Linux 3.8-rc7
[cris-mirror.git] / net / ipv4 / tcp.c
blob2aa69c8ae60c1990c76e69fe5aef46b990b6da6e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
304 * TCP splice context
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
321 void tcp_enter_memory_pressure(struct sock *sk)
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333 u8 res = 0;
335 if (seconds > 0) {
336 int period = timeout;
338 res = 1;
339 while (seconds > period && res < 255) {
340 res++;
341 timeout <<= 1;
342 if (timeout > rto_max)
343 timeout = rto_max;
344 period += timeout;
347 return res;
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353 int period = 0;
355 if (retrans > 0) {
356 period = timeout;
357 while (--retrans) {
358 timeout <<= 1;
359 if (timeout > rto_max)
360 timeout = rto_max;
361 period += timeout;
364 return period;
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock *sk)
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp->snd_cwnd = TCP_INIT_CWND;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
403 sk->sk_state = TCP_CLOSE;
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
408 icsk->icsk_sync_mss = tcp_sync_mss;
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
413 tp->cookie_values =
414 kzalloc(sizeof(*tp->cookie_values),
415 sk->sk_allocation);
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
426 local_bh_disable();
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
429 local_bh_enable();
431 EXPORT_SYMBOL(tcp_init_sock);
434 * Wait for a TCP event.
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
442 unsigned int mask;
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
455 mask = 0;
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
468 * Check-me.
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 mask |= POLLHUP;
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
489 /* Connected or passive Fast Open socket? */
490 if (sk->sk_state != TCP_SYN_SENT &&
491 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 int target = sock_rcvlowat(sk, 0, INT_MAX);
494 if (tp->urg_seq == tp->copied_seq &&
495 !sock_flag(sk, SOCK_URGINLINE) &&
496 tp->urg_data)
497 target++;
499 /* Potential race condition. If read of tp below will
500 * escape above sk->sk_state, we can be illegally awaken
501 * in SYN_* states. */
502 if (tp->rcv_nxt - tp->copied_seq >= target)
503 mask |= POLLIN | POLLRDNORM;
505 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 mask |= POLLOUT | POLLWRNORM;
508 } else { /* send SIGIO later */
509 set_bit(SOCK_ASYNC_NOSPACE,
510 &sk->sk_socket->flags);
511 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
513 /* Race breaker. If space is freed after
514 * wspace test but before the flags are set,
515 * IO signal will be lost.
517 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 mask |= POLLOUT | POLLWRNORM;
520 } else
521 mask |= POLLOUT | POLLWRNORM;
523 if (tp->urg_data & TCP_URG_VALID)
524 mask |= POLLPRI;
526 /* This barrier is coupled with smp_wmb() in tcp_reset() */
527 smp_rmb();
528 if (sk->sk_err)
529 mask |= POLLERR;
531 return mask;
533 EXPORT_SYMBOL(tcp_poll);
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
537 struct tcp_sock *tp = tcp_sk(sk);
538 int answ;
539 bool slow;
541 switch (cmd) {
542 case SIOCINQ:
543 if (sk->sk_state == TCP_LISTEN)
544 return -EINVAL;
546 slow = lock_sock_fast(sk);
547 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
548 answ = 0;
549 else if (sock_flag(sk, SOCK_URGINLINE) ||
550 !tp->urg_data ||
551 before(tp->urg_seq, tp->copied_seq) ||
552 !before(tp->urg_seq, tp->rcv_nxt)) {
554 answ = tp->rcv_nxt - tp->copied_seq;
556 /* Subtract 1, if FIN was received */
557 if (answ && sock_flag(sk, SOCK_DONE))
558 answ--;
559 } else
560 answ = tp->urg_seq - tp->copied_seq;
561 unlock_sock_fast(sk, slow);
562 break;
563 case SIOCATMARK:
564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 break;
566 case SIOCOUTQ:
567 if (sk->sk_state == TCP_LISTEN)
568 return -EINVAL;
570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 answ = 0;
572 else
573 answ = tp->write_seq - tp->snd_una;
574 break;
575 case SIOCOUTQNSD:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_nxt;
583 break;
584 default:
585 return -ENOIOCTLCMD;
588 return put_user(answ, (int __user *)arg);
590 EXPORT_SYMBOL(tcp_ioctl);
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 tp->pushed_seq = tp->write_seq;
598 static inline bool forced_push(const struct tcp_sock *tp)
600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
605 struct tcp_sock *tp = tcp_sk(sk);
606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608 skb->csum = 0;
609 tcb->seq = tcb->end_seq = tp->write_seq;
610 tcb->tcp_flags = TCPHDR_ACK;
611 tcb->sacked = 0;
612 skb_header_release(skb);
613 tcp_add_write_queue_tail(sk, skb);
614 sk->sk_wmem_queued += skb->truesize;
615 sk_mem_charge(sk, skb->truesize);
616 if (tp->nonagle & TCP_NAGLE_PUSH)
617 tp->nonagle &= ~TCP_NAGLE_PUSH;
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
622 if (flags & MSG_OOB)
623 tp->snd_up = tp->write_seq;
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 int nonagle)
629 if (tcp_send_head(sk)) {
630 struct tcp_sock *tp = tcp_sk(sk);
632 if (!(flags & MSG_MORE) || forced_push(tp))
633 tcp_mark_push(tp, tcp_write_queue_tail(sk));
635 tcp_mark_urg(tp, flags);
636 __tcp_push_pending_frames(sk, mss_now,
637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 unsigned int offset, size_t len)
644 struct tcp_splice_state *tss = rd_desc->arg.data;
645 int ret;
647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 tss->flags);
649 if (ret > 0)
650 rd_desc->count -= ret;
651 return ret;
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc = {
658 .arg.data = tss,
659 .count = tss->len,
662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
673 * Description:
674 * Will read pages from given socket and fill them into a pipe.
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 struct pipe_inode_info *pipe, size_t len,
679 unsigned int flags)
681 struct sock *sk = sock->sk;
682 struct tcp_splice_state tss = {
683 .pipe = pipe,
684 .len = len,
685 .flags = flags,
687 long timeo;
688 ssize_t spliced;
689 int ret;
691 sock_rps_record_flow(sk);
693 * We can't seek on a socket input
695 if (unlikely(*ppos))
696 return -ESPIPE;
698 ret = spliced = 0;
700 lock_sock(sk);
702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 while (tss.len) {
704 ret = __tcp_splice_read(sk, &tss);
705 if (ret < 0)
706 break;
707 else if (!ret) {
708 if (spliced)
709 break;
710 if (sock_flag(sk, SOCK_DONE))
711 break;
712 if (sk->sk_err) {
713 ret = sock_error(sk);
714 break;
716 if (sk->sk_shutdown & RCV_SHUTDOWN)
717 break;
718 if (sk->sk_state == TCP_CLOSE) {
720 * This occurs when user tries to read
721 * from never connected socket.
723 if (!sock_flag(sk, SOCK_DONE))
724 ret = -ENOTCONN;
725 break;
727 if (!timeo) {
728 ret = -EAGAIN;
729 break;
731 sk_wait_data(sk, &timeo);
732 if (signal_pending(current)) {
733 ret = sock_intr_errno(timeo);
734 break;
736 continue;
738 tss.len -= ret;
739 spliced += ret;
741 if (!timeo)
742 break;
743 release_sock(sk);
744 lock_sock(sk);
746 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 signal_pending(current))
749 break;
752 release_sock(sk);
754 if (spliced)
755 return spliced;
757 return ret;
759 EXPORT_SYMBOL(tcp_splice_read);
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
763 struct sk_buff *skb;
765 /* The TCP header must be at least 32-bit aligned. */
766 size = ALIGN(size, 4);
768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 if (skb) {
770 if (sk_wmem_schedule(sk, skb->truesize)) {
771 skb_reserve(skb, sk->sk_prot->max_header);
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
776 skb->avail_size = size;
777 return skb;
779 __kfree_skb(skb);
780 } else {
781 sk->sk_prot->enter_memory_pressure(sk);
782 sk_stream_moderate_sndbuf(sk);
784 return NULL;
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 int large_allowed)
790 struct tcp_sock *tp = tcp_sk(sk);
791 u32 xmit_size_goal, old_size_goal;
793 xmit_size_goal = mss_now;
795 if (large_allowed && sk_can_gso(sk)) {
796 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 inet_csk(sk)->icsk_af_ops->net_header_len -
798 inet_csk(sk)->icsk_ext_hdr_len -
799 tp->tcp_header_len);
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal = min_t(u32, xmit_size_goal,
803 sysctl_tcp_limit_output_bytes >> 1);
805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
807 /* We try hard to avoid divides here */
808 old_size_goal = tp->xmit_size_goal_segs * mss_now;
810 if (likely(old_size_goal <= xmit_size_goal &&
811 old_size_goal + mss_now > xmit_size_goal)) {
812 xmit_size_goal = old_size_goal;
813 } else {
814 tp->xmit_size_goal_segs =
815 min_t(u16, xmit_size_goal / mss_now,
816 sk->sk_gso_max_segs);
817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
821 return max(xmit_size_goal, mss_now);
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
826 int mss_now;
828 mss_now = tcp_current_mss(sk);
829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
831 return mss_now;
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
835 size_t size, int flags)
837 struct tcp_sock *tp = tcp_sk(sk);
838 int mss_now, size_goal;
839 int err;
840 ssize_t copied;
841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
843 /* Wait for a connection to finish. One exception is TCP Fast Open
844 * (passive side) where data is allowed to be sent before a connection
845 * is fully established.
847 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
848 !tcp_passive_fastopen(sk)) {
849 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
850 goto out_err;
853 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
855 mss_now = tcp_send_mss(sk, &size_goal, flags);
856 copied = 0;
858 err = -EPIPE;
859 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
860 goto out_err;
862 while (size > 0) {
863 struct sk_buff *skb = tcp_write_queue_tail(sk);
864 int copy, i;
865 bool can_coalesce;
867 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
868 new_segment:
869 if (!sk_stream_memory_free(sk))
870 goto wait_for_sndbuf;
872 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
873 if (!skb)
874 goto wait_for_memory;
876 skb_entail(sk, skb);
877 copy = size_goal;
880 if (copy > size)
881 copy = size;
883 i = skb_shinfo(skb)->nr_frags;
884 can_coalesce = skb_can_coalesce(skb, i, page, offset);
885 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
886 tcp_mark_push(tp, skb);
887 goto new_segment;
889 if (!sk_wmem_schedule(sk, copy))
890 goto wait_for_memory;
892 if (can_coalesce) {
893 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
894 } else {
895 get_page(page);
896 skb_fill_page_desc(skb, i, page, offset, copy);
899 skb->len += copy;
900 skb->data_len += copy;
901 skb->truesize += copy;
902 sk->sk_wmem_queued += copy;
903 sk_mem_charge(sk, copy);
904 skb->ip_summed = CHECKSUM_PARTIAL;
905 tp->write_seq += copy;
906 TCP_SKB_CB(skb)->end_seq += copy;
907 skb_shinfo(skb)->gso_segs = 0;
909 if (!copied)
910 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
912 copied += copy;
913 offset += copy;
914 if (!(size -= copy))
915 goto out;
917 if (skb->len < size_goal || (flags & MSG_OOB))
918 continue;
920 if (forced_push(tp)) {
921 tcp_mark_push(tp, skb);
922 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
923 } else if (skb == tcp_send_head(sk))
924 tcp_push_one(sk, mss_now);
925 continue;
927 wait_for_sndbuf:
928 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
929 wait_for_memory:
930 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
932 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
933 goto do_error;
935 mss_now = tcp_send_mss(sk, &size_goal, flags);
938 out:
939 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
940 tcp_push(sk, flags, mss_now, tp->nonagle);
941 return copied;
943 do_error:
944 if (copied)
945 goto out;
946 out_err:
947 return sk_stream_error(sk, flags, err);
950 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
951 size_t size, int flags)
953 ssize_t res;
955 if (!(sk->sk_route_caps & NETIF_F_SG) ||
956 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
957 return sock_no_sendpage(sk->sk_socket, page, offset, size,
958 flags);
960 lock_sock(sk);
961 res = do_tcp_sendpages(sk, page, offset, size, flags);
962 release_sock(sk);
963 return res;
965 EXPORT_SYMBOL(tcp_sendpage);
967 static inline int select_size(const struct sock *sk, bool sg)
969 const struct tcp_sock *tp = tcp_sk(sk);
970 int tmp = tp->mss_cache;
972 if (sg) {
973 if (sk_can_gso(sk)) {
974 /* Small frames wont use a full page:
975 * Payload will immediately follow tcp header.
