x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
[cris-mirror.git] / arch / x86 / kvm / svm.c
blobb3e488a748281aa5f3d319861ae2ab4bfca3e65c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/nospec-branch.h>
54 #include <asm/virtext.h>
55 #include "trace.h"
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
84 #define SVM_AVIC_DOORBELL 0xc001011b
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
121 static bool erratum_383_found __read_mostly;
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
134 struct kvm_vcpu;
136 struct nested_state {
137 struct vmcb *hsave;
138 u64 hsave_msr;
139 u64 vm_cr_msr;
140 u64 vmcb;
142 /* These are the merged vectors */
143 u32 *msrpm;
145 /* gpa pointers to the real vectors */
146 u64 vmcb_msrpm;
147 u64 vmcb_iopm;
149 /* A VMEXIT is required but not yet emulated */
150 bool exit_required;
152 /* cache for intercepts of the guest */
153 u32 intercept_cr;
154 u32 intercept_dr;
155 u32 intercept_exceptions;
156 u64 intercept;
158 /* Nested Paging related state */
159 u64 nested_cr3;
162 #define MSRPM_OFFSETS 16
163 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
166 * Set osvw_len to higher value when updated Revision Guides
167 * are published and we know what the new status bits are
169 static uint64_t osvw_len = 4, osvw_status;
171 struct vcpu_svm {
172 struct kvm_vcpu vcpu;
173 struct vmcb *vmcb;
174 unsigned long vmcb_pa;
175 struct svm_cpu_data *svm_data;
176 uint64_t asid_generation;
177 uint64_t sysenter_esp;
178 uint64_t sysenter_eip;
179 uint64_t tsc_aux;
181 u64 next_rip;
183 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
184 struct {
185 u16 fs;
186 u16 gs;
187 u16 ldt;
188 u64 gs_base;
189 } host;
191 u64 spec_ctrl;
193 u32 *msrpm;
195 ulong nmi_iret_rip;
197 struct nested_state nested;
199 bool nmi_singlestep;
200 u64 nmi_singlestep_guest_rflags;
202 unsigned int3_injected;
203 unsigned long int3_rip;
205 /* cached guest cpuid flags for faster access */
206 bool nrips_enabled : 1;
208 u32 ldr_reg;
209 struct page *avic_backing_page;
210 u64 *avic_physical_id_cache;
211 bool avic_is_running;
214 * Per-vcpu list of struct amd_svm_iommu_ir:
215 * This is used mainly to store interrupt remapping information used
216 * when update the vcpu affinity. This avoids the need to scan for
217 * IRTE and try to match ga_tag in the IOMMU driver.
219 struct list_head ir_list;
220 spinlock_t ir_list_lock;
222 /* which host CPU was used for running this vcpu */
223 unsigned int last_cpu;
227 * This is a wrapper of struct amd_iommu_ir_data.
229 struct amd_svm_iommu_ir {
230 struct list_head node; /* Used by SVM for per-vcpu ir_list */
231 void *data; /* Storing pointer to struct amd_ir_data */
234 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
235 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
237 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
238 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
239 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
240 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
242 static DEFINE_PER_CPU(u64, current_tsc_ratio);
243 #define TSC_RATIO_DEFAULT 0x0100000000ULL
245 #define MSR_INVALID 0xffffffffU
247 static const struct svm_direct_access_msrs {
248 u32 index; /* Index of the MSR */
249 bool always; /* True if intercept is always on */
250 } direct_access_msrs[] = {
251 { .index = MSR_STAR, .always = true },
252 { .index = MSR_IA32_SYSENTER_CS, .always = true },
253 #ifdef CONFIG_X86_64
254 { .index = MSR_GS_BASE, .always = true },
255 { .index = MSR_FS_BASE, .always = true },
256 { .index = MSR_KERNEL_GS_BASE, .always = true },
257 { .index = MSR_LSTAR, .always = true },
258 { .index = MSR_CSTAR, .always = true },
259 { .index = MSR_SYSCALL_MASK, .always = true },
260 #endif
261 { .index = MSR_IA32_SPEC_CTRL, .always = false },
262 { .index = MSR_IA32_PRED_CMD, .always = false },
263 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
264 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
265 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
266 { .index = MSR_IA32_LASTINTTOIP, .always = false },
267 { .index = MSR_INVALID, .always = false },
270 /* enable NPT for AMD64 and X86 with PAE */
271 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
272 static bool npt_enabled = true;
273 #else
274 static bool npt_enabled;
275 #endif
277 /* allow nested paging (virtualized MMU) for all guests */
278 static int npt = true;
279 module_param(npt, int, S_IRUGO);
281 /* allow nested virtualization in KVM/SVM */
282 static int nested = true;
283 module_param(nested, int, S_IRUGO);
285 /* enable / disable AVIC */
286 static int avic;
287 #ifdef CONFIG_X86_LOCAL_APIC
288 module_param(avic, int, S_IRUGO);
289 #endif
291 /* enable/disable Virtual VMLOAD VMSAVE */
292 static int vls = true;
293 module_param(vls, int, 0444);
295 /* enable/disable Virtual GIF */
296 static int vgif = true;
297 module_param(vgif, int, 0444);
299 /* enable/disable SEV support */
300 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
301 module_param(sev, int, 0444);
303 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
304 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
305 static void svm_complete_interrupts(struct vcpu_svm *svm);
307 static int nested_svm_exit_handled(struct vcpu_svm *svm);
308 static int nested_svm_intercept(struct vcpu_svm *svm);
309 static int nested_svm_vmexit(struct vcpu_svm *svm);
310 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
311 bool has_error_code, u32 error_code);
313 enum {
314 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
315 pause filter count */
316 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
317 VMCB_ASID, /* ASID */
318 VMCB_INTR, /* int_ctl, int_vector */
319 VMCB_NPT, /* npt_en, nCR3, gPAT */
320 VMCB_CR, /* CR0, CR3, CR4, EFER */
321 VMCB_DR, /* DR6, DR7 */
322 VMCB_DT, /* GDT, IDT */
323 VMCB_SEG, /* CS, DS, SS, ES, CPL */
324 VMCB_CR2, /* CR2 only */
325 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
326 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
327 * AVIC PHYSICAL_TABLE pointer,
328 * AVIC LOGICAL_TABLE pointer
330 VMCB_DIRTY_MAX,
333 /* TPR and CR2 are always written before VMRUN */
334 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
336 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
338 static unsigned int max_sev_asid;
339 static unsigned int min_sev_asid;
340 static unsigned long *sev_asid_bitmap;
341 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
343 struct enc_region {
344 struct list_head list;
345 unsigned long npages;
346 struct page **pages;
347 unsigned long uaddr;
348 unsigned long size;
351 static inline bool svm_sev_enabled(void)
353 return max_sev_asid;
356 static inline bool sev_guest(struct kvm *kvm)
358 struct kvm_sev_info *sev = &kvm->arch.sev_info;
360 return sev->active;
363 static inline int sev_get_asid(struct kvm *kvm)
365 struct kvm_sev_info *sev = &kvm->arch.sev_info;
367 return sev->asid;
370 static inline void mark_all_dirty(struct vmcb *vmcb)
372 vmcb->control.clean = 0;
375 static inline void mark_all_clean(struct vmcb *vmcb)
377 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
378 & ~VMCB_ALWAYS_DIRTY_MASK;
381 static inline void mark_dirty(struct vmcb *vmcb, int bit)
383 vmcb->control.clean &= ~(1 << bit);
386 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
388 return container_of(vcpu, struct vcpu_svm, vcpu);
391 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
393 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
394 mark_dirty(svm->vmcb, VMCB_AVIC);
397 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
399 struct vcpu_svm *svm = to_svm(vcpu);
400 u64 *entry = svm->avic_physical_id_cache;
402 if (!entry)
403 return false;
405 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
408 static void recalc_intercepts(struct vcpu_svm *svm)
410 struct vmcb_control_area *c, *h;
411 struct nested_state *g;
413 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
415 if (!is_guest_mode(&svm->vcpu))
416 return;
418 c = &svm->vmcb->control;
419 h = &svm->nested.hsave->control;
420 g = &svm->nested;
422 c->intercept_cr = h->intercept_cr | g->intercept_cr;
423 c->intercept_dr = h->intercept_dr | g->intercept_dr;
424 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
425 c->intercept = h->intercept | g->intercept;
428 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
430 if (is_guest_mode(&svm->vcpu))
431 return svm->nested.hsave;
432 else
433 return svm->vmcb;
436 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
438 struct vmcb *vmcb = get_host_vmcb(svm);
440 vmcb->control.intercept_cr |= (1U << bit);
442 recalc_intercepts(svm);
445 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
447 struct vmcb *vmcb = get_host_vmcb(svm);
449 vmcb->control.intercept_cr &= ~(1U << bit);
451 recalc_intercepts(svm);
454 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
456 struct vmcb *vmcb = get_host_vmcb(svm);
458 return vmcb->control.intercept_cr & (1U << bit);
461 static inline void set_dr_intercepts(struct vcpu_svm *svm)
463 struct vmcb *vmcb = get_host_vmcb(svm);
465 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
466 | (1 << INTERCEPT_DR1_READ)
467 | (1 << INTERCEPT_DR2_READ)
468 | (1 << INTERCEPT_DR3_READ)
469 | (1 << INTERCEPT_DR4_READ)
470 | (1 << INTERCEPT_DR5_READ)
471 | (1 << INTERCEPT_DR6_READ)
472 | (1 << INTERCEPT_DR7_READ)
473 | (1 << INTERCEPT_DR0_WRITE)
474 | (1 << INTERCEPT_DR1_WRITE)
475 | (1 << INTERCEPT_DR2_WRITE)
476 | (1 << INTERCEPT_DR3_WRITE)
477 | (1 << INTERCEPT_DR4_WRITE)
478 | (1 << INTERCEPT_DR5_WRITE)
479 | (1 << INTERCEPT_DR6_WRITE)
480 | (1 << INTERCEPT_DR7_WRITE);
482 recalc_intercepts(svm);
485 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
487 struct vmcb *vmcb = get_host_vmcb(svm);
489 vmcb->control.intercept_dr = 0;
491 recalc_intercepts(svm);
494 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
496 struct vmcb *vmcb = get_host_vmcb(svm);
498 vmcb->control.intercept_exceptions |= (1U << bit);
500 recalc_intercepts(svm);
503 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
505 struct vmcb *vmcb = get_host_vmcb(svm);
507 vmcb->control.intercept_exceptions &= ~(1U << bit);
509 recalc_intercepts(svm);
512 static inline void set_intercept(struct vcpu_svm *svm, int bit)
514 struct vmcb *vmcb = get_host_vmcb(svm);
516 vmcb->control.intercept |= (1ULL << bit);
518 recalc_intercepts(svm);
521 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
523 struct vmcb *vmcb = get_host_vmcb(svm);
525 vmcb->control.intercept &= ~(1ULL << bit);
527 recalc_intercepts(svm);
530 static inline bool vgif_enabled(struct vcpu_svm *svm)
532 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
535 static inline void enable_gif(struct vcpu_svm *svm)
537 if (vgif_enabled(svm))
538 svm->vmcb->control.int_ctl |= V_GIF_MASK;
539 else
540 svm->vcpu.arch.hflags |= HF_GIF_MASK;
543 static inline void disable_gif(struct vcpu_svm *svm)
545 if (vgif_enabled(svm))
546 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
547 else
548 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
551 static inline bool gif_set(struct vcpu_svm *svm)
553 if (vgif_enabled(svm))
554 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
555 else
556 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
559 static unsigned long iopm_base;
561 struct kvm_ldttss_desc {
562 u16 limit0;
563 u16 base0;
564 unsigned base1:8, type:5, dpl:2, p:1;
565 unsigned limit1:4, zero0:3, g:1, base2:8;
566 u32 base3;
567 u32 zero1;
568 } __attribute__((packed));
570 struct svm_cpu_data {
571 int cpu;
573 u64 asid_generation;
574 u32 max_asid;
575 u32 next_asid;
576 u32 min_asid;
577 struct kvm_ldttss_desc *tss_desc;
579 struct page *save_area;
580 struct vmcb *current_vmcb;
582 /* index = sev_asid, value = vmcb pointer */
583 struct vmcb **sev_vmcbs;
586 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
588 struct svm_init_data {
589 int cpu;
590 int r;
593 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
595 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
596 #define MSRS_RANGE_SIZE 2048
597 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
599 static u32 svm_msrpm_offset(u32 msr)
601 u32 offset;
602 int i;
604 for (i = 0; i < NUM_MSR_MAPS; i++) {
605 if (msr < msrpm_ranges[i] ||
606 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
607 continue;
609 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
610 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
612 /* Now we have the u8 offset - but need the u32 offset */
613 return offset / 4;
616 /* MSR not in any range */
617 return MSR_INVALID;
620 #define MAX_INST_SIZE 15
622 static inline void clgi(void)
624 asm volatile (__ex(SVM_CLGI));
627 static inline void stgi(void)
629 asm volatile (__ex(SVM_STGI));
632 static inline void invlpga(unsigned long addr, u32 asid)
634 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
637 static int get_npt_level(struct kvm_vcpu *vcpu)
639 #ifdef CONFIG_X86_64
640 return PT64_ROOT_4LEVEL;
641 #else
642 return PT32E_ROOT_LEVEL;
643 #endif
646 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
648 vcpu->arch.efer = efer;
649 if (!npt_enabled && !(efer & EFER_LMA))
650 efer &= ~EFER_LME;
652 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
653 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
656 static int is_external_interrupt(u32 info)
658 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
659 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
662 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
664 struct vcpu_svm *svm = to_svm(vcpu);
665 u32 ret = 0;
667 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
668 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
669 return ret;
672 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
674 struct vcpu_svm *svm = to_svm(vcpu);
676 if (mask == 0)
677 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
678 else
679 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
683 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
685 struct vcpu_svm *svm = to_svm(vcpu);
687 if (svm->vmcb->control.next_rip != 0) {
688 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
689 svm->next_rip = svm->vmcb->control.next_rip;
692 if (!svm->next_rip) {
693 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
694 EMULATE_DONE)
695 printk(KERN_DEBUG "%s: NOP\n", __func__);
696 return;
698 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
699 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
700 __func__, kvm_rip_read(vcpu), svm->next_rip);
702 kvm_rip_write(vcpu, svm->next_rip);
703 svm_set_interrupt_shadow(vcpu, 0);
706 static void svm_queue_exception(struct kvm_vcpu *vcpu)
708 struct vcpu_svm *svm = to_svm(vcpu);
709 unsigned nr = vcpu->arch.exception.nr;
710 bool has_error_code = vcpu->arch.exception.has_error_code;
711 bool reinject = vcpu->arch.exception.injected;
712 u32 error_code = vcpu->arch.exception.error_code;
715 * If we are within a nested VM we'd better #VMEXIT and let the guest
716 * handle the exception
718 if (!reinject &&
719 nested_svm_check_exception(svm, nr, has_error_code, error_code))
720 return;
722 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
723 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
726 * For guest debugging where we have to reinject #BP if some
727 * INT3 is guest-owned:
728 * Emulate nRIP by moving RIP forward. Will fail if injection
729 * raises a fault that is not intercepted. Still better than
730 * failing in all cases.
732 skip_emulated_instruction(&svm->vcpu);
733 rip = kvm_rip_read(&svm->vcpu);
734 svm->int3_rip = rip + svm->vmcb->save.cs.base;
735 svm->int3_injected = rip - old_rip;
738 svm->vmcb->control.event_inj = nr
739 | SVM_EVTINJ_VALID
740 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
741 | SVM_EVTINJ_TYPE_EXEPT;
742 svm->vmcb->control.event_inj_err = error_code;
745 static void svm_init_erratum_383(void)
747 u32 low, high;
748 int err;
749 u64 val;
751 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
752 return;
754 /* Use _safe variants to not break nested virtualization */
755 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
756 if (err)
757 return;
759 val |= (1ULL << 47);
761 low = lower_32_bits(val);
762 high = upper_32_bits(val);
764 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
766 erratum_383_found = true;
769 static void svm_init_osvw(struct kvm_vcpu *vcpu)
772 * Guests should see errata 400 and 415 as fixed (assuming that
773 * HLT and IO instructions are intercepted).
775 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
776 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
779 * By increasing VCPU's osvw.length to 3 we are telling the guest that
780 * all osvw.status bits inside that length, including bit 0 (which is
781 * reserved for erratum 298), are valid. However, if host processor's
782 * osvw_len is 0 then osvw_status[0] carries no information. We need to
783 * be conservative here and therefore we tell the guest that erratum 298
784 * is present (because we really don't know).
786 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
787 vcpu->arch.osvw.status |= 1;
790 static int has_svm(void)
792 const char *msg;
794 if (!cpu_has_svm(&msg)) {
795 printk(KERN_INFO "has_svm: %s\n", msg);
796 return 0;
799 return 1;
802 static void svm_hardware_disable(void)
804 /* Make sure we clean up behind us */
805 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
806 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
808 cpu_svm_disable();
810 amd_pmu_disable_virt();
813 static int svm_hardware_enable(void)
816 struct svm_cpu_data *sd;
817 uint64_t efer;
818 struct desc_struct *gdt;
819 int me = raw_smp_processor_id();
821 rdmsrl(MSR_EFER, efer);
822 if (efer & EFER_SVME)
823 return -EBUSY;
825 if (!has_svm()) {
826 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
827 return -EINVAL;
829 sd = per_cpu(svm_data, me);
830 if (!sd) {
831 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
832 return -EINVAL;
835 sd->asid_generation = 1;
836 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
837 sd->next_asid = sd->max_asid + 1;
838 sd->min_asid = max_sev_asid + 1;
840 gdt = get_current_gdt_rw();
841 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
843 wrmsrl(MSR_EFER, efer | EFER_SVME);
845 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
847 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
848 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
849 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
854 * Get OSVW bits.
856 * Note that it is possible to have a system with mixed processor
857 * revisions and therefore different OSVW bits. If bits are not the same
858 * on different processors then choose the worst case (i.e. if erratum
859 * is present on one processor and not on another then assume that the
860 * erratum is present everywhere).
