, sizeof(ctd
)))
2932 case TCP_THIN_LINEAR_TIMEOUTS
:
2935 case TCP_THIN_DUPACK
:
2936 val
= tp
->thin_dupack
;
2943 case TCP_REPAIR_QUEUE
:
2945 val
= tp
->repair_queue
;
2951 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2952 val
= tp
->write_seq
;
2953 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2959 case TCP_USER_TIMEOUT
:
2960 val
= jiffies_to_msecs(icsk
->icsk_user_timeout
);
2963 return -ENOPROTOOPT
;
2966 if (put_user(len
, optlen
))
2968 if (copy_to_user(optval
, &val
, len
))
2973 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2976 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2978 if (level
!= SOL_TCP
)
2979 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
2981 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2983 EXPORT_SYMBOL(tcp_getsockopt
);
2985 #ifdef CONFIG_COMPAT
2986 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
2987 char __user
*optval
, int __user
*optlen
)
2989 if (level
!= SOL_TCP
)
2990 return inet_csk_compat_getsockopt(sk
, level
, optname
,
2992 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2994 EXPORT_SYMBOL(compat_tcp_getsockopt
);
2997 struct sk_buff
*tcp_tso_segment(struct sk_buff
*skb
,
2998 netdev_features_t features
)
3000 struct sk_buff
*segs
= ERR_PTR(-EINVAL
);
3005 unsigned int oldlen
;
3008 if (!pskb_may_pull(skb
, sizeof(*th
)))
3012 thlen
= th
->doff
* 4;
3013 if (thlen
< sizeof(*th
))
3016 if (!pskb_may_pull(skb
, thlen
))
3019 oldlen
= (u16
)~skb
->len
;
3020 __skb_pull(skb
, thlen
);
3022 mss
= skb_shinfo(skb
)->gso_size
;
3023 if (unlikely(skb
->len
<= mss
))
3026 if (skb_gso_ok(skb
, features
| NETIF_F_GSO_ROBUST
)) {
3027 /* Packet is from an untrusted source, reset gso_segs. */
3028 int type
= skb_shinfo(skb
)->gso_type
;
3036 !(type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))))
3039 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss
);
3045 segs
= skb_segment(skb
, features
);
3049 delta
= htonl(oldlen
+ (thlen
+ mss
));
3053 seq
= ntohl(th
->seq
);
3056 th
->fin
= th
->psh
= 0;
3058 th
->check
= ~csum_fold((__force __wsum
)((__force u32
)th
->check
+
3059 (__force u32
)delta
));
3060 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3062 csum_fold(csum_partial(skb_transport_header(skb
),
3069 th
->seq
= htonl(seq
);
3071 } while (skb
->next
);
3073 delta
= htonl(oldlen
+ (skb
->tail
- skb
->transport_header
) +
3075 th
->check
= ~csum_fold((__force __wsum
)((__force u32
)th
->check
+
3076 (__force u32
)delta
));
3077 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3078 th
->check
= csum_fold(csum_partial(skb_transport_header(skb
),
3084 EXPORT_SYMBOL(tcp_tso_segment
);
3086 struct sk_buff
**tcp_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3088 struct sk_buff
**pp
= NULL
;
3095 unsigned int mss
= 1;
3101 off
= skb_gro_offset(skb
);
3102 hlen
= off
+ sizeof(*th
);
3103 th
= skb_gro_header_fast(skb
, off
);
3104 if (skb_gro_header_hard(skb
, hlen
)) {
3105 th
= skb_gro_header_slow(skb
, hlen
, off
);
3110 thlen
= th
->doff
* 4;
3111 if (thlen
< sizeof(*th
))
3115 if (skb_gro_header_hard(skb
, hlen
)) {
3116 th
= skb_gro_header_slow(skb
, hlen
, off
);
3121 skb_gro_pull(skb
, thlen
);
3123 len
= skb_gro_len(skb
);
3124 flags
= tcp_flag_word(th
);
3126 for (; (p
= *head
); head
= &p
->next
) {
3127 if (!NAPI_GRO_CB(p
)->same_flow
)
3132 if (*(u32
*)&th
->source
^ *(u32
*)&th2
->source
) {
3133 NAPI_GRO_CB(p
)->same_flow
= 0;
3140 goto out_check_final
;
3143 flush
= NAPI_GRO_CB(p
)->flush
;
3144 flush
|= (__force
int)(flags
& TCP_FLAG_CWR
);
3145 flush
|= (__force
int)((flags
^ tcp_flag_word(th2
)) &
3146 ~(TCP_FLAG_CWR