977 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
978 } else {
979 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
981 if (tmp >= pgbreak &&
982 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
983 tmp = pgbreak;
987 return tmp;
990 void tcp_free_fastopen_req(struct tcp_sock *tp)
992 if (tp->fastopen_req != NULL) {
993 kfree(tp->fastopen_req);
994 tp->fastopen_req = NULL;
998 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1000 struct tcp_sock *tp = tcp_sk(sk);
1001 int err, flags;
1003 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1004 return -EOPNOTSUPP;
1005 if (tp->fastopen_req != NULL)
1006 return -EALREADY; /* Another Fast Open is in progress */
1008 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009 sk->sk_allocation);
1010 if (unlikely(tp->fastopen_req == NULL))
1011 return -ENOBUFS;
1012 tp->fastopen_req->data = msg;
1014 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1015 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1016 msg->msg_namelen, flags);
1017 *size = tp->fastopen_req->copied;
1018 tcp_free_fastopen_req(tp);
1019 return err;
1022 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1023 size_t size)
1025 struct iovec *iov;
1026 struct tcp_sock *tp = tcp_sk(sk);
1027 struct sk_buff *skb;
1028 int iovlen, flags, err, copied = 0;
1029 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1030 bool sg;
1031 long timeo;
1033 lock_sock(sk);
1035 flags = msg->msg_flags;
1036 if (flags & MSG_FASTOPEN) {
1037 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1038 if (err == -EINPROGRESS && copied_syn > 0)
1039 goto out;
1040 else if (err)
1041 goto out_err;
1042 offset = copied_syn;
1045 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1047 /* Wait for a connection to finish. One exception is TCP Fast Open
1048 * (passive side) where data is allowed to be sent before a connection
1049 * is fully established.
1051 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1052 !tcp_passive_fastopen(sk)) {
1053 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1054 goto do_error;
1057 if (unlikely(tp->repair)) {
1058 if (tp->repair_queue == TCP_RECV_QUEUE) {
1059 copied = tcp_send_rcvq(sk, msg, size);
1060 goto out;
1063 err = -EINVAL;
1064 if (tp->repair_queue == TCP_NO_QUEUE)
1065 goto out_err;
1067 /* 'common' sending to sendq */
1070 /* This should be in poll */
1071 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1073 mss_now = tcp_send_mss(sk, &size_goal, flags);
1075 /* Ok commence sending. */
1076 iovlen = msg->msg_iovlen;
1077 iov = msg->msg_iov;
1078 copied = 0;
1080 err = -EPIPE;
1081 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1082 goto out_err;
1084 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1086 while (--iovlen >= 0) {
1087 size_t seglen = iov->iov_len;
1088 unsigned char __user *from = iov->iov_base;
1090 iov++;
1091 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1092 if (offset >= seglen) {
1093 offset -= seglen;
1094 continue;
1096 seglen -= offset;
1097 from += offset;
1098 offset = 0;
1101 while (seglen > 0) {
1102 int copy = 0;
1103 int max = size_goal;
1105 skb = tcp_write_queue_tail(sk);
1106 if (tcp_send_head(sk)) {
1107 if (skb->ip_summed == CHECKSUM_NONE)
1108 max = mss_now;
1109 copy = max - skb->len;
1112 if (copy <= 0) {
1113 new_segment:
1114 /* Allocate new segment. If the interface is SG,
1115 * allocate skb fitting to single page.
1117 if (!sk_stream_memory_free(sk))
1118 goto wait_for_sndbuf;
1120 skb = sk_stream_alloc_skb(sk,
1121 select_size(sk, sg),
1122 sk->sk_allocation);
1123 if (!skb)
1124 goto wait_for_memory;
1127 * Check whether we can use HW checksum.
1129 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1130 skb->ip_summed = CHECKSUM_PARTIAL;
1132 skb_entail(sk, skb);
1133 copy = size_goal;
1134 max = size_goal;
1137 /* Try to append data to the end of skb. */
1138 if (copy > seglen)
1139 copy = seglen;
1141 /* Where to copy to? */
1142 if (skb_availroom(skb) > 0) {
1143 /* We have some space in skb head. Superb! */
1144 copy = min_t(int, copy, skb_availroom(skb));
1145 err = skb_add_data_nocache(sk, skb, from, copy);
1146 if (err)
1147 goto do_fault;
1148 } else {
1149 bool merge = true;
1150 int i = skb_shinfo(skb)->nr_frags;
1151 struct page_frag *pfrag = sk_page_frag(sk);
1153 if (!sk_page_frag_refill(sk, pfrag))
1154 goto wait_for_memory;
1156 if (!skb_can_coalesce(skb, i, pfrag->page,
1157 pfrag->offset)) {
1158 if (i == MAX_SKB_FRAGS || !sg) {
1159 tcp_mark_push(tp, skb);
1160 goto new_segment;
1162 merge = false;
1165 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1167 if (!sk_wmem_schedule(sk, copy))
1168 goto wait_for_memory;
1170 err = skb_copy_to_page_nocache(sk, from, skb,
1171 pfrag->page,
1172 pfrag->offset,
1173 copy);
1174 if (err)
1175 goto do_error;
1177 /* Update the skb. */
1178 if (merge) {
1179 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1180 } else {
1181 skb_fill_page_desc(skb, i, pfrag->page,
1182 pfrag->offset, copy);
1183 get_page(pfrag->page);
1185 pfrag->offset += copy;
1188 if (!copied)
1189 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1191 tp->write_seq += copy;
1192 TCP_SKB_CB(skb)->end_seq += copy;
1193 skb_shinfo(skb)->gso_segs = 0;
1195 from += copy;
1196 copied += copy;
1197 if ((seglen -= copy) == 0 && iovlen == 0)
1198 goto out;
1200 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1201 continue;
1203 if (forced_push(tp)) {
1204 tcp_mark_push(tp, skb);
1205 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1206 } else if (skb == tcp_send_head(sk))
1207 tcp_push_one(sk, mss_now);
1208 continue;
1210 wait_for_sndbuf:
1211 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1212 wait_for_memory:
1213 if (copied)
1214 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1216 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1217 goto do_error;
1219 mss_now = tcp_send_mss(sk, &size_goal, flags);
1223 out:
1224 if (copied)
1225 tcp_push(sk, flags, mss_now, tp->nonagle);
1226 release_sock(sk);
1227 return copied + copied_syn;
1229 do_fault:
1230 if (!skb->len) {
1231 tcp_unlink_write_queue(skb, sk);
1232 /* It is the one place in all of TCP, except connection
1233 * reset, where we can be unlinking the send_head.
1235 tcp_check_send_head(sk, skb);
1236 sk_wmem_free_skb(sk, skb);
1239 do_error:
1240 if (copied + copied_syn)
1241 goto out;
1242 out_err:
1243 err = sk_stream_error(sk, flags, err);
1244 release_sock(sk);
1245 return err;
1247 EXPORT_SYMBOL(tcp_sendmsg);
1250 * Handle reading urgent data. BSD has very simple semantics for
1251 * this, no blocking and very strange errors 8)
1254 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1256 struct tcp_sock *tp = tcp_sk(sk);
1258 /* No URG data to read. */
1259 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1260 tp->urg_data == TCP_URG_READ)
1261 return -EINVAL; /* Yes this is right ! */
1263 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1264 return -ENOTCONN;
1266 if (tp->urg_data & TCP_URG_VALID) {
1267 int err = 0;
1268 char c = tp->urg_data;
1270 if (!(flags & MSG_PEEK))
1271 tp->urg_data = TCP_URG_READ;
1273 /* Read urgent data. */
1274 msg->msg_flags |= MSG_OOB;
1276 if (len > 0) {
1277 if (!(flags & MSG_TRUNC))
1278 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1279 len = 1;
1280 } else
1281 msg->msg_flags |= MSG_TRUNC;
1283 return err ? -EFAULT : len;
1286 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1287 return 0;
1289 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1290 * the available implementations agree in this case:
1291 * this call should never block, independent of the
1292 * blocking state of the socket.
1293 * Mike <pall@rz.uni-karlsruhe.de>
1295 return -EAGAIN;
1298 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1300 struct sk_buff *skb;
1301 int copied = 0, err = 0;
1303 /* XXX -- need to support SO_PEEK_OFF */
1305 skb_queue_walk(&sk->sk_write_queue, skb) {
1306 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1307 if (err)
1308 break;
1310 copied += skb->len;
1313 return err ?: copied;
1316 /* Clean up the receive buffer for full frames taken by the user,
1317 * then send an ACK if necessary. COPIED is the number of bytes
1318 * tcp_recvmsg has given to the user so far, it speeds up the
1319 * calculation of whether or not we must ACK for the sake of
1320 * a window update.
1322 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1324 struct tcp_sock *tp = tcp_sk(sk);
1325 bool time_to_ack = false;
1327 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1329 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1330 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1331 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1333 if (inet_csk_ack_scheduled(sk)) {
1334 const struct inet_connection_sock *icsk = inet_csk(sk);
1335 /* Delayed ACKs frequently hit locked sockets during bulk
1336 * receive. */
1337 if (icsk->icsk_ack.blocked ||
1338 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1339 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1341 * If this read emptied read buffer, we send ACK, if
1342 * connection is not bidirectional, user drained
1343 * receive buffer and there was a small segment
1344 * in queue.
1346 (copied > 0 &&
1347 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1348 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1349 !icsk->icsk_ack.pingpong)) &&
1350 !atomic_read(&sk->sk_rmem_alloc)))
1351 time_to_ack = true;
1354 /* We send an ACK if we can now advertise a non-zero window
1355 * which has been raised "significantly".
1357 * Even if window raised up to infinity, do not send window open ACK
1358 * in states, where we will not receive more. It is useless.
