Linux 3.8-rc7
[cris-mirror.git] / net / ipv4 / tcp_output.c
blob5d451593ef16f98c65379da619b08e3d47236bff
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
77 struct tcp_sock *tp = tcp_sk(sk);
78 unsigned int prior_packets = tp->packets_out;
80 tcp_advance_send_head(sk, skb);
81 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 /* Don't override Nagle indefinitely with F-RTO */
84 if (tp->frto_counter == 2)
85 tp->frto_counter = 3;
87 tp->packets_out += tcp_skb_pcount(skb);
88 if (!prior_packets || tp->early_retrans_delayed)
89 tcp_rearm_rto(sk);
92 /* SND.NXT, if window was not shrunk.
93 * If window has been shrunk, what should we make? It is not clear at all.
94 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96 * invalid. OK, let's make this for now:
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
100 const struct tcp_sock *tp = tcp_sk(sk);
102 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
103 return tp->snd_nxt;
104 else
105 return tcp_wnd_end(tp);
108 /* Calculate mss to advertise in SYN segment.
109 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111 * 1. It is independent of path mtu.
112 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114 * attached devices, because some buggy hosts are confused by
115 * large MSS.
116 * 4. We do not make 3, we advertise MSS, calculated from first
117 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
118 * This may be overridden via information stored in routing table.
119 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120 * probably even Jumbo".
122 static __u16 tcp_advertise_mss(struct sock *sk)
124 struct tcp_sock *tp = tcp_sk(sk);
125 const struct dst_entry *dst = __sk_dst_get(sk);
126 int mss = tp->advmss;
128 if (dst) {
129 unsigned int metric = dst_metric_advmss(dst);
131 if (metric < mss) {
132 mss = metric;
133 tp->advmss = mss;
137 return (__u16)mss;
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141 * This is the first part of cwnd validation mechanism. */
142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
144 struct tcp_sock *tp = tcp_sk(sk);
145 s32 delta = tcp_time_stamp - tp->lsndtime;
146 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
147 u32 cwnd = tp->snd_cwnd;
149 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 restart_cwnd = min(restart_cwnd, cwnd);
154 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 cwnd >>= 1;
156 tp->snd_cwnd = max(cwnd, restart_cwnd);
157 tp->snd_cwnd_stamp = tcp_time_stamp;
158 tp->snd_cwnd_used = 0;
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 struct sock *sk)
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 const u32 now = tcp_time_stamp;
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
172 tp->lsndtime = now;
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 icsk->icsk_ack.pingpong = 1;
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 tcp_dec_quickack_mode(sk, pkts);
185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
188 /* Determine a window scaling and initial window to offer.
189 * Based on the assumption that the given amount of space
190 * will be offered. Store the results in the tp structure.
191 * NOTE: for smooth operation initial space offering should
192 * be a multiple of mss if possible. We assume here that mss >= 1.
193 * This MUST be enforced by all callers.
195 void tcp_select_initial_window(int __space, __u32 mss,
196 __u32 *rcv_wnd, __u32 *window_clamp,
197 int wscale_ok, __u8 *rcv_wscale,
198 __u32 init_rcv_wnd)
200 unsigned int space = (__space < 0 ? 0 : __space);
202 /* If no clamp set the clamp to the max possible scaled window */
203 if (*window_clamp == 0)
204 (*window_clamp) = (65535 << 14);
205 space = min(*window_clamp, space);
207 /* Quantize space offering to a multiple of mss if possible. */
208 if (space > mss)
209 space = (space / mss) * mss;
211 /* NOTE: offering an initial window larger than 32767
212 * will break some buggy TCP stacks. If the admin tells us
213 * it is likely we could be speaking with such a buggy stack
214 * we will truncate our initial window offering to 32K-1
215 * unless the remote has sent us a window scaling option,
216 * which we interpret as a sign the remote TCP is not
217 * misinterpreting the window field as a signed quantity.
219 if (sysctl_tcp_workaround_signed_windows)
220 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
221 else
222 (*rcv_wnd) = space;
224 (*rcv_wscale) = 0;
225 if (wscale_ok) {
226 /* Set window scaling on max possible window
227 * See RFC1323 for an explanation of the limit to 14
229 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
230 space = min_t(u32, space, *window_clamp);
231 while (space > 65535 && (*rcv_wscale) < 14) {
232 space >>= 1;
233 (*rcv_wscale)++;
237 /* Set initial window to a value enough for senders starting with
238 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
239 * a limit on the initial window when mss is larger than 1460.
241 if (mss > (1 << *rcv_wscale)) {
242 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
243 if (mss > 1460)
244 init_cwnd =
245 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
246 /* when initializing use the value from init_rcv_wnd
247 * rather than the default from above
249 if (init_rcv_wnd)
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 else
252 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
255 /* Set the clamp no higher than max representable value */
256 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
258 EXPORT_SYMBOL(tcp_select_initial_window);
260 /* Chose a new window to advertise, update state in tcp_sock for the
261 * socket, and return result with RFC1323 scaling applied. The return
262 * value can be stuffed directly into th->window for an outgoing
263 * frame.
265 static u16 tcp_select_window(struct sock *sk)
267 struct tcp_sock *tp = tcp_sk(sk);
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
278 * Relax Will Robinson.
280 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
282 tp->rcv_wnd = new_win;
283 tp->rcv_wup = tp->rcv_nxt;
285 /* Make sure we do not exceed the maximum possible
286 * scaled window.
288 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
289 new_win = min(new_win, MAX_TCP_WINDOW);
290 else
291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
293 /* RFC1323 scaling applied */
294 new_win >>= tp->rx_opt.rcv_wscale;
296 /* If we advertise zero window, disable fast path. */
297 if (new_win == 0)
298 tp->pred_flags = 0;
300 return new_win;
303 /* Packet ECN state for a SYN-ACK */
304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
306 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
307 if (!(tp->ecn_flags & TCP_ECN_OK))
308 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
311 /* Packet ECN state for a SYN. */
312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
314 struct tcp_sock *tp = tcp_sk(sk);
316 tp->ecn_flags = 0;
317 if (sysctl_tcp_ecn == 1) {
318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
319 tp->ecn_flags = TCP_ECN_OK;
323 static __inline__ void
324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
326 if (inet_rsk(req)->ecn_ok)
327 th->ece = 1;
330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
331 * be sent.
333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
334 int tcp_header_len)
336 struct tcp_sock *tp = tcp_sk(sk);
338 if (tp->ecn_flags & TCP_ECN_OK) {
339 /* Not-retransmitted data segment: set ECT and inject CWR. */
340 if (skb->len != tcp_header_len &&
341 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
342 INET_ECN_xmit(sk);
343 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
344 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
345 tcp_hdr(skb)->cwr = 1;
346 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
348 } else {
349 /* ACK or retransmitted segment: clear ECT|CE */
350 INET_ECN_dontxmit(sk);
352 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
353 tcp_hdr(skb)->ece = 1;
357 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
358 * auto increment end seqno.
360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
362 skb->ip_summed = CHECKSUM_PARTIAL;
363 skb->csum = 0;
365 TCP_SKB_CB(skb)->tcp_flags = flags;
366 TCP_SKB_CB(skb)->sacked = 0;
368 skb_shinfo(skb)->gso_segs = 1;
369 skb_shinfo(skb)->gso_size = 0;
370 skb_shinfo(skb)->gso_type = 0;
372 TCP_SKB_CB(skb)->seq = seq;
373 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
374 seq++;
375 TCP_SKB_CB(skb)->end_seq = seq;
378 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
380 return tp->snd_una != tp->snd_up;
383 #define OPTION_SACK_ADVERTISE (1 << 0)
384 #define OPTION_TS (1 << 1)
385 #define OPTION_MD5 (1 << 2)
386 #define OPTION_WSCALE (1 << 3)
387 #define OPTION_COOKIE_EXTENSION (1 << 4)
388 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
390 struct tcp_out_options {
391 u16 options; /* bit field of OPTION_* */
392 u16 mss; /* 0 to disable */
393 u8 ws; /* window scale, 0 to disable */
394 u8 num_sack_blocks; /* number of SACK blocks to include */
395 u8 hash_size; /* bytes in hash_location */
396 __u8 *hash_location; /* temporary pointer, overloaded */
397 __u32 tsval, tsecr; /* need to include OPTION_TS */
398 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
401 /* The sysctl int routines are generic, so check consistency here.
403 static u8 tcp_cookie_size_check(u8 desired)
405 int cookie_size;
407 if (desired > 0)
408 /* previously specified */
409 return desired;
411 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
412 if (cookie_size <= 0)
413 /* no default specified */
414 return 0;
416 if (cookie_size <= TCP_COOKIE_MIN)
417 /* value too small, specify minimum */
418 return TCP_COOKIE_MIN;
420 if (cookie_size >= TCP_COOKIE_MAX)
421 /* value too large, specify maximum */
422 return TCP_COOKIE_MAX;
424 if (cookie_size & 1)
425 /* 8-bit multiple, illegal, fix it */
426 cookie_size++;
428 return (u8)cookie_size;
431 /* Write previously computed TCP options to the packet.
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operatibility perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
447 u16 options = opts->options; /* mungable copy */
449 /* Having both authentication and cookies for security is redundant,
450 * and there's certainly not enough room. Instead, the cookie-less
451 * extension variant is proposed.
453 * Consider the pessimal case with authentication. The options
454 * could look like:
455 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
457 if (unlikely(OPTION_MD5 & options)) {
458 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
459 *ptr++ = htonl((TCPOPT_COOKIE << 24) |
460 (TCPOLEN_COOKIE_BASE << 16) |
461 (TCPOPT_MD5SIG << 8) |
462 TCPOLEN_MD5SIG);
463 } else {
464 *ptr++ = htonl((TCPOPT_NOP << 24) |
465 (TCPOPT_NOP << 16) |
466 (TCPOPT_MD5SIG << 8) |
467 TCPOLEN_MD5SIG);
469 options &= ~OPTION_COOKIE_EXTENSION;
470 /* overload cookie hash location */
471 opts->hash_location = (__u8 *)ptr;
472 ptr += 4;
475 if (unlikely(opts->mss)) {
476 *ptr++ = htonl((TCPOPT_MSS << 24) |
477 (TCPOLEN_MSS << 16) |
478 opts->mss);
481 if (likely(OPTION_TS & options)) {
482 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
484 (TCPOLEN_SACK_PERM << 16) |
485 (TCPOPT_TIMESTAMP << 8) |
486 TCPOLEN_TIMESTAMP);
487 options &= ~OPTION_SACK_ADVERTISE;
488 } else {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_NOP << 16) |
491 (TCPOPT_TIMESTAMP << 8) |
492 TCPOLEN_TIMESTAMP);
494 *ptr++ = htonl(opts->tsval);
495 *ptr++ = htonl(opts->tsecr);
498 /* Specification requires after timestamp, so do it now.
500 * Consider the pessimal case without authentication. The options
501 * could look like:
502 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
504 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
505 __u8 *cookie_copy = opts->hash_location;
506 u8 cookie_size = opts->hash_size;
508 /* 8-bit multiple handled in tcp_cookie_size_check() above,
509 * and elsewhere.