862 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
863 uint64_t len, status = 0;
864 int err;
866 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
867 if (!err)
868 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
869 &err);
871 if (err)
872 osvw_status = osvw_len = 0;
873 else {
874 if (len < osvw_len)
875 osvw_len = len;
876 osvw_status |= status;
877 osvw_status &= (1ULL << osvw_len) - 1;
879 } else
880 osvw_status = osvw_len = 0;
882 svm_init_erratum_383();
884 amd_pmu_enable_virt();
886 return 0;
889 static void svm_cpu_uninit(int cpu)
891 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
893 if (!sd)
894 return;
896 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
897 kfree(sd->sev_vmcbs);
898 __free_page(sd->save_area);
899 kfree(sd);
902 static int svm_cpu_init(int cpu)
904 struct svm_cpu_data *sd;
905 int r;
907 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
908 if (!sd)
909 return -ENOMEM;
910 sd->cpu = cpu;
911 r = -ENOMEM;
912 sd->save_area = alloc_page(GFP_KERNEL);
913 if (!sd->save_area)
914 goto err_1;
916 if (svm_sev_enabled()) {
917 r = -ENOMEM;
918 sd->sev_vmcbs = kmalloc((max_sev_asid + 1) * sizeof(void *), GFP_KERNEL);
919 if (!sd->sev_vmcbs)
920 goto err_1;
923 per_cpu(svm_data, cpu) = sd;
925 return 0;
927 err_1:
928 kfree(sd);
929 return r;
933 static bool valid_msr_intercept(u32 index)
935 int i;
937 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
938 if (direct_access_msrs[i].index == index)
939 return true;
941 return false;
944 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
946 u8 bit_write;
947 unsigned long tmp;
948 u32 offset;
949 u32 *msrpm;
951 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
952 to_svm(vcpu)->msrpm;
954 offset = svm_msrpm_offset(msr);
955 bit_write = 2 * (msr & 0x0f) + 1;
956 tmp = msrpm[offset];
958 BUG_ON(offset == MSR_INVALID);
960 return !!test_bit(bit_write, &tmp);
963 static void set_msr_interception(u32 *msrpm, unsigned msr,
964 int read, int write)
966 u8 bit_read, bit_write;
967 unsigned long tmp;
968 u32 offset;
971 * If this warning triggers extend the direct_access_msrs list at the
972 * beginning of the file
974 WARN_ON(!valid_msr_intercept(msr));
976 offset = svm_msrpm_offset(msr);
977 bit_read = 2 * (msr & 0x0f);
978 bit_write = 2 * (msr & 0x0f) + 1;
979 tmp = msrpm[offset];
981 BUG_ON(offset == MSR_INVALID);
983 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
984 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
986 msrpm[offset] = tmp;
989 static void svm_vcpu_init_msrpm(u32 *msrpm)
991 int i;
993 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
995 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
996 if (!direct_access_msrs[i].always)
997 continue;
999 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1003 static void add_msr_offset(u32 offset)
1005 int i;
1007 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1009 /* Offset already in list? */
1010 if (msrpm_offsets[i] == offset)
1011 return;
1013 /* Slot used by another offset? */
1014 if (msrpm_offsets[i] != MSR_INVALID)
1015 continue;
1017 /* Add offset to list */
1018 msrpm_offsets[i] = offset;
1020 return;
1024 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1025 * increase MSRPM_OFFSETS in this case.
1027 BUG();
1030 static void init_msrpm_offsets(void)
1032 int i;
1034 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1036 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1037 u32 offset;
1039 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1040 BUG_ON(offset == MSR_INVALID);
1042 add_msr_offset(offset);
1046 static void svm_enable_lbrv(struct vcpu_svm *svm)
1048 u32 *msrpm = svm->msrpm;
1050 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1051 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1052 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1053 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1054 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1057 static void svm_disable_lbrv(struct vcpu_svm *svm)
1059 u32 *msrpm = svm->msrpm;
1061 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1062 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1063 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1064 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1065 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1068 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1070 svm->nmi_singlestep = false;
1072 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1073 /* Clear our flags if they were not set by the guest */
1074 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1075 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1076 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1077 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1081 /* Note:
1082 * This hash table is used to map VM_ID to a struct kvm_arch,
1083 * when handling AMD IOMMU GALOG notification to schedule in
1084 * a particular vCPU.
1086 #define SVM_VM_DATA_HASH_BITS 8
1087 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1088 static u32 next_vm_id = 0;
1089 static bool next_vm_id_wrapped = 0;
1090 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1092 /* Note:
1093 * This function is called from IOMMU driver to notify
1094 * SVM to schedule in a particular vCPU of a particular VM.
1096 static int avic_ga_log_notifier(u32 ga_tag)
1098 unsigned long flags;
1099 struct kvm_arch *ka = NULL;
1100 struct kvm_vcpu *vcpu = NULL;
1101 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1102 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1104 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1106 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1107 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1108 struct kvm *kvm = container_of(ka, struct kvm, arch);
1109 struct kvm_arch *vm_data = &kvm->arch;
1111 if (vm_data->avic_vm_id != vm_id)
1112 continue;
1113 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1114 break;
1116 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1118 /* Note:
1119 * At this point, the IOMMU should have already set the pending
1120 * bit in the vAPIC backing page. So, we just need to schedule
1121 * in the vcpu.
1123 if (vcpu)
1124 kvm_vcpu_wake_up(vcpu);
1126 return 0;
1129 static __init int sev_hardware_setup(void)
1131 struct sev_user_data_status *status;
1132 int rc;
1134 /* Maximum number of encrypted guests supported simultaneously */
1135 max_sev_asid = cpuid_ecx(0x8000001F);
1137 if (!max_sev_asid)
1138 return 1;
1140 /* Minimum ASID value that should be used for SEV guest */
1141 min_sev_asid = cpuid_edx(0x8000001F);
1143 /* Initialize SEV ASID bitmap */
1144 sev_asid_bitmap = kcalloc(BITS_TO_LONGS(max_sev_asid),
1145 sizeof(unsigned long), GFP_KERNEL);
1146 if (!sev_asid_bitmap)
1147 return 1;
1149 status = kmalloc(sizeof(*status), GFP_KERNEL);
1150 if (!status)
1151 return 1;
1154 * Check SEV platform status.
1156 * PLATFORM_STATUS can be called in any state, if we failed to query
1157 * the PLATFORM status then either PSP firmware does not support SEV
1158 * feature or SEV firmware is dead.
1160 rc = sev_platform_status(status, NULL);
1161 if (rc)
1162 goto err;
1164 pr_info("SEV supported\n");
1166 err:
1167 kfree(status);
1168 return rc;
1171 static __init int svm_hardware_setup(void)
1173 int cpu;
1174 struct page *iopm_pages;
1175 void *iopm_va;
1176 int r;
1178 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1180 if (!iopm_pages)
1181 return -ENOMEM;
1183 iopm_va = page_address(iopm_pages);
1184 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1185 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1187 init_msrpm_offsets();
1189 if (boot_cpu_has(X86_FEATURE_NX))
1190 kvm_enable_efer_bits(EFER_NX);
1192 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1193 kvm_enable_efer_bits(EFER_FFXSR);
1195 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1196 kvm_has_tsc_control = true;
1197 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1198 kvm_tsc_scaling_ratio_frac_bits = 32;
1201 if (nested) {
1202 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1203 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1206 if (sev) {
1207 if (boot_cpu_has(X86_FEATURE_SEV) &&
1208 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1209 r = sev_hardware_setup();
1210 if (r)
1211 sev = false;
1212 } else {
1213 sev = false;
1217 for_each_possible_cpu(cpu) {
1218 r = svm_cpu_init(cpu);
1219 if (r)
1220 goto err;
1223 if (!boot_cpu_has(X86_FEATURE_NPT))
1224 npt_enabled = false;
1226 if (npt_enabled && !npt) {
1227 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1228 npt_enabled = false;
1231 if (npt_enabled) {
1232 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1233 kvm_enable_tdp();
1234 } else
1235 kvm_disable_tdp();
1237 if (avic) {
1238 if (!npt_enabled ||
1239 !boot_cpu_has(X86_FEATURE_AVIC) ||
1240 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1241 avic = false;
1242 } else {
1243 pr_info("AVIC enabled\n");
1245 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1249 if (vls) {
1250 if (!npt_enabled ||
1251 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1252 !IS_ENABLED(CONFIG_X86_64)) {
1253 vls = false;
1254 } else {
1255 pr_info("Virtual VMLOAD VMSAVE supported\n");
1259 if (vgif) {
1260 if (!boot_cpu_has(X86_FEATURE_VGIF))
1261 vgif = false;
1262 else
1263 pr_info("Virtual GIF supported\n");
1266 return 0;
1268 err:
1269 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1270 iopm_base = 0;
1271 return r;
1274 static __exit void svm_hardware_unsetup(void)
1276 int cpu;
1278 if (svm_sev_enabled())
1279 kfree(sev_asid_bitmap);
1281 for_each_possible_cpu(cpu)
1282 svm_cpu_uninit(cpu);
1284 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1285 iopm_base = 0;
1288 static void init_seg(struct vmcb_seg *seg)
1290 seg->selector = 0;
1291 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1292 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1293 seg->limit = 0xffff;
1294 seg->base = 0;
1297 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1299 seg->selector = 0;
1300 seg->attrib = SVM_SELECTOR_P_MASK | type;
1301 seg->limit = 0xffff;
1302 seg->base = 0;
1305 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1307 struct vcpu_svm *svm = to_svm(vcpu);
1308 u64 g_tsc_offset = 0;
1310 if (is_guest_mode(vcpu)) {
1311 g_tsc_offset = svm->vmcb->control.tsc_offset -
1312 svm->nested.hsave->control.tsc_offset;
1313 svm->nested.hsave->control.tsc_offset = offset;
1314 } else
1315 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1316 svm->vmcb->control.tsc_offset,
1317 offset);
1319 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1321 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1324 static void avic_init_vmcb(struct vcpu_svm *svm)
1326 struct vmcb *vmcb = svm->vmcb;
1327 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1328 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1329 phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1330 phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1332 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1333 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1334 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1335 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1336 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1339 static void init_vmcb(struct vcpu_svm *svm)
1341 struct vmcb_control_area *control = &svm->vmcb->control;
1342 struct vmcb_save_area *save = &svm->vmcb->save;
1344 svm->vcpu.arch.hflags = 0;
1346 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1347 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1348 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1349 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1350 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1351 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1352 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1353 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1355 set_dr_intercepts(svm);
1357 set_exception_intercept(svm, PF_VECTOR);
1358 set_exception_intercept(svm, UD_VECTOR);
1359 set_exception_intercept(svm, MC_VECTOR);
1360 set_exception_intercept(svm, AC_VECTOR);
1361 set_exception_intercept(svm, DB_VECTOR);
1363 set_intercept(svm, INTERCEPT_INTR);
1364 set_intercept(svm, INTERCEPT_NMI);
1365 set_intercept(svm, INTERCEPT_SMI);
1366 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1367 set_intercept(svm, INTERCEPT_RDPMC);
1368 set_intercept(svm, INTERCEPT_CPUID);
1369 set_intercept(svm, INTERCEPT_INVD);
1370 set_intercept(svm, INTERCEPT_HLT);
1371 set_intercept(svm, INTERCEPT_INVLPG);
1372 set_intercept(svm, INTERCEPT_INVLPGA);
1373 set_intercept(svm, INTERCEPT_IOIO_PROT);
1374 set_intercept(svm, INTERCEPT_MSR_PROT);
1375 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1376 set_intercept(svm, INTERCEPT_SHUTDOWN);
1377 set_intercept(svm, INTERCEPT_VMRUN);
1378 set_intercept(svm, INTERCEPT_VMMCALL);
1379 set_intercept(svm, INTERCEPT_VMLOAD);
1380 set_intercept(svm, INTERCEPT_VMSAVE);
1381 set_intercept(svm, INTERCEPT_STGI);
1382 set_intercept(svm, INTERCEPT_CLGI);
1383 set_intercept(svm, INTERCEPT_SKINIT);
1384 set_intercept(svm, INTERCEPT_WBINVD);
1385 set_intercept(svm, INTERCEPT_XSETBV);
1387 if (!kvm_mwait_in_guest()) {
1388 set_intercept(svm, INTERCEPT_MONITOR);
1389 set_intercept(svm, INTERCEPT_MWAIT);
1392 control->iopm_base_pa = __sme_set(iopm_base);
1393 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1394 control->int_ctl = V_INTR_MASKING_MASK;
1396 init_seg(&save->es);
1397 init_seg(&save->ss);
1398 init_seg(&save->ds);
1399 init_seg(&save->fs);
1400 init_seg(&save->gs);
1402 save->cs.selector = 0xf000;
1403 save->cs.base = 0xffff0000;
1404 /* Executable/Readable Code Segment */
1405 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1406 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1407 save->cs.limit = 0xffff;
1409 save->gdtr.limit = 0xffff;
1410 save->idtr.limit = 0xffff;
1412 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1413 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1415 svm_set_efer(&svm->vcpu, 0);
1416 save->dr6 = 0xffff0ff0;
1417 kvm_set_rflags(&svm->vcpu, 2);
1418 save->rip = 0x0000fff0;
1419 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1422 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1423 * It also updates the guest-visible cr0 value.
1425 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1426 kvm_mmu_reset_context(&svm->vcpu);
1428 save->cr4 = X86_CR4_PAE;
1429 /* rdx = ?? */
1431 if (npt_enabled) {
1432 /* Setup VMCB for Nested Paging */
1433 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1434 clr_intercept(svm, INTERCEPT_INVLPG);
1435 clr_exception_intercept(svm, PF_VECTOR);
1436 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1437 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1438 save->g_pat = svm->vcpu.arch.pat;
1439 save->cr3 = 0;
1440 save->cr4 = 0;
1442 svm->asid_generation = 0;
1444 svm->nested.vmcb = 0;
1445 svm->vcpu.arch.hflags = 0;
1447 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1448 control->pause_filter_count = 3000;
1449 set_intercept(svm, INTERCEPT_PAUSE);
1452 if (kvm_vcpu_apicv_active(&svm->vcpu))
1453 avic_init_vmcb(svm);
1456 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1457 * in VMCB and clear intercepts to avoid #VMEXIT.
1459 if (vls) {
1460 clr_intercept(svm, INTERCEPT_VMLOAD);
1461 clr_intercept(svm, INTERCEPT_VMSAVE);
1462 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1465 if (vgif) {
1466 clr_intercept(svm, INTERCEPT_STGI);
1467 clr_intercept(svm, INTERCEPT_CLGI);
1468 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1471 if (sev_guest(svm->vcpu.kvm)) {
1472 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1473 clr_exception_intercept(svm, UD_VECTOR);
1476 mark_all_dirty(svm->vmcb);
1478 enable_gif(svm);
1482 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1483 unsigned int index)
1485 u64 *avic_physical_id_table;
1486 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1488 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1489 return NULL;
1491 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1493 return &avic_physical_id_table[index];
1497 * Note:
1498 * AVIC hardware walks the nested page table to check permissions,
1499 * but does not use the SPA address specified in the leaf page
1500 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1501 * field of the VMCB. Therefore, we set up the
1502 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1504 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1506 struct kvm *kvm = vcpu->kvm;
1507 int ret;
1509 if (kvm->arch.apic_access_page_done)
1510 return 0;
1512 ret = x86_set_memory_region(kvm,
1513 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1514 APIC_DEFAULT_PHYS_BASE,
1515 PAGE_SIZE);
1516 if (ret)
1517 return ret;
1519 kvm->arch.apic_access_page_done = true;
1520 return 0;
1523 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1525 int ret;
1526 u64 *entry, new_entry;
1527 int id = vcpu->vcpu_id;
1528 struct vcpu_svm *svm = to_svm(vcpu);
1530 ret = avic_init_access_page(vcpu);
1531 if (ret)
1532 return ret;
1534 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1535 return -EINVAL;
1537 if (!svm->vcpu.arch.apic->regs)
1538 return -EINVAL;
1540 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1542 /* Setting AVIC backing page address in the phy APIC ID table */
1543 entry = avic_get_physical_id_entry(vcpu, id);
1544 if (!entry)
1545 return -EINVAL;
1547 new_entry = READ_ONCE(*entry);
1548 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1549 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1550 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1551 WRITE_ONCE(*entry, new_entry);
1553 svm->avic_physical_id_cache = entry;
1555 return 0;
1558 static void __sev_asid_free(int asid)
1560 struct svm_cpu_data *sd;
1561 int cpu, pos;
1563 pos = asid - 1;
1564 clear_bit(pos, sev_asid_bitmap);
1566 for_each_possible_cpu(cpu) {
1567 sd = per_cpu(svm_data, cpu);
1568 sd->sev_vmcbs[pos] = NULL;
1572 static void sev_asid_free(struct kvm *kvm)
1574 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1576 __sev_asid_free(sev->asid);
1579 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1581 struct sev_data_decommission *decommission;
1582 struct sev_data_deactivate *data;
1584 if (!handle)
1585 return;
1587 data = kzalloc(sizeof(*data), GFP_KERNEL);
1588 if (!data)
1589 return;
1591 /* deactivate handle */
1592 data->handle = handle;
1593 sev_guest_deactivate(data, NULL);
1595 wbinvd_on_all_cpus();
1596 sev_guest_df_flush(NULL);
1597 kfree(data);
1599 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1600 if (!decommission)
1601 return;
1603 /* decommission handle */
1604 decommission->handle = handle;
1605 sev_guest_decommission(decommission, NULL);
1607 kfree(decommission);
1610 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1611 unsigned long ulen, unsigned long *n,
1612 int write)
1614 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1615 unsigned long npages, npinned, size;
1616 unsigned long locked, lock_limit;
1617 struct page **pages;
1618 int first, last;
1620 /* Calculate number of pages. */
1621 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1622 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1623 npages = (last - first + 1);
1625 locked = sev->pages_locked + npages;
1626 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1627 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1628 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1629 return NULL;
1632 /* Avoid using vmalloc for smaller buffers. */
1633 size = npages * sizeof(struct page *);
1634 if (size > PAGE_SIZE)
1635 pages = vmalloc(size);
1636 else
1637 pages = kmalloc(size, GFP_KERNEL);
1639 if (!pages)
1640 return NULL;
1642 /* Pin the user virtual address. */
1643 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1644 if (npinned != npages) {
1645 pr_err("SEV: Failure locking %lu pages.\n", npages);
1646 goto err;
1649 *n = npages;
1650 sev->pages_locked = locked;
1652 return pages;
1654 err:
1655 if (npinned > 0)
1656 release_pages(pages, npinned);
1658 kvfree(pages);
1659 return NULL;
1662 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1663 unsigned long npages)
1665 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1667 release_pages(pages, npages);
1668 kvfree(pages);
1669 sev->pages_locked -= npages;
1672 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1674 uint8_t *page_virtual;
1675 unsigned long i;
1677 if (npages == 0 || pages == NULL)
1678 return;
1680 for (i = 0; i < npages; i++) {
1681 page_virtual = kmap_atomic(pages[i]);
1682 clflush_cache_range(page_virtual, PAGE_SIZE);
1683 kunmap_atomic(page_virtual);
1687 static void __unregister_enc_region_locked(struct kvm *kvm,
1688 struct enc_region *region)
1691 * The guest may change the memory encryption attribute from C=0 -> C=1
1692 * or vice versa for this memory range. Lets make sure caches are
1693 * flushed to ensure that guest data gets written into memory with
1694 * correct C-bit.