1360 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1361 __u32 rcv_window_now = tcp_receive_window(tp);
1363 /* Optimize, __tcp_select_window() is not cheap. */
1364 if (2*rcv_window_now <= tp->window_clamp) {
1365 __u32 new_window = __tcp_select_window(sk);
1367 /* Send ACK now, if this read freed lots of space
1368 * in our buffer. Certainly, new_window is new window.
1369 * We can advertise it now, if it is not less than current one.
1370 * "Lots" means "at least twice" here.
1372 if (new_window && new_window >= 2 * rcv_window_now)
1373 time_to_ack = true;
1376 if (time_to_ack)
1377 tcp_send_ack(sk);
1380 static void tcp_prequeue_process(struct sock *sk)
1382 struct sk_buff *skb;
1383 struct tcp_sock *tp = tcp_sk(sk);
1385 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1387 /* RX process wants to run with disabled BHs, though it is not
1388 * necessary */
1389 local_bh_disable();
1390 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1391 sk_backlog_rcv(sk, skb);
1392 local_bh_enable();
1394 /* Clear memory counter. */
1395 tp->ucopy.memory = 0;
1398 #ifdef CONFIG_NET_DMA
1399 static void tcp_service_net_dma(struct sock *sk, bool wait)
1401 dma_cookie_t done, used;
1402 dma_cookie_t last_issued;
1403 struct tcp_sock *tp = tcp_sk(sk);
1405 if (!tp->ucopy.dma_chan)
1406 return;
1408 last_issued = tp->ucopy.dma_cookie;
1409 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1411 do {
1412 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1413 last_issued, &done,
1414 &used) == DMA_SUCCESS) {
1415 /* Safe to free early-copied skbs now */
1416 __skb_queue_purge(&sk->sk_async_wait_queue);
1417 break;
1418 } else {
1419 struct sk_buff *skb;
1420 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1421 (dma_async_is_complete(skb->dma_cookie, done,
1422 used) == DMA_SUCCESS)) {
1423 __skb_dequeue(&sk->sk_async_wait_queue);
1424 kfree_skb(skb);
1427 } while (wait);
1429 #endif
1431 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1433 struct sk_buff *skb;
1434 u32 offset;
1436 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1437 offset = seq - TCP_SKB_CB(skb)->seq;
1438 if (tcp_hdr(skb)->syn)
1439 offset--;
1440 if (offset < skb->len || tcp_hdr(skb)->fin) {
1441 *off = offset;
1442 return skb;
1444 /* This looks weird, but this can happen if TCP collapsing
1445 * splitted a fat GRO packet, while we released socket lock
1446 * in skb_splice_bits()
1448 sk_eat_skb(sk, skb, false);
1450 return NULL;
1454 * This routine provides an alternative to tcp_recvmsg() for routines
1455 * that would like to handle copying from skbuffs directly in 'sendfile'
1456 * fashion.
1457 * Note:
1458 * - It is assumed that the socket was locked by the caller.
1459 * - The routine does not block.
1460 * - At present, there is no support for reading OOB data
1461 * or for 'peeking' the socket using this routine
1462 * (although both would be easy to implement).
1464 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1465 sk_read_actor_t recv_actor)
1467 struct sk_buff *skb;
1468 struct tcp_sock *tp = tcp_sk(sk);
1469 u32 seq = tp->copied_seq;
1470 u32 offset;
1471 int copied = 0;
1473 if (sk->sk_state == TCP_LISTEN)
1474 return -ENOTCONN;
1475 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1476 if (offset < skb->len) {
1477 int used;
1478 size_t len;
1480 len = skb->len - offset;
1481 /* Stop reading if we hit a patch of urgent data */
1482 if (tp->urg_data) {
1483 u32 urg_offset = tp->urg_seq - seq;
1484 if (urg_offset < len)
1485 len = urg_offset;
1486 if (!len)
1487 break;
1489 used = recv_actor(desc, skb, offset, len);
1490 if (used <= 0) {
1491 if (!copied)
1492 copied = used;
1493 break;
1494 } else if (used <= len) {
1495 seq += used;
1496 copied += used;
1497 offset += used;
1499 /* If recv_actor drops the lock (e.g. TCP splice
1500 * receive) the skb pointer might be invalid when
1501 * getting here: tcp_collapse might have deleted it
1502 * while aggregating skbs from the socket queue.
1504 skb = tcp_recv_skb(sk, seq - 1, &offset);
1505 if (!skb)
1506 break;
1507 /* TCP coalescing might have appended data to the skb.
1508 * Try to splice more frags
1510 if (offset + 1 != skb->len)
1511 continue;
1513 if (tcp_hdr(skb)->fin) {
1514 sk_eat_skb(sk, skb, false);
1515 ++seq;
1516 break;
1518 sk_eat_skb(sk, skb, false);
1519 if (!desc->count)
1520 break;
1521 tp->copied_seq = seq;
1523 tp->copied_seq = seq;
1525 tcp_rcv_space_adjust(sk);
1527 /* Clean up data we have read: This will do ACK frames. */
1528 if (copied > 0) {
1529 tcp_recv_skb(sk, seq, &offset);
1530 tcp_cleanup_rbuf(sk, copied);
1532 return copied;
1534 EXPORT_SYMBOL(tcp_read_sock);
1537 * This routine copies from a sock struct into the user buffer.
1539 * Technical note: in 2.3 we work on _locked_ socket, so that
1540 * tricks with *seq access order and skb->users are not required.
1541 * Probably, code can be easily improved even more.
1544 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1545 size_t len, int nonblock, int flags, int *addr_len)
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 int copied = 0;
1549 u32 peek_seq;
1550 u32 *seq;
1551 unsigned long used;
1552 int err;
1553 int target; /* Read at least this many bytes */
1554 long timeo;
1555 struct task_struct *user_recv = NULL;
1556 bool copied_early = false;
1557 struct sk_buff *skb;
1558 u32 urg_hole = 0;
1560 lock_sock(sk);
1562 err = -ENOTCONN;
1563 if (sk->sk_state == TCP_LISTEN)
1564 goto out;
1566 timeo = sock_rcvtimeo(sk, nonblock);
1568 /* Urgent data needs to be handled specially. */
1569 if (flags & MSG_OOB)
1570 goto recv_urg;
1572 if (unlikely(tp->repair)) {
1573 err = -EPERM;
1574 if (!(flags & MSG_PEEK))
1575 goto out;
1577 if (tp->repair_queue == TCP_SEND_QUEUE)
1578 goto recv_sndq;
1580 err = -EINVAL;
1581 if (tp->repair_queue == TCP_NO_QUEUE)
1582 goto out;
1584 /* 'common' recv queue MSG_PEEK-ing */
1587 seq = &tp->copied_seq;
1588 if (flags & MSG_PEEK) {
1589 peek_seq = tp->copied_seq;
1590 seq = &peek_seq;
1593 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1595 #ifdef CONFIG_NET_DMA
1596 tp->ucopy.dma_chan = NULL;
1597 preempt_disable();
1598 skb = skb_peek_tail(&sk->sk_receive_queue);
1600 int available = 0;
1602 if (skb)
1603 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1604 if ((available < target) &&
1605 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1606 !sysctl_tcp_low_latency &&
1607 net_dma_find_channel()) {
1608 preempt_enable_no_resched();
1609 tp->ucopy.pinned_list =
1610 dma_pin_iovec_pages(msg->msg_iov, len);
1611 } else {
1612 preempt_enable_no_resched();
1615 #endif
1617 do {
1618 u32 offset;
1620 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1621 if (tp->urg_data && tp->urg_seq == *seq) {
1622 if (copied)
1623 break;
1624 if (signal_pending(current)) {
1625 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1626 break;
1630 /* Next get a buffer. */
1632 skb_queue_walk(&sk->sk_receive_queue, skb) {
1633 /* Now that we have two receive queues this
1634 * shouldn't happen.
1636 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1637 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1638 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1639 flags))
1640 break;
1642 offset = *seq - TCP_SKB_CB(skb)->seq;
1643 if (tcp_hdr(skb)->syn)
1644 offset--;
1645 if (offset < skb->len)
1646 goto found_ok_skb;
1647 if (tcp_hdr(skb)->fin)
1648 goto found_fin_ok;
1649 WARN(!(flags & MSG_PEEK),
1650 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1651 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1654 /* Well, if we have backlog, try to process it now yet. */
1656 if (copied >= target && !sk->sk_backlog.tail)
1657 break;
1659 if (copied) {
1660 if (sk->sk_err ||
1661 sk->sk_state == TCP_CLOSE ||
1662 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1663 !timeo ||
1664 signal_pending(current))
1665 break;
1666 } else {
1667 if (sock_flag(sk, SOCK_DONE))
1668 break;
1670 if (sk->sk_err) {
1671 copied = sock_error(sk);
1672 break;
1675 if (sk->sk_shutdown & RCV_SHUTDOWN)
1676 break;
1678 if (sk->sk_state == TCP_CLOSE) {
1679 if (!sock_flag(sk, SOCK_DONE)) {
1680 /* This occurs when user tries to read
1681 * from never connected socket.
1683 copied = -ENOTCONN;
1684 break;
1686 break;
1689 if (!timeo) {
1690 copied = -EAGAIN;
1691 break;
1694 if (signal_pending(current)) {
1695 copied = sock_intr_errno(timeo);
1696 break;
1700 tcp_cleanup_rbuf(sk, copied);
1702 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1703 /* Install new reader */
1704 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1705 user_recv = current;
1706 tp->ucopy.task = user_recv;
1707 tp->ucopy.iov = msg->msg_iov;
1710 tp->ucopy.len = len;
1712 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1713 !(flags & (MSG_PEEK | MSG_TRUNC)));
1715 /* Ugly... If prequeue is not empty, we have to
1716 * process it before releasing socket, otherwise
1717 * order will be broken at second iteration.
1718 * More elegant solution is required!!!
1720 * Look: we have the following (pseudo)queues:
1722 * 1. packets in flight
1723 * 2. backlog
1724 * 3. prequeue
1725 * 4. receive_queue
1727 * Each queue can be processed only if the next ones
1728 * are empty. At this point we have empty receive_queue.
1729 * But prequeue _can_ be not empty after 2nd iteration,
1730 * when we jumped to start of loop because backlog
1731 * processing added something to receive_queue.
1732 * We cannot release_sock(), because backlog contains
1733 * packets arrived _after_ prequeued ones.
1735 * Shortly, algorithm is clear --- to process all
1736 * the queues in order. We could make it more directly,
1737 * requeueing packets from backlog to prequeue, if
1738 * is not empty. It is more elegant, but eats cycles,
1739 * unfortunately.