511 if (0x2 & cookie_size) {
512 __u8 *p = (__u8 *)ptr;
514 /* 16-bit multiple */
515 *p++ = TCPOPT_COOKIE;
516 *p++ = TCPOLEN_COOKIE_BASE + cookie_size;
517 *p++ = *cookie_copy++;
518 *p++ = *cookie_copy++;
519 ptr++;
520 cookie_size -= 2;
521 } else {
522 /* 32-bit multiple */
523 *ptr++ = htonl(((TCPOPT_NOP << 24) |
524 (TCPOPT_NOP << 16) |
525 (TCPOPT_COOKIE << 8) |
526 TCPOLEN_COOKIE_BASE) +
527 cookie_size);
530 if (cookie_size > 0) {
531 memcpy(ptr, cookie_copy, cookie_size);
532 ptr += (cookie_size / 4);
536 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
537 *ptr++ = htonl((TCPOPT_NOP << 24) |
538 (TCPOPT_NOP << 16) |
539 (TCPOPT_SACK_PERM << 8) |
540 TCPOLEN_SACK_PERM);
543 if (unlikely(OPTION_WSCALE & options)) {
544 *ptr++ = htonl((TCPOPT_NOP << 24) |
545 (TCPOPT_WINDOW << 16) |
546 (TCPOLEN_WINDOW << 8) |
547 opts->ws);
550 if (unlikely(opts->num_sack_blocks)) {
551 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
552 tp->duplicate_sack : tp->selective_acks;
553 int this_sack;
555 *ptr++ = htonl((TCPOPT_NOP << 24) |
556 (TCPOPT_NOP << 16) |
557 (TCPOPT_SACK << 8) |
558 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
559 TCPOLEN_SACK_PERBLOCK)));
561 for (this_sack = 0; this_sack < opts->num_sack_blocks;
562 ++this_sack) {
563 *ptr++ = htonl(sp[this_sack].start_seq);
564 *ptr++ = htonl(sp[this_sack].end_seq);
567 tp->rx_opt.dsack = 0;
570 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
571 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
573 *ptr++ = htonl((TCPOPT_EXP << 24) |
574 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
575 TCPOPT_FASTOPEN_MAGIC);
577 memcpy(ptr, foc->val, foc->len);
578 if ((foc->len & 3) == 2) {
579 u8 *align = ((u8 *)ptr) + foc->len;
580 align[0] = align[1] = TCPOPT_NOP;
582 ptr += (foc->len + 3) >> 2;
586 /* Compute TCP options for SYN packets. This is not the final
587 * network wire format yet.
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590 struct tcp_out_options *opts,
591 struct tcp_md5sig_key **md5)
593 struct tcp_sock *tp = tcp_sk(sk);
594 struct tcp_cookie_values *cvp = tp->cookie_values;
595 unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
597 tcp_cookie_size_check(cvp->cookie_desired) :
599 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
601 #ifdef CONFIG_TCP_MD5SIG
602 *md5 = tp->af_specific->md5_lookup(sk, sk);
603 if (*md5) {
604 opts->options |= OPTION_MD5;
605 remaining -= TCPOLEN_MD5SIG_ALIGNED;
607 #else
608 *md5 = NULL;
609 #endif
611 /* We always get an MSS option. The option bytes which will be seen in
612 * normal data packets should timestamps be used, must be in the MSS
613 * advertised. But we subtract them from tp->mss_cache so that
614 * calculations in tcp_sendmsg are simpler etc. So account for this
615 * fact here if necessary. If we don't do this correctly, as a
616 * receiver we won't recognize data packets as being full sized when we
617 * should, and thus we won't abide by the delayed ACK rules correctly.
618 * SACKs don't matter, we never delay an ACK when we have any of those
619 * going out. */
620 opts->mss = tcp_advertise_mss(sk);
621 remaining -= TCPOLEN_MSS_ALIGNED;
623 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
624 opts->options |= OPTION_TS;
625 opts->tsval = TCP_SKB_CB(skb)->when;
626 opts->tsecr = tp->rx_opt.ts_recent;
627 remaining -= TCPOLEN_TSTAMP_ALIGNED;
629 if (likely(sysctl_tcp_window_scaling)) {
630 opts->ws = tp->rx_opt.rcv_wscale;
631 opts->options |= OPTION_WSCALE;
632 remaining -= TCPOLEN_WSCALE_ALIGNED;
634 if (likely(sysctl_tcp_sack)) {
635 opts->options |= OPTION_SACK_ADVERTISE;
636 if (unlikely(!(OPTION_TS & opts->options)))
637 remaining -= TCPOLEN_SACKPERM_ALIGNED;
640 if (fastopen && fastopen->cookie.len >= 0) {
641 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
642 need = (need + 3) & ~3U; /* Align to 32 bits */
643 if (remaining >= need) {
644 opts->options |= OPTION_FAST_OPEN_COOKIE;
645 opts->fastopen_cookie = &fastopen->cookie;
646 remaining -= need;
647 tp->syn_fastopen = 1;
650 /* Note that timestamps are required by the specification.
652 * Odd numbers of bytes are prohibited by the specification, ensuring
653 * that the cookie is 16-bit aligned, and the resulting cookie pair is
654 * 32-bit aligned.
656 if (*md5 == NULL &&
657 (OPTION_TS & opts->options) &&
658 cookie_size > 0) {
659 int need = TCPOLEN_COOKIE_BASE + cookie_size;
661 if (0x2 & need) {
662 /* 32-bit multiple */
663 need += 2; /* NOPs */
665 if (need > remaining) {
666 /* try shrinking cookie to fit */
667 cookie_size -= 2;
668 need -= 4;
671 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
672 cookie_size -= 4;
673 need -= 4;
675 if (TCP_COOKIE_MIN <= cookie_size) {
676 opts->options |= OPTION_COOKIE_EXTENSION;
677 opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
678 opts->hash_size = cookie_size;
680 /* Remember for future incarnations. */
681 cvp->cookie_desired = cookie_size;
683 if (cvp->cookie_desired != cvp->cookie_pair_size) {
684 /* Currently use random bytes as a nonce,
685 * assuming these are completely unpredictable
686 * by hostile users of the same system.
688 get_random_bytes(&cvp->cookie_pair[0],
689 cookie_size);
690 cvp->cookie_pair_size = cookie_size;
693 remaining -= need;
696 return MAX_TCP_OPTION_SPACE - remaining;
699 /* Set up TCP options for SYN-ACKs. */
700 static unsigned int tcp_synack_options(struct sock *sk,
701 struct request_sock *req,
702 unsigned int mss, struct sk_buff *skb,
703 struct tcp_out_options *opts,
704 struct tcp_md5sig_key **md5,
705 struct tcp_extend_values *xvp,
706 struct tcp_fastopen_cookie *foc)
708 struct inet_request_sock *ireq = inet_rsk(req);
709 unsigned int remaining = MAX_TCP_OPTION_SPACE;
710 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
711 xvp->cookie_plus :
714 #ifdef CONFIG_TCP_MD5SIG
715 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
716 if (*md5) {
717 opts->options |= OPTION_MD5;
718 remaining -= TCPOLEN_MD5SIG_ALIGNED;
720 /* We can't fit any SACK blocks in a packet with MD5 + TS
721 * options. There was discussion about disabling SACK
722 * rather than TS in order to fit in better with old,
723 * buggy kernels, but that was deemed to be unnecessary.
725 ireq->tstamp_ok &= !ireq->sack_ok;
727 #else
728 *md5 = NULL;
729 #endif
731 /* We always send an MSS option. */
732 opts->mss = mss;
733 remaining -= TCPOLEN_MSS_ALIGNED;
735 if (likely(ireq->wscale_ok)) {
736 opts->ws = ireq->rcv_wscale;
737 opts->options |= OPTION_WSCALE;
738 remaining -= TCPOLEN_WSCALE_ALIGNED;
740 if (likely(ireq->tstamp_ok)) {
741 opts->options |= OPTION_TS;
742 opts->tsval = TCP_SKB_CB(skb)->when;
743 opts->tsecr = req->ts_recent;
744 remaining -= TCPOLEN_TSTAMP_ALIGNED;
746 if (likely(ireq->sack_ok)) {
747 opts->options |= OPTION_SACK_ADVERTISE;
748 if (unlikely(!ireq->tstamp_ok))
749 remaining -= TCPOLEN_SACKPERM_ALIGNED;
751 if (foc != NULL) {
752 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
753 need = (need + 3) & ~3U; /* Align to 32 bits */
754 if (remaining >= need) {
755 opts->options |= OPTION_FAST_OPEN_COOKIE;
756 opts->fastopen_cookie = foc;
757 remaining -= need;
760 /* Similar rationale to tcp_syn_options() applies here, too.
761 * If the <SYN> options fit, the same options should fit now!
763 if (*md5 == NULL &&
764 ireq->tstamp_ok &&
765 cookie_plus > TCPOLEN_COOKIE_BASE) {
766 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
768 if (0x2 & need) {
769 /* 32-bit multiple */
770 need += 2; /* NOPs */
772 if (need <= remaining) {
773 opts->options |= OPTION_COOKIE_EXTENSION;
774 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
775 remaining -= need;
776 } else {
777 /* There's no error return, so flag it. */
778 xvp->cookie_out_never = 1; /* true */
779 opts->hash_size = 0;
782 return MAX_TCP_OPTION_SPACE - remaining;
785 /* Compute TCP options for ESTABLISHED sockets. This is not the
786 * final wire format yet.
788 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
789 struct tcp_out_options *opts,
790 struct tcp_md5sig_key **md5)
792 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
793 struct tcp_sock *tp = tcp_sk(sk);
794 unsigned int size = 0;
795 unsigned int eff_sacks;
797 #ifdef CONFIG_TCP_MD5SIG
798 *md5 = tp->af_specific->md5_lookup(sk, sk);
799 if (unlikely(*md5)) {
800 opts->options |= OPTION_MD5;
801 size += TCPOLEN_MD5SIG_ALIGNED;
803 #else
804 *md5 = NULL;
805 #endif
807 if (likely(tp->rx_opt.tstamp_ok)) {
808 opts->options |= OPTION_TS;
809 opts->tsval = tcb ? tcb->when : 0;
810 opts->tsecr = tp->rx_opt.ts_recent;
811 size += TCPOLEN_TSTAMP_ALIGNED;
814 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
815 if (unlikely(eff_sacks)) {
816 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
817 opts->num_sack_blocks =
818 min_t(unsigned int, eff_sacks,
819 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
820 TCPOLEN_SACK_PERBLOCK);
821 size += TCPOLEN_SACK_BASE_ALIGNED +
822 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
825 return size;
829 /* TCP SMALL QUEUES (TSQ)
831 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
832 * to reduce RTT and bufferbloat.
833 * We do this using a special skb destructor (tcp_wfree).
835 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
836 * needs to be reallocated in a driver.
837 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
839 * Since transmit from skb destructor is forbidden, we use a tasklet
840 * to process all sockets that eventually need to send more skbs.
841 * We use one tasklet per cpu, with its own queue of sockets.
843 struct tsq_tasklet {
844 struct tasklet_struct tasklet;
845 struct list_head head; /* queue of tcp sockets */
847 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
849 static void tcp_tsq_handler(struct sock *sk)
851 if ((1 << sk->sk_state) &
852 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
853 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
854 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
857 * One tasklest per cpu tries to send more skbs.