1696 sev_clflush_pages(region->pages, region->npages);
1698 sev_unpin_memory(kvm, region->pages, region->npages);
1699 list_del(&region->list);
1700 kfree(region);
1703 static void sev_vm_destroy(struct kvm *kvm)
1705 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1706 struct list_head *head = &sev->regions_list;
1707 struct list_head *pos, *q;
1709 if (!sev_guest(kvm))
1710 return;
1712 mutex_lock(&kvm->lock);
1715 * if userspace was terminated before unregistering the memory regions
1716 * then lets unpin all the registered memory.
1718 if (!list_empty(head)) {
1719 list_for_each_safe(pos, q, head) {
1720 __unregister_enc_region_locked(kvm,
1721 list_entry(pos, struct enc_region, list));
1725 mutex_unlock(&kvm->lock);
1727 sev_unbind_asid(kvm, sev->handle);
1728 sev_asid_free(kvm);
1731 static void avic_vm_destroy(struct kvm *kvm)
1733 unsigned long flags;
1734 struct kvm_arch *vm_data = &kvm->arch;
1736 if (!avic)
1737 return;
1739 if (vm_data->avic_logical_id_table_page)
1740 __free_page(vm_data->avic_logical_id_table_page);
1741 if (vm_data->avic_physical_id_table_page)
1742 __free_page(vm_data->avic_physical_id_table_page);
1744 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1745 hash_del(&vm_data->hnode);
1746 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1749 static void svm_vm_destroy(struct kvm *kvm)
1751 avic_vm_destroy(kvm);
1752 sev_vm_destroy(kvm);
1755 static int avic_vm_init(struct kvm *kvm)
1757 unsigned long flags;
1758 int err = -ENOMEM;
1759 struct kvm_arch *vm_data = &kvm->arch;
1760 struct page *p_page;
1761 struct page *l_page;
1762 struct kvm_arch *ka;
1763 u32 vm_id;
1765 if (!avic)
1766 return 0;
1768 /* Allocating physical APIC ID table (4KB) */
1769 p_page = alloc_page(GFP_KERNEL);
1770 if (!p_page)
1771 goto free_avic;
1773 vm_data->avic_physical_id_table_page = p_page;
1774 clear_page(page_address(p_page));
1776 /* Allocating logical APIC ID table (4KB) */
1777 l_page = alloc_page(GFP_KERNEL);
1778 if (!l_page)
1779 goto free_avic;
1781 vm_data->avic_logical_id_table_page = l_page;
1782 clear_page(page_address(l_page));
1784 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1785 again:
1786 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1787 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1788 next_vm_id_wrapped = 1;
1789 goto again;
1791 /* Is it still in use? Only possible if wrapped at least once */
1792 if (next_vm_id_wrapped) {
1793 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1794 struct kvm *k2 = container_of(ka, struct kvm, arch);
1795 struct kvm_arch *vd2 = &k2->arch;
1796 if (vd2->avic_vm_id == vm_id)
1797 goto again;
1800 vm_data->avic_vm_id = vm_id;
1801 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1802 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1804 return 0;
1806 free_avic:
1807 avic_vm_destroy(kvm);
1808 return err;
1811 static inline int
1812 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1814 int ret = 0;
1815 unsigned long flags;
1816 struct amd_svm_iommu_ir *ir;
1817 struct vcpu_svm *svm = to_svm(vcpu);
1819 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1820 return 0;
1823 * Here, we go through the per-vcpu ir_list to update all existing
1824 * interrupt remapping table entry targeting this vcpu.
1826 spin_lock_irqsave(&svm->ir_list_lock, flags);
1828 if (list_empty(&svm->ir_list))
1829 goto out;
1831 list_for_each_entry(ir, &svm->ir_list, node) {
1832 ret = amd_iommu_update_ga(cpu, r, ir->data);
1833 if (ret)
1834 break;
1836 out:
1837 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1838 return ret;
1841 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1843 u64 entry;
1844 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1845 int h_physical_id = kvm_cpu_get_apicid(cpu);
1846 struct vcpu_svm *svm = to_svm(vcpu);
1848 if (!kvm_vcpu_apicv_active(vcpu))
1849 return;
1851 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1852 return;
1854 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1855 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1857 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1858 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1860 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1861 if (svm->avic_is_running)
1862 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1864 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1865 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1866 svm->avic_is_running);
1869 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1871 u64 entry;
1872 struct vcpu_svm *svm = to_svm(vcpu);
1874 if (!kvm_vcpu_apicv_active(vcpu))
1875 return;
1877 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1878 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1879 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1881 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1882 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1886 * This function is called during VCPU halt/unhalt.
1888 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1890 struct vcpu_svm *svm = to_svm(vcpu);
1892 svm->avic_is_running = is_run;
1893 if (is_run)
1894 avic_vcpu_load(vcpu, vcpu->cpu);
1895 else
1896 avic_vcpu_put(vcpu);
1899 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1901 struct vcpu_svm *svm = to_svm(vcpu);
1902 u32 dummy;
1903 u32 eax = 1;
1905 svm->spec_ctrl = 0;
1907 if (!init_event) {
1908 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1909 MSR_IA32_APICBASE_ENABLE;
1910 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1911 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1913 init_vmcb(svm);
1915 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1916 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1918 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1919 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1922 static int avic_init_vcpu(struct vcpu_svm *svm)
1924 int ret;
1926 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1927 return 0;
1929 ret = avic_init_backing_page(&svm->vcpu);
1930 if (ret)
1931 return ret;
1933 INIT_LIST_HEAD(&svm->ir_list);
1934 spin_lock_init(&svm->ir_list_lock);
1936 return ret;
1939 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1941 struct vcpu_svm *svm;
1942 struct page *page;
1943 struct page *msrpm_pages;
1944 struct page *hsave_page;
1945 struct page *nested_msrpm_pages;
1946 int err;
1948 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1949 if (!svm) {
1950 err = -ENOMEM;
1951 goto out;
1954 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1955 if (err)
1956 goto free_svm;
1958 err = -ENOMEM;
1959 page = alloc_page(GFP_KERNEL);
1960 if (!page)
1961 goto uninit;
1963 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1964 if (!msrpm_pages)
1965 goto free_page1;
1967 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1968 if (!nested_msrpm_pages)
1969 goto free_page2;
1971 hsave_page = alloc_page(GFP_KERNEL);
1972 if (!hsave_page)
1973 goto free_page3;
1975 err = avic_init_vcpu(svm);
1976 if (err)
1977 goto free_page4;
1979 /* We initialize this flag to true to make sure that the is_running
1980 * bit would be set the first time the vcpu is loaded.
1982 svm->avic_is_running = true;
1984 svm->nested.hsave = page_address(hsave_page);
1986 svm->msrpm = page_address(msrpm_pages);
1987 svm_vcpu_init_msrpm(svm->msrpm);
1989 svm->nested.msrpm = page_address(nested_msrpm_pages);
1990 svm_vcpu_init_msrpm(svm->nested.msrpm);
1992 svm->vmcb = page_address(page);
1993 clear_page(svm->vmcb);
1994 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1995 svm->asid_generation = 0;
1996 init_vmcb(svm);
1998 svm_init_osvw(&svm->vcpu);
2000 return &svm->vcpu;
2002 free_page4:
2003 __free_page(hsave_page);
2004 free_page3:
2005 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2006 free_page2:
2007 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2008 free_page1:
2009 __free_page(page);
2010 uninit:
2011 kvm_vcpu_uninit(&svm->vcpu);
2012 free_svm:
2013 kmem_cache_free(kvm_vcpu_cache, svm);
2014 out:
2015 return ERR_PTR(err);
2018 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2020 struct vcpu_svm *svm = to_svm(vcpu);
2022 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2023 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2024 __free_page(virt_to_page(svm->nested.hsave));
2025 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2026 kvm_vcpu_uninit(vcpu);
2027 kmem_cache_free(kvm_vcpu_cache, svm);
2029 * The vmcb page can be recycled, causing a false negative in
2030 * svm_vcpu_load(). So do a full IBPB now.
2032 indirect_branch_prediction_barrier();
2035 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2037 struct vcpu_svm *svm = to_svm(vcpu);
2038 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2039 int i;
2041 if (unlikely(cpu != vcpu->cpu)) {
2042 svm->asid_generation = 0;
2043 mark_all_dirty(svm->vmcb);
2046 #ifdef CONFIG_X86_64
2047 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2048 #endif
2049 savesegment(fs, svm->host.fs);
2050 savesegment(gs, svm->host.gs);
2051 svm->host.ldt = kvm_read_ldt();
2053 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2054 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2056 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2057 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2058 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2059 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2060 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2063 /* This assumes that the kernel never uses MSR_TSC_AUX */
2064 if (static_cpu_has(X86_FEATURE_RDTSCP))
2065 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2067 if (sd->current_vmcb != svm->vmcb) {
2068 sd->current_vmcb = svm->vmcb;
2069 indirect_branch_prediction_barrier();
2071 avic_vcpu_load(vcpu, cpu);
2074 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2076 struct vcpu_svm *svm = to_svm(vcpu);
2077 int i;
2079 avic_vcpu_put(vcpu);
2081 ++vcpu->stat.host_state_reload;
2082 kvm_load_ldt(svm->host.ldt);
2083 #ifdef CONFIG_X86_64
2084 loadsegment(fs, svm->host.fs);
2085 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2086 load_gs_index(svm->host.gs);
2087 #else
2088 #ifdef CONFIG_X86_32_LAZY_GS
2089 loadsegment(gs, svm->host.gs);
2090 #endif
2091 #endif
2092 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2093 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2096 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2098 avic_set_running(vcpu, false);
2101 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2103 avic_set_running(vcpu, true);
2106 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2108 struct vcpu_svm *svm = to_svm(vcpu);
2109 unsigned long rflags = svm->vmcb->save.rflags;
2111 if (svm->nmi_singlestep) {
2112 /* Hide our flags if they were not set by the guest */
2113 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2114 rflags &= ~X86_EFLAGS_TF;
2115 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2116 rflags &= ~X86_EFLAGS_RF;
2118 return rflags;
2121 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2123 if (to_svm(vcpu)->nmi_singlestep)
2124 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2127 * Any change of EFLAGS.VM is accompanied by a reload of SS
2128 * (caused by either a task switch or an inter-privilege IRET),
2129 * so we do not need to update the CPL here.
2131 to_svm(vcpu)->vmcb->save.rflags = rflags;
2134 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2136 switch (reg) {
2137 case VCPU_EXREG_PDPTR:
2138 BUG_ON(!npt_enabled);
2139 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2140 break;
2141 default:
2142 BUG();
2146 static void svm_set_vintr(struct vcpu_svm *svm)
2148 set_intercept(svm, INTERCEPT_VINTR);
2151 static void svm_clear_vintr(struct vcpu_svm *svm)
2153 clr_intercept(svm, INTERCEPT_VINTR);
2156 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2158 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2160 switch (seg) {
2161 case VCPU_SREG_CS: return &save->cs;
2162 case VCPU_SREG_DS: return &save->ds;
2163 case VCPU_SREG_ES: return &save->es;
2164 case VCPU_SREG_FS: return &save->fs;
2165 case VCPU_SREG_GS: return &save->gs;
2166 case VCPU_SREG_SS: return &save->ss;
2167 case VCPU_SREG_TR: return &save->tr;
2168 case VCPU_SREG_LDTR: return &save->ldtr;
2170 BUG();
2171 return NULL;
2174 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2176 struct vmcb_seg *s = svm_seg(vcpu, seg);
2178 return s->base;
2181 static void svm_get_segment(struct kvm_vcpu *vcpu,
2182 struct kvm_segment *var, int seg)
2184 struct vmcb_seg *s = svm_seg(vcpu, seg);
2186 var->base = s->base;
2187 var->limit = s->limit;
2188 var->selector = s->selector;
2189 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2190 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2191 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2192 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2193 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2194 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2195 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2198 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2199 * However, the SVM spec states that the G bit is not observed by the
2200 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2201 * So let's synthesize a legal G bit for all segments, this helps
2202 * running KVM nested. It also helps cross-vendor migration, because
2203 * Intel's vmentry has a check on the 'G' bit.
2205 var->g = s->limit > 0xfffff;
2208 * AMD's VMCB does not have an explicit unusable field, so emulate it
2209 * for cross vendor migration purposes by "not present"
2211 var->unusable = !var->present;
2213 switch (seg) {
2214 case VCPU_SREG_TR:
2216 * Work around a bug where the busy flag in the tr selector
2217 * isn't exposed
2219 var->type |= 0x2;
2220 break;
2221 case VCPU_SREG_DS:
2222 case VCPU_SREG_ES:
2223 case VCPU_SREG_FS:
2224 case VCPU_SREG_GS:
2226 * The accessed bit must always be set in the segment
2227 * descriptor cache, although it can be cleared in the
2228 * descriptor, the cached bit always remains at 1. Since
2229 * Intel has a check on this, set it here to support
2230 * cross-vendor migration.
2232 if (!var->unusable)
2233 var->type |= 0x1;
2234 break;
2235 case VCPU_SREG_SS:
2237 * On AMD CPUs sometimes the DB bit in the segment
2238 * descriptor is left as 1, although the whole segment has
2239 * been made unusable. Clear it here to pass an Intel VMX
2240 * entry check when cross vendor migrating.
2242 if (var->unusable)
2243 var->db = 0;
2244 /* This is symmetric with svm_set_segment() */
2245 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2246 break;
2250 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2252 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2254 return save->cpl;
2257 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2259 struct vcpu_svm *svm = to_svm(vcpu);
2261 dt->size = svm->vmcb->save.idtr.limit;
2262 dt->address = svm->vmcb->save.idtr.base;
2265 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2267 struct vcpu_svm *svm = to_svm(vcpu);
2269 svm->vmcb->save.idtr.limit = dt->size;
2270 svm->vmcb->save.idtr.base = dt->address ;
2271 mark_dirty(svm->vmcb, VMCB_DT);
2274 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2276 struct vcpu_svm *svm = to_svm(vcpu);
2278 dt->size = svm->vmcb->save.gdtr.limit;
2279 dt->address = svm->vmcb->save.gdtr.base;
2282 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2284 struct vcpu_svm *svm = to_svm(vcpu);
2286 svm->vmcb->save.gdtr.limit = dt->size;
2287 svm->vmcb->save.gdtr.base = dt->address ;
2288 mark_dirty(svm->vmcb, VMCB_DT);
2291 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2295 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2299 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2303 static void update_cr0_intercept(struct vcpu_svm *svm)
2305 ulong gcr0 = svm->vcpu.arch.cr0;
2306 u64 *hcr0 = &svm->vmcb->save.cr0;
2308 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2309 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2311 mark_dirty(svm->vmcb, VMCB_CR);
2313 if (gcr0 == *hcr0) {
2314 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2315 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2316 } else {
2317 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2318 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2322 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2324 struct vcpu_svm *svm = to_svm(vcpu);
2326 #ifdef CONFIG_X86_64
2327 if (vcpu->arch.efer & EFER_LME) {
2328 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2329 vcpu->arch.efer |= EFER_LMA;
2330 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2333 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2334 vcpu->arch.efer &= ~EFER_LMA;
2335 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2338 #endif
2339 vcpu->arch.cr0 = cr0;
2341 if (!npt_enabled)
2342 cr0 |= X86_CR0_PG | X86_CR0_WP;
2345 * re-enable caching here because the QEMU bios
2346 * does not do it - this results in some delay at
2347 * reboot
2349 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2350 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2351 svm->vmcb->save.cr0 = cr0;
2352 mark_dirty(svm->vmcb, VMCB_CR);
2353 update_cr0_intercept(svm);
2356 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2358 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2359 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2361 if (cr4 & X86_CR4_VMXE)
2362 return 1;
2364 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2365 svm_flush_tlb(vcpu, true);
2367 vcpu->arch.cr4 = cr4;
2368 if (!npt_enabled)
2369 cr4 |= X86_CR4_PAE;
2370 cr4 |= host_cr4_mce;
2371 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2372 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2373 return 0;
2376 static void svm_set_segment(struct kvm_vcpu *vcpu,
2377 struct kvm_segment *var, int seg)
2379 struct vcpu_svm *svm = to_svm(vcpu);
2380 struct vmcb_seg *s = svm_seg(vcpu, seg);
2382 s->base = var->base;
2383 s->limit = var->limit;
2384 s->selector = var->selector;
2385 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2386 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2387 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2388 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2389 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2390 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2391 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2392 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2395 * This is always accurate, except if SYSRET returned to a segment
2396 * with SS.DPL != 3. Intel does not have this quirk, and always
2397 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2398 * would entail passing the CPL to userspace and back.