| TCP_FLAG_FIN
| TCP_FLAG_PSH
));
3147 flush
|= (__force
int)(th
->ack_seq
^ th2
->ack_seq
);
3148 for (i
= sizeof(*th
); i
< thlen
; i
+= 4)
3149 flush
|= *(u32
*)((u8
*)th
+ i
) ^
3150 *(u32
*)((u8
*)th2
+ i
);
3152 mss
= skb_shinfo(p
)->gso_size
;
3154 flush
|= (len
- 1) >= mss
;
3155 flush
|= (ntohl(th2
->seq
) + skb_gro_len(p
)) ^ ntohl(th
->seq
);
3157 if (flush
|| skb_gro_receive(head
, skb
)) {
3159 goto out_check_final
;
3164 tcp_flag_word(th2
) |= flags
& (TCP_FLAG_FIN
| TCP_FLAG_PSH
);
3168 flush
|= (__force
int)(flags
& (TCP_FLAG_URG
| TCP_FLAG_PSH
|
3169 TCP_FLAG_RST
| TCP_FLAG_SYN
|
3172 if (p
&& (!NAPI_GRO_CB(skb
)->same_flow
|| flush
))
3176 NAPI_GRO_CB(skb
)->flush
|= flush
;
3180 EXPORT_SYMBOL(tcp_gro_receive
);
3182 int tcp_gro_complete(struct sk_buff
*skb
)
3184 struct tcphdr
*th
= tcp_hdr(skb
);
3186 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
3187 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
3188 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3190 skb_shinfo(skb
)->gso_segs
= NAPI_GRO_CB(skb
)->count
;
3193 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
3197 EXPORT_SYMBOL(tcp_gro_complete
);
3199 #ifdef CONFIG_TCP_MD5SIG
3200 static unsigned long tcp_md5sig_users
;
3201 static struct tcp_md5sig_pool __percpu
*tcp_md5sig_pool
;
3202 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock
);
3204 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu
*pool
)
3208 for_each_possible_cpu(cpu
) {
3209 struct tcp_md5sig_pool
*p
= per_cpu_ptr(pool
, cpu
);
3211 if (p
->md5_desc
.tfm
)
3212 crypto_free_hash(p
->md5_desc
.tfm
);
3217 void tcp_free_md5sig_pool(void)
3219 struct tcp_md5sig_pool __percpu
*pool
= NULL
;
3221 spin_lock_bh(&tcp_md5sig_pool_lock
);
3222 if (--tcp_md5sig_users
== 0) {
3223 pool
= tcp_md5sig_pool
;
3224 tcp_md5sig_pool
= NULL
;
3226 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3228 __tcp_free_md5sig_pool(pool
);
3230 EXPORT_SYMBOL(tcp_free_md5sig_pool
);
3232 static struct tcp_md5sig_pool __percpu
*
3233 __tcp_alloc_md5sig_pool(struct sock
*sk
)
3236 struct tcp_md5sig_pool __percpu
*pool
;
3238 pool
= alloc_percpu(struct tcp_md5sig_pool
);
3242 for_each_possible_cpu(cpu
) {
3243 struct crypto_hash
*hash
;
3245 hash
= crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC
);
3246 if (!hash
|| IS_ERR(hash
))
3249 per_cpu_ptr(pool
, cpu
)->md5_desc
.tfm
= hash
;
3253 __tcp_free_md5sig_pool(pool
);
3257 struct tcp_md5sig_pool __percpu
*tcp_alloc_md5sig_pool(struct sock
*sk
)
3259 struct tcp_md5sig_pool __percpu
*pool
;
3263 spin_lock_bh(&tcp_md5sig_pool_lock
);
3264 pool
= tcp_md5sig_pool
;
3265 if (tcp_md5sig_users
++ == 0) {
3267 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3270 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3274 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3277 /* we cannot hold spinlock here because this may sleep. */
3278 struct tcp_md5sig_pool __percpu
*p
;
3280 p
= __tcp_alloc_md5sig_pool(sk
);
3281 spin_lock_bh(&tcp_md5sig_pool_lock
);
3284 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3287 pool
= tcp_md5sig_pool
;
3289 /* oops, it has already been assigned. */
3290 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3291 __tcp_free_md5sig_pool(p
);
3293 tcp_md5sig_pool
= pool
= p
;
3294 spin_unlock_bh(&tcp_md5sig_pool_lock
);
3299 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
3303 * tcp_get_md5sig_pool - get md5sig_pool for this user
3305 * We use percpu structure, so if we succeed, we exit with preemption
3306 * and BH disabled, to make sure another thread or softirq handling
3307 * wont try to get same context.