858 * We run in tasklet context but need to disable irqs when
859 * transfering tsq->head because tcp_wfree() might
860 * interrupt us (non NAPI drivers)
862 static void tcp_tasklet_func(unsigned long data)
864 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
865 LIST_HEAD(list);
866 unsigned long flags;
867 struct list_head *q, *n;
868 struct tcp_sock *tp;
869 struct sock *sk;
871 local_irq_save(flags);
872 list_splice_init(&tsq->head, &list);
873 local_irq_restore(flags);
875 list_for_each_safe(q, n, &list) {
876 tp = list_entry(q, struct tcp_sock, tsq_node);
877 list_del(&tp->tsq_node);
879 sk = (struct sock *)tp;
880 bh_lock_sock(sk);
882 if (!sock_owned_by_user(sk)) {
883 tcp_tsq_handler(sk);
884 } else {
885 /* defer the work to tcp_release_cb() */
886 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
888 bh_unlock_sock(sk);
890 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
891 sk_free(sk);
895 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
896 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
897 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
898 (1UL << TCP_MTU_REDUCED_DEFERRED))
900 * tcp_release_cb - tcp release_sock() callback
901 * @sk: socket
903 * called from release_sock() to perform protocol dependent
904 * actions before socket release.
906 void tcp_release_cb(struct sock *sk)
908 struct tcp_sock *tp = tcp_sk(sk);
909 unsigned long flags, nflags;
911 /* perform an atomic operation only if at least one flag is set */
912 do {
913 flags = tp->tsq_flags;
914 if (!(flags & TCP_DEFERRED_ALL))
915 return;
916 nflags = flags & ~TCP_DEFERRED_ALL;
917 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
919 if (flags & (1UL << TCP_TSQ_DEFERRED))
920 tcp_tsq_handler(sk);
922 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
923 tcp_write_timer_handler(sk);
924 __sock_put(sk);
926 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
927 tcp_delack_timer_handler(sk);
928 __sock_put(sk);
930 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
931 sk->sk_prot->mtu_reduced(sk);
932 __sock_put(sk);
935 EXPORT_SYMBOL(tcp_release_cb);
937 void __init tcp_tasklet_init(void)
939 int i;
941 for_each_possible_cpu(i) {
942 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
944 INIT_LIST_HEAD(&tsq->head);
945 tasklet_init(&tsq->tasklet,
946 tcp_tasklet_func,
947 (unsigned long)tsq);
952 * Write buffer destructor automatically called from kfree_skb.
953 * We cant xmit new skbs from this context, as we might already
954 * hold qdisc lock.
956 static void tcp_wfree(struct sk_buff *skb)
958 struct sock *sk = skb->sk;
959 struct tcp_sock *tp = tcp_sk(sk);
961 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
962 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
963 unsigned long flags;
964 struct tsq_tasklet *tsq;
966 /* Keep a ref on socket.
967 * This last ref will be released in tcp_tasklet_func()
969 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
971 /* queue this socket to tasklet queue */
972 local_irq_save(flags);
973 tsq = &__get_cpu_var(tsq_tasklet);
974 list_add(&tp->tsq_node, &tsq->head);
975 tasklet_schedule(&tsq->tasklet);
976 local_irq_restore(flags);
977 } else {
978 sock_wfree(skb);
982 /* This routine actually transmits TCP packets queued in by
983 * tcp_do_sendmsg(). This is used by both the initial
984 * transmission and possible later retransmissions.
985 * All SKB's seen here are completely headerless. It is our
986 * job to build the TCP header, and pass the packet down to
987 * IP so it can do the same plus pass the packet off to the
988 * device.
990 * We are working here with either a clone of the original
991 * SKB, or a fresh unique copy made by the retransmit engine.
993 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
994 gfp_t gfp_mask)
996 const struct inet_connection_sock *icsk = inet_csk(sk);
997 struct inet_sock *inet;
998 struct tcp_sock *tp;
999 struct tcp_skb_cb *tcb;
1000 struct tcp_out_options opts;
1001 unsigned int tcp_options_size, tcp_header_size;
1002 struct tcp_md5sig_key *md5;
1003 struct tcphdr *th;
1004 int err;
1006 BUG_ON(!skb || !tcp_skb_pcount(skb));
1008 /* If congestion control is doing timestamping, we must
1009 * take such a timestamp before we potentially clone/copy.
1011 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
1012 __net_timestamp(skb);
1014 if (likely(clone_it)) {
1015 if (unlikely(skb_cloned(skb)))
1016 skb = pskb_copy(skb, gfp_mask);
1017 else
1018 skb = skb_clone(skb, gfp_mask);
1019 if (unlikely(!skb))
1020 return -ENOBUFS;
1023 inet = inet_sk(sk);
1024 tp = tcp_sk(sk);
1025 tcb = TCP_SKB_CB(skb);
1026 memset(&opts, 0, sizeof(opts));
1028 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1029 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1030 else
1031 tcp_options_size = tcp_established_options(sk, skb, &opts,
1032 &md5);
1033 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1035 if (tcp_packets_in_flight(tp) == 0) {
1036 tcp_ca_event(sk, CA_EVENT_TX_START);
1037 skb->ooo_okay = 1;
1038 } else
1039 skb->ooo_okay = 0;
1041 skb_push(skb, tcp_header_size);
1042 skb_reset_transport_header(skb);
1044 skb_orphan(skb);
1045 skb->sk = sk;
1046 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
1047 tcp_wfree : sock_wfree;
1048 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1050 /* Build TCP header and checksum it. */
1051 th = tcp_hdr(skb);
1052 th->source = inet->inet_sport;
1053 th->dest = inet->inet_dport;
1054 th->seq = htonl(tcb->seq);
1055 th->ack_seq = htonl(tp->rcv_nxt);
1056 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1057 tcb->tcp_flags);
1059 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1060 /* RFC1323: The window in SYN & SYN/ACK segments
1061 * is never scaled.
1063 th->window = htons(min(tp->rcv_wnd, 65535U));
1064 } else {
1065 th->window = htons(tcp_select_window(sk));
1067 th->check = 0;
1068 th->urg_ptr = 0;
1070 /* The urg_mode check is necessary during a below snd_una win probe */
1071 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1072 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1073 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1074 th->urg = 1;
1075 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1076 th->urg_ptr = htons(0xFFFF);
1077 th->urg = 1;
1081 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1082 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1083 TCP_ECN_send(sk, skb, tcp_header_size);
1085 #ifdef CONFIG_TCP_MD5SIG
1086 /* Calculate the MD5 hash, as we have all we need now */
1087 if (md5) {
1088 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1089 tp->af_specific->calc_md5_hash(opts.hash_location,
1090 md5, sk, NULL, skb);
1092 #endif
1094 icsk->icsk_af_ops->send_check(sk, skb);
1096 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1097 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1099 if (skb->len != tcp_header_size)
1100 tcp_event_data_sent(tp, sk);
1102 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1103 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1104 tcp_skb_pcount(skb));
1106 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
1107 if (likely(err <= 0))
1108 return err;
1110 tcp_enter_cwr(sk, 1);
1112 return net_xmit_eval(err);
1115 /* This routine just queues the buffer for sending.
1117 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1118 * otherwise socket can stall.
1120 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1122 struct tcp_sock *tp = tcp_sk(sk);
1124 /* Advance write_seq and place onto the write_queue. */
1125 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1126 skb_header_release(skb);
1127 tcp_add_write_queue_tail(sk, skb);
1128 sk->sk_wmem_queued += skb->truesize;
1129 sk_mem_charge(sk, skb->truesize);
1132 /* Initialize TSO segments for a packet. */
1133 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1134 unsigned int mss_now)
1136 if (skb->len <= mss_now || !sk_can_gso(sk) ||
1137 skb->ip_summed == CHECKSUM_NONE) {
1138 /* Avoid the costly divide in the normal
1139 * non-TSO case.
1141 skb_shinfo(skb)->gso_segs = 1;
1142 skb_shinfo(skb)->gso_size = 0;
1143 skb_shinfo(skb)->gso_type = 0;
1144 } else {
1145 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1146 skb_shinfo(skb)->gso_size = mss_now;
1147 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1151 /* When a modification to fackets out becomes necessary, we need to check
1152 * skb is counted to fackets_out or not.
1154 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1155 int decr)
1157 struct tcp_sock *tp = tcp_sk(sk);
1159 if (!tp->sacked_out || tcp_is_reno(tp))
1160 return;
1162 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1163 tp->fackets_out -= decr;
1166 /* Pcount in the middle of the write queue got changed, we need to do various
1167 * tweaks to fix counters
1169 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1171 struct tcp_sock *tp = tcp_sk(sk);
1173 tp->packets_out -= decr;
1175 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1176 tp->sacked_out -= decr;
1177 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1178 tp->retrans_out -= decr;
1179 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1180 tp->lost_out -= decr;
1182 /* Reno case is special. Sigh... */
1183 if (tcp_is_reno(tp) && decr > 0)
1184 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1186 tcp_adjust_fackets_out(sk, skb, decr);
1188 if (tp->lost_skb_hint &&
1189 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1190 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1191 tp->lost_cnt_hint -= decr;
1193 tcp_verify_left_out(tp);
1196 /* Function to create two new TCP segments. Shrinks the given segment
1197 * to the specified size and appends a new segment with the rest of the
1198 * packet to the list. This won't be called frequently, I hope.
1199 * Remember, these are still headerless SKBs at this point.
1201 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1202 unsigned int mss_now)
1204 struct tcp_sock *tp = tcp_sk(sk);
1205 struct sk_buff *buff;
1206 int nsize, old_factor;
1207 int nlen;
1208 u8 flags;
1210 if (WARN_ON(len > skb->len))
1211 return -EINVAL;
1213 nsize = skb_headlen(skb) - len;
1214 if (nsize < 0)
1215 nsize = 0;
1217 if (skb_cloned(skb) &&
1218 skb_is_nonlinear(skb) &&
1219 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1220 return -ENOMEM;
1222 /* Get a new skb... force flag on. */
1223 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1224 if (buff == NULL)
1225 return -ENOMEM; /* We'll just try again later. */
1227 sk->sk_wmem_queued += buff->truesize;
1228 sk_mem_charge(sk, buff->truesize);
1229 nlen = skb->len - len - nsize;
1230 buff->truesize += nlen;
1231 skb->truesize -= nlen;
1233 /* Correct the sequence numbers. */
1234 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1235 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1236 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1238 /* PSH and FIN should only be set in the second packet. */
1239 flags = TCP_SKB_CB(skb)->tcp_flags;
1240 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1241 TCP_SKB_CB(buff)->tcp_flags = flags;
1242 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1244 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1245 /* Copy and checksum data tail into the new buffer. */
1246 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1247 skb_put(buff, nsize),
1248 nsize, 0);
1250 skb_trim(skb, len);
1252 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1253 } else {
1254 skb->ip_summed = CHECKSUM_PARTIAL;
1255 skb_split(skb, buff, len);
1258 buff->ip_summed = skb->ip_summed;
1260 /* Looks stupid, but our code really uses when of
1261 * skbs, which it never sent before. --ANK
1263 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1264 buff->tstamp = skb->tstamp;
1266 old_factor = tcp_skb_pcount(skb);
1268 /* Fix up tso_factor for both original and new SKB. */
1269 tcp_set_skb_tso_segs(sk, skb, mss_now);
1270 tcp_set_skb_tso_segs(sk, buff, mss_now);
1272 /* If this packet has been sent out already, we must
1273 * adjust the various packet counters.