2400 if (seg == VCPU_SREG_SS)
2401 /* This is symmetric with svm_get_segment() */
2402 svm->vmcb->save.cpl = (var->dpl & 3);
2404 mark_dirty(svm->vmcb, VMCB_SEG);
2407 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2409 struct vcpu_svm *svm = to_svm(vcpu);
2411 clr_exception_intercept(svm, BP_VECTOR);
2413 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2414 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2415 set_exception_intercept(svm, BP_VECTOR);
2416 } else
2417 vcpu->guest_debug = 0;
2420 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2422 if (sd->next_asid > sd->max_asid) {
2423 ++sd->asid_generation;
2424 sd->next_asid = sd->min_asid;
2425 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2428 svm->asid_generation = sd->asid_generation;
2429 svm->vmcb->control.asid = sd->next_asid++;
2431 mark_dirty(svm->vmcb, VMCB_ASID);
2434 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2436 return to_svm(vcpu)->vmcb->save.dr6;
2439 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2441 struct vcpu_svm *svm = to_svm(vcpu);
2443 svm->vmcb->save.dr6 = value;
2444 mark_dirty(svm->vmcb, VMCB_DR);
2447 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2449 struct vcpu_svm *svm = to_svm(vcpu);
2451 get_debugreg(vcpu->arch.db[0], 0);
2452 get_debugreg(vcpu->arch.db[1], 1);
2453 get_debugreg(vcpu->arch.db[2], 2);
2454 get_debugreg(vcpu->arch.db[3], 3);
2455 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2456 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2458 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2459 set_dr_intercepts(svm);
2462 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2464 struct vcpu_svm *svm = to_svm(vcpu);
2466 svm->vmcb->save.dr7 = value;
2467 mark_dirty(svm->vmcb, VMCB_DR);
2470 static int pf_interception(struct vcpu_svm *svm)
2472 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2473 u64 error_code = svm->vmcb->control.exit_info_1;
2475 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2476 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2477 svm->vmcb->control.insn_bytes : NULL,
2478 svm->vmcb->control.insn_len);
2481 static int npf_interception(struct vcpu_svm *svm)
2483 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2484 u64 error_code = svm->vmcb->control.exit_info_1;
2486 trace_kvm_page_fault(fault_address, error_code);
2487 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2488 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2489 svm->vmcb->control.insn_bytes : NULL,
2490 svm->vmcb->control.insn_len);
2493 static int db_interception(struct vcpu_svm *svm)
2495 struct kvm_run *kvm_run = svm->vcpu.run;
2497 if (!(svm->vcpu.guest_debug &
2498 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2499 !svm->nmi_singlestep) {
2500 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2501 return 1;
2504 if (svm->nmi_singlestep) {
2505 disable_nmi_singlestep(svm);
2508 if (svm->vcpu.guest_debug &
2509 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2510 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2511 kvm_run->debug.arch.pc =
2512 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2513 kvm_run->debug.arch.exception = DB_VECTOR;
2514 return 0;
2517 return 1;
2520 static int bp_interception(struct vcpu_svm *svm)
2522 struct kvm_run *kvm_run = svm->vcpu.run;
2524 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2525 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2526 kvm_run->debug.arch.exception = BP_VECTOR;
2527 return 0;
2530 static int ud_interception(struct vcpu_svm *svm)
2532 int er;
2534 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2535 if (er == EMULATE_USER_EXIT)
2536 return 0;
2537 if (er != EMULATE_DONE)
2538 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2539 return 1;
2542 static int ac_interception(struct vcpu_svm *svm)
2544 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2545 return 1;
2548 static bool is_erratum_383(void)
2550 int err, i;
2551 u64 value;
2553 if (!erratum_383_found)
2554 return false;
2556 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2557 if (err)
2558 return false;
2560 /* Bit 62 may or may not be set for this mce */
2561 value &= ~(1ULL << 62);
2563 if (value != 0xb600000000010015ULL)
2564 return false;
2566 /* Clear MCi_STATUS registers */
2567 for (i = 0; i < 6; ++i)
2568 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2570 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2571 if (!err) {
2572 u32 low, high;
2574 value &= ~(1ULL << 2);
2575 low = lower_32_bits(value);
2576 high = upper_32_bits(value);
2578 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2581 /* Flush tlb to evict multi-match entries */
2582 __flush_tlb_all();
2584 return true;
2587 static void svm_handle_mce(struct vcpu_svm *svm)
2589 if (is_erratum_383()) {
2591 * Erratum 383 triggered. Guest state is corrupt so kill the
2592 * guest.
2594 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2596 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2598 return;
2602 * On an #MC intercept the MCE handler is not called automatically in
2603 * the host. So do it by hand here.
2605 asm volatile (
2606 "int $0x12\n");
2607 /* not sure if we ever come back to this point */
2609 return;
2612 static int mc_interception(struct vcpu_svm *svm)
2614 return 1;
2617 static int shutdown_interception(struct vcpu_svm *svm)
2619 struct kvm_run *kvm_run = svm->vcpu.run;
2622 * VMCB is undefined after a SHUTDOWN intercept
2623 * so reinitialize it.
2625 clear_page(svm->vmcb);
2626 init_vmcb(svm);
2628 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2629 return 0;
2632 static int io_interception(struct vcpu_svm *svm)
2634 struct kvm_vcpu *vcpu = &svm->vcpu;
2635 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2636 int size, in, string, ret;
2637 unsigned port;
2639 ++svm->vcpu.stat.io_exits;
2640 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2641 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2642 if (string)
2643 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2645 port = io_info >> 16;
2646 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2647 svm->next_rip = svm->vmcb->control.exit_info_2;
2648 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2651 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2652 * KVM_EXIT_DEBUG here.
2654 if (in)
2655 return kvm_fast_pio_in(vcpu, size, port) && ret;
2656 else
2657 return kvm_fast_pio_out(vcpu, size, port) && ret;
2660 static int nmi_interception(struct vcpu_svm *svm)
2662 return 1;
2665 static int intr_interception(struct vcpu_svm *svm)
2667 ++svm->vcpu.stat.irq_exits;
2668 return 1;
2671 static int nop_on_interception(struct vcpu_svm *svm)
2673 return 1;
2676 static int halt_interception(struct vcpu_svm *svm)
2678 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2679 return kvm_emulate_halt(&svm->vcpu);
2682 static int vmmcall_interception(struct vcpu_svm *svm)
2684 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2685 return kvm_emulate_hypercall(&svm->vcpu);
2688 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2690 struct vcpu_svm *svm = to_svm(vcpu);
2692 return svm->nested.nested_cr3;
2695 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2697 struct vcpu_svm *svm = to_svm(vcpu);
2698 u64 cr3 = svm->nested.nested_cr3;
2699 u64 pdpte;
2700 int ret;
2702 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2703 offset_in_page(cr3) + index * 8, 8);
2704 if (ret)
2705 return 0;
2706 return pdpte;
2709 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2710 unsigned long root)
2712 struct vcpu_svm *svm = to_svm(vcpu);
2714 svm->vmcb->control.nested_cr3 = __sme_set(root);
2715 mark_dirty(svm->vmcb, VMCB_NPT);
2716 svm_flush_tlb(vcpu, true);
2719 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2720 struct x86_exception *fault)
2722 struct vcpu_svm *svm = to_svm(vcpu);
2724 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2726 * TODO: track the cause of the nested page fault, and
2727 * correctly fill in the high bits of exit_info_1.
2729 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2730 svm->vmcb->control.exit_code_hi = 0;
2731 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2732 svm->vmcb->control.exit_info_2 = fault->address;
2735 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2736 svm->vmcb->control.exit_info_1 |= fault->error_code;
2739 * The present bit is always zero for page structure faults on real
2740 * hardware.
2742 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2743 svm->vmcb->control.exit_info_1 &= ~1;
2745 nested_svm_vmexit(svm);
2748 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2750 WARN_ON(mmu_is_nested(vcpu));
2751 kvm_init_shadow_mmu(vcpu);
2752 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2753 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2754 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2755 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2756 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2757 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2758 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2761 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2763 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2766 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2768 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2769 !is_paging(&svm->vcpu)) {
2770 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2771 return 1;
2774 if (svm->vmcb->save.cpl) {
2775 kvm_inject_gp(&svm->vcpu, 0);
2776 return 1;
2779 return 0;
2782 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2783 bool has_error_code, u32 error_code)
2785 int vmexit;
2787 if (!is_guest_mode(&svm->vcpu))
2788 return 0;
2790 vmexit = nested_svm_intercept(svm);
2791 if (vmexit != NESTED_EXIT_DONE)
2792 return 0;
2794 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2795 svm->vmcb->control.exit_code_hi = 0;
2796 svm->vmcb->control.exit_info_1 = error_code;
2799 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2800 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2801 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2802 * written only when inject_pending_event runs (DR6 would written here
2803 * too). This should be conditional on a new capability---if the
2804 * capability is disabled, kvm_multiple_exception would write the
2805 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2807 if (svm->vcpu.arch.exception.nested_apf)
2808 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2809 else
2810 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2812 svm->nested.exit_required = true;
2813 return vmexit;
2816 /* This function returns true if it is save to enable the irq window */
2817 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2819 if (!is_guest_mode(&svm->vcpu))
2820 return true;
2822 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2823 return true;
2825 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2826 return false;
2829 * if vmexit was already requested (by intercepted exception
2830 * for instance) do not overwrite it with "external interrupt"
2831 * vmexit.
2833 if (svm->nested.exit_required)
2834 return false;
2836 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2837 svm->vmcb->control.exit_info_1 = 0;
2838 svm->vmcb->control.exit_info_2 = 0;
2840 if (svm->nested.intercept & 1ULL) {
2842 * The #vmexit can't be emulated here directly because this
2843 * code path runs with irqs and preemption disabled. A
2844 * #vmexit emulation might sleep. Only signal request for
2845 * the #vmexit here.
2847 svm->nested.exit_required = true;
2848 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2849 return false;
2852 return true;
2855 /* This function returns true if it is save to enable the nmi window */
2856 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2858 if (!is_guest_mode(&svm->vcpu))
2859 return true;
2861 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2862 return true;
2864 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2865 svm->nested.exit_required = true;
2867 return false;
2870 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2872 struct page *page;
2874 might_sleep();
2876 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2877 if (is_error_page(page))
2878 goto error;
2880 *_page = page;
2882 return kmap(page);
2884 error:
2885 kvm_inject_gp(&svm->vcpu, 0);
2887 return NULL;
2890 static void nested_svm_unmap(struct page *page)
2892 kunmap(page);
2893 kvm_release_page_dirty(page);
2896 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2898 unsigned port, size, iopm_len;
2899 u16 val, mask;
2900 u8 start_bit;
2901 u64 gpa;
2903 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2904 return NESTED_EXIT_HOST;
2906 port = svm->vmcb->control.exit_info_1 >> 16;
2907 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2908 SVM_IOIO_SIZE_SHIFT;
2909 gpa = svm->nested.vmcb_iopm + (port / 8);
2910 start_bit = port % 8;
2911 iopm_len = (start_bit + size > 8) ? 2 : 1;
2912 mask = (0xf >> (4 - size)) << start_bit;
2913 val = 0;
2915 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2916 return NESTED_EXIT_DONE;
2918 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2921 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2923 u32 offset, msr, value;
2924 int write, mask;
2926 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2927 return NESTED_EXIT_HOST;
2929 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2930 offset = svm_msrpm_offset(msr);
2931 write = svm->vmcb->control.exit_info_1 & 1;
2932 mask = 1 << ((2 * (msr & 0xf)) + write);
2934 if (offset == MSR_INVALID)
2935 return NESTED_EXIT_DONE;
2937 /* Offset is in 32 bit units but need in 8 bit units */
2938 offset *= 4;
2940 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2941 return NESTED_EXIT_DONE;
2943 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2946 /* DB exceptions for our internal use must not cause vmexit */
2947 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2949 unsigned long dr6;
2951 /* if we're not singlestepping, it's not ours */
2952 if (!svm->nmi_singlestep)
2953 return NESTED_EXIT_DONE;
2955 /* if it's not a singlestep exception, it's not ours */
2956 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2957 return NESTED_EXIT_DONE;
2958 if (!(dr6 & DR6_BS))
2959 return NESTED_EXIT_DONE;
2961 /* if the guest is singlestepping, it should get the vmexit */
2962 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2963 disable_nmi_singlestep(svm);
2964 return NESTED_EXIT_DONE;
2967 /* it's ours, the nested hypervisor must not see this one */
2968 return NESTED_EXIT_HOST;
2971 static int nested_svm_exit_special(struct vcpu_svm *svm)
2973 u32 exit_code = svm->vmcb->control.exit_code;
2975 switch (exit_code) {
2976 case SVM_EXIT_INTR:
2977 case SVM_EXIT_NMI:
2978 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2979 return NESTED_EXIT_HOST;
2980 case SVM_EXIT_NPF:
2981 /* For now we are always handling NPFs when using them */
2982 if (npt_enabled)
2983 return NESTED_EXIT_HOST;
2984 break;
2985 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2986 /* When we're shadowing, trap PFs, but not async PF */
2987 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2988 return NESTED_EXIT_HOST;
2989 break;
2990 default:
2991 break;
2994 return NESTED_EXIT_CONTINUE;
2998 * If this function returns true, this #vmexit was already handled
3000 static int nested_svm_intercept(struct vcpu_svm *svm)
3002 u32 exit_code = svm->vmcb->control.exit_code;
3003 int vmexit = NESTED_EXIT_HOST;
3005 switch (exit_code) {
3006 case SVM_EXIT_MSR:
3007 vmexit = nested_svm_exit_handled_msr(svm);
3008 break;
3009 case SVM_EXIT_IOIO:
3010 vmexit = nested_svm_intercept_ioio(svm);
3011 break;
3012 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3013 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3014 if (svm->nested.intercept_cr & bit)
3015 vmexit = NESTED_EXIT_DONE;
3016 break;
3018 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3019 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3020 if (svm->nested.intercept_dr & bit)
3021 vmexit = NESTED_EXIT_DONE;
3022 break;
3024 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3025 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3026 if (svm->nested.intercept_exceptions & excp_bits) {
3027 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3028 vmexit = nested_svm_intercept_db(svm);
3029 else
3030 vmexit = NESTED_EXIT_DONE;
3032 /* async page fault always cause vmexit */
3033 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3034 svm->vcpu.arch.exception.nested_apf != 0)
3035 vmexit = NESTED_EXIT_DONE;
3036 break;
3038 case SVM_EXIT_ERR: {
3039 vmexit = NESTED_EXIT_DONE;
3040 break;
3042 default: {
3043 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3044 if (svm->nested.intercept & exit_bits)
3045 vmexit = NESTED_EXIT_DONE;
3049 return vmexit;
3052 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3054 int vmexit;
3056 vmexit = nested_svm_intercept(svm);
3058 if (vmexit == NESTED_EXIT_DONE)
3059 nested_svm_vmexit(svm);
3061 return vmexit;
3064 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3066 struct vmcb_control_area *dst = &dst_vmcb->control;
3067 struct vmcb_control_area *from = &from_vmcb->control;
3069 dst->intercept_cr = from->intercept_cr;
3070 dst->intercept_dr = from->intercept_dr;
3071 dst->intercept_exceptions = from->intercept_exceptions;
3072 dst->intercept = from->intercept;
3073 dst->iopm_base_pa = from->iopm_base_pa;
3074 dst->msrpm_base_pa = from->msrpm_base_pa;
3075 dst->tsc_offset = from->tsc_offset;
3076 dst->asid = from->asid;
3077 dst->tlb_ctl = from->tlb_ctl;
3078 dst->int_ctl = from->int_ctl;
3079 dst->int_vector = from->int_vector;
3080 dst->int_state = from->int_state;
3081 dst->exit_code = from->exit_code;
3082 dst->exit_code_hi = from->exit_code_hi;
3083 dst->exit_info_1 = from->exit_info_1;
3084 dst->exit_info_2 = from->exit_info_2;
3085 dst->exit_int_info = from->exit_int_info;
3086 dst->exit_int_info_err = from->exit_int_info_err;
3087 dst->nested_ctl = from->nested_ctl;
3088 dst->event_inj = from->event_inj;
3089 dst->event_inj_err = from->event_inj_err;
3090 dst->nested_cr3 = from->nested_cr3;
3091 dst->virt_ext = from->virt_ext;
3094 static int nested_svm_vmexit(struct vcpu_svm *svm)
3096 struct vmcb *nested_vmcb;
3097 struct vmcb *hsave = svm->nested.hsave;
3098 struct vmcb *vmcb = svm->vmcb;
3099 struct page *page;
3101 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3102 vmcb->control.exit_info_1,
3103 vmcb->control.exit_info_2,
3104 vmcb->control.exit_int_info,
3105 vmcb->control.exit_int_info_err,
3106 KVM_ISA_SVM);
3108 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3109 if (!nested_vmcb)
3110 return 1;
3112 /* Exit Guest-Mode */
3113 leave_guest_mode(&svm->vcpu);
3114 svm->nested.vmcb = 0;
3116 /* Give the current vmcb to the guest */
3117 disable_gif(svm);
3119 nested_vmcb->save.es = vmcb->save.es;
3120 nested_vmcb->save.cs = vmcb->save.cs;
3121 nested_vmcb->save.ss = vmcb->save.ss;
3122 nested_vmcb->save.ds = vmcb->save.ds;
3123 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3124 nested_vmcb->save.idtr = vmcb->save.idtr;
3125 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3126 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3127 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3128 nested_vmcb->save.cr2 = vmcb->save.cr2;
3129 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3130 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3131 nested_vmcb->save.rip = vmcb->save.rip;
3132 nested_vmcb->save.rsp = vmcb->save.rsp;
3133 nested_vmcb->save.rax = vmcb->save.rax;
3134 nested_vmcb->save.dr7 = vmcb->save.dr7;
3135 nested_vmcb->save.dr6 = vmcb->save.dr6;
3136 nested_vmcb->save.cpl = vmcb->save.cpl;
3138 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3139 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3140 nested_vmcb->control.int_state = vmcb->control.int_state;
3141 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3142 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3143 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3144 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3145 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3146 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3148 if (svm->nrips_enabled)
3149 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3152 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3153 * to make sure that we do not lose injected events. So check event_inj
3154 * here and copy it to exit_int_info if it is valid.
3155 * Exit_int_info and event_inj can't be both valid because the case
3156 * below only happens on a VMRUN instruction intercept which has
3157 * no valid exit_int_info set.