1741 if (!skb_queue_empty(&tp->ucopy.prequeue))
1742 goto do_prequeue;
1744 /* __ Set realtime policy in scheduler __ */
1747 #ifdef CONFIG_NET_DMA
1748 if (tp->ucopy.dma_chan) {
1749 if (tp->rcv_wnd == 0 &&
1750 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1751 tcp_service_net_dma(sk, true);
1752 tcp_cleanup_rbuf(sk, copied);
1753 } else
1754 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1756 #endif
1757 if (copied >= target) {
1758 /* Do not sleep, just process backlog. */
1759 release_sock(sk);
1760 lock_sock(sk);
1761 } else
1762 sk_wait_data(sk, &timeo);
1764 #ifdef CONFIG_NET_DMA
1765 tcp_service_net_dma(sk, false); /* Don't block */
1766 tp->ucopy.wakeup = 0;
1767 #endif
1769 if (user_recv) {
1770 int chunk;
1772 /* __ Restore normal policy in scheduler __ */
1774 if ((chunk = len - tp->ucopy.len) != 0) {
1775 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1776 len -= chunk;
1777 copied += chunk;
1780 if (tp->rcv_nxt == tp->copied_seq &&
1781 !skb_queue_empty(&tp->ucopy.prequeue)) {
1782 do_prequeue:
1783 tcp_prequeue_process(sk);
1785 if ((chunk = len - tp->ucopy.len) != 0) {
1786 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1787 len -= chunk;
1788 copied += chunk;
1792 if ((flags & MSG_PEEK) &&
1793 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1794 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1795 current->comm,
1796 task_pid_nr(current));
1797 peek_seq = tp->copied_seq;
1799 continue;
1801 found_ok_skb:
1802 /* Ok so how much can we use? */
1803 used = skb->len - offset;
1804 if (len < used)
1805 used = len;
1807 /* Do we have urgent data here? */
1808 if (tp->urg_data) {
1809 u32 urg_offset = tp->urg_seq - *seq;
1810 if (urg_offset < used) {
1811 if (!urg_offset) {
1812 if (!sock_flag(sk, SOCK_URGINLINE)) {
1813 ++*seq;
1814 urg_hole++;
1815 offset++;
1816 used--;
1817 if (!used)
1818 goto skip_copy;
1820 } else
1821 used = urg_offset;
1825 if (!(flags & MSG_TRUNC)) {
1826 #ifdef CONFIG_NET_DMA
1827 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1828 tp->ucopy.dma_chan = net_dma_find_channel();
1830 if (tp->ucopy.dma_chan) {
1831 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1832 tp->ucopy.dma_chan, skb, offset,
1833 msg->msg_iov, used,
1834 tp->ucopy.pinned_list);
1836 if (tp->ucopy.dma_cookie < 0) {
1838 pr_alert("%s: dma_cookie < 0\n",
1839 __func__);
1841 /* Exception. Bailout! */
1842 if (!copied)
1843 copied = -EFAULT;
1844 break;
1847 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1849 if ((offset + used) == skb->len)
1850 copied_early = true;
1852 } else
1853 #endif
1855 err = skb_copy_datagram_iovec(skb, offset,
1856 msg->msg_iov, used);
1857 if (err) {
1858 /* Exception. Bailout! */
1859 if (!copied)
1860 copied = -EFAULT;
1861 break;
1866 *seq += used;
1867 copied += used;
1868 len -= used;
1870 tcp_rcv_space_adjust(sk);
1872 skip_copy:
1873 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1874 tp->urg_data = 0;
1875 tcp_fast_path_check(sk);
1877 if (used + offset < skb->len)
1878 continue;
1880 if (tcp_hdr(skb)->fin)
1881 goto found_fin_ok;
1882 if (!(flags & MSG_PEEK)) {
1883 sk_eat_skb(sk, skb, copied_early);
1884 copied_early = false;
1886 continue;
1888 found_fin_ok:
1889 /* Process the FIN. */
1890 ++*seq;
1891 if (!(flags & MSG_PEEK)) {
1892 sk_eat_skb(sk, skb, copied_early);
1893 copied_early = false;
1895 break;
1896 } while (len > 0);
1898 if (user_recv) {
1899 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1900 int chunk;
1902 tp->ucopy.len = copied > 0 ? len : 0;
1904 tcp_prequeue_process(sk);
1906 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1907 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1908 len -= chunk;
1909 copied += chunk;
1913 tp->ucopy.task = NULL;
1914 tp->ucopy.len = 0;
1917 #ifdef CONFIG_NET_DMA
1918 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1919 tp->ucopy.dma_chan = NULL;
1921 if (tp->ucopy.pinned_list) {
1922 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1923 tp->ucopy.pinned_list = NULL;
1925 #endif
1927 /* According to UNIX98, msg_name/msg_namelen are ignored
1928 * on connected socket. I was just happy when found this 8) --ANK
1931 /* Clean up data we have read: This will do ACK frames. */
1932 tcp_cleanup_rbuf(sk, copied);
1934 release_sock(sk);
1935 return copied;
1937 out:
1938 release_sock(sk);
1939 return err;
1941 recv_urg:
1942 err = tcp_recv_urg(sk, msg, len, flags);
1943 goto out;
1945 recv_sndq:
1946 err = tcp_peek_sndq(sk, msg, len);
1947 goto out;
1949 EXPORT_SYMBOL(tcp_recvmsg);
1951 void tcp_set_state(struct sock *sk, int state)
1953 int oldstate = sk->sk_state;
1955 switch (state) {
1956 case TCP_ESTABLISHED:
1957 if (oldstate != TCP_ESTABLISHED)
1958 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1959 break;
1961 case TCP_CLOSE:
1962 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1963 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1965 sk->sk_prot->unhash(sk);
1966 if (inet_csk(sk)->icsk_bind_hash &&
1967 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1968 inet_put_port(sk);
1969 /* fall through */
1970 default:
1971 if (oldstate == TCP_ESTABLISHED)
1972 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1975 /* Change state AFTER socket is unhashed to avoid closed
1976 * socket sitting in hash tables.
1978 sk->sk_state = state;
1980 #ifdef STATE_TRACE
1981 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1982 #endif
1984 EXPORT_SYMBOL_GPL(tcp_set_state);
1987 * State processing on a close. This implements the state shift for
1988 * sending our FIN frame. Note that we only send a FIN for some
1989 * states. A shutdown() may have already sent the FIN, or we may be
1990 * closed.
1993 static const unsigned char new_state[16] = {
1994 /* current state: new state: action: */
1995 /* (Invalid) */ TCP_CLOSE,
1996 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1997 /* TCP_SYN_SENT */ TCP_CLOSE,
1998 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1999 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2000 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2001 /* TCP_TIME_WAIT */ TCP_CLOSE,
2002 /* TCP_CLOSE */ TCP_CLOSE,
2003 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2004 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2005 /* TCP_LISTEN */ TCP_CLOSE,
2006 /* TCP_CLOSING */ TCP_CLOSING,
2009 static int tcp_close_state(struct sock *sk)
2011 int next = (int)new_state[sk->sk_state];
2012 int ns = next & TCP_STATE_MASK;
2014 tcp_set_state(sk, ns);
2016 return next & TCP_ACTION_FIN;
2020 * Shutdown the sending side of a connection. Much like close except
2021 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2024 void tcp_shutdown(struct sock *sk, int how)
2026 /* We need to grab some memory, and put together a FIN,
2027 * and then put it into the queue to be sent.
2028 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2030 if (!(how & SEND_SHUTDOWN))
2031 return;
2033 /* If we've already sent a FIN, or it's a closed state, skip this. */
2034 if ((1 << sk->sk_state) &
2035 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2036 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2037 /* Clear out any half completed packets. FIN if needed. */
2038 if (tcp_close_state(sk))
2039 tcp_send_fin(sk);
2042 EXPORT_SYMBOL(tcp_shutdown);
2044 bool tcp_check_oom(struct sock *sk, int shift)
2046 bool too_many_orphans, out_of_socket_memory;
2048 too_many_orphans = tcp_too_many_orphans(sk, shift);
2049 out_of_socket_memory = tcp_out_of_memory(sk);
2051 if (too_many_orphans)
2052 net_info_ratelimited("too many orphaned sockets\n");
2053 if (out_of_socket_memory)
2054 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2055 return too_many_orphans || out_of_socket_memory;
2058 void tcp_close(struct sock *sk, long timeout)
2060 struct sk_buff *skb;
2061 int data_was_unread = 0;
2062 int state;
2064 lock_sock(sk);
2065 sk->sk_shutdown = SHUTDOWN_MASK;
2067 if (sk->sk_state == TCP_LISTEN) {
2068 tcp_set_state(sk, TCP_CLOSE);
2070 /* Special case. */
2071 inet_csk_listen_stop(sk);
2073 goto adjudge_to_death;
2076 /* We need to flush the recv. buffs. We do this only on the
2077 * descriptor close, not protocol-sourced closes, because the
2078 * reader process may not have drained the data yet!
2080 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2081 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2082 tcp_hdr(skb)->fin;
2083 data_was_unread += len;
2084 __kfree_skb(skb);
2087 sk_mem_reclaim(sk);
2089 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2090 if (sk->sk_state == TCP_CLOSE)
2091 goto adjudge_to_death;
2093 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2094 * data was lost. To witness the awful effects of the old behavior of
2095 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2096 * GET in an FTP client, suspend the process, wait for the client to
2097 * advertise a zero window, then kill -9 the FTP client, wheee...
2098 * Note: timeout is always zero in such a case.
2100 if (unlikely(tcp_sk(sk)->repair)) {
2101 sk->sk_prot->disconnect(sk, 0);
2102 } else if (data_was_unread) {
2103 /* Unread data was tossed, zap the connection. */
2104 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2105 tcp_set_state(sk, TCP_CLOSE);
2106 tcp_send_active_reset(sk, sk->sk_allocation);
2107 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2108 /* Check zero linger _after_ checking for unread data. */
2109 sk->sk_prot->disconnect(sk, 0);
2110 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2111 } else if (tcp_close_state(sk)) {
2112 /* We FIN if the application ate all the data before
2113 * zapping the connection.
2116 /* RED-PEN. Formally speaking, we have broken TCP state
2117 * machine. State transitions:
2119 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2120 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2121 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2123 * are legal only when FIN has been sent (i.e. in window),
2124 * rather than queued out of window. Purists blame.
2126 * F.e. "RFC state" is ESTABLISHED,
2127 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2129 * The visible declinations are that sometimes
2130 * we enter time-wait state, when it is not required really
2131 * (harmless), do not send active resets, when they are
2132 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2133 * they look as CLOSING or LAST_ACK for Linux)
2134 * Probably, I missed some more holelets.
2135 * --ANK
2136 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2137 * in a single packet! (May consider it later but will
2138 * probably need API support or TCP_CORK SYN-ACK until
2139 * data is written and socket is closed.)
2141 tcp_send_fin(sk);
2144 sk_stream_wait_close(sk, timeout);
2146 adjudge_to_death:
2147 state = sk->sk_state;
2148 sock_hold(sk);
2149 sock_orphan(sk);
2151 /* It is the last release_sock in its life. It will remove backlog. */
2152 release_sock(sk);
2155 /* Now socket is owned by kernel and we acquire BH lock
2156 to finish close. No need to check for user refs.
2158 local_bh_disable();
2159 bh_lock_sock(sk);
2160 WARN_ON(sock_owned_by_user(sk));
2162 percpu_counter_inc(sk->sk_prot->orphan_count);
2164 /* Have we already been destroyed by a softirq or backlog? */
2165 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2166 goto out;
2168 /* This is a (useful) BSD violating of the RFC. There is a
2169 * problem with TCP as specified in that the other end could
2170 * keep a socket open forever with no application left this end.