1275 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1276 int diff = old_factor - tcp_skb_pcount(skb) -
1277 tcp_skb_pcount(buff);
1279 if (diff)
1280 tcp_adjust_pcount(sk, skb, diff);
1283 /* Link BUFF into the send queue. */
1284 skb_header_release(buff);
1285 tcp_insert_write_queue_after(skb, buff, sk);
1287 return 0;
1290 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1291 * eventually). The difference is that pulled data not copied, but
1292 * immediately discarded.
1294 static void __pskb_trim_head(struct sk_buff *skb, int len)
1296 int i, k, eat;
1298 eat = min_t(int, len, skb_headlen(skb));
1299 if (eat) {
1300 __skb_pull(skb, eat);
1301 skb->avail_size -= eat;
1302 len -= eat;
1303 if (!len)
1304 return;
1306 eat = len;
1307 k = 0;
1308 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1309 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1311 if (size <= eat) {
1312 skb_frag_unref(skb, i);
1313 eat -= size;
1314 } else {
1315 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1316 if (eat) {
1317 skb_shinfo(skb)->frags[k].page_offset += eat;
1318 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1319 eat = 0;
1321 k++;
1324 skb_shinfo(skb)->nr_frags = k;
1326 skb_reset_tail_pointer(skb);
1327 skb->data_len -= len;
1328 skb->len = skb->data_len;
1331 /* Remove acked data from a packet in the transmit queue. */
1332 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1334 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1335 return -ENOMEM;
1337 __pskb_trim_head(skb, len);
1339 TCP_SKB_CB(skb)->seq += len;
1340 skb->ip_summed = CHECKSUM_PARTIAL;
1342 skb->truesize -= len;
1343 sk->sk_wmem_queued -= len;
1344 sk_mem_uncharge(sk, len);
1345 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1347 /* Any change of skb->len requires recalculation of tso factor. */
1348 if (tcp_skb_pcount(skb) > 1)
1349 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1351 return 0;
1354 /* Calculate MSS. Not accounting for SACKs here. */
1355 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1357 const struct tcp_sock *tp = tcp_sk(sk);
1358 const struct inet_connection_sock *icsk = inet_csk(sk);
1359 int mss_now;
1361 /* Calculate base mss without TCP options:
1362 It is MMS_S - sizeof(tcphdr) of rfc1122
1364 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1366 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1367 if (icsk->icsk_af_ops->net_frag_header_len) {
1368 const struct dst_entry *dst = __sk_dst_get(sk);
1370 if (dst && dst_allfrag(dst))
1371 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1374 /* Clamp it (mss_clamp does not include tcp options) */
1375 if (mss_now > tp->rx_opt.mss_clamp)
1376 mss_now = tp->rx_opt.mss_clamp;
1378 /* Now subtract optional transport overhead */
1379 mss_now -= icsk->icsk_ext_hdr_len;
1381 /* Then reserve room for full set of TCP options and 8 bytes of data */
1382 if (mss_now < 48)
1383 mss_now = 48;
1385 /* Now subtract TCP options size, not including SACKs */
1386 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1388 return mss_now;
1391 /* Inverse of above */
1392 int tcp_mss_to_mtu(struct sock *sk, int mss)
1394 const struct tcp_sock *tp = tcp_sk(sk);
1395 const struct inet_connection_sock *icsk = inet_csk(sk);
1396 int mtu;
1398 mtu = mss +
1399 tp->tcp_header_len +
1400 icsk->icsk_ext_hdr_len +
1401 icsk->icsk_af_ops->net_header_len;
1403 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1404 if (icsk->icsk_af_ops->net_frag_header_len) {
1405 const struct dst_entry *dst = __sk_dst_get(sk);
1407 if (dst && dst_allfrag(dst))
1408 mtu += icsk->icsk_af_ops->net_frag_header_len;
1410 return mtu;
1413 /* MTU probing init per socket */
1414 void tcp_mtup_init(struct sock *sk)
1416 struct tcp_sock *tp = tcp_sk(sk);
1417 struct inet_connection_sock *icsk = inet_csk(sk);
1419 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1420 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1421 icsk->icsk_af_ops->net_header_len;
1422 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1423 icsk->icsk_mtup.probe_size = 0;
1425 EXPORT_SYMBOL(tcp_mtup_init);
1427 /* This function synchronize snd mss to current pmtu/exthdr set.
1429 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1430 for TCP options, but includes only bare TCP header.
1432 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1433 It is minimum of user_mss and mss received with SYN.
1434 It also does not include TCP options.
1436 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1438 tp->mss_cache is current effective sending mss, including
1439 all tcp options except for SACKs. It is evaluated,
1440 taking into account current pmtu, but never exceeds
1441 tp->rx_opt.mss_clamp.
1443 NOTE1. rfc1122 clearly states that advertised MSS
1444 DOES NOT include either tcp or ip options.
1446 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1447 are READ ONLY outside this function. --ANK (980731)
1449 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1451 struct tcp_sock *tp = tcp_sk(sk);
1452 struct inet_connection_sock *icsk = inet_csk(sk);
1453 int mss_now;
1455 if (icsk->icsk_mtup.search_high > pmtu)
1456 icsk->icsk_mtup.search_high = pmtu;
1458 mss_now = tcp_mtu_to_mss(sk, pmtu);
1459 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1461 /* And store cached results */
1462 icsk->icsk_pmtu_cookie = pmtu;
1463 if (icsk->icsk_mtup.enabled)
1464 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1465 tp->mss_cache = mss_now;
1467 return mss_now;
1469 EXPORT_SYMBOL(tcp_sync_mss);
1471 /* Compute the current effective MSS, taking SACKs and IP options,
1472 * and even PMTU discovery events into account.
1474 unsigned int tcp_current_mss(struct sock *sk)
1476 const struct tcp_sock *tp = tcp_sk(sk);
1477 const struct dst_entry *dst = __sk_dst_get(sk);
1478 u32 mss_now;
1479 unsigned int header_len;
1480 struct tcp_out_options opts;
1481 struct tcp_md5sig_key *md5;
1483 mss_now = tp->mss_cache;
1485 if (dst) {
1486 u32 mtu = dst_mtu(dst);
1487 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1488 mss_now = tcp_sync_mss(sk, mtu);
1491 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1492 sizeof(struct tcphdr);
1493 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1494 * some common options. If this is an odd packet (because we have SACK
1495 * blocks etc) then our calculated header_len will be different, and
1496 * we have to adjust mss_now correspondingly */
1497 if (header_len != tp->tcp_header_len) {
1498 int delta = (int) header_len - tp->tcp_header_len;
1499 mss_now -= delta;
1502 return mss_now;
1505 /* Congestion window validation. (RFC2861) */
1506 static void tcp_cwnd_validate(struct sock *sk)
1508 struct tcp_sock *tp = tcp_sk(sk);
1510 if (tp->packets_out >= tp->snd_cwnd) {
1511 /* Network is feed fully. */
1512 tp->snd_cwnd_used = 0;
1513 tp->snd_cwnd_stamp = tcp_time_stamp;
1514 } else {
1515 /* Network starves. */
1516 if (tp->packets_out > tp->snd_cwnd_used)
1517 tp->snd_cwnd_used = tp->packets_out;
1519 if (sysctl_tcp_slow_start_after_idle &&
1520 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1521 tcp_cwnd_application_limited(sk);
1525 /* Returns the portion of skb which can be sent right away without
1526 * introducing MSS oddities to segment boundaries. In rare cases where
1527 * mss_now != mss_cache, we will request caller to create a small skb
1528 * per input skb which could be mostly avoided here (if desired).
1530 * We explicitly want to create a request for splitting write queue tail
1531 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1532 * thus all the complexity (cwnd_len is always MSS multiple which we
1533 * return whenever allowed by the other factors). Basically we need the
1534 * modulo only when the receiver window alone is the limiting factor or
1535 * when we would be allowed to send the split-due-to-Nagle skb fully.
1537 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1538 unsigned int mss_now, unsigned int max_segs)
1540 const struct tcp_sock *tp = tcp_sk(sk);
1541 u32 needed, window, max_len;
1543 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1544 max_len = mss_now * max_segs;
1546 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1547 return max_len;
1549 needed = min(skb->len, window);
1551 if (max_len <= needed)
1552 return max_len;
1554 return needed - needed % mss_now;
1557 /* Can at least one segment of SKB be sent right now, according to the
1558 * congestion window rules? If so, return how many segments are allowed.
1560 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1561 const struct sk_buff *skb)
1563 u32 in_flight, cwnd;
1565 /* Don't be strict about the congestion window for the final FIN. */
1566 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1567 tcp_skb_pcount(skb) == 1)
1568 return 1;
1570 in_flight = tcp_packets_in_flight(tp);
1571 cwnd = tp->snd_cwnd;
1572 if (in_flight < cwnd)
1573 return (cwnd - in_flight);
1575 return 0;
1578 /* Initialize TSO state of a skb.
1579 * This must be invoked the first time we consider transmitting
1580 * SKB onto the wire.
1582 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1583 unsigned int mss_now)
1585 int tso_segs = tcp_skb_pcount(skb);
1587 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1588 tcp_set_skb_tso_segs(sk, skb, mss_now);
1589 tso_segs = tcp_skb_pcount(skb);
1591 return tso_segs;
1594 /* Minshall's variant of the Nagle send check. */
1595 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1597 return after(tp->snd_sml, tp->snd_una) &&
1598 !after(tp->snd_sml, tp->snd_nxt);
1601 /* Return false, if packet can be sent now without violation Nagle's rules:
1602 * 1. It is full sized.
1603 * 2. Or it contains FIN. (already checked by caller)
1604 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1605 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1606 * With Minshall's modification: all sent small packets are ACKed.
1608 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1609 const struct sk_buff *skb,
1610 unsigned int mss_now, int nonagle)
1612 return skb->len < mss_now &&
1613 ((nonagle & TCP_NAGLE_CORK) ||
1614 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1617 /* Return true if the Nagle test allows this packet to be
1618 * sent now.
1620 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1621 unsigned int cur_mss, int nonagle)
1623 /* Nagle rule does not apply to frames, which sit in the middle of the
1624 * write_queue (they have no chances to get new data).
1626 * This is implemented in the callers, where they modify the 'nonagle'
1627 * argument based upon the location of SKB in the send queue.
1629 if (nonagle & TCP_NAGLE_PUSH)
1630 return true;
1632 /* Don't use the nagle rule for urgent data (or for the final FIN).
1633 * Nagle can be ignored during F-RTO too (see RFC4138).
1635 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1636 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1637 return true;
1639 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1640 return true;
1642 return false;
1645 /* Does at least the first segment of SKB fit into the send window? */
1646 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1647 const struct sk_buff *skb,
1648 unsigned int cur_mss)
1650 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1652 if (skb->len > cur_mss)
1653 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1655 return !after(end_seq, tcp_wnd_end(tp));
1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1659 * should be put on the wire right now. If so, it returns the number of
1660 * packets allowed by the congestion window.