3159 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3160 struct vmcb_control_area *nc = &nested_vmcb->control;
3162 nc->exit_int_info = vmcb->control.event_inj;
3163 nc->exit_int_info_err = vmcb->control.event_inj_err;
3166 nested_vmcb->control.tlb_ctl = 0;
3167 nested_vmcb->control.event_inj = 0;
3168 nested_vmcb->control.event_inj_err = 0;
3170 /* We always set V_INTR_MASKING and remember the old value in hflags */
3171 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3172 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3174 /* Restore the original control entries */
3175 copy_vmcb_control_area(vmcb, hsave);
3177 kvm_clear_exception_queue(&svm->vcpu);
3178 kvm_clear_interrupt_queue(&svm->vcpu);
3180 svm->nested.nested_cr3 = 0;
3182 /* Restore selected save entries */
3183 svm->vmcb->save.es = hsave->save.es;
3184 svm->vmcb->save.cs = hsave->save.cs;
3185 svm->vmcb->save.ss = hsave->save.ss;
3186 svm->vmcb->save.ds = hsave->save.ds;
3187 svm->vmcb->save.gdtr = hsave->save.gdtr;
3188 svm->vmcb->save.idtr = hsave->save.idtr;
3189 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3190 svm_set_efer(&svm->vcpu, hsave->save.efer);
3191 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3192 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3193 if (npt_enabled) {
3194 svm->vmcb->save.cr3 = hsave->save.cr3;
3195 svm->vcpu.arch.cr3 = hsave->save.cr3;
3196 } else {
3197 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3199 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3200 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3201 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3202 svm->vmcb->save.dr7 = 0;
3203 svm->vmcb->save.cpl = 0;
3204 svm->vmcb->control.exit_int_info = 0;
3206 mark_all_dirty(svm->vmcb);
3208 nested_svm_unmap(page);
3210 nested_svm_uninit_mmu_context(&svm->vcpu);
3211 kvm_mmu_reset_context(&svm->vcpu);
3212 kvm_mmu_load(&svm->vcpu);
3214 return 0;
3217 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3220 * This function merges the msr permission bitmaps of kvm and the
3221 * nested vmcb. It is optimized in that it only merges the parts where
3222 * the kvm msr permission bitmap may contain zero bits
3224 int i;
3226 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3227 return true;
3229 for (i = 0; i < MSRPM_OFFSETS; i++) {
3230 u32 value, p;
3231 u64 offset;
3233 if (msrpm_offsets[i] == 0xffffffff)
3234 break;
3236 p = msrpm_offsets[i];
3237 offset = svm->nested.vmcb_msrpm + (p * 4);
3239 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3240 return false;
3242 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3245 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3247 return true;
3250 static bool nested_vmcb_checks(struct vmcb *vmcb)
3252 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3253 return false;
3255 if (vmcb->control.asid == 0)
3256 return false;
3258 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3259 !npt_enabled)
3260 return false;
3262 return true;
3265 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3266 struct vmcb *nested_vmcb, struct page *page)
3268 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3269 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3270 else
3271 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3273 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3274 kvm_mmu_unload(&svm->vcpu);
3275 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3276 nested_svm_init_mmu_context(&svm->vcpu);
3279 /* Load the nested guest state */
3280 svm->vmcb->save.es = nested_vmcb->save.es;
3281 svm->vmcb->save.cs = nested_vmcb->save.cs;
3282 svm->vmcb->save.ss = nested_vmcb->save.ss;
3283 svm->vmcb->save.ds = nested_vmcb->save.ds;
3284 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3285 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3286 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3287 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3288 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3289 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3290 if (npt_enabled) {
3291 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3292 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3293 } else
3294 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3296 /* Guest paging mode is active - reset mmu */
3297 kvm_mmu_reset_context(&svm->vcpu);
3299 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3300 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3301 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3302 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3304 /* In case we don't even reach vcpu_run, the fields are not updated */
3305 svm->vmcb->save.rax = nested_vmcb->save.rax;
3306 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3307 svm->vmcb->save.rip = nested_vmcb->save.rip;
3308 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3309 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3310 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3312 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3313 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3315 /* cache intercepts */
3316 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3317 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3318 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3319 svm->nested.intercept = nested_vmcb->control.intercept;
3321 svm_flush_tlb(&svm->vcpu, true);
3322 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3323 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3324 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3325 else
3326 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3328 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3329 /* We only want the cr8 intercept bits of the guest */
3330 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3331 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3334 /* We don't want to see VMMCALLs from a nested guest */
3335 clr_intercept(svm, INTERCEPT_VMMCALL);
3337 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3338 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3339 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3340 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3341 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3342 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3344 nested_svm_unmap(page);
3346 /* Enter Guest-Mode */
3347 enter_guest_mode(&svm->vcpu);
3350 * Merge guest and host intercepts - must be called with vcpu in
3351 * guest-mode to take affect here
3353 recalc_intercepts(svm);
3355 svm->nested.vmcb = vmcb_gpa;
3357 enable_gif(svm);
3359 mark_all_dirty(svm->vmcb);
3362 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3364 struct vmcb *nested_vmcb;
3365 struct vmcb *hsave = svm->nested.hsave;
3366 struct vmcb *vmcb = svm->vmcb;
3367 struct page *page;
3368 u64 vmcb_gpa;
3370 vmcb_gpa = svm->vmcb->save.rax;
3372 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3373 if (!nested_vmcb)
3374 return false;
3376 if (!nested_vmcb_checks(nested_vmcb)) {
3377 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3378 nested_vmcb->control.exit_code_hi = 0;
3379 nested_vmcb->control.exit_info_1 = 0;
3380 nested_vmcb->control.exit_info_2 = 0;
3382 nested_svm_unmap(page);
3384 return false;
3387 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3388 nested_vmcb->save.rip,
3389 nested_vmcb->control.int_ctl,
3390 nested_vmcb->control.event_inj,
3391 nested_vmcb->control.nested_ctl);
3393 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3394 nested_vmcb->control.intercept_cr >> 16,
3395 nested_vmcb->control.intercept_exceptions,
3396 nested_vmcb->control.intercept);
3398 /* Clear internal status */
3399 kvm_clear_exception_queue(&svm->vcpu);
3400 kvm_clear_interrupt_queue(&svm->vcpu);
3403 * Save the old vmcb, so we don't need to pick what we save, but can
3404 * restore everything when a VMEXIT occurs
3406 hsave->save.es = vmcb->save.es;
3407 hsave->save.cs = vmcb->save.cs;
3408 hsave->save.ss = vmcb->save.ss;
3409 hsave->save.ds = vmcb->save.ds;
3410 hsave->save.gdtr = vmcb->save.gdtr;
3411 hsave->save.idtr = vmcb->save.idtr;
3412 hsave->save.efer = svm->vcpu.arch.efer;
3413 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3414 hsave->save.cr4 = svm->vcpu.arch.cr4;
3415 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3416 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3417 hsave->save.rsp = vmcb->save.rsp;
3418 hsave->save.rax = vmcb->save.rax;
3419 if (npt_enabled)
3420 hsave->save.cr3 = vmcb->save.cr3;
3421 else
3422 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3424 copy_vmcb_control_area(hsave, vmcb);
3426 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3428 return true;
3431 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3433 to_vmcb->save.fs = from_vmcb->save.fs;
3434 to_vmcb->save.gs = from_vmcb->save.gs;
3435 to_vmcb->save.tr = from_vmcb->save.tr;
3436 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3437 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3438 to_vmcb->save.star = from_vmcb->save.star;
3439 to_vmcb->save.lstar = from_vmcb->save.lstar;
3440 to_vmcb->save.cstar = from_vmcb->save.cstar;
3441 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3442 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3443 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3444 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3447 static int vmload_interception(struct vcpu_svm *svm)
3449 struct vmcb *nested_vmcb;
3450 struct page *page;
3451 int ret;
3453 if (nested_svm_check_permissions(svm))
3454 return 1;
3456 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3457 if (!nested_vmcb)
3458 return 1;
3460 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3461 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3463 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3464 nested_svm_unmap(page);
3466 return ret;
3469 static int vmsave_interception(struct vcpu_svm *svm)
3471 struct vmcb *nested_vmcb;
3472 struct page *page;
3473 int ret;
3475 if (nested_svm_check_permissions(svm))
3476 return 1;
3478 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3479 if (!nested_vmcb)
3480 return 1;
3482 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3483 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3485 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3486 nested_svm_unmap(page);
3488 return ret;
3491 static int vmrun_interception(struct vcpu_svm *svm)
3493 if (nested_svm_check_permissions(svm))
3494 return 1;
3496 /* Save rip after vmrun instruction */
3497 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3499 if (!nested_svm_vmrun(svm))
3500 return 1;
3502 if (!nested_svm_vmrun_msrpm(svm))
3503 goto failed;
3505 return 1;
3507 failed:
3509 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3510 svm->vmcb->control.exit_code_hi = 0;
3511 svm->vmcb->control.exit_info_1 = 0;
3512 svm->vmcb->control.exit_info_2 = 0;
3514 nested_svm_vmexit(svm);
3516 return 1;
3519 static int stgi_interception(struct vcpu_svm *svm)
3521 int ret;
3523 if (nested_svm_check_permissions(svm))
3524 return 1;
3527 * If VGIF is enabled, the STGI intercept is only added to
3528 * detect the opening of the SMI/NMI window; remove it now.
3530 if (vgif_enabled(svm))
3531 clr_intercept(svm, INTERCEPT_STGI);
3533 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3534 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3535 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3537 enable_gif(svm);
3539 return ret;
3542 static int clgi_interception(struct vcpu_svm *svm)
3544 int ret;
3546 if (nested_svm_check_permissions(svm))
3547 return 1;
3549 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3550 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3552 disable_gif(svm);
3554 /* After a CLGI no interrupts should come */
3555 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3556 svm_clear_vintr(svm);
3557 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3558 mark_dirty(svm->vmcb, VMCB_INTR);
3561 return ret;
3564 static int invlpga_interception(struct vcpu_svm *svm)
3566 struct kvm_vcpu *vcpu = &svm->vcpu;
3568 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3569 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3571 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3572 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3574 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3575 return kvm_skip_emulated_instruction(&svm->vcpu);
3578 static int skinit_interception(struct vcpu_svm *svm)
3580 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3582 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3583 return 1;
3586 static int wbinvd_interception(struct vcpu_svm *svm)
3588 return kvm_emulate_wbinvd(&svm->vcpu);
3591 static int xsetbv_interception(struct vcpu_svm *svm)
3593 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3594 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3596 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3597 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3598 return kvm_skip_emulated_instruction(&svm->vcpu);
3601 return 1;
3604 static int task_switch_interception(struct vcpu_svm *svm)
3606 u16 tss_selector;
3607 int reason;
3608 int int_type = svm->vmcb->control.exit_int_info &
3609 SVM_EXITINTINFO_TYPE_MASK;
3610 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3611 uint32_t type =
3612 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3613 uint32_t idt_v =
3614 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3615 bool has_error_code = false;
3616 u32 error_code = 0;
3618 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3620 if (svm->vmcb->control.exit_info_2 &
3621 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3622 reason = TASK_SWITCH_IRET;
3623 else if (svm->vmcb->control.exit_info_2 &
3624 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3625 reason = TASK_SWITCH_JMP;
3626 else if (idt_v)
3627 reason = TASK_SWITCH_GATE;
3628 else
3629 reason = TASK_SWITCH_CALL;
3631 if (reason == TASK_SWITCH_GATE) {
3632 switch (type) {
3633 case SVM_EXITINTINFO_TYPE_NMI:
3634 svm->vcpu.arch.nmi_injected = false;
3635 break;
3636 case SVM_EXITINTINFO_TYPE_EXEPT:
3637 if (svm->vmcb->control.exit_info_2 &
3638 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3639 has_error_code = true;
3640 error_code =
3641 (u32)svm->vmcb->control.exit_info_2;
3643 kvm_clear_exception_queue(&svm->vcpu);
3644 break;
3645 case SVM_EXITINTINFO_TYPE_INTR:
3646 kvm_clear_interrupt_queue(&svm->vcpu);
3647 break;
3648 default:
3649 break;
3653 if (reason != TASK_SWITCH_GATE ||
3654 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3655 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3656 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3657 skip_emulated_instruction(&svm->vcpu);
3659 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3660 int_vec = -1;
3662 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3663 has_error_code, error_code) == EMULATE_FAIL) {
3664 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3665 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3666 svm->vcpu.run->internal.ndata = 0;
3667 return 0;
3669 return 1;
3672 static int cpuid_interception(struct vcpu_svm *svm)
3674 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3675 return kvm_emulate_cpuid(&svm->vcpu);
3678 static int iret_interception(struct vcpu_svm *svm)
3680 ++svm->vcpu.stat.nmi_window_exits;
3681 clr_intercept(svm, INTERCEPT_IRET);
3682 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3683 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3684 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3685 return 1;
3688 static int invlpg_interception(struct vcpu_svm *svm)
3690 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3691 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3693 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3694 return kvm_skip_emulated_instruction(&svm->vcpu);
3697 static int emulate_on_interception(struct vcpu_svm *svm)
3699 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3702 static int rdpmc_interception(struct vcpu_svm *svm)
3704 int err;
3706 if (!static_cpu_has(X86_FEATURE_NRIPS))
3707 return emulate_on_interception(svm);
3709 err = kvm_rdpmc(&svm->vcpu);
3710 return kvm_complete_insn_gp(&svm->vcpu, err);
3713 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3714 unsigned long val)
3716 unsigned long cr0 = svm->vcpu.arch.cr0;
3717 bool ret = false;
3718 u64 intercept;
3720 intercept = svm->nested.intercept;
3722 if (!is_guest_mode(&svm->vcpu) ||
3723 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3724 return false;
3726 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3727 val &= ~SVM_CR0_SELECTIVE_MASK;
3729 if (cr0 ^ val) {
3730 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3731 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3734 return ret;
3737 #define CR_VALID (1ULL << 63)
3739 static int cr_interception(struct vcpu_svm *svm)
3741 int reg, cr;
3742 unsigned long val;
3743 int err;
3745 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3746 return emulate_on_interception(svm);
3748 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3749 return emulate_on_interception(svm);
3751 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3752 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3753 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3754 else
3755 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3757 err = 0;
3758 if (cr >= 16) { /* mov to cr */
3759 cr -= 16;
3760 val = kvm_register_read(&svm->vcpu, reg);
3761 switch (cr) {
3762 case 0:
3763 if (!check_selective_cr0_intercepted(svm, val))
3764 err = kvm_set_cr0(&svm->vcpu, val);
3765 else
3766 return 1;
3768 break;
3769 case 3:
3770 err = kvm_set_cr3(&svm->vcpu, val);
3771 break;
3772 case 4:
3773 err = kvm_set_cr4(&svm->vcpu, val);
3774 break;
3775 case 8:
3776 err = kvm_set_cr8(&svm->vcpu, val);
3777 break;
3778 default:
3779 WARN(1, "unhandled write to CR%d", cr);
3780 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3781 return 1;
3783 } else { /* mov from cr */
3784 switch (cr) {
3785 case 0:
3786 val = kvm_read_cr0(&svm->vcpu);
3787 break;
3788 case 2:
3789 val = svm->vcpu.arch.cr2;
3790 break;
3791 case 3:
3792 val = kvm_read_cr3(&svm->vcpu);
3793 break;
3794 case 4:
3795 val = kvm_read_cr4(&svm->vcpu);
3796 break;
3797 case 8:
3798 val = kvm_get_cr8(&svm->vcpu);
3799 break;
3800 default:
3801 WARN(1, "unhandled read from CR%d", cr);
3802 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3803 return 1;
3805 kvm_register_write(&svm->vcpu, reg, val);
3807 return kvm_complete_insn_gp(&svm->vcpu, err);
3810 static int dr_interception(struct vcpu_svm *svm)
3812 int reg, dr;
3813 unsigned long val;
3815 if (svm->vcpu.guest_debug == 0) {
3817 * No more DR vmexits; force a reload of the debug registers
3818 * and reenter on this instruction. The next vmexit will
3819 * retrieve the full state of the debug registers.
3821 clr_dr_intercepts(svm);
3822 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3823 return 1;
3826 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3827 return emulate_on_interception(svm);
3829 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3830 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3832 if (dr >= 16) { /* mov to DRn */
3833 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3834 return 1;
3835 val = kvm_register_read(&svm->vcpu, reg);
3836 kvm_set_dr(&svm->vcpu, dr - 16, val);
3837 } else {
3838 if (!kvm_require_dr(&svm->vcpu, dr))
3839 return 1;
3840 kvm_get_dr(&svm->vcpu, dr, &val);
3841 kvm_register_write(&svm->vcpu, reg, val);
3844 return kvm_skip_emulated_instruction(&svm->vcpu);
3847 static int cr8_write_interception(struct vcpu_svm *svm)
3849 struct kvm_run *kvm_run = svm->vcpu.run;
3850 int r;
3852 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3853 /* instruction emulation calls kvm_set_cr8() */
3854 r = cr_interception(svm);
3855 if (lapic_in_kernel(&svm->vcpu))
3856 return r;
3857 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3858 return r;
3859 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3860 return 0;
3863 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3865 struct vcpu_svm *svm = to_svm(vcpu);
3867 switch (msr_info->index) {
3868 case MSR_IA32_TSC: {
3869 msr_info->data = svm->vmcb->control.tsc_offset +
3870 kvm_scale_tsc(vcpu, rdtsc());
3872 break;
3874 case MSR_STAR:
3875 msr_info->data = svm->vmcb->save.star;
3876 break;
3877 #ifdef CONFIG_X86_64
3878 case MSR_LSTAR:
3879 msr_info->data = svm->vmcb->save.lstar;
3880 break;
3881 case MSR_CSTAR:
3882 msr_info->data = svm->vmcb->save.cstar;
3883 break;
3884 case MSR_KERNEL_GS_BASE:
3885 msr_info->data = svm->vmcb->save.kernel_gs_base;
3886 break;
3887 case MSR_SYSCALL_MASK:
3888 msr_info->data = svm->vmcb->save.sfmask;
3889 break;
3890 #endif
3891 case MSR_IA32_SYSENTER_CS:
3892 msr_info->data = svm->vmcb->save.sysenter_cs;
3893 break;
3894 case MSR_IA32_SYSENTER_EIP:
3895 msr_info->data = svm->sysenter_eip;
3896 break;
3897 case MSR_IA32_SYSENTER_ESP:
3898 msr_info->data = svm->sysenter_esp;
3899 break;
3900 case MSR_TSC_AUX:
3901 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3902 return 1;
3903 msr_info->data = svm->tsc_aux;
3904 break;
3906 * Nobody will change the following 5 values in the VMCB so we can
3907 * safely return them on rdmsr. They will always be 0 until LBRV is
3908 * implemented.