3309 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
3311 struct tcp_md5sig_pool __percpu
*p
;
3315 spin_lock(&tcp_md5sig_pool_lock
);
3316 p
= tcp_md5sig_pool
;
3319 spin_unlock(&tcp_md5sig_pool_lock
);
3322 return this_cpu_ptr(p
);
3327 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3329 void tcp_put_md5sig_pool(void)
3332 tcp_free_md5sig_pool();
3334 EXPORT_SYMBOL(tcp_put_md5sig_pool
);
3336 int tcp_md5_hash_header(struct tcp_md5sig_pool
*hp
,
3337 const struct tcphdr
*th
)
3339 struct scatterlist sg
;
3343 /* We are not allowed to change tcphdr, make a local copy */
3344 memcpy(&hdr
, th
, sizeof(hdr
));
3347 /* options aren't included in the hash */
3348 sg_init_one(&sg
, &hdr
, sizeof(hdr
));
3349 err
= crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(hdr
));
3352 EXPORT_SYMBOL(tcp_md5_hash_header
);
3354 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3355 const struct sk_buff
*skb
, unsigned int header_len
)
3357 struct scatterlist sg
;
3358 const struct tcphdr
*tp
= tcp_hdr(skb
);
3359 struct hash_desc
*desc
= &hp
->md5_desc
;
3361 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
3362 skb_headlen(skb
) - header_len
: 0;
3363 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3364 struct sk_buff
*frag_iter
;
3366 sg_init_table(&sg
, 1);
3368 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3369 if (crypto_hash_update(desc
, &sg
, head_data_len
))
3372 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3373 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3374 struct page
*page
= skb_frag_page(f
);
3375 sg_set_page(&sg
, page
, skb_frag_size(f
), f
->page_offset
);
3376 if (crypto_hash_update(desc
, &sg
, skb_frag_size(f
)))
3380 skb_walk_frags(skb
, frag_iter
)
3381 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3386 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3388 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3390 struct scatterlist sg
;
3392 sg_init_one(&sg
, key
->key
, key
->keylen
);
3393 return crypto_hash_update(&hp
->md5_desc
, &sg
, key
->keylen
);
3395 EXPORT_SYMBOL(tcp_md5_hash_key
);
3399 /* Each Responder maintains up to two secret values concurrently for
3400 * efficient secret rollover. Each secret value has 4 states:
3402 * Generating. (tcp_secret_generating != tcp_secret_primary)
3403 * Generates new Responder-Cookies, but not yet used for primary
3404 * verification. This is a short-term state, typically lasting only
3405 * one round trip time (RTT).
3407 * Primary. (tcp_secret_generating == tcp_secret_primary)
3408 * Used both for generation and primary verification.
3410 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3411 * Used for verification, until the first failure that can be
3412 * verified by the newer Generating secret. At that time, this
3413 * cookie's state is changed to Secondary, and the Generating
3414 * cookie's state is changed to Primary. This is a short-term state,
3415 * typically lasting only one round trip time (RTT).
3417 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3418 * Used for secondary verification, after primary verification
3419 * failures. This state lasts no more than twice the Maximum Segment
3420 * Lifetime (2MSL). Then, the secret is discarded.