1662 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1663 unsigned int cur_mss, int nonagle)
1665 const struct tcp_sock *tp = tcp_sk(sk);
1666 unsigned int cwnd_quota;
1668 tcp_init_tso_segs(sk, skb, cur_mss);
1670 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1671 return 0;
1673 cwnd_quota = tcp_cwnd_test(tp, skb);
1674 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1675 cwnd_quota = 0;
1677 return cwnd_quota;
1680 /* Test if sending is allowed right now. */
1681 bool tcp_may_send_now(struct sock *sk)
1683 const struct tcp_sock *tp = tcp_sk(sk);
1684 struct sk_buff *skb = tcp_send_head(sk);
1686 return skb &&
1687 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1688 (tcp_skb_is_last(sk, skb) ?
1689 tp->nonagle : TCP_NAGLE_PUSH));
1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1693 * which is put after SKB on the list. It is very much like
1694 * tcp_fragment() except that it may make several kinds of assumptions
1695 * in order to speed up the splitting operation. In particular, we
1696 * know that all the data is in scatter-gather pages, and that the
1697 * packet has never been sent out before (and thus is not cloned).
1699 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1700 unsigned int mss_now, gfp_t gfp)
1702 struct sk_buff *buff;
1703 int nlen = skb->len - len;
1704 u8 flags;
1706 /* All of a TSO frame must be composed of paged data. */
1707 if (skb->len != skb->data_len)
1708 return tcp_fragment(sk, skb, len, mss_now);
1710 buff = sk_stream_alloc_skb(sk, 0, gfp);
1711 if (unlikely(buff == NULL))
1712 return -ENOMEM;
1714 sk->sk_wmem_queued += buff->truesize;
1715 sk_mem_charge(sk, buff->truesize);
1716 buff->truesize += nlen;
1717 skb->truesize -= nlen;
1719 /* Correct the sequence numbers. */
1720 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1721 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1722 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1724 /* PSH and FIN should only be set in the second packet. */
1725 flags = TCP_SKB_CB(skb)->tcp_flags;
1726 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1727 TCP_SKB_CB(buff)->tcp_flags = flags;
1729 /* This packet was never sent out yet, so no SACK bits. */
1730 TCP_SKB_CB(buff)->sacked = 0;
1732 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1733 skb_split(skb, buff, len);
1735 /* Fix up tso_factor for both original and new SKB. */
1736 tcp_set_skb_tso_segs(sk, skb, mss_now);
1737 tcp_set_skb_tso_segs(sk, buff, mss_now);
1739 /* Link BUFF into the send queue. */
1740 skb_header_release(buff);
1741 tcp_insert_write_queue_after(skb, buff, sk);
1743 return 0;
1746 /* Try to defer sending, if possible, in order to minimize the amount
1747 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1749 * This algorithm is from John Heffner.
1751 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1753 struct tcp_sock *tp = tcp_sk(sk);
1754 const struct inet_connection_sock *icsk = inet_csk(sk);
1755 u32 send_win, cong_win, limit, in_flight;
1756 int win_divisor;
1758 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1759 goto send_now;
1761 if (icsk->icsk_ca_state != TCP_CA_Open)
1762 goto send_now;
1764 /* Defer for less than two clock ticks. */
1765 if (tp->tso_deferred &&
1766 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1767 goto send_now;
1769 in_flight = tcp_packets_in_flight(tp);
1771 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1773 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1775 /* From in_flight test above, we know that cwnd > in_flight. */
1776 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1778 limit = min(send_win, cong_win);
1780 /* If a full-sized TSO skb can be sent, do it. */
1781 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1782 sk->sk_gso_max_segs * tp->mss_cache))
1783 goto send_now;
1785 /* Middle in queue won't get any more data, full sendable already? */
1786 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1787 goto send_now;
1789 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1790 if (win_divisor) {
1791 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1793 /* If at least some fraction of a window is available,
1794 * just use it.
1796 chunk /= win_divisor;
1797 if (limit >= chunk)
1798 goto send_now;
1799 } else {
1800 /* Different approach, try not to defer past a single
1801 * ACK. Receiver should ACK every other full sized
1802 * frame, so if we have space for more than 3 frames
1803 * then send now.
1805 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1806 goto send_now;
1809 /* Ok, it looks like it is advisable to defer. */
1810 tp->tso_deferred = 1 | (jiffies << 1);
1812 return true;
1814 send_now:
1815 tp->tso_deferred = 0;
1816 return false;
1819 /* Create a new MTU probe if we are ready.
1820 * MTU probe is regularly attempting to increase the path MTU by
1821 * deliberately sending larger packets. This discovers routing
1822 * changes resulting in larger path MTUs.
1824 * Returns 0 if we should wait to probe (no cwnd available),
1825 * 1 if a probe was sent,
1826 * -1 otherwise
1828 static int tcp_mtu_probe(struct sock *sk)
1830 struct tcp_sock *tp = tcp_sk(sk);
1831 struct inet_connection_sock *icsk = inet_csk(sk);
1832 struct sk_buff *skb, *nskb, *next;
1833 int len;
1834 int probe_size;
1835 int size_needed;
1836 int copy;
1837 int mss_now;
1839 /* Not currently probing/verifying,
1840 * not in recovery,
1841 * have enough cwnd, and
1842 * not SACKing (the variable headers throw things off) */
1843 if (!icsk->icsk_mtup.enabled ||
1844 icsk->icsk_mtup.probe_size ||
1845 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1846 tp->snd_cwnd < 11 ||
1847 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1848 return -1;
1850 /* Very simple search strategy: just double the MSS. */
1851 mss_now = tcp_current_mss(sk);
1852 probe_size = 2 * tp->mss_cache;
1853 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1854 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1855 /* TODO: set timer for probe_converge_event */
1856 return -1;
1859 /* Have enough data in the send queue to probe? */
1860 if (tp->write_seq - tp->snd_nxt < size_needed)
1861 return -1;
1863 if (tp->snd_wnd < size_needed)
1864 return -1;
1865 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1866 return 0;
1868 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1869 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1870 if (!tcp_packets_in_flight(tp))
1871 return -1;
1872 else
1873 return 0;
1876 /* We're allowed to probe. Build it now. */
1877 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1878 return -1;
1879 sk->sk_wmem_queued += nskb->truesize;
1880 sk_mem_charge(sk, nskb->truesize);
1882 skb = tcp_send_head(sk);
1884 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1885 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1886 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1887 TCP_SKB_CB(nskb)->sacked = 0;
1888 nskb->csum = 0;
1889 nskb->ip_summed = skb->ip_summed;
1891 tcp_insert_write_queue_before(nskb, skb, sk);
1893 len = 0;
1894 tcp_for_write_queue_from_safe(skb, next, sk) {
1895 copy = min_t(int, skb->len, probe_size - len);
1896 if (nskb->ip_summed)
1897 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1898 else
1899 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1900 skb_put(nskb, copy),
1901 copy, nskb->csum);
1903 if (skb->len <= copy) {
1904 /* We've eaten all the data from this skb.
1905 * Throw it away. */
1906 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1907 tcp_unlink_write_queue(skb, sk);
1908 sk_wmem_free_skb(sk, skb);
1909 } else {
1910 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1911 ~(TCPHDR_FIN|TCPHDR_PSH);
1912 if (!skb_shinfo(skb)->nr_frags) {
1913 skb_pull(skb, copy);
1914 if (skb->ip_summed != CHECKSUM_PARTIAL)
1915 skb->csum = csum_partial(skb->data,
1916 skb->len, 0);
1917 } else {
1918 __pskb_trim_head(skb, copy);
1919 tcp_set_skb_tso_segs(sk, skb, mss_now);
1921 TCP_SKB_CB(skb)->seq += copy;
1924 len += copy;
1926 if (len >= probe_size)
1927 break;
1929 tcp_init_tso_segs(sk, nskb, nskb->len);
1931 /* We're ready to send. If this fails, the probe will
1932 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1933 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1934 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1935 /* Decrement cwnd here because we are sending
1936 * effectively two packets. */
1937 tp->snd_cwnd--;
1938 tcp_event_new_data_sent(sk, nskb);
1940 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1941 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1942 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1944 return 1;
1947 return -1;
1950 /* This routine writes packets to the network. It advances the
1951 * send_head. This happens as incoming acks open up the remote
1952 * window for us.
1954 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1955 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1956 * account rare use of URG, this is not a big flaw.
1958 * Returns true, if no segments are in flight and we have queued segments,
1959 * but cannot send anything now because of SWS or another problem.
1961 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1962 int push_one, gfp_t gfp)
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 struct sk_buff *skb;
1966 unsigned int tso_segs, sent_pkts;
1967 int cwnd_quota;
1968 int result;
1970 sent_pkts = 0;
1972 if (!push_one) {
1973 /* Do MTU probing. */
1974 result = tcp_mtu_probe(sk);
1975 if (!result) {
1976 return false;
1977 } else if (result > 0) {
1978 sent_pkts = 1;
1982 while ((skb = tcp_send_head(sk))) {
1983 unsigned int limit;
1986 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1987 BUG_ON(!tso_segs);
1989 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1990 goto repair; /* Skip network transmission */
1992 cwnd_quota = tcp_cwnd_test(tp, skb);
1993 if (!cwnd_quota)
1994 break;
1996 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1997 break;
1999 if (tso_segs == 1) {
2000 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2001 (tcp_skb_is_last(sk, skb) ?
2002 nonagle : TCP_NAGLE_PUSH))))
2003 break;
2004 } else {
2005 if (!push_one && tcp_tso_should_defer(sk, skb))
2006 break;
2009 /* TSQ : sk_wmem_alloc accounts skb truesize,
2010 * including skb overhead. But thats OK.
2012 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
2013 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2014 break;
2016 limit = mss_now;
2017 if (tso_segs > 1 && !tcp_urg_mode(tp))
2018 limit = tcp_mss_split_point(sk, skb, mss_now,
2019 min_t(unsigned int,
2020 cwnd_quota,
2021 sk->sk_gso_max_segs));
2023 if (skb->len > limit &&
2024 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2025 break;
2027 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2029 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2030 break;
2032 repair:
2033 /* Advance the send_head. This one is sent out.
2034 * This call will increment packets_out.
2036 tcp_event_new_data_sent(sk, skb);
2038 tcp_minshall_update(tp, mss_now, skb);
2039 sent_pkts += tcp_skb_pcount(skb);
2041 if (push_one)
2042 break;
2045 if (likely(sent_pkts)) {
2046 if (tcp_in_cwnd_reduction(sk))
2047 tp->prr_out += sent_pkts;
2048 tcp_cwnd_validate(sk);
2049 return false;
2051 return !tp->packets_out && tcp_send_head(sk);
2054 /* Push out any pending frames which were held back due to
2055 * TCP_CORK or attempt at coalescing tiny packets.
2056 * The socket must be locked by the caller.
2058 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2059 int nonagle)
2061 /* If we are closed, the bytes will have to remain here.
2062 * In time closedown will finish, we empty the write queue and
2063 * all will be happy.
2065 if (unlikely(sk->sk_state == TCP_CLOSE))
2066 return;
2068 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2069 sk_gfp_atomic(sk, GFP_ATOMIC)))
2070 tcp_check_probe_timer(sk);
2073 /* Send _single_ skb sitting at the send head. This function requires
2074 * true push pending frames to setup probe timer etc.