2171 * We use a 3 minute timeout (about the same as BSD) then kill
2172 * our end. If they send after that then tough - BUT: long enough
2173 * that we won't make the old 4*rto = almost no time - whoops
2174 * reset mistake.
2176 * Nope, it was not mistake. It is really desired behaviour
2177 * f.e. on http servers, when such sockets are useless, but
2178 * consume significant resources. Let's do it with special
2179 * linger2 option. --ANK
2182 if (sk->sk_state == TCP_FIN_WAIT2) {
2183 struct tcp_sock *tp = tcp_sk(sk);
2184 if (tp->linger2 < 0) {
2185 tcp_set_state(sk, TCP_CLOSE);
2186 tcp_send_active_reset(sk, GFP_ATOMIC);
2187 NET_INC_STATS_BH(sock_net(sk),
2188 LINUX_MIB_TCPABORTONLINGER);
2189 } else {
2190 const int tmo = tcp_fin_time(sk);
2192 if (tmo > TCP_TIMEWAIT_LEN) {
2193 inet_csk_reset_keepalive_timer(sk,
2194 tmo - TCP_TIMEWAIT_LEN);
2195 } else {
2196 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2197 goto out;
2201 if (sk->sk_state != TCP_CLOSE) {
2202 sk_mem_reclaim(sk);
2203 if (tcp_check_oom(sk, 0)) {
2204 tcp_set_state(sk, TCP_CLOSE);
2205 tcp_send_active_reset(sk, GFP_ATOMIC);
2206 NET_INC_STATS_BH(sock_net(sk),
2207 LINUX_MIB_TCPABORTONMEMORY);
2211 if (sk->sk_state == TCP_CLOSE) {
2212 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2213 /* We could get here with a non-NULL req if the socket is
2214 * aborted (e.g., closed with unread data) before 3WHS
2215 * finishes.
2217 if (req != NULL)
2218 reqsk_fastopen_remove(sk, req, false);
2219 inet_csk_destroy_sock(sk);
2221 /* Otherwise, socket is reprieved until protocol close. */
2223 out:
2224 bh_unlock_sock(sk);
2225 local_bh_enable();
2226 sock_put(sk);
2228 EXPORT_SYMBOL(tcp_close);
2230 /* These states need RST on ABORT according to RFC793 */
2232 static inline bool tcp_need_reset(int state)
2234 return (1 << state) &
2235 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2236 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2239 int tcp_disconnect(struct sock *sk, int flags)
2241 struct inet_sock *inet = inet_sk(sk);
2242 struct inet_connection_sock *icsk = inet_csk(sk);
2243 struct tcp_sock *tp = tcp_sk(sk);
2244 int err = 0;
2245 int old_state = sk->sk_state;
2247 if (old_state != TCP_CLOSE)
2248 tcp_set_state(sk, TCP_CLOSE);
2250 /* ABORT function of RFC793 */
2251 if (old_state == TCP_LISTEN) {
2252 inet_csk_listen_stop(sk);
2253 } else if (unlikely(tp->repair)) {
2254 sk->sk_err = ECONNABORTED;
2255 } else if (tcp_need_reset(old_state) ||
2256 (tp->snd_nxt != tp->write_seq &&
2257 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2258 /* The last check adjusts for discrepancy of Linux wrt. RFC
2259 * states
2261 tcp_send_active_reset(sk, gfp_any());
2262 sk->sk_err = ECONNRESET;
2263 } else if (old_state == TCP_SYN_SENT)
2264 sk->sk_err = ECONNRESET;
2266 tcp_clear_xmit_timers(sk);
2267 __skb_queue_purge(&sk->sk_receive_queue);
2268 tcp_write_queue_purge(sk);
2269 __skb_queue_purge(&tp->out_of_order_queue);
2270 #ifdef CONFIG_NET_DMA
2271 __skb_queue_purge(&sk->sk_async_wait_queue);
2272 #endif
2274 inet->inet_dport = 0;
2276 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2277 inet_reset_saddr(sk);
2279 sk->sk_shutdown = 0;
2280 sock_reset_flag(sk, SOCK_DONE);
2281 tp->srtt = 0;
2282 if ((tp->write_seq += tp->max_window + 2) == 0)
2283 tp->write_seq = 1;
2284 icsk->icsk_backoff = 0;
2285 tp->snd_cwnd = 2;
2286 icsk->icsk_probes_out = 0;
2287 tp->packets_out = 0;
2288 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2289 tp->snd_cwnd_cnt = 0;
2290 tp->bytes_acked = 0;
2291 tp->window_clamp = 0;
2292 tcp_set_ca_state(sk, TCP_CA_Open);
2293 tcp_clear_retrans(tp);
2294 inet_csk_delack_init(sk);
2295 tcp_init_send_head(sk);
2296 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2297 __sk_dst_reset(sk);
2299 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2301 sk->sk_error_report(sk);
2302 return err;
2304 EXPORT_SYMBOL(tcp_disconnect);
2306 void tcp_sock_destruct(struct sock *sk)
2308 inet_sock_destruct(sk);
2310 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2313 static inline bool tcp_can_repair_sock(const struct sock *sk)
2315 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2316 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2319 static int tcp_repair_options_est(struct tcp_sock *tp,
2320 struct tcp_repair_opt __user *optbuf, unsigned int len)
2322 struct tcp_repair_opt opt;
2324 while (len >= sizeof(opt)) {
2325 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2326 return -EFAULT;
2328 optbuf++;
2329 len -= sizeof(opt);
2331 switch (opt.opt_code) {
2332 case TCPOPT_MSS:
2333 tp->rx_opt.mss_clamp = opt.opt_val;
2334 break;
2335 case TCPOPT_WINDOW:
2337 u16 snd_wscale = opt.opt_val & 0xFFFF;
2338 u16 rcv_wscale = opt.opt_val >> 16;
2340 if (snd_wscale > 14 || rcv_wscale > 14)
2341 return -EFBIG;
2343 tp->rx_opt.snd_wscale = snd_wscale;
2344 tp->rx_opt.rcv_wscale = rcv_wscale;
2345 tp->rx_opt.wscale_ok = 1;
2347 break;
2348 case TCPOPT_SACK_PERM:
2349 if (opt.opt_val != 0)
2350 return -EINVAL;
2352 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2353 if (sysctl_tcp_fack)
2354 tcp_enable_fack(tp);
2355 break;
2356 case TCPOPT_TIMESTAMP:
2357 if (opt.opt_val != 0)
2358 return -EINVAL;
2360 tp->rx_opt.tstamp_ok = 1;
2361 break;
2365 return 0;
2369 * Socket option code for TCP.
2371 static int do_tcp_setsockopt(struct sock *sk, int level,
2372 int optname, char __user *optval, unsigned int optlen)
2374 struct tcp_sock *tp = tcp_sk(sk);
2375 struct inet_connection_sock *icsk = inet_csk(sk);
2376 int val;
2377 int err = 0;
2379 /* These are data/string values, all the others are ints */
2380 switch (optname) {
2381 case TCP_CONGESTION: {
2382 char name[TCP_CA_NAME_MAX];
2384 if (optlen < 1)
2385 return -EINVAL;
2387 val = strncpy_from_user(name, optval,
2388 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2389 if (val < 0)
2390 return -EFAULT;
2391 name[val] = 0;
2393 lock_sock(sk);
2394 err = tcp_set_congestion_control(sk, name);
2395 release_sock(sk);
2396 return err;
2398 case TCP_COOKIE_TRANSACTIONS: {
2399 struct tcp_cookie_transactions ctd;
2400 struct tcp_cookie_values *cvp = NULL;
2402 if (sizeof(ctd) > optlen)
2403 return -EINVAL;
2404 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2405 return -EFAULT;
2407 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2408 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2409 return -EINVAL;
2411 if (ctd.tcpct_cookie_desired == 0) {
2412 /* default to global value */
2413 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2414 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2415 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2416 return -EINVAL;
2419 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2420 /* Supercedes all other values */
2421 lock_sock(sk);
2422 if (tp->cookie_values != NULL) {
2423 kref_put(&tp->cookie_values->kref,
2424 tcp_cookie_values_release);
2425 tp->cookie_values = NULL;
2427 tp->rx_opt.cookie_in_always = 0; /* false */
2428 tp->rx_opt.cookie_out_never = 1; /* true */
2429 release_sock(sk);
2430 return err;
2433 /* Allocate ancillary memory before locking.
2435 if (ctd.tcpct_used > 0 ||
2436 (tp->cookie_values == NULL &&
2437 (sysctl_tcp_cookie_size > 0 ||
2438 ctd.tcpct_cookie_desired > 0 ||
2439 ctd.tcpct_s_data_desired > 0))) {
2440 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2441 GFP_KERNEL);
2442 if (cvp == NULL)
2443 return -ENOMEM;
2445 kref_init(&cvp->kref);
2447 lock_sock(sk);
2448 tp->rx_opt.cookie_in_always =
2449 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2450 tp->rx_opt.cookie_out_never = 0; /* false */
2452 if (tp->cookie_values != NULL) {
2453 if (cvp != NULL) {
2454 /* Changed values are recorded by a changed
2455 * pointer, ensuring the cookie will differ,
2456 * without separately hashing each value later.
2458 kref_put(&tp->cookie_values->kref,
2459 tcp_cookie_values_release);
2460 } else {
2461 cvp = tp->cookie_values;
2465 if (cvp != NULL) {
2466 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2468 if (ctd.tcpct_used > 0) {
2469 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2470 ctd.tcpct_used);
2471 cvp->s_data_desired = ctd.tcpct_used;
2472 cvp->s_data_constant = 1; /* true */
2473 } else {
2474 /* No constant payload data. */
2475 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2476 cvp->s_data_constant = 0; /* false */
2479 tp->cookie_values = cvp;
2481 release_sock(sk);
2482 return err;
2484 default:
2485 /* fallthru */
2486 break;
2489 if (optlen < sizeof(int))
2490 return -EINVAL;
2492 if (get_user(val, (int __user *)optval))
2493 return -EFAULT;
2495 lock_sock(sk);
2497 switch (optname) {
2498 case TCP_MAXSEG:
2499 /* Values greater than interface MTU won't take effect. However
2500 * at the point when this call is done we typically don't yet
2501 * know which interface is going to be used */
2502 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2503 err = -EINVAL;
2504 break;
2506 tp->rx_opt.user_mss = val;
2507 break;
2509 case TCP_NODELAY:
2510 if (val) {
2511 /* TCP_NODELAY is weaker than TCP_CORK, so that
2512 * this option on corked socket is remembered, but
2513 * it is not activated until cork is cleared.
2515 * However, when TCP_NODELAY is set we make
2516 * an explicit push, which overrides even TCP_CORK
2517 * for currently queued segments.