3422 struct tcp_cookie_secret
{
3423 /* The secret is divided into two parts. The digest part is the
3424 * equivalent of previously hashing a secret and saving the state,
3425 * and serves as an initialization vector (IV). The message part
3426 * serves as the trailing secret.
3428 u32 secrets
[COOKIE_WORKSPACE_WORDS
];
3429 unsigned long expires
;
3432 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3433 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3434 #define TCP_SECRET_LIFE (HZ * 600)
3436 static struct tcp_cookie_secret tcp_secret_one
;
3437 static struct tcp_cookie_secret tcp_secret_two
;
3439 /* Essentially a circular list, without dynamic allocation. */
3440 static struct tcp_cookie_secret
*tcp_secret_generating
;
3441 static struct tcp_cookie_secret
*tcp_secret_primary
;
3442 static struct tcp_cookie_secret
*tcp_secret_retiring
;
3443 static struct tcp_cookie_secret
*tcp_secret_secondary
;
3445 static DEFINE_SPINLOCK(tcp_secret_locker
);
3447 /* Select a pseudo-random word in the cookie workspace.
3449 static inline u32
tcp_cookie_work(const u32
*ws
, const int n
)
3451 return ws
[COOKIE_DIGEST_WORDS
+ ((COOKIE_MESSAGE_WORDS
-1) & ws
[n
])];
3454 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3455 * Called in softirq context.
3456 * Returns: 0 for success.
3458 int tcp_cookie_generator(u32
*bakery
)
3460 unsigned long jiffy
= jiffies
;
3462 if (unlikely(time_after_eq(jiffy
, tcp_secret_generating
->expires
))) {
3463 spin_lock_bh(&tcp_secret_locker
);
3464 if (!time_after_eq(jiffy
, tcp_secret_generating
->expires
)) {
3465 /* refreshed by another */
3467 &tcp_secret_generating
->secrets
[0],
3468 COOKIE_WORKSPACE_WORDS
);
3470 /* still needs refreshing */
3471 get_random_bytes(bakery
, COOKIE_WORKSPACE_WORDS
);
3473 /* The first time, paranoia assumes that the
3474 * randomization function isn't as strong. But,
3475 * this secret initialization is delayed until
3476 * the last possible moment (packet arrival).
3477 * Although that time is observable, it is
3478 * unpredictably variable. Mash in the most
3479 * volatile clock bits available, and expire the
3480 * secret extra quickly.
3482 if (unlikely(tcp_secret_primary
->expires
==
3483 tcp_secret_secondary
->expires
)) {
3486 getnstimeofday(&tv
);
3487 bakery
[COOKIE_DIGEST_WORDS
+0] ^=
3490 tcp_secret_secondary
->expires
= jiffy
3492 + (0x0f & tcp_cookie_work(bakery
, 0));
3494 tcp_secret_secondary
->expires
= jiffy
3496 + (0xff & tcp_cookie_work(bakery
, 1));
3497 tcp_secret_primary
->expires
= jiffy
3499 + (0x1f & tcp_cookie_work(bakery
, 2));
3501 memcpy(&tcp_secret_secondary
->secrets
[0],
3502 bakery
, COOKIE_WORKSPACE_WORDS
);
3504 rcu_assign_pointer(tcp_secret_generating
,
3505 tcp_secret_secondary
);
3506 rcu_assign_pointer(tcp_secret_retiring
,
3507 tcp_secret_primary
);
3509 * Neither call_rcu() nor synchronize_rcu() needed.
3510 * Retiring data is not freed. It is replaced after
3511 * further (locked) pointer updates, and a quiet time
3512 * (minimum 1MSL, maximum LIFE - 2MSL).