2076 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2078 struct sk_buff *skb = tcp_send_head(sk);
2080 BUG_ON(!skb || skb->len < mss_now);
2082 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2085 /* This function returns the amount that we can raise the
2086 * usable window based on the following constraints
2088 * 1. The window can never be shrunk once it is offered (RFC 793)
2089 * 2. We limit memory per socket
2091 * RFC 1122:
2092 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2093 * RECV.NEXT + RCV.WIN fixed until:
2094 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2096 * i.e. don't raise the right edge of the window until you can raise
2097 * it at least MSS bytes.
2099 * Unfortunately, the recommended algorithm breaks header prediction,
2100 * since header prediction assumes th->window stays fixed.
2102 * Strictly speaking, keeping th->window fixed violates the receiver
2103 * side SWS prevention criteria. The problem is that under this rule
2104 * a stream of single byte packets will cause the right side of the
2105 * window to always advance by a single byte.
2107 * Of course, if the sender implements sender side SWS prevention
2108 * then this will not be a problem.
2110 * BSD seems to make the following compromise:
2112 * If the free space is less than the 1/4 of the maximum
2113 * space available and the free space is less than 1/2 mss,
2114 * then set the window to 0.
2115 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2116 * Otherwise, just prevent the window from shrinking
2117 * and from being larger than the largest representable value.
2119 * This prevents incremental opening of the window in the regime
2120 * where TCP is limited by the speed of the reader side taking
2121 * data out of the TCP receive queue. It does nothing about
2122 * those cases where the window is constrained on the sender side
2123 * because the pipeline is full.
2125 * BSD also seems to "accidentally" limit itself to windows that are a
2126 * multiple of MSS, at least until the free space gets quite small.
2127 * This would appear to be a side effect of the mbuf implementation.
2128 * Combining these two algorithms results in the observed behavior
2129 * of having a fixed window size at almost all times.
2131 * Below we obtain similar behavior by forcing the offered window to
2132 * a multiple of the mss when it is feasible to do so.
2134 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2135 * Regular options like TIMESTAMP are taken into account.
2137 u32 __tcp_select_window(struct sock *sk)
2139 struct inet_connection_sock *icsk = inet_csk(sk);
2140 struct tcp_sock *tp = tcp_sk(sk);
2141 /* MSS for the peer's data. Previous versions used mss_clamp
2142 * here. I don't know if the value based on our guesses
2143 * of peer's MSS is better for the performance. It's more correct
2144 * but may be worse for the performance because of rcv_mss
2145 * fluctuations. --SAW 1998/11/1
2147 int mss = icsk->icsk_ack.rcv_mss;
2148 int free_space = tcp_space(sk);
2149 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2150 int window;
2152 if (mss > full_space)
2153 mss = full_space;
2155 if (free_space < (full_space >> 1)) {
2156 icsk->icsk_ack.quick = 0;
2158 if (sk_under_memory_pressure(sk))
2159 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2160 4U * tp->advmss);
2162 if (free_space < mss)
2163 return 0;
2166 if (free_space > tp->rcv_ssthresh)
2167 free_space = tp->rcv_ssthresh;
2169 /* Don't do rounding if we are using window scaling, since the
2170 * scaled window will not line up with the MSS boundary anyway.
2172 window = tp->rcv_wnd;
2173 if (tp->rx_opt.rcv_wscale) {
2174 window = free_space;
2176 /* Advertise enough space so that it won't get scaled away.
2177 * Import case: prevent zero window announcement if
2178 * 1<<rcv_wscale > mss.
2180 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2181 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2182 << tp->rx_opt.rcv_wscale);
2183 } else {
2184 /* Get the largest window that is a nice multiple of mss.
2185 * Window clamp already applied above.
2186 * If our current window offering is within 1 mss of the
2187 * free space we just keep it. This prevents the divide
2188 * and multiply from happening most of the time.
2189 * We also don't do any window rounding when the free space
2190 * is too small.
2192 if (window <= free_space - mss || window > free_space)
2193 window = (free_space / mss) * mss;
2194 else if (mss == full_space &&
2195 free_space > window + (full_space >> 1))
2196 window = free_space;
2199 return window;
2202 /* Collapses two adjacent SKB's during retransmission. */
2203 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2205 struct tcp_sock *tp = tcp_sk(sk);
2206 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2207 int skb_size, next_skb_size;
2209 skb_size = skb->len;
2210 next_skb_size = next_skb->len;
2212 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2214 tcp_highest_sack_combine(sk, next_skb, skb);
2216 tcp_unlink_write_queue(next_skb, sk);
2218 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2219 next_skb_size);
2221 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2222 skb->ip_summed = CHECKSUM_PARTIAL;
2224 if (skb->ip_summed != CHECKSUM_PARTIAL)
2225 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2227 /* Update sequence range on original skb. */
2228 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2230 /* Merge over control information. This moves PSH/FIN etc. over */
2231 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2233 /* All done, get rid of second SKB and account for it so
2234 * packet counting does not break.
2236 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2238 /* changed transmit queue under us so clear hints */
2239 tcp_clear_retrans_hints_partial(tp);
2240 if (next_skb == tp->retransmit_skb_hint)
2241 tp->retransmit_skb_hint = skb;
2243 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2245 sk_wmem_free_skb(sk, next_skb);
2248 /* Check if coalescing SKBs is legal. */
2249 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2251 if (tcp_skb_pcount(skb) > 1)
2252 return false;
2253 /* TODO: SACK collapsing could be used to remove this condition */
2254 if (skb_shinfo(skb)->nr_frags != 0)
2255 return false;
2256 if (skb_cloned(skb))
2257 return false;
2258 if (skb == tcp_send_head(sk))
2259 return false;
2260 /* Some heurestics for collapsing over SACK'd could be invented */
2261 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2262 return false;
2264 return true;
2267 /* Collapse packets in the retransmit queue to make to create
2268 * less packets on the wire. This is only done on retransmission.
2270 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2271 int space)
2273 struct tcp_sock *tp = tcp_sk(sk);
2274 struct sk_buff *skb = to, *tmp;
2275 bool first = true;
2277 if (!sysctl_tcp_retrans_collapse)
2278 return;
2279 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2280 return;
2282 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2283 if (!tcp_can_collapse(sk, skb))
2284 break;
2286 space -= skb->len;
2288 if (first) {
2289 first = false;
2290 continue;
2293 if (space < 0)
2294 break;
2295 /* Punt if not enough space exists in the first SKB for
2296 * the data in the second
2298 if (skb->len > skb_availroom(to))
2299 break;
2301 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2302 break;
2304 tcp_collapse_retrans(sk, to);
2308 /* This retransmits one SKB. Policy decisions and retransmit queue
2309 * state updates are done by the caller. Returns non-zero if an
2310 * error occurred which prevented the send.
2312 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 struct inet_connection_sock *icsk = inet_csk(sk);
2316 unsigned int cur_mss;
2318 /* Inconslusive MTU probe */
2319 if (icsk->icsk_mtup.probe_size) {
2320 icsk->icsk_mtup.probe_size = 0;
2323 /* Do not sent more than we queued. 1/4 is reserved for possible
2324 * copying overhead: fragmentation, tunneling, mangling etc.
2326 if (atomic_read(&sk->sk_wmem_alloc) >
2327 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2328 return -EAGAIN;
2330 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2331 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2332 BUG();
2333 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2334 return -ENOMEM;
2337 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2338 return -EHOSTUNREACH; /* Routing failure or similar. */
2340 cur_mss = tcp_current_mss(sk);
2342 /* If receiver has shrunk his window, and skb is out of
2343 * new window, do not retransmit it. The exception is the
2344 * case, when window is shrunk to zero. In this case
2345 * our retransmit serves as a zero window probe.
2347 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2348 TCP_SKB_CB(skb)->seq != tp->snd_una)
2349 return -EAGAIN;
2351 if (skb->len > cur_mss) {
2352 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2353 return -ENOMEM; /* We'll try again later. */
2354 } else {
2355 int oldpcount = tcp_skb_pcount(skb);
2357 if (unlikely(oldpcount > 1)) {
2358 tcp_init_tso_segs(sk, skb, cur_mss);
2359 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2363 tcp_retrans_try_collapse(sk, skb, cur_mss);
2365 /* Some Solaris stacks overoptimize and ignore the FIN on a
2366 * retransmit when old data is attached. So strip it off
2367 * since it is cheap to do so and saves bytes on the network.
2369 if (skb->len > 0 &&
2370 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2371 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2372 if (!pskb_trim(skb, 0)) {
2373 /* Reuse, even though it does some unnecessary work */
2374 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2375 TCP_SKB_CB(skb)->tcp_flags);
2376 skb->ip_summed = CHECKSUM_NONE;
2380 /* Make a copy, if the first transmission SKB clone we made
2381 * is still in somebody's hands, else make a clone.
2383 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2385 /* make sure skb->data is aligned on arches that require it */
2386 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2387 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2388 GFP_ATOMIC);
2389 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2390 -ENOBUFS;
2391 } else {
2392 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2396 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2398 struct tcp_sock *tp = tcp_sk(sk);
2399 int err = __tcp_retransmit_skb(sk, skb);
2401 if (err == 0) {
2402 /* Update global TCP statistics. */
2403 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2405 tp->total_retrans++;
2407 #if FASTRETRANS_DEBUG > 0
2408 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2409 net_dbg_ratelimited("retrans_out leaked\n");
2411 #endif
2412 if (!tp->retrans_out)
2413 tp->lost_retrans_low = tp->snd_nxt;
2414 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2415 tp->retrans_out += tcp_skb_pcount(skb);
2417 /* Save stamp of the first retransmit. */
2418 if (!tp->retrans_stamp)
2419 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2421 tp->undo_retrans += tcp_skb_pcount(skb);
2423 /* snd_nxt is stored to detect loss of retransmitted segment,
2424 * see tcp_input.c tcp_sacktag_write_queue().
2426 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2428 return err;
2431 /* Check if we forward retransmits are possible in the current
2432 * window/congestion state.
2434 static bool tcp_can_forward_retransmit(struct sock *sk)
2436 const struct inet_connection_sock *icsk = inet_csk(sk);
2437 const struct tcp_sock *tp = tcp_sk(sk);
2439 /* Forward retransmissions are possible only during Recovery. */
2440 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2441 return false;
2443 /* No forward retransmissions in Reno are possible. */
2444 if (tcp_is_reno(tp))
2445 return false;
2447 /* Yeah, we have to make difficult choice between forward transmission
2448 * and retransmission... Both ways have their merits...
2450 * For now we do not retransmit anything, while we have some new
2451 * segments to send. In the other cases, follow rule 3 for
2452 * NextSeg() specified in RFC3517.
2455 if (tcp_may_send_now(sk))
2456 return false;
2458 return true;
2461 /* This gets called after a retransmit timeout, and the initially
2462 * retransmitted data is acknowledged. It tries to continue
2463 * resending the rest of the retransmit queue, until either
2464 * we've sent it all or the congestion window limit is reached.
2465 * If doing SACK, the first ACK which comes back for a timeout
2466 * based retransmit packet might feed us FACK information again.
2467 * If so, we use it to avoid unnecessarily retransmissions.