3910 case MSR_IA32_DEBUGCTLMSR:
3911 msr_info->data = svm->vmcb->save.dbgctl;
3912 break;
3913 case MSR_IA32_LASTBRANCHFROMIP:
3914 msr_info->data = svm->vmcb->save.br_from;
3915 break;
3916 case MSR_IA32_LASTBRANCHTOIP:
3917 msr_info->data = svm->vmcb->save.br_to;
3918 break;
3919 case MSR_IA32_LASTINTFROMIP:
3920 msr_info->data = svm->vmcb->save.last_excp_from;
3921 break;
3922 case MSR_IA32_LASTINTTOIP:
3923 msr_info->data = svm->vmcb->save.last_excp_to;
3924 break;
3925 case MSR_VM_HSAVE_PA:
3926 msr_info->data = svm->nested.hsave_msr;
3927 break;
3928 case MSR_VM_CR:
3929 msr_info->data = svm->nested.vm_cr_msr;
3930 break;
3931 case MSR_IA32_SPEC_CTRL:
3932 if (!msr_info->host_initiated &&
3933 !guest_cpuid_has(vcpu, X86_FEATURE_IBRS))
3934 return 1;
3936 msr_info->data = svm->spec_ctrl;
3937 break;
3938 case MSR_IA32_UCODE_REV:
3939 msr_info->data = 0x01000065;
3940 break;
3941 case MSR_F15H_IC_CFG: {
3943 int family, model;
3945 family = guest_cpuid_family(vcpu);
3946 model = guest_cpuid_model(vcpu);
3948 if (family < 0 || model < 0)
3949 return kvm_get_msr_common(vcpu, msr_info);
3951 msr_info->data = 0;
3953 if (family == 0x15 &&
3954 (model >= 0x2 && model < 0x20))
3955 msr_info->data = 0x1E;
3957 break;
3958 default:
3959 return kvm_get_msr_common(vcpu, msr_info);
3961 return 0;
3964 static int rdmsr_interception(struct vcpu_svm *svm)
3966 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3967 struct msr_data msr_info;
3969 msr_info.index = ecx;
3970 msr_info.host_initiated = false;
3971 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3972 trace_kvm_msr_read_ex(ecx);
3973 kvm_inject_gp(&svm->vcpu, 0);
3974 return 1;
3975 } else {
3976 trace_kvm_msr_read(ecx, msr_info.data);
3978 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3979 msr_info.data & 0xffffffff);
3980 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3981 msr_info.data >> 32);
3982 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3983 return kvm_skip_emulated_instruction(&svm->vcpu);
3987 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3989 struct vcpu_svm *svm = to_svm(vcpu);
3990 int svm_dis, chg_mask;
3992 if (data & ~SVM_VM_CR_VALID_MASK)
3993 return 1;
3995 chg_mask = SVM_VM_CR_VALID_MASK;
3997 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3998 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4000 svm->nested.vm_cr_msr &= ~chg_mask;
4001 svm->nested.vm_cr_msr |= (data & chg_mask);
4003 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4005 /* check for svm_disable while efer.svme is set */
4006 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4007 return 1;
4009 return 0;
4012 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4014 struct vcpu_svm *svm = to_svm(vcpu);
4016 u32 ecx = msr->index;
4017 u64 data = msr->data;
4018 switch (ecx) {
4019 case MSR_IA32_CR_PAT:
4020 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4021 return 1;
4022 vcpu->arch.pat = data;
4023 svm->vmcb->save.g_pat = data;
4024 mark_dirty(svm->vmcb, VMCB_NPT);
4025 break;
4026 case MSR_IA32_TSC:
4027 kvm_write_tsc(vcpu, msr);
4028 break;
4029 case MSR_IA32_SPEC_CTRL:
4030 if (!msr->host_initiated &&
4031 !guest_cpuid_has(vcpu, X86_FEATURE_IBRS))
4032 return 1;
4034 /* The STIBP bit doesn't fault even if it's not advertised */
4035 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP))
4036 return 1;
4038 svm->spec_ctrl = data;
4040 if (!data)
4041 break;
4044 * For non-nested:
4045 * When it's written (to non-zero) for the first time, pass
4046 * it through.
4048 * For nested:
4049 * The handling of the MSR bitmap for L2 guests is done in
4050 * nested_svm_vmrun_msrpm.
4051 * We update the L1 MSR bit as well since it will end up
4052 * touching the MSR anyway now.
4054 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4055 break;
4056 case MSR_IA32_PRED_CMD:
4057 if (!msr->host_initiated &&
4058 !guest_cpuid_has(vcpu, X86_FEATURE_IBPB))
4059 return 1;
4061 if (data & ~PRED_CMD_IBPB)
4062 return 1;
4064 if (!data)
4065 break;
4067 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4068 if (is_guest_mode(vcpu))
4069 break;
4070 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4071 break;
4072 case MSR_STAR:
4073 svm->vmcb->save.star = data;
4074 break;
4075 #ifdef CONFIG_X86_64
4076 case MSR_LSTAR:
4077 svm->vmcb->save.lstar = data;
4078 break;
4079 case MSR_CSTAR:
4080 svm->vmcb->save.cstar = data;
4081 break;
4082 case MSR_KERNEL_GS_BASE:
4083 svm->vmcb->save.kernel_gs_base = data;
4084 break;
4085 case MSR_SYSCALL_MASK:
4086 svm->vmcb->save.sfmask = data;
4087 break;
4088 #endif
4089 case MSR_IA32_SYSENTER_CS:
4090 svm->vmcb->save.sysenter_cs = data;
4091 break;
4092 case MSR_IA32_SYSENTER_EIP:
4093 svm->sysenter_eip = data;
4094 svm->vmcb->save.sysenter_eip = data;
4095 break;
4096 case MSR_IA32_SYSENTER_ESP:
4097 svm->sysenter_esp = data;
4098 svm->vmcb->save.sysenter_esp = data;
4099 break;
4100 case MSR_TSC_AUX:
4101 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4102 return 1;
4105 * This is rare, so we update the MSR here instead of using
4106 * direct_access_msrs. Doing that would require a rdmsr in
4107 * svm_vcpu_put.
4109 svm->tsc_aux = data;
4110 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4111 break;
4112 case MSR_IA32_DEBUGCTLMSR:
4113 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4114 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4115 __func__, data);
4116 break;
4118 if (data & DEBUGCTL_RESERVED_BITS)
4119 return 1;
4121 svm->vmcb->save.dbgctl = data;
4122 mark_dirty(svm->vmcb, VMCB_LBR);
4123 if (data & (1ULL<<0))
4124 svm_enable_lbrv(svm);
4125 else
4126 svm_disable_lbrv(svm);
4127 break;
4128 case MSR_VM_HSAVE_PA:
4129 svm->nested.hsave_msr = data;
4130 break;
4131 case MSR_VM_CR:
4132 return svm_set_vm_cr(vcpu, data);
4133 case MSR_VM_IGNNE:
4134 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4135 break;
4136 case MSR_IA32_APICBASE:
4137 if (kvm_vcpu_apicv_active(vcpu))
4138 avic_update_vapic_bar(to_svm(vcpu), data);
4139 /* Follow through */
4140 default:
4141 return kvm_set_msr_common(vcpu, msr);
4143 return 0;
4146 static int wrmsr_interception(struct vcpu_svm *svm)
4148 struct msr_data msr;
4149 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4150 u64 data = kvm_read_edx_eax(&svm->vcpu);
4152 msr.data = data;
4153 msr.index = ecx;
4154 msr.host_initiated = false;
4156 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4157 if (kvm_set_msr(&svm->vcpu, &msr)) {
4158 trace_kvm_msr_write_ex(ecx, data);
4159 kvm_inject_gp(&svm->vcpu, 0);
4160 return 1;
4161 } else {
4162 trace_kvm_msr_write(ecx, data);
4163 return kvm_skip_emulated_instruction(&svm->vcpu);
4167 static int msr_interception(struct vcpu_svm *svm)
4169 if (svm->vmcb->control.exit_info_1)
4170 return wrmsr_interception(svm);
4171 else
4172 return rdmsr_interception(svm);
4175 static int interrupt_window_interception(struct vcpu_svm *svm)
4177 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4178 svm_clear_vintr(svm);
4179 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4180 mark_dirty(svm->vmcb, VMCB_INTR);
4181 ++svm->vcpu.stat.irq_window_exits;
4182 return 1;
4185 static int pause_interception(struct vcpu_svm *svm)
4187 struct kvm_vcpu *vcpu = &svm->vcpu;
4188 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4190 kvm_vcpu_on_spin(vcpu, in_kernel);
4191 return 1;
4194 static int nop_interception(struct vcpu_svm *svm)
4196 return kvm_skip_emulated_instruction(&(svm->vcpu));
4199 static int monitor_interception(struct vcpu_svm *svm)
4201 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4202 return nop_interception(svm);
4205 static int mwait_interception(struct vcpu_svm *svm)
4207 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4208 return nop_interception(svm);
4211 enum avic_ipi_failure_cause {
4212 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4213 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4214 AVIC_IPI_FAILURE_INVALID_TARGET,
4215 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4218 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4220 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4221 u32 icrl = svm->vmcb->control.exit_info_1;
4222 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4223 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4224 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4226 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4228 switch (id) {
4229 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4231 * AVIC hardware handles the generation of
4232 * IPIs when the specified Message Type is Fixed
4233 * (also known as fixed delivery mode) and
4234 * the Trigger Mode is edge-triggered. The hardware
4235 * also supports self and broadcast delivery modes
4236 * specified via the Destination Shorthand(DSH)
4237 * field of the ICRL. Logical and physical APIC ID
4238 * formats are supported. All other IPI types cause
4239 * a #VMEXIT, which needs to emulated.
4241 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4242 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4243 break;
4244 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4245 int i;
4246 struct kvm_vcpu *vcpu;
4247 struct kvm *kvm = svm->vcpu.kvm;
4248 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4251 * At this point, we expect that the AVIC HW has already
4252 * set the appropriate IRR bits on the valid target
4253 * vcpus. So, we just need to kick the appropriate vcpu.
4255 kvm_for_each_vcpu(i, vcpu, kvm) {
4256 bool m = kvm_apic_match_dest(vcpu, apic,
4257 icrl & KVM_APIC_SHORT_MASK,
4258 GET_APIC_DEST_FIELD(icrh),
4259 icrl & KVM_APIC_DEST_MASK);
4261 if (m && !avic_vcpu_is_running(vcpu))
4262 kvm_vcpu_wake_up(vcpu);
4264 break;
4266 case AVIC_IPI_FAILURE_INVALID_TARGET:
4267 break;
4268 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4269 WARN_ONCE(1, "Invalid backing page\n");
4270 break;
4271 default:
4272 pr_err("Unknown IPI interception\n");
4275 return 1;
4278 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4280 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4281 int index;
4282 u32 *logical_apic_id_table;
4283 int dlid = GET_APIC_LOGICAL_ID(ldr);
4285 if (!dlid)
4286 return NULL;
4288 if (flat) { /* flat */
4289 index = ffs(dlid) - 1;
4290 if (index > 7)
4291 return NULL;
4292 } else { /* cluster */
4293 int cluster = (dlid & 0xf0) >> 4;
4294 int apic = ffs(dlid & 0x0f) - 1;
4296 if ((apic < 0) || (apic > 7) ||
4297 (cluster >= 0xf))
4298 return NULL;
4299 index = (cluster << 2) + apic;
4302 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
4304 return &logical_apic_id_table[index];
4307 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4308 bool valid)
4310 bool flat;
4311 u32 *entry, new_entry;
4313 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4314 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4315 if (!entry)
4316 return -EINVAL;
4318 new_entry = READ_ONCE(*entry);
4319 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4320 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4321 if (valid)
4322 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4323 else
4324 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4325 WRITE_ONCE(*entry, new_entry);
4327 return 0;
4330 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4332 int ret;
4333 struct vcpu_svm *svm = to_svm(vcpu);
4334 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4336 if (!ldr)
4337 return 1;
4339 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4340 if (ret && svm->ldr_reg) {
4341 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4342 svm->ldr_reg = 0;
4343 } else {
4344 svm->ldr_reg = ldr;
4346 return ret;
4349 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4351 u64 *old, *new;
4352 struct vcpu_svm *svm = to_svm(vcpu);
4353 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4354 u32 id = (apic_id_reg >> 24) & 0xff;
4356 if (vcpu->vcpu_id == id)
4357 return 0;
4359 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4360 new = avic_get_physical_id_entry(vcpu, id);
4361 if (!new || !old)
4362 return 1;
4364 /* We need to move physical_id_entry to new offset */
4365 *new = *old;
4366 *old = 0ULL;
4367 to_svm(vcpu)->avic_physical_id_cache = new;
4370 * Also update the guest physical APIC ID in the logical
4371 * APIC ID table entry if already setup the LDR.
4373 if (svm->ldr_reg)
4374 avic_handle_ldr_update(vcpu);
4376 return 0;
4379 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4381 struct vcpu_svm *svm = to_svm(vcpu);
4382 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4383 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4384 u32 mod = (dfr >> 28) & 0xf;
4387 * We assume that all local APICs are using the same type.
4388 * If this changes, we need to flush the AVIC logical
4389 * APID id table.
4391 if (vm_data->ldr_mode == mod)
4392 return 0;
4394 clear_page(page_address(vm_data->avic_logical_id_table_page));
4395 vm_data->ldr_mode = mod;
4397 if (svm->ldr_reg)
4398 avic_handle_ldr_update(vcpu);
4399 return 0;
4402 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4404 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4405 u32 offset = svm->vmcb->control.exit_info_1 &
4406 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4408 switch (offset) {
4409 case APIC_ID:
4410 if (avic_handle_apic_id_update(&svm->vcpu))
4411 return 0;
4412 break;
4413 case APIC_LDR:
4414 if (avic_handle_ldr_update(&svm->vcpu))
4415 return 0;
4416 break;
4417 case APIC_DFR:
4418 avic_handle_dfr_update(&svm->vcpu);
4419 break;
4420 default:
4421 break;
4424 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4426 return 1;
4429 static bool is_avic_unaccelerated_access_trap(u32 offset)
4431 bool ret = false;
4433 switch (offset) {
4434 case APIC_ID:
4435 case APIC_EOI:
4436 case APIC_RRR:
4437 case APIC_LDR:
4438 case APIC_DFR:
4439 case APIC_SPIV:
4440 case APIC_ESR:
4441 case APIC_ICR:
4442 case APIC_LVTT:
4443 case APIC_LVTTHMR:
4444 case APIC_LVTPC:
4445 case APIC_LVT0:
4446 case APIC_LVT1:
4447 case APIC_LVTERR:
4448 case APIC_TMICT:
4449 case APIC_TDCR:
4450 ret = true;
4451 break;
4452 default:
4453 break;
4455 return ret;
4458 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4460 int ret = 0;
4461 u32 offset = svm->vmcb->control.exit_info_1 &
4462 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4463 u32 vector = svm->vmcb->control.exit_info_2 &
4464 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4465 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4466 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4467 bool trap = is_avic_unaccelerated_access_trap(offset);
4469 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4470 trap, write, vector);
4471 if (trap) {
4472 /* Handling Trap */
4473 WARN_ONCE(!write, "svm: Handling trap read.\n");
4474 ret = avic_unaccel_trap_write(svm);
4475 } else {
4476 /* Handling Fault */
4477 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4480 return ret;
4483 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4484 [SVM_EXIT_READ_CR0] = cr_interception,
4485 [SVM_EXIT_READ_CR3] = cr_interception,
4486 [SVM_EXIT_READ_CR4] = cr_interception,
4487 [SVM_EXIT_READ_CR8] = cr_interception,
4488 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4489 [SVM_EXIT_WRITE_CR0] = cr_interception,
4490 [SVM_EXIT_WRITE_CR3] = cr_interception,
4491 [SVM_EXIT_WRITE_CR4] = cr_interception,
4492 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4493 [SVM_EXIT_READ_DR0] = dr_interception,
4494 [SVM_EXIT_READ_DR1] = dr_interception,
4495 [SVM_EXIT_READ_DR2] = dr_interception,
4496 [SVM_EXIT_READ_DR3] = dr_interception,
4497 [SVM_EXIT_READ_DR4] = dr_interception,
4498 [SVM_EXIT_READ_DR5] = dr_interception,
4499 [SVM_EXIT_READ_DR6] = dr_interception,
4500 [SVM_EXIT_READ_DR7] = dr_interception,
4501 [SVM_EXIT_WRITE_DR0] = dr_interception,
4502 [SVM_EXIT_WRITE_DR1] = dr_interception,
4503 [SVM_EXIT_WRITE_DR2] = dr_interception,
4504 [SVM_EXIT_WRITE_DR3] = dr_interception,
4505 [SVM_EXIT_WRITE_DR4] = dr_interception,
4506 [SVM_EXIT_WRITE_DR5] = dr_interception,
4507 [SVM_EXIT_WRITE_DR6] = dr_interception,
4508 [SVM_EXIT_WRITE_DR7] = dr_interception,
4509 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4510 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4511 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4512 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4513 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4514 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4515 [SVM_EXIT_INTR] = intr_interception,
4516 [SVM_EXIT_NMI] = nmi_interception,
4517 [SVM_EXIT_SMI] = nop_on_interception,
4518 [SVM_EXIT_INIT] = nop_on_interception,
4519 [SVM_EXIT_VINTR] = interrupt_window_interception,
4520 [SVM_EXIT_RDPMC] = rdpmc_interception,
4521 [SVM_EXIT_CPUID] = cpuid_interception,
4522 [SVM_EXIT_IRET] = iret_interception,
4523 [SVM_EXIT_INVD] = emulate_on_interception,
4524 [SVM_EXIT_PAUSE] = pause_interception,
4525 [SVM_EXIT_HLT] = halt_interception,
4526 [SVM_EXIT_INVLPG] = invlpg_interception,
4527 [SVM_EXIT_INVLPGA] = invlpga_interception,
4528 [SVM_EXIT_IOIO] = io_interception,
4529 [SVM_EXIT_MSR] = msr_interception,
4530 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4531 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4532 [SVM_EXIT_VMRUN] = vmrun_interception,
4533 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4534 [SVM_EXIT_VMLOAD] = vmload_interception,
4535 [SVM_EXIT_VMSAVE] = vmsave_interception,
4536 [SVM_EXIT_STGI] = stgi_interception,
4537 [SVM_EXIT_CLGI] = clgi_interception,
4538 [SVM_EXIT_SKINIT] = skinit_interception,
4539 [SVM_EXIT_WBINVD] = wbinvd_interception,
4540 [SVM_EXIT_MONITOR] = monitor_interception,
4541 [SVM_EXIT_MWAIT] = mwait_interception,
4542 [SVM_EXIT_XSETBV] = xsetbv_interception,
4543 [SVM_EXIT_NPF] = npf_interception,
4544 [SVM_EXIT_RSM] = emulate_on_interception,
4545 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4546 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4549 static void dump_vmcb(struct kvm_vcpu *vcpu)
4551 struct vcpu_svm *svm = to_svm(vcpu);
4552 struct vmcb_control_area *control = &svm->vmcb->control;
4553 struct vmcb_save_area *save = &svm->vmcb->save;
4555 pr_err("VMCB Control Area:\n");
4556 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4557 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4558 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4559 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4560 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4561 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4562 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4563 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4564 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4565 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4566 pr_err("%-20s%d\n", "asid:", control->asid);
4567 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4568 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4569 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4570 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4571 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4572 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4573 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4574 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4575 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4576 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4577 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4578 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4579 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4580 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4581 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4582 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4583 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4584 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4585 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4586 pr_err("VMCB State Save Area:\n");
4587 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4588 "es:",
4589 save->es.selector, save->es.attrib,
4590 save->es.limit, save->es.base);
4591 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4592 "cs:",
4593 save->cs.selector, save->cs.attrib,
4594 save->cs.limit, save->cs.base);
4595 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4596 "ss:",
4597 save->ss.selector, save->ss.attrib,