2519 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2520 tcp_push_pending_frames(sk);
2521 } else {
2522 tp->nonagle &= ~TCP_NAGLE_OFF;
2524 break;
2526 case TCP_THIN_LINEAR_TIMEOUTS:
2527 if (val < 0 || val > 1)
2528 err = -EINVAL;
2529 else
2530 tp->thin_lto = val;
2531 break;
2533 case TCP_THIN_DUPACK:
2534 if (val < 0 || val > 1)
2535 err = -EINVAL;
2536 else
2537 tp->thin_dupack = val;
2538 if (tp->thin_dupack)
2539 tcp_disable_early_retrans(tp);
2540 break;
2542 case TCP_REPAIR:
2543 if (!tcp_can_repair_sock(sk))
2544 err = -EPERM;
2545 else if (val == 1) {
2546 tp->repair = 1;
2547 sk->sk_reuse = SK_FORCE_REUSE;
2548 tp->repair_queue = TCP_NO_QUEUE;
2549 } else if (val == 0) {
2550 tp->repair = 0;
2551 sk->sk_reuse = SK_NO_REUSE;
2552 tcp_send_window_probe(sk);
2553 } else
2554 err = -EINVAL;
2556 break;
2558 case TCP_REPAIR_QUEUE:
2559 if (!tp->repair)
2560 err = -EPERM;
2561 else if (val < TCP_QUEUES_NR)
2562 tp->repair_queue = val;
2563 else
2564 err = -EINVAL;
2565 break;
2567 case TCP_QUEUE_SEQ:
2568 if (sk->sk_state != TCP_CLOSE)
2569 err = -EPERM;
2570 else if (tp->repair_queue == TCP_SEND_QUEUE)
2571 tp->write_seq = val;
2572 else if (tp->repair_queue == TCP_RECV_QUEUE)
2573 tp->rcv_nxt = val;
2574 else
2575 err = -EINVAL;
2576 break;
2578 case TCP_REPAIR_OPTIONS:
2579 if (!tp->repair)
2580 err = -EINVAL;
2581 else if (sk->sk_state == TCP_ESTABLISHED)
2582 err = tcp_repair_options_est(tp,
2583 (struct tcp_repair_opt __user *)optval,
2584 optlen);
2585 else
2586 err = -EPERM;
2587 break;
2589 case TCP_CORK:
2590 /* When set indicates to always queue non-full frames.
2591 * Later the user clears this option and we transmit
2592 * any pending partial frames in the queue. This is
2593 * meant to be used alongside sendfile() to get properly
2594 * filled frames when the user (for example) must write
2595 * out headers with a write() call first and then use
2596 * sendfile to send out the data parts.
2598 * TCP_CORK can be set together with TCP_NODELAY and it is
2599 * stronger than TCP_NODELAY.
2601 if (val) {
2602 tp->nonagle |= TCP_NAGLE_CORK;
2603 } else {
2604 tp->nonagle &= ~TCP_NAGLE_CORK;
2605 if (tp->nonagle&TCP_NAGLE_OFF)
2606 tp->nonagle |= TCP_NAGLE_PUSH;
2607 tcp_push_pending_frames(sk);
2609 break;
2611 case TCP_KEEPIDLE:
2612 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2613 err = -EINVAL;
2614 else {
2615 tp->keepalive_time = val * HZ;
2616 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2617 !((1 << sk->sk_state) &
2618 (TCPF_CLOSE | TCPF_LISTEN))) {
2619 u32 elapsed = keepalive_time_elapsed(tp);
2620 if (tp->keepalive_time > elapsed)
2621 elapsed = tp->keepalive_time - elapsed;
2622 else
2623 elapsed = 0;
2624 inet_csk_reset_keepalive_timer(sk, elapsed);
2627 break;
2628 case TCP_KEEPINTVL:
2629 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2630 err = -EINVAL;
2631 else
2632 tp->keepalive_intvl = val * HZ;
2633 break;
2634 case TCP_KEEPCNT:
2635 if (val < 1 || val > MAX_TCP_KEEPCNT)
2636 err = -EINVAL;
2637 else
2638 tp->keepalive_probes = val;
2639 break;
2640 case TCP_SYNCNT:
2641 if (val < 1 || val > MAX_TCP_SYNCNT)
2642 err = -EINVAL;
2643 else
2644 icsk->icsk_syn_retries = val;
2645 break;
2647 case TCP_LINGER2:
2648 if (val < 0)
2649 tp->linger2 = -1;
2650 else if (val > sysctl_tcp_fin_timeout / HZ)
2651 tp->linger2 = 0;
2652 else
2653 tp->linger2 = val * HZ;
2654 break;
2656 case TCP_DEFER_ACCEPT:
2657 /* Translate value in seconds to number of retransmits */
2658 icsk->icsk_accept_queue.rskq_defer_accept =
2659 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2660 TCP_RTO_MAX / HZ);
2661 break;
2663 case TCP_WINDOW_CLAMP:
2664 if (!val) {
2665 if (sk->sk_state != TCP_CLOSE) {
2666 err = -EINVAL;
2667 break;
2669 tp->window_clamp = 0;
2670 } else
2671 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2672 SOCK_MIN_RCVBUF / 2 : val;
2673 break;
2675 case TCP_QUICKACK:
2676 if (!val) {
2677 icsk->icsk_ack.pingpong = 1;
2678 } else {
2679 icsk->icsk_ack.pingpong = 0;
2680 if ((1 << sk->sk_state) &
2681 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2682 inet_csk_ack_scheduled(sk)) {
2683 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2684 tcp_cleanup_rbuf(sk, 1);
2685 if (!(val & 1))
2686 icsk->icsk_ack.pingpong = 1;
2689 break;
2691 #ifdef CONFIG_TCP_MD5SIG
2692 case TCP_MD5SIG:
2693 /* Read the IP->Key mappings from userspace */
2694 err = tp->af_specific->md5_parse(sk, optval, optlen);
2695 break;
2696 #endif
2697 case TCP_USER_TIMEOUT:
2698 /* Cap the max timeout in ms TCP will retry/retrans
2699 * before giving up and aborting (ETIMEDOUT) a connection.
2701 if (val < 0)
2702 err = -EINVAL;
2703 else
2704 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2705 break;
2707 case TCP_FASTOPEN:
2708 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2709 TCPF_LISTEN)))
2710 err = fastopen_init_queue(sk, val);
2711 else
2712 err = -EINVAL;
2713 break;
2714 default:
2715 err = -ENOPROTOOPT;
2716 break;
2719 release_sock(sk);
2720 return err;
2723 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2724 unsigned int optlen)
2726 const struct inet_connection_sock *icsk = inet_csk(sk);
2728 if (level != SOL_TCP)
2729 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2730 optval, optlen);
2731 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2733 EXPORT_SYMBOL(tcp_setsockopt);
2735 #ifdef CONFIG_COMPAT
2736 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2737 char __user *optval, unsigned int optlen)
2739 if (level != SOL_TCP)
2740 return inet_csk_compat_setsockopt(sk, level, optname,
2741 optval, optlen);
2742 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2744 EXPORT_SYMBOL(compat_tcp_setsockopt);
2745 #endif
2747 /* Return information about state of tcp endpoint in API format. */
2748 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2750 const struct tcp_sock *tp = tcp_sk(sk);
2751 const struct inet_connection_sock *icsk = inet_csk(sk);
2752 u32 now = tcp_time_stamp;
2754 memset(info, 0, sizeof(*info));
2756 info->tcpi_state = sk->sk_state;
2757 info->tcpi_ca_state = icsk->icsk_ca_state;
2758 info->tcpi_retransmits = icsk->icsk_retransmits;
2759 info->tcpi_probes = icsk->icsk_probes_out;
2760 info->tcpi_backoff = icsk->icsk_backoff;
2762 if (tp->rx_opt.tstamp_ok)
2763 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2764 if (tcp_is_sack(tp))
2765 info->tcpi_options |= TCPI_OPT_SACK;
2766 if (tp->rx_opt.wscale_ok) {
2767 info->tcpi_options |= TCPI_OPT_WSCALE;
2768 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2769 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2772 if (tp->ecn_flags & TCP_ECN_OK)
2773 info->tcpi_options |= TCPI_OPT_ECN;
2774 if (tp->ecn_flags & TCP_ECN_SEEN)
2775 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2776 if (tp->syn_data_acked)
2777 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2779 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2780 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2781 info->tcpi_snd_mss = tp->mss_cache;
2782 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2784 if (sk->sk_state == TCP_LISTEN) {
2785 info->tcpi_unacked = sk->sk_ack_backlog;
2786 info->tcpi_sacked = sk->sk_max_ack_backlog;
2787 } else {
2788 info->tcpi_unacked = tp->packets_out;
2789 info->tcpi_sacked = tp->sacked_out;
2791 info->tcpi_lost = tp->lost_out;
2792 info->tcpi_retrans = tp->retrans_out;
2793 info->tcpi_fackets = tp->fackets_out;
2795 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2796 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2797 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2799 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2800 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2801 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2802 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2803 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2804 info->tcpi_snd_cwnd = tp->snd_cwnd;
2805 info->tcpi_advmss = tp->advmss;
2806 info->tcpi_reordering = tp->reordering;
2808 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2809 info->tcpi_rcv_space = tp->rcvq_space.space;
2811 info->tcpi_total_retrans = tp->total_retrans;
2813 EXPORT_SYMBOL_GPL(tcp_get_info);
2815 static int do_tcp_getsockopt(struct sock *sk, int level,
2816 int optname, char __user *optval, int __user *optlen)
2818 struct inet_connection_sock *icsk = inet_csk(sk);
2819 struct tcp_sock *tp = tcp_sk(sk);
2820 int val, len;
2822 if (get_user(len, optlen))
2823 return -EFAULT;
2825 len = min_t(unsigned int, len, sizeof(int));
2827 if (len < 0)
2828 return -EINVAL;
2830 switch (optname) {
2831 case TCP_MAXSEG:
2832 val = tp->mss_cache;
2833 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2834 val = tp->rx_opt.user_mss;
2835 if (tp->repair)
2836 val = tp->rx_opt.mss_clamp;
2837 break;
2838 case TCP_NODELAY:
2839 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2840 break;
2841 case TCP_CORK:
2842 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2843 break;
2844 case TCP_KEEPIDLE:
2845 val = keepalive_time_when(tp) / HZ;
2846 break;
2847 case TCP_KEEPINTVL:
2848 val = keepalive_intvl_when(tp) / HZ;
2849 break;
2850 case TCP_KEEPCNT:
2851 val = keepalive_probes(tp);
2852 break;
2853 case TCP_SYNCNT:
2854 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2855 break;
2856 case TCP_LINGER2:
2857 val = tp->linger2;
2858 if (val >= 0)
2859 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2860 break;
2861 case TCP_DEFER_ACCEPT:
2862 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2863 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2864 break;
2865 case TCP_WINDOW_CLAMP:
2866 val = tp->window_clamp;
2867 break;
2868 case TCP_INFO: {
2869 struct tcp_info info;
2871 if (get_user(len, optlen))
2872 return -EFAULT;
2874 tcp_get_info(sk, &info);
2876 len = min_t(unsigned int, len, sizeof(info));
2877 if (put_user(len, optlen))
2878 return -EFAULT;
2879 if (copy_to_user(optval, &info, len))
2880 return -EFAULT;
2881 return 0;
2883 case TCP_QUICKACK:
2884 val = !icsk->icsk_ack.pingpong;
2885 break;
2887 case TCP_CONGESTION:
2888 if (get_user(len, optlen))
2889 return -EFAULT;
2890 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2891 if (put_user(len, optlen))
2892 return -EFAULT;
2893 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2894 return -EFAULT;
2895 return 0;
2897 case TCP_COOKIE_TRANSACTIONS: {
2898 struct tcp_cookie_transactions ctd;
2899 struct tcp_cookie_values *cvp = tp->cookie_values;
2901 if (get_user(len, optlen))
2902 return -EFAULT;
2903 if (len < sizeof(ctd))
2904 return -EINVAL;
2906 memset(&ctd, 0, sizeof(ctd));
2907 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2908 TCP_COOKIE_IN_ALWAYS : 0)
2909 | (tp->rx_opt.cookie_out_never ?