2469 void tcp_xmit_retransmit_queue(struct sock *sk)
2471 const struct inet_connection_sock *icsk = inet_csk(sk);
2472 struct tcp_sock *tp = tcp_sk(sk);
2473 struct sk_buff *skb;
2474 struct sk_buff *hole = NULL;
2475 u32 last_lost;
2476 int mib_idx;
2477 int fwd_rexmitting = 0;
2479 if (!tp->packets_out)
2480 return;
2482 if (!tp->lost_out)
2483 tp->retransmit_high = tp->snd_una;
2485 if (tp->retransmit_skb_hint) {
2486 skb = tp->retransmit_skb_hint;
2487 last_lost = TCP_SKB_CB(skb)->end_seq;
2488 if (after(last_lost, tp->retransmit_high))
2489 last_lost = tp->retransmit_high;
2490 } else {
2491 skb = tcp_write_queue_head(sk);
2492 last_lost = tp->snd_una;
2495 tcp_for_write_queue_from(skb, sk) {
2496 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2498 if (skb == tcp_send_head(sk))
2499 break;
2500 /* we could do better than to assign each time */
2501 if (hole == NULL)
2502 tp->retransmit_skb_hint = skb;
2504 /* Assume this retransmit will generate
2505 * only one packet for congestion window
2506 * calculation purposes. This works because
2507 * tcp_retransmit_skb() will chop up the
2508 * packet to be MSS sized and all the
2509 * packet counting works out.
2511 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2512 return;
2514 if (fwd_rexmitting) {
2515 begin_fwd:
2516 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2517 break;
2518 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2520 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2521 tp->retransmit_high = last_lost;
2522 if (!tcp_can_forward_retransmit(sk))
2523 break;
2524 /* Backtrack if necessary to non-L'ed skb */
2525 if (hole != NULL) {
2526 skb = hole;
2527 hole = NULL;
2529 fwd_rexmitting = 1;
2530 goto begin_fwd;
2532 } else if (!(sacked & TCPCB_LOST)) {
2533 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2534 hole = skb;
2535 continue;
2537 } else {
2538 last_lost = TCP_SKB_CB(skb)->end_seq;
2539 if (icsk->icsk_ca_state != TCP_CA_Loss)
2540 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2541 else
2542 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2545 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2546 continue;
2548 if (tcp_retransmit_skb(sk, skb)) {
2549 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2550 return;
2552 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2554 if (tcp_in_cwnd_reduction(sk))
2555 tp->prr_out += tcp_skb_pcount(skb);
2557 if (skb == tcp_write_queue_head(sk))
2558 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2559 inet_csk(sk)->icsk_rto,
2560 TCP_RTO_MAX);
2564 /* Send a fin. The caller locks the socket for us. This cannot be
2565 * allowed to fail queueing a FIN frame under any circumstances.
2567 void tcp_send_fin(struct sock *sk)
2569 struct tcp_sock *tp = tcp_sk(sk);
2570 struct sk_buff *skb = tcp_write_queue_tail(sk);
2571 int mss_now;
2573 /* Optimization, tack on the FIN if we have a queue of
2574 * unsent frames. But be careful about outgoing SACKS
2575 * and IP options.
2577 mss_now = tcp_current_mss(sk);
2579 if (tcp_send_head(sk) != NULL) {
2580 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2581 TCP_SKB_CB(skb)->end_seq++;
2582 tp->write_seq++;
2583 } else {
2584 /* Socket is locked, keep trying until memory is available. */
2585 for (;;) {
2586 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2587 sk->sk_allocation);
2588 if (skb)
2589 break;
2590 yield();
2593 /* Reserve space for headers and prepare control bits. */
2594 skb_reserve(skb, MAX_TCP_HEADER);
2595 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2596 tcp_init_nondata_skb(skb, tp->write_seq,
2597 TCPHDR_ACK | TCPHDR_FIN);
2598 tcp_queue_skb(sk, skb);
2600 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2603 /* We get here when a process closes a file descriptor (either due to
2604 * an explicit close() or as a byproduct of exit()'ing) and there
2605 * was unread data in the receive queue. This behavior is recommended
2606 * by RFC 2525, section 2.17. -DaveM
2608 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2610 struct sk_buff *skb;
2612 /* NOTE: No TCP options attached and we never retransmit this. */
2613 skb = alloc_skb(MAX_TCP_HEADER, priority);
2614 if (!skb) {
2615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2616 return;
2619 /* Reserve space for headers and prepare control bits. */
2620 skb_reserve(skb, MAX_TCP_HEADER);
2621 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2622 TCPHDR_ACK | TCPHDR_RST);
2623 /* Send it off. */
2624 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2625 if (tcp_transmit_skb(sk, skb, 0, priority))
2626 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2628 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2631 /* Send a crossed SYN-ACK during socket establishment.
2632 * WARNING: This routine must only be called when we have already sent
2633 * a SYN packet that crossed the incoming SYN that caused this routine
2634 * to get called. If this assumption fails then the initial rcv_wnd
2635 * and rcv_wscale values will not be correct.
2637 int tcp_send_synack(struct sock *sk)
2639 struct sk_buff *skb;
2641 skb = tcp_write_queue_head(sk);
2642 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2643 pr_debug("%s: wrong queue state\n", __func__);
2644 return -EFAULT;
2646 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2647 if (skb_cloned(skb)) {
2648 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2649 if (nskb == NULL)
2650 return -ENOMEM;
2651 tcp_unlink_write_queue(skb, sk);
2652 skb_header_release(nskb);
2653 __tcp_add_write_queue_head(sk, nskb);
2654 sk_wmem_free_skb(sk, skb);
2655 sk->sk_wmem_queued += nskb->truesize;
2656 sk_mem_charge(sk, nskb->truesize);
2657 skb = nskb;
2660 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2661 TCP_ECN_send_synack(tcp_sk(sk), skb);
2663 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2664 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2668 * tcp_make_synack - Prepare a SYN-ACK.
2669 * sk: listener socket
2670 * dst: dst entry attached to the SYNACK
2671 * req: request_sock pointer
2672 * rvp: request_values pointer
2674 * Allocate one skb and build a SYNACK packet.
2675 * @dst is consumed : Caller should not use it again.
2677 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2678 struct request_sock *req,
2679 struct request_values *rvp,
2680 struct tcp_fastopen_cookie *foc)
2682 struct tcp_out_options opts;
2683 struct tcp_extend_values *xvp = tcp_xv(rvp);
2684 struct inet_request_sock *ireq = inet_rsk(req);
2685 struct tcp_sock *tp = tcp_sk(sk);
2686 const struct tcp_cookie_values *cvp = tp->cookie_values;
2687 struct tcphdr *th;
2688 struct sk_buff *skb;
2689 struct tcp_md5sig_key *md5;
2690 int tcp_header_size;
2691 int mss;
2692 int s_data_desired = 0;
2694 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2695 s_data_desired = cvp->s_data_desired;
2696 skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired,
2697 sk_gfp_atomic(sk, GFP_ATOMIC));
2698 if (unlikely(!skb)) {
2699 dst_release(dst);
2700 return NULL;
2702 /* Reserve space for headers. */
2703 skb_reserve(skb, MAX_TCP_HEADER);
2705 skb_dst_set(skb, dst);
2707 mss = dst_metric_advmss(dst);
2708 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2709 mss = tp->rx_opt.user_mss;
2711 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2712 __u8 rcv_wscale;
2713 /* Set this up on the first call only */
2714 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2716 /* limit the window selection if the user enforce a smaller rx buffer */
2717 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2718 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2719 req->window_clamp = tcp_full_space(sk);
2721 /* tcp_full_space because it is guaranteed to be the first packet */
2722 tcp_select_initial_window(tcp_full_space(sk),
2723 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2724 &req->rcv_wnd,
2725 &req->window_clamp,
2726 ireq->wscale_ok,
2727 &rcv_wscale,
2728 dst_metric(dst, RTAX_INITRWND));
2729 ireq->rcv_wscale = rcv_wscale;
2732 memset(&opts, 0, sizeof(opts));
2733 #ifdef CONFIG_SYN_COOKIES
2734 if (unlikely(req->cookie_ts))
2735 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2736 else
2737 #endif
2738 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2739 tcp_header_size = tcp_synack_options(sk, req, mss,
2740 skb, &opts, &md5, xvp, foc)
2741 + sizeof(*th);
2743 skb_push(skb, tcp_header_size);
2744 skb_reset_transport_header(skb);
2746 th = tcp_hdr(skb);
2747 memset(th, 0, sizeof(struct tcphdr));
2748 th->syn = 1;
2749 th->ack = 1;
2750 TCP_ECN_make_synack(req, th);
2751 th->source = ireq->loc_port;
2752 th->dest = ireq->rmt_port;
2753 /* Setting of flags are superfluous here for callers (and ECE is
2754 * not even correctly set)
2756 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2757 TCPHDR_SYN | TCPHDR_ACK);
2759 if (OPTION_COOKIE_EXTENSION & opts.options) {
2760 if (s_data_desired) {
2761 u8 *buf = skb_put(skb, s_data_desired);
2763 /* copy data directly from the listening socket. */
2764 memcpy(buf, cvp->s_data_payload, s_data_desired);
2765 TCP_SKB_CB(skb)->end_seq += s_data_desired;
2768 if (opts.hash_size > 0) {
2769 __u32 workspace[SHA_WORKSPACE_WORDS];
2770 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2771 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2773 /* Secret recipe depends on the Timestamp, (future)
2774 * Sequence and Acknowledgment Numbers, Initiator
2775 * Cookie, and others handled by IP variant caller.
2777 *tail-- ^= opts.tsval;
2778 *tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2779 *tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2781 /* recommended */
2782 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2783 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2785 sha_transform((__u32 *)&xvp->cookie_bakery[0],
2786 (char *)mess,
2787 &workspace[0]);
2788 opts.hash_location =
2789 (__u8 *)&xvp->cookie_bakery[0];
2793 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2794 /* XXX data is queued and acked as is. No buffer/window check */
2795 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2797 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2798 th->window = htons(min(req->rcv_wnd, 65535U));
2799 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2800 th->doff = (tcp_header_size >> 2);
2801 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2803 #ifdef CONFIG_TCP_MD5SIG
2804 /* Okay, we have all we need - do the md5 hash if needed */
2805 if (md5) {
2806 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2807 md5, NULL, req, skb);
2809 #endif
2811 return skb;
2813 EXPORT_SYMBOL(tcp_make_synack);
2815 /* Do all connect socket setups that can be done AF independent. */
2816 void tcp_connect_init(struct sock *sk)
2818 const struct dst_entry *dst = __sk_dst_get(sk);
2819 struct tcp_sock *tp = tcp_sk(sk);
2820 __u8 rcv_wscale;
2822 /* We'll fix this up when we get a response from the other end.