4598 save->ss.limit, save->ss.base);
4599 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4600 "ds:",
4601 save->ds.selector, save->ds.attrib,
4602 save->ds.limit, save->ds.base);
4603 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4604 "fs:",
4605 save->fs.selector, save->fs.attrib,
4606 save->fs.limit, save->fs.base);
4607 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4608 "gs:",
4609 save->gs.selector, save->gs.attrib,
4610 save->gs.limit, save->gs.base);
4611 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4612 "gdtr:",
4613 save->gdtr.selector, save->gdtr.attrib,
4614 save->gdtr.limit, save->gdtr.base);
4615 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4616 "ldtr:",
4617 save->ldtr.selector, save->ldtr.attrib,
4618 save->ldtr.limit, save->ldtr.base);
4619 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4620 "idtr:",
4621 save->idtr.selector, save->idtr.attrib,
4622 save->idtr.limit, save->idtr.base);
4623 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4624 "tr:",
4625 save->tr.selector, save->tr.attrib,
4626 save->tr.limit, save->tr.base);
4627 pr_err("cpl: %d efer: %016llx\n",
4628 save->cpl, save->efer);
4629 pr_err("%-15s %016llx %-13s %016llx\n",
4630 "cr0:", save->cr0, "cr2:", save->cr2);
4631 pr_err("%-15s %016llx %-13s %016llx\n",
4632 "cr3:", save->cr3, "cr4:", save->cr4);
4633 pr_err("%-15s %016llx %-13s %016llx\n",
4634 "dr6:", save->dr6, "dr7:", save->dr7);
4635 pr_err("%-15s %016llx %-13s %016llx\n",
4636 "rip:", save->rip, "rflags:", save->rflags);
4637 pr_err("%-15s %016llx %-13s %016llx\n",
4638 "rsp:", save->rsp, "rax:", save->rax);
4639 pr_err("%-15s %016llx %-13s %016llx\n",
4640 "star:", save->star, "lstar:", save->lstar);
4641 pr_err("%-15s %016llx %-13s %016llx\n",
4642 "cstar:", save->cstar, "sfmask:", save->sfmask);
4643 pr_err("%-15s %016llx %-13s %016llx\n",
4644 "kernel_gs_base:", save->kernel_gs_base,
4645 "sysenter_cs:", save->sysenter_cs);
4646 pr_err("%-15s %016llx %-13s %016llx\n",
4647 "sysenter_esp:", save->sysenter_esp,
4648 "sysenter_eip:", save->sysenter_eip);
4649 pr_err("%-15s %016llx %-13s %016llx\n",
4650 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4651 pr_err("%-15s %016llx %-13s %016llx\n",
4652 "br_from:", save->br_from, "br_to:", save->br_to);
4653 pr_err("%-15s %016llx %-13s %016llx\n",
4654 "excp_from:", save->last_excp_from,
4655 "excp_to:", save->last_excp_to);
4658 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4660 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4662 *info1 = control->exit_info_1;
4663 *info2 = control->exit_info_2;
4666 static int handle_exit(struct kvm_vcpu *vcpu)
4668 struct vcpu_svm *svm = to_svm(vcpu);
4669 struct kvm_run *kvm_run = vcpu->run;
4670 u32 exit_code = svm->vmcb->control.exit_code;
4672 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4674 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4675 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4676 if (npt_enabled)
4677 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4679 if (unlikely(svm->nested.exit_required)) {
4680 nested_svm_vmexit(svm);
4681 svm->nested.exit_required = false;
4683 return 1;
4686 if (is_guest_mode(vcpu)) {
4687 int vmexit;
4689 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4690 svm->vmcb->control.exit_info_1,
4691 svm->vmcb->control.exit_info_2,
4692 svm->vmcb->control.exit_int_info,
4693 svm->vmcb->control.exit_int_info_err,
4694 KVM_ISA_SVM);
4696 vmexit = nested_svm_exit_special(svm);
4698 if (vmexit == NESTED_EXIT_CONTINUE)
4699 vmexit = nested_svm_exit_handled(svm);
4701 if (vmexit == NESTED_EXIT_DONE)
4702 return 1;
4705 svm_complete_interrupts(svm);
4707 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4708 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4709 kvm_run->fail_entry.hardware_entry_failure_reason
4710 = svm->vmcb->control.exit_code;
4711 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4712 dump_vmcb(vcpu);
4713 return 0;
4716 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4717 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4718 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4719 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4720 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4721 "exit_code 0x%x\n",
4722 __func__, svm->vmcb->control.exit_int_info,
4723 exit_code);
4725 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4726 || !svm_exit_handlers[exit_code]) {
4727 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4728 kvm_queue_exception(vcpu, UD_VECTOR);
4729 return 1;
4732 return svm_exit_handlers[exit_code](svm);
4735 static void reload_tss(struct kvm_vcpu *vcpu)
4737 int cpu = raw_smp_processor_id();
4739 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4740 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4741 load_TR_desc();
4744 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4746 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4747 int asid = sev_get_asid(svm->vcpu.kvm);
4749 /* Assign the asid allocated with this SEV guest */
4750 svm->vmcb->control.asid = asid;
4753 * Flush guest TLB:
4755 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4756 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4758 if (sd->sev_vmcbs[asid] == svm->vmcb &&
4759 svm->last_cpu == cpu)
4760 return;
4762 svm->last_cpu = cpu;
4763 sd->sev_vmcbs[asid] = svm->vmcb;
4764 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4765 mark_dirty(svm->vmcb, VMCB_ASID);
4768 static void pre_svm_run(struct vcpu_svm *svm)
4770 int cpu = raw_smp_processor_id();
4772 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4774 if (sev_guest(svm->vcpu.kvm))
4775 return pre_sev_run(svm, cpu);
4777 /* FIXME: handle wraparound of asid_generation */
4778 if (svm->asid_generation != sd->asid_generation)
4779 new_asid(svm, sd);
4782 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4784 struct vcpu_svm *svm = to_svm(vcpu);
4786 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4787 vcpu->arch.hflags |= HF_NMI_MASK;
4788 set_intercept(svm, INTERCEPT_IRET);
4789 ++vcpu->stat.nmi_injections;
4792 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4794 struct vmcb_control_area *control;
4796 /* The following fields are ignored when AVIC is enabled */
4797 control = &svm->vmcb->control;
4798 control->int_vector = irq;
4799 control->int_ctl &= ~V_INTR_PRIO_MASK;
4800 control->int_ctl |= V_IRQ_MASK |
4801 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4802 mark_dirty(svm->vmcb, VMCB_INTR);
4805 static void svm_set_irq(struct kvm_vcpu *vcpu)
4807 struct vcpu_svm *svm = to_svm(vcpu);
4809 BUG_ON(!(gif_set(svm)));
4811 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4812 ++vcpu->stat.irq_injections;
4814 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4815 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4818 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4820 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4823 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4825 struct vcpu_svm *svm = to_svm(vcpu);
4827 if (svm_nested_virtualize_tpr(vcpu) ||
4828 kvm_vcpu_apicv_active(vcpu))
4829 return;
4831 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4833 if (irr == -1)
4834 return;
4836 if (tpr >= irr)
4837 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4840 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4842 return;
4845 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4847 return avic && irqchip_split(vcpu->kvm);
4850 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4854 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4858 /* Note: Currently only used by Hyper-V. */
4859 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4861 struct vcpu_svm *svm = to_svm(vcpu);
4862 struct vmcb *vmcb = svm->vmcb;
4864 if (!kvm_vcpu_apicv_active(&svm->vcpu))
4865 return;
4867 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4868 mark_dirty(vmcb, VMCB_INTR);
4871 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4873 return;
4876 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4878 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4879 smp_mb__after_atomic();
4881 if (avic_vcpu_is_running(vcpu))
4882 wrmsrl(SVM_AVIC_DOORBELL,
4883 kvm_cpu_get_apicid(vcpu->cpu));
4884 else
4885 kvm_vcpu_wake_up(vcpu);
4888 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4890 unsigned long flags;
4891 struct amd_svm_iommu_ir *cur;
4893 spin_lock_irqsave(&svm->ir_list_lock, flags);
4894 list_for_each_entry(cur, &svm->ir_list, node) {
4895 if (cur->data != pi->ir_data)
4896 continue;
4897 list_del(&cur->node);
4898 kfree(cur);
4899 break;
4901 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4904 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4906 int ret = 0;
4907 unsigned long flags;
4908 struct amd_svm_iommu_ir *ir;
4911 * In some cases, the existing irte is updaed and re-set,
4912 * so we need to check here if it's already been * added
4913 * to the ir_list.
4915 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4916 struct kvm *kvm = svm->vcpu.kvm;
4917 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4918 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4919 struct vcpu_svm *prev_svm;
4921 if (!prev_vcpu) {
4922 ret = -EINVAL;
4923 goto out;
4926 prev_svm = to_svm(prev_vcpu);
4927 svm_ir_list_del(prev_svm, pi);
4931 * Allocating new amd_iommu_pi_data, which will get
4932 * add to the per-vcpu ir_list.
4934 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4935 if (!ir) {
4936 ret = -ENOMEM;
4937 goto out;
4939 ir->data = pi->ir_data;
4941 spin_lock_irqsave(&svm->ir_list_lock, flags);
4942 list_add(&ir->node, &svm->ir_list);
4943 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4944 out:
4945 return ret;
4949 * Note:
4950 * The HW cannot support posting multicast/broadcast
4951 * interrupts to a vCPU. So, we still use legacy interrupt
4952 * remapping for these kind of interrupts.
4954 * For lowest-priority interrupts, we only support
4955 * those with single CPU as the destination, e.g. user
4956 * configures the interrupts via /proc/irq or uses
4957 * irqbalance to make the interrupts single-CPU.
4959 static int
4960 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4961 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4963 struct kvm_lapic_irq irq;
4964 struct kvm_vcpu *vcpu = NULL;
4966 kvm_set_msi_irq(kvm, e, &irq);
4968 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4969 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4970 __func__, irq.vector);
4971 return -1;
4974 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4975 irq.vector);
4976 *svm = to_svm(vcpu);
4977 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4978 vcpu_info->vector = irq.vector;
4980 return 0;
4984 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4986 * @kvm: kvm
4987 * @host_irq: host irq of the interrupt
4988 * @guest_irq: gsi of the interrupt
4989 * @set: set or unset PI
4990 * returns 0 on success, < 0 on failure
4992 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4993 uint32_t guest_irq, bool set)
4995 struct kvm_kernel_irq_routing_entry *e;
4996 struct kvm_irq_routing_table *irq_rt;
4997 int idx, ret = -EINVAL;
4999 if (!kvm_arch_has_assigned_device(kvm) ||
5000 !irq_remapping_cap(IRQ_POSTING_CAP))
5001 return 0;
5003 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5004 __func__, host_irq, guest_irq, set);
5006 idx = srcu_read_lock(&kvm->irq_srcu);
5007 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5008 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5010 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5011 struct vcpu_data vcpu_info;
5012 struct vcpu_svm *svm = NULL;
5014 if (e->type != KVM_IRQ_ROUTING_MSI)
5015 continue;
5018 * Here, we setup with legacy mode in the following cases:
5019 * 1. When cannot target interrupt to a specific vcpu.
5020 * 2. Unsetting posted interrupt.
5021 * 3. APIC virtialization is disabled for the vcpu.
5023 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5024 kvm_vcpu_apicv_active(&svm->vcpu)) {
5025 struct amd_iommu_pi_data pi;
5027 /* Try to enable guest_mode in IRTE */
5028 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5029 AVIC_HPA_MASK);
5030 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
5031 svm->vcpu.vcpu_id);
5032 pi.is_guest_mode = true;
5033 pi.vcpu_data = &vcpu_info;
5034 ret = irq_set_vcpu_affinity(host_irq, &pi);
5037 * Here, we successfully setting up vcpu affinity in
5038 * IOMMU guest mode. Now, we need to store the posted
5039 * interrupt information in a per-vcpu ir_list so that
5040 * we can reference to them directly when we update vcpu
5041 * scheduling information in IOMMU irte.
5043 if (!ret && pi.is_guest_mode)
5044 svm_ir_list_add(svm, &pi);
5045 } else {
5046 /* Use legacy mode in IRTE */
5047 struct amd_iommu_pi_data pi;
5050 * Here, pi is used to:
5051 * - Tell IOMMU to use legacy mode for this interrupt.
5052 * - Retrieve ga_tag of prior interrupt remapping data.
5054 pi.is_guest_mode = false;
5055 ret = irq_set_vcpu_affinity(host_irq, &pi);
5058 * Check if the posted interrupt was previously
5059 * setup with the guest_mode by checking if the ga_tag
5060 * was cached. If so, we need to clean up the per-vcpu
5061 * ir_list.
5063 if (!ret && pi.prev_ga_tag) {
5064 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5065 struct kvm_vcpu *vcpu;
5067 vcpu = kvm_get_vcpu_by_id(kvm, id);
5068 if (vcpu)
5069 svm_ir_list_del(to_svm(vcpu), &pi);
5073 if (!ret && svm) {
5074 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
5075 host_irq, e->gsi,
5076 vcpu_info.vector,
5077 vcpu_info.pi_desc_addr, set);
5080 if (ret < 0) {
5081 pr_err("%s: failed to update PI IRTE\n", __func__);
5082 goto out;
5086 ret = 0;
5087 out:
5088 srcu_read_unlock(&kvm->irq_srcu, idx);
5089 return ret;
5092 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5094 struct vcpu_svm *svm = to_svm(vcpu);
5095 struct vmcb *vmcb = svm->vmcb;
5096 int ret;
5097 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5098 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5099 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5101 return ret;
5104 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5106 struct vcpu_svm *svm = to_svm(vcpu);
5108 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5111 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5113 struct vcpu_svm *svm = to_svm(vcpu);
5115 if (masked) {
5116 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5117 set_intercept(svm, INTERCEPT_IRET);
5118 } else {
5119 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5120 clr_intercept(svm, INTERCEPT_IRET);
5124 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5126 struct vcpu_svm *svm = to_svm(vcpu);
5127 struct vmcb *vmcb = svm->vmcb;
5128 int ret;
5130 if (!gif_set(svm) ||
5131 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5132 return 0;
5134 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5136 if (is_guest_mode(vcpu))
5137 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5139 return ret;
5142 static void enable_irq_window(struct kvm_vcpu *vcpu)
5144 struct vcpu_svm *svm = to_svm(vcpu);
5146 if (kvm_vcpu_apicv_active(vcpu))
5147 return;
5150 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5151 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5152 * get that intercept, this function will be called again though and
5153 * we'll get the vintr intercept. However, if the vGIF feature is
5154 * enabled, the STGI interception will not occur. Enable the irq
5155 * window under the assumption that the hardware will set the GIF.
5157 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5158 svm_set_vintr(svm);
5159 svm_inject_irq(svm, 0x0);
5163 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5165 struct vcpu_svm *svm = to_svm(vcpu);
5167 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5168 == HF_NMI_MASK)
5169 return; /* IRET will cause a vm exit */
5171 if (!gif_set(svm)) {
5172 if (vgif_enabled(svm))
5173 set_intercept(svm, INTERCEPT_STGI);
5174 return; /* STGI will cause a vm exit */
5177 if (svm->nested.exit_required)
5178 return; /* we're not going to run the guest yet */
5181 * Something prevents NMI from been injected. Single step over possible
5182 * problem (IRET or exception injection or interrupt shadow)
5184 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5185 svm->nmi_singlestep = true;
5186 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5189 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5191 return 0;
5194 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5196 struct vcpu_svm *svm = to_svm(vcpu);
5198 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5199 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5200 else
5201 svm->asid_generation--;
5204 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5208 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5210 struct vcpu_svm *svm = to_svm(vcpu);
5212 if (svm_nested_virtualize_tpr(vcpu))
5213 return;
5215 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5216 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5217 kvm_set_cr8(vcpu, cr8);
5221 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5223 struct vcpu_svm *svm = to_svm(vcpu);
5224 u64 cr8;
5226 if (svm_nested_virtualize_tpr(vcpu) ||
5227 kvm_vcpu_apicv_active(vcpu))
5228 return;
5230 cr8 = kvm_get_cr8(vcpu);
5231 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5232 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5235 static void svm_complete_interrupts(struct vcpu_svm *svm)
5237 u8 vector;
5238 int type;
5239 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5240 unsigned int3_injected = svm->int3_injected;
5242 svm->int3_injected = 0;
5245 * If we've made progress since setting HF_IRET_MASK, we've
5246 * executed an IRET and can allow NMI injection.
5248 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5249 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5250 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5251 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5254 svm->vcpu.arch.nmi_injected = false;
5255 kvm_clear_exception_queue(&svm->vcpu);
5256 kvm_clear_interrupt_queue(&svm->vcpu);
5258 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5259 return;
5261 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5263 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5264 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5266 switch (type) {
5267 case SVM_EXITINTINFO_TYPE_NMI:
5268 svm->vcpu.arch.nmi_injected = true;
5269 break;
5270 case SVM_EXITINTINFO_TYPE_EXEPT:
5272 * In case of software exceptions, do not reinject the vector,
5273 * but re-execute the instruction instead. Rewind RIP first
5274 * if we emulated INT3 before.
5276 if (kvm_exception_is_soft(vector)) {
5277 if (vector == BP_VECTOR && int3_injected &&
5278 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5279 kvm_rip_write(&svm->vcpu,
5280 kvm_rip_read(&svm->vcpu) -
5281 int3_injected);
5282 break;
5284 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5285 u32 err = svm->vmcb->control.exit_int_info_err;
5286 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5288 } else
5289 kvm_requeue_exception(&svm->vcpu, vector);
5290 break;
5291 case SVM_EXITINTINFO_TYPE_INTR:
5292 kvm_queue_interrupt(&svm->vcpu, vector, false);
5293 break;
5294 default:
5295 break;
5299 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5301 struct vcpu_svm *svm = to_svm(vcpu);
5302 struct vmcb_control_area *control = &svm->vmcb->control;
5304 control->exit_int_info = control->event_inj;
5305 control->exit_int_info_err = control->event_inj_err;
5306 control->event_inj = 0;
5307 svm_complete_interrupts(svm);
5310 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5312 struct vcpu_svm *svm = to_svm(vcpu);
5314 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5315 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5316 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5319 * A vmexit emulation is required before the vcpu can be executed
5320 * again.
5322 if (unlikely(svm->nested.exit_required))
5323 return;
5326 * Disable singlestep if we're injecting an interrupt/exception.
5327 * We don't want our modified rflags to be pushed on the stack where
5328 * we might not be able to easily reset them if we disabled NMI
5329 * singlestep later.