2910 TCP_COOKIE_OUT_NEVER : 0);
2912 if (cvp != NULL) {
2913 ctd.tcpct_flags |= (cvp->s_data_in ?
2914 TCP_S_DATA_IN : 0)
2915 | (cvp->s_data_out ?
2916 TCP_S_DATA_OUT : 0);
2918 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2919 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2921 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2922 cvp->cookie_pair_size);
2923 ctd.tcpct_used = cvp->cookie_pair_size;
2926 if (put_user(sizeof(ctd), optlen))
2927 return -EFAULT;
2928 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2929 return -EFAULT;
2930 return 0;
2932 case TCP_THIN_LINEAR_TIMEOUTS:
2933 val = tp->thin_lto;
2934 break;
2935 case TCP_THIN_DUPACK:
2936 val = tp->thin_dupack;
2937 break;
2939 case TCP_REPAIR:
2940 val = tp->repair;
2941 break;
2943 case TCP_REPAIR_QUEUE:
2944 if (tp->repair)
2945 val = tp->repair_queue;
2946 else
2947 return -EINVAL;
2948 break;
2950 case TCP_QUEUE_SEQ:
2951 if (tp->repair_queue == TCP_SEND_QUEUE)
2952 val = tp->write_seq;
2953 else if (tp->repair_queue == TCP_RECV_QUEUE)
2954 val = tp->rcv_nxt;
2955 else
2956 return -EINVAL;
2957 break;
2959 case TCP_USER_TIMEOUT:
2960 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2961 break;
2962 default:
2963 return -ENOPROTOOPT;
2966 if (put_user(len, optlen))
2967 return -EFAULT;
2968 if (copy_to_user(optval, &val, len))
2969 return -EFAULT;
2970 return 0;
2973 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2974 int __user *optlen)
2976 struct inet_connection_sock *icsk = inet_csk(sk);
2978 if (level != SOL_TCP)
2979 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2980 optval, optlen);
2981 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2983 EXPORT_SYMBOL(tcp_getsockopt);
2985 #ifdef CONFIG_COMPAT
2986 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2987 char __user *optval, int __user *optlen)
2989 if (level != SOL_TCP)
2990 return inet_csk_compat_getsockopt(sk, level, optname,
2991 optval, optlen);
2992 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2994 EXPORT_SYMBOL(compat_tcp_getsockopt);
2995 #endif
2997 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2998 netdev_features_t features)
3000 struct sk_buff *segs = ERR_PTR(-EINVAL);
3001 struct tcphdr *th;
3002 unsigned int thlen;
3003 unsigned int seq;
3004 __be32 delta;
3005 unsigned int oldlen;
3006 unsigned int mss;
3008 if (!pskb_may_pull(skb, sizeof(*th)))
3009 goto out;
3011 th = tcp_hdr(skb);
3012 thlen = th->doff * 4;
3013 if (thlen < sizeof(*th))
3014 goto out;
3016 if (!pskb_may_pull(skb, thlen))
3017 goto out;
3019 oldlen = (u16)~skb->len;
3020 __skb_pull(skb, thlen);
3022 mss = skb_shinfo(skb)->gso_size;
3023 if (unlikely(skb->len <= mss))
3024 goto out;
3026 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3027 /* Packet is from an untrusted source, reset gso_segs. */
3028 int type = skb_shinfo(skb)->gso_type;
3030 if (unlikely(type &
3031 ~(SKB_GSO_TCPV4 |
3032 SKB_GSO_DODGY |
3033 SKB_GSO_TCP_ECN |
3034 SKB_GSO_TCPV6 |
3035 0) ||
3036 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3037 goto out;
3039 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3041 segs = NULL;
3042 goto out;
3045 segs = skb_segment(skb, features);
3046 if (IS_ERR(segs))
3047 goto out;
3049 delta = htonl(oldlen + (thlen + mss));
3051 skb = segs;
3052 th = tcp_hdr(skb);
3053 seq = ntohl(th->seq);
3055 do {
3056 th->fin = th->psh = 0;
3058 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3059 (__force u32)delta));
3060 if (skb->ip_summed != CHECKSUM_PARTIAL)
3061 th->check =
3062 csum_fold(csum_partial(skb_transport_header(skb),
3063 thlen, skb->csum));
3065 seq += mss;
3066 skb = skb->next;
3067 th = tcp_hdr(skb);
3069 th->seq = htonl(seq);
3070 th->cwr = 0;
3071 } while (skb->next);
3073 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3074 skb->data_len);
3075 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3076 (__force u32)delta));
3077 if (skb->ip_summed != CHECKSUM_PARTIAL)
3078 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3079 thlen, skb->csum));
3081 out:
3082 return segs;
3084 EXPORT_SYMBOL(tcp_tso_segment);
3086 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3088 struct sk_buff **pp = NULL;
3089 struct sk_buff *p;
3090 struct tcphdr *th;
3091 struct tcphdr *th2;
3092 unsigned int len;
3093 unsigned int thlen;
3094 __be32 flags;
3095 unsigned int mss = 1;
3096 unsigned int hlen;
3097 unsigned int off;
3098 int flush = 1;
3099 int i;
3101 off = skb_gro_offset(skb);
3102 hlen = off + sizeof(*th);
3103 th = skb_gro_header_fast(skb, off);
3104 if (skb_gro_header_hard(skb, hlen)) {
3105 th = skb_gro_header_slow(skb, hlen, off);
3106 if (unlikely(!th))
3107 goto out;
3110 thlen = th->doff * 4;
3111 if (thlen < sizeof(*th))
3112 goto out;
3114 hlen = off + thlen;
3115 if (skb_gro_header_hard(skb, hlen)) {
3116 th = skb_gro_header_slow(skb, hlen, off);
3117 if (unlikely(!th))
3118 goto out;
3121 skb_gro_pull(skb, thlen);
3123 len = skb_gro_len(skb);
3124 flags = tcp_flag_word(th);
3126 for (; (p = *head); head = &p->next) {
3127 if (!NAPI_GRO_CB(p)->same_flow)
3128 continue;
3130 th2 = tcp_hdr(p);
3132 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3133 NAPI_GRO_CB(p)->same_flow = 0;
3134 continue;
3137 goto found;
3140 goto out_check_final;
3142 found:
3143 flush = NAPI_GRO_CB(p)->flush;
3144 flush |= (__force int)(flags & TCP_FLAG_CWR);
3145 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3146 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3147 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3148 for (i = sizeof(*th); i < thlen; i += 4)
3149 flush |= *(u32 *)((u8 *)th + i) ^
3150 *(u32 *)((u8 *)th2 + i);
3152 mss = skb_shinfo(p)->gso_size;
3154 flush |= (len - 1) >= mss;
3155 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3157 if (flush || skb_gro_receive(head, skb)) {
3158 mss = 1;
3159 goto out_check_final;
3162 p = *head;
3163 th2 = tcp_hdr(p);
3164 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3166 out_check_final:
3167 flush = len < mss;
3168 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3169 TCP_FLAG_RST | TCP_FLAG_SYN |
3170 TCP_FLAG_FIN));
3172 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3173 pp = head;
3175 out:
3176 NAPI_GRO_CB(skb)->flush |= flush;
3178 return pp;
3180 EXPORT_SYMBOL(tcp_gro_receive);
3182 int tcp_gro_complete(struct sk_buff *skb)
3184 struct tcphdr *th = tcp_hdr(skb);
3186 skb->csum_start = skb_transport_header(skb) - skb->head;
3187 skb->csum_offset = offsetof(struct tcphdr, check);
3188 skb->ip_summed = CHECKSUM_PARTIAL;
3190 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3192 if (th->cwr)
3193 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3195 return 0;
3197 EXPORT_SYMBOL(tcp_gro_complete);
3199 #ifdef CONFIG_TCP_MD5SIG
3200 static unsigned long tcp_md5sig_users;
3201 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3202 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3204 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3206 int cpu;
3208 for_each_possible_cpu(cpu) {
3209 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3211 if (p->md5_desc.tfm)
3212 crypto_free_hash(p->md5_desc.tfm);
3214 free_percpu(pool);
3217 void tcp_free_md5sig_pool(void)
3219 struct tcp_md5sig_pool __percpu *pool = NULL;
3221 spin_lock_bh(&tcp_md5sig_pool_lock);
3222 if (--tcp_md5sig_users == 0) {
3223 pool = tcp_md5sig_pool;
3224 tcp_md5sig_pool = NULL;
3226 spin_unlock_bh(&tcp_md5sig_pool_lock);
3227 if (pool)
3228 __tcp_free_md5sig_pool(pool);
3230 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3232 static struct tcp_md5sig_pool __percpu *
3233 __tcp_alloc_md5sig_pool(struct sock *sk)
3235 int cpu;
3236 struct tcp_md5sig_pool __percpu *pool;
3238 pool = alloc_percpu(struct tcp_md5sig_pool);
3239 if (!pool)
3240 return NULL;
3242 for_each_possible_cpu(cpu) {
3243 struct crypto_hash *hash;
3245 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3246 if (!hash || IS_ERR(hash))
3247 goto out_free;
3249 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3251 return pool;
3252 out_free:
3253 __tcp_free_md5sig_pool(pool);
3254 return NULL;
3257 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3259 struct tcp_md5sig_pool __percpu *pool;
3260 bool alloc = false;
3262 retry:
3263 spin_lock_bh(&tcp_md5sig_pool_lock);
3264 pool = tcp_md5sig_pool;
3265 if (tcp_md5sig_users++ == 0) {
3266 alloc = true;
3267 spin_unlock_bh(&tcp_md5sig_pool_lock);
3268 } else if (!pool) {
3269 tcp_md5sig_users--;
3270 spin_unlock_bh(&tcp_md5sig_pool_lock);
3271 cpu_relax();
3272 goto retry;
3273 } else
3274 spin_unlock_bh(&tcp_md5sig_pool_lock);
3276 if (alloc) {
3277 /* we cannot hold spinlock here because this may sleep. */
3278 struct tcp_md5sig_pool __percpu *p;
3280 p = __tcp_alloc_md5sig_pool(sk);
3281 spin_lock_bh(&tcp_md5sig_pool_lock);
3282 if (!p) {
3283 tcp_md5sig_users--;
3284 spin_unlock_bh(&tcp_md5sig_pool_lock);
3285 return NULL;
3287 pool = tcp_md5sig_pool;
3288 if (pool) {
3289 /* oops, it has already been assigned. */
3290 spin_unlock_bh(&tcp_md5sig_pool_lock);
3291 __tcp_free_md5sig_pool(p);
3292 } else {
3293 tcp_md5sig_pool = pool = p;
3294 spin_unlock_bh(&tcp_md5sig_pool_lock);
3297 return pool;
3299 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3303 * tcp_get_md5sig_pool - get md5sig_pool for this user
3305 * We use percpu structure, so if we succeed, we exit with preemption
3306 * and BH disabled, to make sure another thread or softirq handling
3307 * wont try to get same context.