2823 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2825 tp->tcp_header_len = sizeof(struct tcphdr) +
2826 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2828 #ifdef CONFIG_TCP_MD5SIG
2829 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2830 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2831 #endif
2833 /* If user gave his TCP_MAXSEG, record it to clamp */
2834 if (tp->rx_opt.user_mss)
2835 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2836 tp->max_window = 0;
2837 tcp_mtup_init(sk);
2838 tcp_sync_mss(sk, dst_mtu(dst));
2840 if (!tp->window_clamp)
2841 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2842 tp->advmss = dst_metric_advmss(dst);
2843 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2844 tp->advmss = tp->rx_opt.user_mss;
2846 tcp_initialize_rcv_mss(sk);
2848 /* limit the window selection if the user enforce a smaller rx buffer */
2849 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2850 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2851 tp->window_clamp = tcp_full_space(sk);
2853 tcp_select_initial_window(tcp_full_space(sk),
2854 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2855 &tp->rcv_wnd,
2856 &tp->window_clamp,
2857 sysctl_tcp_window_scaling,
2858 &rcv_wscale,
2859 dst_metric(dst, RTAX_INITRWND));
2861 tp->rx_opt.rcv_wscale = rcv_wscale;
2862 tp->rcv_ssthresh = tp->rcv_wnd;
2864 sk->sk_err = 0;
2865 sock_reset_flag(sk, SOCK_DONE);
2866 tp->snd_wnd = 0;
2867 tcp_init_wl(tp, 0);
2868 tp->snd_una = tp->write_seq;
2869 tp->snd_sml = tp->write_seq;
2870 tp->snd_up = tp->write_seq;
2871 tp->snd_nxt = tp->write_seq;
2873 if (likely(!tp->repair))
2874 tp->rcv_nxt = 0;
2875 tp->rcv_wup = tp->rcv_nxt;
2876 tp->copied_seq = tp->rcv_nxt;
2878 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2879 inet_csk(sk)->icsk_retransmits = 0;
2880 tcp_clear_retrans(tp);
2883 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2885 struct tcp_sock *tp = tcp_sk(sk);
2886 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2888 tcb->end_seq += skb->len;
2889 skb_header_release(skb);
2890 __tcp_add_write_queue_tail(sk, skb);
2891 sk->sk_wmem_queued += skb->truesize;
2892 sk_mem_charge(sk, skb->truesize);
2893 tp->write_seq = tcb->end_seq;
2894 tp->packets_out += tcp_skb_pcount(skb);
2897 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2898 * queue a data-only packet after the regular SYN, such that regular SYNs
2899 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2900 * only the SYN sequence, the data are retransmitted in the first ACK.
2901 * If cookie is not cached or other error occurs, falls back to send a
2902 * regular SYN with Fast Open cookie request option.
2904 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2906 struct tcp_sock *tp = tcp_sk(sk);
2907 struct tcp_fastopen_request *fo = tp->fastopen_req;
2908 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2909 struct sk_buff *syn_data = NULL, *data;
2910 unsigned long last_syn_loss = 0;
2912 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2913 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2914 &syn_loss, &last_syn_loss);
2915 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2916 if (syn_loss > 1 &&
2917 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2918 fo->cookie.len = -1;
2919 goto fallback;
2922 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2923 fo->cookie.len = -1;
2924 else if (fo->cookie.len <= 0)
2925 goto fallback;
2927 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2928 * user-MSS. Reserve maximum option space for middleboxes that add
2929 * private TCP options. The cost is reduced data space in SYN :(
2931 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2932 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2933 space = tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2934 MAX_TCP_OPTION_SPACE;
2936 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2937 sk->sk_allocation);
2938 if (syn_data == NULL)
2939 goto fallback;
2941 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2942 struct iovec *iov = &fo->data->msg_iov[i];
2943 unsigned char __user *from = iov->iov_base;
2944 int len = iov->iov_len;
2946 if (syn_data->len + len > space)
2947 len = space - syn_data->len;
2948 else if (i + 1 == iovlen)
2949 /* No more data pending in inet_wait_for_connect() */
2950 fo->data = NULL;
2952 if (skb_add_data(syn_data, from, len))
2953 goto fallback;
2956 /* Queue a data-only packet after the regular SYN for retransmission */
2957 data = pskb_copy(syn_data, sk->sk_allocation);
2958 if (data == NULL)
2959 goto fallback;
2960 TCP_SKB_CB(data)->seq++;
2961 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2962 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2963 tcp_connect_queue_skb(sk, data);
2964 fo->copied = data->len;
2966 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2967 tp->syn_data = (fo->copied > 0);
2968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2969 goto done;
2971 syn_data = NULL;
2973 fallback:
2974 /* Send a regular SYN with Fast Open cookie request option */
2975 if (fo->cookie.len > 0)
2976 fo->cookie.len = 0;
2977 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2978 if (err)
2979 tp->syn_fastopen = 0;
2980 kfree_skb(syn_data);
2981 done:
2982 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2983 return err;
2986 /* Build a SYN and send it off. */
2987 int tcp_connect(struct sock *sk)
2989 struct tcp_sock *tp = tcp_sk(sk);
2990 struct sk_buff *buff;
2991 int err;
2993 tcp_connect_init(sk);
2995 if (unlikely(tp->repair)) {
2996 tcp_finish_connect(sk, NULL);
2997 return 0;
3000 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3001 if (unlikely(buff == NULL))
3002 return -ENOBUFS;
3004 /* Reserve space for headers. */
3005 skb_reserve(buff, MAX_TCP_HEADER);
3007 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3008 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3009 tcp_connect_queue_skb(sk, buff);
3010 TCP_ECN_send_syn(sk, buff);
3012 /* Send off SYN; include data in Fast Open. */
3013 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3014 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3015 if (err == -ECONNREFUSED)
3016 return err;
3018 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3019 * in order to make this packet get counted in tcpOutSegs.
3021 tp->snd_nxt = tp->write_seq;
3022 tp->pushed_seq = tp->write_seq;
3023 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3025 /* Timer for repeating the SYN until an answer. */
3026 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3027 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3028 return 0;
3030 EXPORT_SYMBOL(tcp_connect);
3032 /* Send out a delayed ack, the caller does the policy checking
3033 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3034 * for details.
3036 void tcp_send_delayed_ack(struct sock *sk)
3038 struct inet_connection_sock *icsk = inet_csk(sk);
3039 int ato = icsk->icsk_ack.ato;
3040 unsigned long timeout;
3042 if (ato > TCP_DELACK_MIN) {
3043 const struct tcp_sock *tp = tcp_sk(sk);
3044 int max_ato = HZ / 2;
3046 if (icsk->icsk_ack.pingpong ||
3047 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3048 max_ato = TCP_DELACK_MAX;
3050 /* Slow path, intersegment interval is "high". */
3052 /* If some rtt estimate is known, use it to bound delayed ack.
3053 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3054 * directly.
3056 if (tp->srtt) {
3057 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3059 if (rtt < max_ato)
3060 max_ato = rtt;
3063 ato = min(ato, max_ato);
3066 /* Stay within the limit we were given */
3067 timeout = jiffies + ato;
3069 /* Use new timeout only if there wasn't a older one earlier. */
3070 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3071 /* If delack timer was blocked or is about to expire,
3072 * send ACK now.
3074 if (icsk->icsk_ack.blocked ||
3075 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3076 tcp_send_ack(sk);
3077 return;
3080 if (!time_before(timeout, icsk->icsk_ack.timeout))
3081 timeout = icsk->icsk_ack.timeout;
3083 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3084 icsk->icsk_ack.timeout = timeout;
3085 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3088 /* This routine sends an ack and also updates the window. */
3089 void tcp_send_ack(struct sock *sk)
3091 struct sk_buff *buff;
3093 /* If we have been reset, we may not send again. */
3094 if (sk->sk_state == TCP_CLOSE)
3095 return;
3097 /* We are not putting this on the write queue, so
3098 * tcp_transmit_skb() will set the ownership to this
3099 * sock.
3101 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3102 if (buff == NULL) {
3103 inet_csk_schedule_ack(sk);
3104 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3105 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3106 TCP_DELACK_MAX, TCP_RTO_MAX);
3107 return;
3110 /* Reserve space for headers and prepare control bits. */
3111 skb_reserve(buff, MAX_TCP_HEADER);
3112 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3114 /* Send it off, this clears delayed acks for us. */
3115 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3116 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3119 /* This routine sends a packet with an out of date sequence
3120 * number. It assumes the other end will try to ack it.
3122 * Question: what should we make while urgent mode?
3123 * 4.4BSD forces sending single byte of data. We cannot send
3124 * out of window data, because we have SND.NXT==SND.MAX...
3126 * Current solution: to send TWO zero-length segments in urgent mode:
3127 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3128 * out-of-date with SND.UNA-1 to probe window.
3130 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3132 struct tcp_sock *tp = tcp_sk(sk);
3133 struct sk_buff *skb;
3135 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3136 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3137 if (skb == NULL)
3138 return -1;
3140 /* Reserve space for headers and set control bits. */
3141 skb_reserve(skb, MAX_TCP_HEADER);
3142 /* Use a previous sequence. This should cause the other
3143 * end to send an ack. Don't queue or clone SKB, just
3144 * send it.
3146 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3147 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3148 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3151 void tcp_send_window_probe(struct sock *sk)
3153 if (sk->sk_state == TCP_ESTABLISHED) {
3154 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3155 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3156 tcp_xmit_probe_skb(sk, 0);
3160 /* Initiate keepalive or window probe from timer. */
3161 int tcp_write_wakeup(struct sock *sk)
3163 struct tcp_sock *tp = tcp_sk(sk);
3164 struct sk_buff *skb;
3166 if (sk->sk_state == TCP_CLOSE)
3167 return -1;
3169 if ((skb = tcp_send_head(sk)) != NULL &&
3170 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3171 int err;
3172 unsigned int mss = tcp_current_mss(sk);
3173 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3175 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3176 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3178 /* We are probing the opening of a window
3179 * but the window size is != 0
3180 * must have been a result SWS avoidance ( sender )
3182 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3183 skb->len > mss) {
3184 seg_size = min(seg_size, mss);
3185 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3186 if (tcp_fragment(sk, skb, seg_size, mss))
3187 return -1;
3188 } else if (!tcp_skb_pcount(skb))
3189 tcp_set_skb_tso_segs(sk, skb, mss);
3191 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3192 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3193 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3194 if (!err)
3195 tcp_event_new_data_sent(sk, skb);
3196 return err;
3197 } else {
3198 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3199 tcp_xmit_probe_skb(sk, 1);
3200 return tcp_xmit_probe_skb(sk, 0);
3204 /* A window probe timeout has occurred. If window is not closed send
3205 * a partial packet else a zero probe.
3207 void tcp_send_probe0(struct sock *sk)
3209 struct inet_connection_sock *icsk = inet_csk(sk);
3210 struct tcp_sock *tp = tcp_sk(sk);
3211 int err;
3213 err = tcp_write_wakeup(sk);
3215 if (tp->packets_out || !tcp_send_head(sk)) {
3216 /* Cancel probe timer, if it is not required. */
3217 icsk->icsk_probes_out = 0;
3218 icsk->icsk_backoff = 0;
3219 return;
3222 if (err <= 0) {
3223 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3224 icsk->icsk_backoff++;
3225 icsk->icsk_probes_out++;
3226 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3227 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3228 TCP_RTO_MAX);
3229 } else {
3230 /* If packet was not sent due to local congestion,
3231 * do not backoff and do not remember icsk_probes_out.
3232 * Let local senders to fight for local resources.
3234 * Use accumulated backoff yet.
3236 if (!icsk->icsk_probes_out)
3237 icsk->icsk_probes_out = 1;
3238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3239 min(icsk->icsk_rto << icsk->icsk_backoff,
3240 TCP_RESOURCE_PROBE_INTERVAL),
3241 TCP_RTO_MAX);