3515 spin_unlock_bh(&tcp_secret_locker
);
3519 &rcu_dereference(tcp_secret_generating
)->secrets
[0],
3520 COOKIE_WORKSPACE_WORDS
);
3521 rcu_read_unlock_bh();
3525 EXPORT_SYMBOL(tcp_cookie_generator
);
3527 void tcp_done(struct sock
*sk
)
3529 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
3531 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3532 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3534 tcp_set_state(sk
, TCP_CLOSE
);
3535 tcp_clear_xmit_timers(sk
);
3537 reqsk_fastopen_remove(sk
, req
, false);
3539 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3541 if (!sock_flag(sk
, SOCK_DEAD
))
3542 sk
->sk_state_change(sk
);
3544 inet_csk_destroy_sock(sk
);
3546 EXPORT_SYMBOL_GPL(tcp_done
);
3548 extern struct tcp_congestion_ops tcp_reno
;
3550 static __initdata
unsigned long thash_entries
;
3551 static int __init
set_thash_entries(char *str
)
3558 ret
= kstrtoul(str
, 0, &thash_entries
);
3564 __setup("thash_entries=", set_thash_entries
);
3566 void tcp_init_mem(struct net
*net
)
3568 unsigned long limit
= nr_free_buffer_pages() / 8;
3569 limit
= max(limit
, 128UL);
3570 net
->ipv4
.sysctl_tcp_mem
[0] = limit
/ 4 * 3;
3571 net
->ipv4
.sysctl_tcp_mem
[1] = limit
;
3572 net
->ipv4
.sysctl_tcp_mem
[2] = net
->ipv4
.sysctl_tcp_mem
[0] * 2;
3575 void __init
tcp_init(void)
3577 struct sk_buff
*skb
= NULL
;
3578 unsigned long limit
;
3579 int max_rshare
, max_wshare
, cnt
;
3581 unsigned long jiffy
= jiffies
;
3583 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) > sizeof(skb
->cb
));
3585 percpu_counter_init(&tcp_sockets_allocated
, 0);
3586 percpu_counter_init(&tcp_orphan_count
, 0);
3587 tcp_hashinfo
.bind_bucket_cachep
=
3588 kmem_cache_create("tcp_bind_bucket",
3589 sizeof(struct inet_bind_bucket
), 0,
3590 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3592 /* Size and allocate the main established and bind bucket
3595 * The methodology is similar to that of the buffer cache.
3597 tcp_hashinfo
.ehash
=
3598 alloc_large_system_hash("TCP established",
3599 sizeof(struct inet_ehash_bucket
),
3601 17, /* one slot per 128 KB of memory */
3604 &tcp_hashinfo
.ehash_mask
,
3606 thash_entries
? 0 : 512 * 1024);
3607 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++) {
3608 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3609 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].twchain
, i
);
3611 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3612 panic("TCP: failed to alloc ehash_locks");
3613 tcp_hashinfo
.bhash
=
3614 alloc_large_system_hash("TCP bind",
3615 sizeof(struct inet_bind_hashbucket
),
3616 tcp_hashinfo
.ehash_mask
+ 1,
3617 17, /* one slot per 128 KB of memory */
3619 &tcp_hashinfo
.bhash_size
,
3623 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3624 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3625 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3626 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3630 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3632 tcp_death_row
.sysctl_max_tw_buckets
= cnt
/ 2;
3633 sysctl_tcp_max_orphans
= cnt
/ 2;
3634 sysctl_max_syn_backlog
= max(128, cnt
/ 256);
3636 tcp_init_mem(&init_net
);
3637 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3638 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3639 max_wshare
= min(4UL*1024*1024, limit
);
3640 max_rshare
= min(6UL*1024*1024, limit
);
3642 sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3643 sysctl_tcp_wmem
[1] = 16*1024;
3644 sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3646 sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3647 sysctl_tcp_rmem
[1] = 87380;
3648 sysctl_tcp_rmem
[2] = max(87380, max_rshare
);
3650 pr_info("Hash tables configured (established %u bind %u)\n",
3651 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3655 tcp_register_congestion_control(&tcp_reno
);
3657 memset(&tcp_secret_one
.secrets
[0], 0, sizeof(tcp_secret_one
.secrets
));
3658 memset(&tcp_secret_two
.secrets
[0], 0, sizeof(tcp_secret_two
.secrets
));
3659 tcp_secret_one
.expires
= jiffy
; /* past due */
3660 tcp_secret_two
.expires
= jiffy
; /* past due */
3661 tcp_secret_generating
= &tcp_secret_one
;
3662 tcp_secret_primary
= &tcp_secret_one
;
3663 tcp_secret_retiring
= &tcp_secret_two
;
3664 tcp_secret_secondary
= &tcp_secret_two
;