3309 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3311 struct tcp_md5sig_pool __percpu *p;
3313 local_bh_disable();
3315 spin_lock(&tcp_md5sig_pool_lock);
3316 p = tcp_md5sig_pool;
3317 if (p)
3318 tcp_md5sig_users++;
3319 spin_unlock(&tcp_md5sig_pool_lock);
3321 if (p)
3322 return this_cpu_ptr(p);
3324 local_bh_enable();
3325 return NULL;
3327 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3329 void tcp_put_md5sig_pool(void)
3331 local_bh_enable();
3332 tcp_free_md5sig_pool();
3334 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3336 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3337 const struct tcphdr *th)
3339 struct scatterlist sg;
3340 struct tcphdr hdr;
3341 int err;
3343 /* We are not allowed to change tcphdr, make a local copy */
3344 memcpy(&hdr, th, sizeof(hdr));
3345 hdr.check = 0;
3347 /* options aren't included in the hash */
3348 sg_init_one(&sg, &hdr, sizeof(hdr));
3349 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3350 return err;
3352 EXPORT_SYMBOL(tcp_md5_hash_header);
3354 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3355 const struct sk_buff *skb, unsigned int header_len)
3357 struct scatterlist sg;
3358 const struct tcphdr *tp = tcp_hdr(skb);
3359 struct hash_desc *desc = &hp->md5_desc;
3360 unsigned int i;
3361 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3362 skb_headlen(skb) - header_len : 0;
3363 const struct skb_shared_info *shi = skb_shinfo(skb);
3364 struct sk_buff *frag_iter;
3366 sg_init_table(&sg, 1);
3368 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3369 if (crypto_hash_update(desc, &sg, head_data_len))
3370 return 1;
3372 for (i = 0; i < shi->nr_frags; ++i) {
3373 const struct skb_frag_struct *f = &shi->frags[i];
3374 struct page *page = skb_frag_page(f);
3375 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3376 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3377 return 1;
3380 skb_walk_frags(skb, frag_iter)
3381 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3382 return 1;
3384 return 0;
3386 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3388 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3390 struct scatterlist sg;
3392 sg_init_one(&sg, key->key, key->keylen);
3393 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3395 EXPORT_SYMBOL(tcp_md5_hash_key);
3397 #endif
3399 /* Each Responder maintains up to two secret values concurrently for
3400 * efficient secret rollover. Each secret value has 4 states:
3402 * Generating. (tcp_secret_generating != tcp_secret_primary)
3403 * Generates new Responder-Cookies, but not yet used for primary
3404 * verification. This is a short-term state, typically lasting only
3405 * one round trip time (RTT).
3407 * Primary. (tcp_secret_generating == tcp_secret_primary)
3408 * Used both for generation and primary verification.
3410 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3411 * Used for verification, until the first failure that can be
3412 * verified by the newer Generating secret. At that time, this
3413 * cookie's state is changed to Secondary, and the Generating
3414 * cookie's state is changed to Primary. This is a short-term state,
3415 * typically lasting only one round trip time (RTT).
3417 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3418 * Used for secondary verification, after primary verification
3419 * failures. This state lasts no more than twice the Maximum Segment
3420 * Lifetime (2MSL). Then, the secret is discarded.
3422 struct tcp_cookie_secret {
3423 /* The secret is divided into two parts. The digest part is the
3424 * equivalent of previously hashing a secret and saving the state,
3425 * and serves as an initialization vector (IV). The message part
3426 * serves as the trailing secret.
3428 u32 secrets[COOKIE_WORKSPACE_WORDS];
3429 unsigned long expires;
3432 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3433 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3434 #define TCP_SECRET_LIFE (HZ * 600)
3436 static struct tcp_cookie_secret tcp_secret_one;
3437 static struct tcp_cookie_secret tcp_secret_two;
3439 /* Essentially a circular list, without dynamic allocation. */
3440 static struct tcp_cookie_secret *tcp_secret_generating;
3441 static struct tcp_cookie_secret *tcp_secret_primary;
3442 static struct tcp_cookie_secret *tcp_secret_retiring;
3443 static struct tcp_cookie_secret *tcp_secret_secondary;
3445 static DEFINE_SPINLOCK(tcp_secret_locker);
3447 /* Select a pseudo-random word in the cookie workspace.
3449 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3451 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3454 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3455 * Called in softirq context.
3456 * Returns: 0 for success.
3458 int tcp_cookie_generator(u32 *bakery)
3460 unsigned long jiffy = jiffies;
3462 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3463 spin_lock_bh(&tcp_secret_locker);
3464 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3465 /* refreshed by another */
3466 memcpy(bakery,
3467 &tcp_secret_generating->secrets[0],
3468 COOKIE_WORKSPACE_WORDS);
3469 } else {
3470 /* still needs refreshing */
3471 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3473 /* The first time, paranoia assumes that the
3474 * randomization function isn't as strong. But,
3475 * this secret initialization is delayed until
3476 * the last possible moment (packet arrival).
3477 * Although that time is observable, it is
3478 * unpredictably variable. Mash in the most
3479 * volatile clock bits available, and expire the
3480 * secret extra quickly.
3482 if (unlikely(tcp_secret_primary->expires ==
3483 tcp_secret_secondary->expires)) {
3484 struct timespec tv;
3486 getnstimeofday(&tv);
3487 bakery[COOKIE_DIGEST_WORDS+0] ^=
3488 (u32)tv.tv_nsec;
3490 tcp_secret_secondary->expires = jiffy
3491 + TCP_SECRET_1MSL
3492 + (0x0f & tcp_cookie_work(bakery, 0));
3493 } else {
3494 tcp_secret_secondary->expires = jiffy
3495 + TCP_SECRET_LIFE
3496 + (0xff & tcp_cookie_work(bakery, 1));
3497 tcp_secret_primary->expires = jiffy
3498 + TCP_SECRET_2MSL
3499 + (0x1f & tcp_cookie_work(bakery, 2));
3501 memcpy(&tcp_secret_secondary->secrets[0],
3502 bakery, COOKIE_WORKSPACE_WORDS);
3504 rcu_assign_pointer(tcp_secret_generating,
3505 tcp_secret_secondary);
3506 rcu_assign_pointer(tcp_secret_retiring,
3507 tcp_secret_primary);
3509 * Neither call_rcu() nor synchronize_rcu() needed.
3510 * Retiring data is not freed. It is replaced after
3511 * further (locked) pointer updates, and a quiet time
3512 * (minimum 1MSL, maximum LIFE - 2MSL).
3515 spin_unlock_bh(&tcp_secret_locker);
3516 } else {
3517 rcu_read_lock_bh();
3518 memcpy(bakery,
3519 &rcu_dereference(tcp_secret_generating)->secrets[0],
3520 COOKIE_WORKSPACE_WORDS);
3521 rcu_read_unlock_bh();
3523 return 0;
3525 EXPORT_SYMBOL(tcp_cookie_generator);
3527 void tcp_done(struct sock *sk)
3529 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3531 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3532 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3534 tcp_set_state(sk, TCP_CLOSE);
3535 tcp_clear_xmit_timers(sk);
3536 if (req != NULL)
3537 reqsk_fastopen_remove(sk, req, false);
3539 sk->sk_shutdown = SHUTDOWN_MASK;
3541 if (!sock_flag(sk, SOCK_DEAD))
3542 sk->sk_state_change(sk);
3543 else
3544 inet_csk_destroy_sock(sk);
3546 EXPORT_SYMBOL_GPL(tcp_done);
3548 extern struct tcp_congestion_ops tcp_reno;
3550 static __initdata unsigned long thash_entries;
3551 static int __init set_thash_entries(char *str)
3553 ssize_t ret;
3555 if (!str)
3556 return 0;
3558 ret = kstrtoul(str, 0, &thash_entries);
3559 if (ret)
3560 return 0;
3562 return 1;
3564 __setup("thash_entries=", set_thash_entries);
3566 void tcp_init_mem(struct net *net)
3568 unsigned long limit = nr_free_buffer_pages() / 8;
3569 limit = max(limit, 128UL);
3570 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3571 net->ipv4.sysctl_tcp_mem[1] = limit;
3572 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3575 void __init tcp_init(void)
3577 struct sk_buff *skb = NULL;
3578 unsigned long limit;
3579 int max_rshare, max_wshare, cnt;
3580 unsigned int i;
3581 unsigned long jiffy = jiffies;
3583 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3585 percpu_counter_init(&tcp_sockets_allocated, 0);
3586 percpu_counter_init(&tcp_orphan_count, 0);
3587 tcp_hashinfo.bind_bucket_cachep =
3588 kmem_cache_create("tcp_bind_bucket",
3589 sizeof(struct inet_bind_bucket), 0,
3590 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3592 /* Size and allocate the main established and bind bucket
3593 * hash tables.
3595 * The methodology is similar to that of the buffer cache.
3597 tcp_hashinfo.ehash =
3598 alloc_large_system_hash("TCP established",
3599 sizeof(struct inet_ehash_bucket),
3600 thash_entries,
3601 17, /* one slot per 128 KB of memory */
3603 NULL,
3604 &tcp_hashinfo.ehash_mask,
3606 thash_entries ? 0 : 512 * 1024);
3607 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3608 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3609 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3611 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3612 panic("TCP: failed to alloc ehash_locks");
3613 tcp_hashinfo.bhash =
3614 alloc_large_system_hash("TCP bind",
3615 sizeof(struct inet_bind_hashbucket),
3616 tcp_hashinfo.ehash_mask + 1,
3617 17, /* one slot per 128 KB of memory */
3619 &tcp_hashinfo.bhash_size,
3620 NULL,
3622 64 * 1024);
3623 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3624 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3625 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3626 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3630 cnt = tcp_hashinfo.ehash_mask + 1;
3632 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3633 sysctl_tcp_max_orphans = cnt / 2;
3634 sysctl_max_syn_backlog = max(128, cnt / 256);
3636 tcp_init_mem(&init_net);
3637 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3638 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3639 max_wshare = min(4UL*1024*1024, limit);
3640 max_rshare = min(6UL*1024*1024, limit);
3642 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3643 sysctl_tcp_wmem[1] = 16*1024;
3644 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3646 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3647 sysctl_tcp_rmem[1] = 87380;
3648 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3650 pr_info("Hash tables configured (established %u bind %u)\n",
3651 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3653 tcp_metrics_init();
3655 tcp_register_congestion_control(&tcp_reno);
3657 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3658 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3659 tcp_secret_one.expires = jiffy; /* past due */
3660 tcp_secret_two.expires = jiffy; /* past due */
3661 tcp_secret_generating = &tcp_secret_one;
3662 tcp_secret_primary = &tcp_secret_one;
3663 tcp_secret_retiring = &tcp_secret_two;
3664 tcp_secret_secondary = &tcp_secret_two;
3665 tcp_tasklet_init();