5331 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5333 * Event injection happens before external interrupts cause a
5334 * vmexit and interrupts are disabled here, so smp_send_reschedule
5335 * is enough to force an immediate vmexit.
5337 disable_nmi_singlestep(svm);
5338 smp_send_reschedule(vcpu->cpu);
5341 pre_svm_run(svm);
5343 sync_lapic_to_cr8(vcpu);
5345 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5347 clgi();
5349 local_irq_enable();
5352 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5353 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5354 * is no need to worry about the conditional branch over the wrmsr
5355 * being speculatively taken.
5357 if (svm->spec_ctrl)
5358 wrmsrl(MSR_IA32_SPEC_CTRL, svm->spec_ctrl);
5360 asm volatile (
5361 "push %%" _ASM_BP "; \n\t"
5362 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5363 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5364 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5365 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5366 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5367 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5368 #ifdef CONFIG_X86_64
5369 "mov %c[r8](%[svm]), %%r8 \n\t"
5370 "mov %c[r9](%[svm]), %%r9 \n\t"
5371 "mov %c[r10](%[svm]), %%r10 \n\t"
5372 "mov %c[r11](%[svm]), %%r11 \n\t"
5373 "mov %c[r12](%[svm]), %%r12 \n\t"
5374 "mov %c[r13](%[svm]), %%r13 \n\t"
5375 "mov %c[r14](%[svm]), %%r14 \n\t"
5376 "mov %c[r15](%[svm]), %%r15 \n\t"
5377 #endif
5379 /* Enter guest mode */
5380 "push %%" _ASM_AX " \n\t"
5381 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5382 __ex(SVM_VMLOAD) "\n\t"
5383 __ex(SVM_VMRUN) "\n\t"
5384 __ex(SVM_VMSAVE) "\n\t"
5385 "pop %%" _ASM_AX " \n\t"
5387 /* Save guest registers, load host registers */
5388 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5389 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5390 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5391 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5392 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5393 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5394 #ifdef CONFIG_X86_64
5395 "mov %%r8, %c[r8](%[svm]) \n\t"
5396 "mov %%r9, %c[r9](%[svm]) \n\t"
5397 "mov %%r10, %c[r10](%[svm]) \n\t"
5398 "mov %%r11, %c[r11](%[svm]) \n\t"
5399 "mov %%r12, %c[r12](%[svm]) \n\t"
5400 "mov %%r13, %c[r13](%[svm]) \n\t"
5401 "mov %%r14, %c[r14](%[svm]) \n\t"
5402 "mov %%r15, %c[r15](%[svm]) \n\t"
5403 #endif
5405 * Clear host registers marked as clobbered to prevent
5406 * speculative use.
5408 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5409 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5410 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5411 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5412 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5413 #ifdef CONFIG_X86_64
5414 "xor %%r8, %%r8 \n\t"
5415 "xor %%r9, %%r9 \n\t"
5416 "xor %%r10, %%r10 \n\t"
5417 "xor %%r11, %%r11 \n\t"
5418 "xor %%r12, %%r12 \n\t"
5419 "xor %%r13, %%r13 \n\t"
5420 "xor %%r14, %%r14 \n\t"
5421 "xor %%r15, %%r15 \n\t"
5422 #endif
5423 "pop %%" _ASM_BP
5425 : [svm]"a"(svm),
5426 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5427 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5428 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5429 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5430 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5431 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5432 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5433 #ifdef CONFIG_X86_64
5434 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5435 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5436 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5437 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5438 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5439 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5440 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5441 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5442 #endif
5443 : "cc", "memory"
5444 #ifdef CONFIG_X86_64
5445 , "rbx", "rcx", "rdx", "rsi", "rdi"
5446 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5447 #else
5448 , "ebx", "ecx", "edx", "esi", "edi"
5449 #endif
5453 * We do not use IBRS in the kernel. If this vCPU has used the
5454 * SPEC_CTRL MSR it may have left it on; save the value and
5455 * turn it off. This is much more efficient than blindly adding
5456 * it to the atomic save/restore list. Especially as the former
5457 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5459 * For non-nested case:
5460 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5461 * save it.
5463 * For nested case:
5464 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5465 * save it.
5467 if (!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))
5468 rdmsrl(MSR_IA32_SPEC_CTRL, svm->spec_ctrl);
5470 if (svm->spec_ctrl)
5471 wrmsrl(MSR_IA32_SPEC_CTRL, 0);
5473 /* Eliminate branch target predictions from guest mode */
5474 vmexit_fill_RSB();
5476 #ifdef CONFIG_X86_64
5477 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5478 #else
5479 loadsegment(fs, svm->host.fs);
5480 #ifndef CONFIG_X86_32_LAZY_GS
5481 loadsegment(gs, svm->host.gs);
5482 #endif
5483 #endif
5485 reload_tss(vcpu);
5487 local_irq_disable();
5489 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5490 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5491 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5492 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5494 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5495 kvm_before_handle_nmi(&svm->vcpu);
5497 stgi();
5499 /* Any pending NMI will happen here */
5501 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5502 kvm_after_handle_nmi(&svm->vcpu);
5504 sync_cr8_to_lapic(vcpu);
5506 svm->next_rip = 0;
5508 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5510 /* if exit due to PF check for async PF */
5511 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5512 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5514 if (npt_enabled) {
5515 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5516 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5520 * We need to handle MC intercepts here before the vcpu has a chance to
5521 * change the physical cpu
5523 if (unlikely(svm->vmcb->control.exit_code ==
5524 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5525 svm_handle_mce(svm);
5527 mark_all_clean(svm->vmcb);
5529 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5531 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5533 struct vcpu_svm *svm = to_svm(vcpu);
5535 svm->vmcb->save.cr3 = __sme_set(root);
5536 mark_dirty(svm->vmcb, VMCB_CR);
5537 svm_flush_tlb(vcpu, true);
5540 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5542 struct vcpu_svm *svm = to_svm(vcpu);
5544 svm->vmcb->control.nested_cr3 = __sme_set(root);
5545 mark_dirty(svm->vmcb, VMCB_NPT);
5547 /* Also sync guest cr3 here in case we live migrate */
5548 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5549 mark_dirty(svm->vmcb, VMCB_CR);
5551 svm_flush_tlb(vcpu, true);
5554 static int is_disabled(void)
5556 u64 vm_cr;
5558 rdmsrl(MSR_VM_CR, vm_cr);
5559 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5560 return 1;
5562 return 0;
5565 static void
5566 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5569 * Patch in the VMMCALL instruction:
5571 hypercall[0] = 0x0f;
5572 hypercall[1] = 0x01;
5573 hypercall[2] = 0xd9;
5576 static void svm_check_processor_compat(void *rtn)
5578 *(int *)rtn = 0;
5581 static bool svm_cpu_has_accelerated_tpr(void)
5583 return false;
5586 static bool svm_has_high_real_mode_segbase(void)
5588 return true;
5591 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5593 return 0;
5596 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5598 struct vcpu_svm *svm = to_svm(vcpu);
5600 /* Update nrips enabled cache */
5601 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5603 if (!kvm_vcpu_apicv_active(vcpu))
5604 return;
5606 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5609 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5611 switch (func) {
5612 case 0x1:
5613 if (avic)
5614 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5615 break;
5616 case 0x80000001:
5617 if (nested)
5618 entry->ecx |= (1 << 2); /* Set SVM bit */
5619 break;
5620 case 0x8000000A:
5621 entry->eax = 1; /* SVM revision 1 */
5622 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5623 ASID emulation to nested SVM */
5624 entry->ecx = 0; /* Reserved */
5625 entry->edx = 0; /* Per default do not support any
5626 additional features */
5628 /* Support next_rip if host supports it */
5629 if (boot_cpu_has(X86_FEATURE_NRIPS))
5630 entry->edx |= SVM_FEATURE_NRIP;
5632 /* Support NPT for the guest if enabled */
5633 if (npt_enabled)
5634 entry->edx |= SVM_FEATURE_NPT;
5636 break;
5637 case 0x8000001F:
5638 /* Support memory encryption cpuid if host supports it */
5639 if (boot_cpu_has(X86_FEATURE_SEV))
5640 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5641 &entry->ecx, &entry->edx);
5646 static int svm_get_lpage_level(void)
5648 return PT_PDPE_LEVEL;
5651 static bool svm_rdtscp_supported(void)
5653 return boot_cpu_has(X86_FEATURE_RDTSCP);
5656 static bool svm_invpcid_supported(void)
5658 return false;
5661 static bool svm_mpx_supported(void)
5663 return false;
5666 static bool svm_xsaves_supported(void)
5668 return false;
5671 static bool svm_umip_emulated(void)
5673 return false;
5676 static bool svm_has_wbinvd_exit(void)
5678 return true;
5681 #define PRE_EX(exit) { .exit_code = (exit), \
5682 .stage = X86_ICPT_PRE_EXCEPT, }
5683 #define POST_EX(exit) { .exit_code = (exit), \
5684 .stage = X86_ICPT_POST_EXCEPT, }
5685 #define POST_MEM(exit) { .exit_code = (exit), \
5686 .stage = X86_ICPT_POST_MEMACCESS, }
5688 static const struct __x86_intercept {
5689 u32 exit_code;
5690 enum x86_intercept_stage stage;
5691 } x86_intercept_map[] = {
5692 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5693 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5694 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5695 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5696 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5697 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5698 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5699 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5700 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5701 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5702 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5703 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5704 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5705 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5706 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5707 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5708 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5709 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5710 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5711 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5712 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5713 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5714 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5715 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5716 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5717 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5718 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5719 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5720 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5721 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5722 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5723 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5724 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5725 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5726 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5727 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5728 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5729 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5730 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5731 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5732 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5733 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5734 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5735 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5736 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5737 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5740 #undef PRE_EX
5741 #undef POST_EX
5742 #undef POST_MEM
5744 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5745 struct x86_instruction_info *info,
5746 enum x86_intercept_stage stage)
5748 struct vcpu_svm *svm = to_svm(vcpu);
5749 int vmexit, ret = X86EMUL_CONTINUE;
5750 struct __x86_intercept icpt_info;
5751 struct vmcb *vmcb = svm->vmcb;
5753 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5754 goto out;
5756 icpt_info = x86_intercept_map[info->intercept];
5758 if (stage != icpt_info.stage)
5759 goto out;
5761 switch (icpt_info.exit_code) {
5762 case SVM_EXIT_READ_CR0:
5763 if (info->intercept == x86_intercept_cr_read)
5764 icpt_info.exit_code += info->modrm_reg;
5765 break;
5766 case SVM_EXIT_WRITE_CR0: {
5767 unsigned long cr0, val;
5768 u64 intercept;
5770 if (info->intercept == x86_intercept_cr_write)
5771 icpt_info.exit_code += info->modrm_reg;
5773 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5774 info->intercept == x86_intercept_clts)
5775 break;
5777 intercept = svm->nested.intercept;
5779 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5780 break;
5782 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5783 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5785 if (info->intercept == x86_intercept_lmsw) {
5786 cr0 &= 0xfUL;
5787 val &= 0xfUL;
5788 /* lmsw can't clear PE - catch this here */
5789 if (cr0 & X86_CR0_PE)
5790 val |= X86_CR0_PE;
5793 if (cr0 ^ val)
5794 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5796 break;
5798 case SVM_EXIT_READ_DR0:
5799 case SVM_EXIT_WRITE_DR0:
5800 icpt_info.exit_code += info->modrm_reg;
5801 break;
5802 case SVM_EXIT_MSR:
5803 if (info->intercept == x86_intercept_wrmsr)
5804 vmcb->control.exit_info_1 = 1;
5805 else
5806 vmcb->control.exit_info_1 = 0;
5807 break;
5808 case SVM_EXIT_PAUSE:
5810 * We get this for NOP only, but pause
5811 * is rep not, check this here
5813 if (info->rep_prefix != REPE_PREFIX)
5814 goto out;
5815 break;
5816 case SVM_EXIT_IOIO: {
5817 u64 exit_info;
5818 u32 bytes;
5820 if (info->intercept == x86_intercept_in ||
5821 info->intercept == x86_intercept_ins) {
5822 exit_info = ((info->src_val & 0xffff) << 16) |
5823 SVM_IOIO_TYPE_MASK;
5824 bytes = info->dst_bytes;
5825 } else {
5826 exit_info = (info->dst_val & 0xffff) << 16;
5827 bytes = info->src_bytes;
5830 if (info->intercept == x86_intercept_outs ||
5831 info->intercept == x86_intercept_ins)
5832 exit_info |= SVM_IOIO_STR_MASK;
5834 if (info->rep_prefix)
5835 exit_info |= SVM_IOIO_REP_MASK;
5837 bytes = min(bytes, 4u);
5839 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5841 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5843 vmcb->control.exit_info_1 = exit_info;
5844 vmcb->control.exit_info_2 = info->next_rip;
5846 break;
5848 default:
5849 break;
5852 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5853 if (static_cpu_has(X86_FEATURE_NRIPS))
5854 vmcb->control.next_rip = info->next_rip;
5855 vmcb->control.exit_code = icpt_info.exit_code;
5856 vmexit = nested_svm_exit_handled(svm);
5858 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5859 : X86EMUL_CONTINUE;
5861 out:
5862 return ret;
5865 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5867 local_irq_enable();
5869 * We must have an instruction with interrupts enabled, so
5870 * the timer interrupt isn't delayed by the interrupt shadow.
5872 asm("nop");
5873 local_irq_disable();
5876 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5880 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5882 if (avic_handle_apic_id_update(vcpu) != 0)
5883 return;
5884 if (avic_handle_dfr_update(vcpu) != 0)
5885 return;
5886 avic_handle_ldr_update(vcpu);
5889 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5891 /* [63:9] are reserved. */
5892 vcpu->arch.mcg_cap &= 0x1ff;
5895 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
5897 struct vcpu_svm *svm = to_svm(vcpu);
5899 /* Per APM Vol.2 15.22.2 "Response to SMI" */
5900 if (!gif_set(svm))
5901 return 0;
5903 if (is_guest_mode(&svm->vcpu) &&
5904 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
5905 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
5906 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
5907 svm->nested.exit_required = true;
5908 return 0;
5911 return 1;
5914 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
5916 struct vcpu_svm *svm = to_svm(vcpu);
5917 int ret;
5919 if (is_guest_mode(vcpu)) {
5920 /* FED8h - SVM Guest */
5921 put_smstate(u64, smstate, 0x7ed8, 1);
5922 /* FEE0h - SVM Guest VMCB Physical Address */
5923 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
5925 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5926 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5927 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5929 ret = nested_svm_vmexit(svm);
5930 if (ret)
5931 return ret;
5933 return 0;
5936 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
5938 struct vcpu_svm *svm = to_svm(vcpu);
5939 struct vmcb *nested_vmcb;
5940 struct page *page;
5941 struct {
5942 u64 guest;
5943 u64 vmcb;
5944 } svm_state_save;
5945 int ret;
5947 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
5948 sizeof(svm_state_save));
5949 if (ret)
5950 return ret;
5952 if (svm_state_save.guest) {
5953 vcpu->arch.hflags &= ~HF_SMM_MASK;
5954 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
5955 if (nested_vmcb)
5956 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
5957 else
5958 ret = 1;
5959 vcpu->arch.hflags |= HF_SMM_MASK;
5961 return ret;
5964 static int enable_smi_window(struct kvm_vcpu *vcpu)
5966 struct vcpu_svm *svm = to_svm(vcpu);
5968 if (!gif_set(svm)) {
5969 if (vgif_enabled(svm))
5970 set_intercept(svm, INTERCEPT_STGI);
5971 /* STGI will cause a vm exit */
5972 return 1;
5974 return 0;
5977 static int sev_asid_new(void)
5979 int pos;
5982 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
5984 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
5985 if (pos >= max_sev_asid)
5986 return -EBUSY;
5988 set_bit(pos, sev_asid_bitmap);
5989 return pos + 1;
5992 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
5994 struct kvm_sev_info *sev = &kvm->arch.sev_info;
5995 int asid, ret;
5997 ret = -EBUSY;
5998 asid = sev_asid_new();
5999 if (asid < 0)
6000 return ret;
6002 ret = sev_platform_init(&argp->error);
6003 if (ret)
6004 goto e_free;
6006 sev->active = true;
6007 sev->asid = asid;
6008 INIT_LIST_HEAD(&sev->regions_list);
6010 return 0;
6012 e_free:
6013 __sev_asid_free(asid);
6014 return ret;
6017 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6019 struct sev_data_activate *data;
6020 int asid = sev_get_asid(kvm);
6021 int ret;
6023 wbinvd_on_all_cpus();
6025 ret = sev_guest_df_flush(error);
6026 if (ret)
6027 return ret;
6029 data = kzalloc(sizeof(*data), GFP_KERNEL);
6030 if (!data)
6031 return -ENOMEM;
6033 /* activate ASID on the given handle */
6034 data->handle = handle;
6035 data->asid = asid;
6036 ret = sev_guest_activate(data, error);
6037 kfree(data);
6039 return ret;
6042 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6044 struct fd f;
6045 int ret;
6047 f = fdget(fd);
6048 if (!f.file)
6049 return -EBADF;
6051 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6053 fdput(f);
6054 return ret;
6057 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6059 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6061 return __sev_issue_cmd(sev->fd, id, data, error);
6064 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6066 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6067 struct sev_data_launch_start *start;
6068 struct kvm_sev_launch_start params;
6069 void *dh_blob, *session_blob;
6070 int *error = &argp->error;
6071 int ret;
6073 if (!sev_guest(kvm))
6074 return -ENOTTY;
6076 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6077 return -EFAULT;
6079 start = kzalloc(sizeof(*start), GFP_KERNEL);
6080 if (!start)
6081 return -ENOMEM;
6083 dh_blob = NULL;
6084 if (params.dh_uaddr) {
6085 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6086 if (IS_ERR(dh_blob)) {
6087 ret = PTR_ERR(dh_blob);
6088 goto e_free;
6091 start->dh_cert_address = __sme_set(__pa(dh_blob));
6092 start->dh_cert_len = params.dh_len;
6095 session_blob = NULL;
6096 if (params.session_uaddr) {
6097 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6098 if (IS_ERR(session_blob)) {
6099 ret = PTR_ERR(session_blob);
6100 goto e_free_dh;
6103 start->session_address = __sme_set(__pa(session_blob));
6104 start->session_len = params.session_len;
6107 start->handle = params.handle;
6108 start->policy = params.policy;
6110 /* create memory encryption context */
6111 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6112 if (ret)
6113 goto e_free_session;
6115 /* Bind ASID to this guest */
6116 ret = sev_bind_asid(kvm, start->handle, error);
6117 if (ret)
6118 goto e_free_session;
6120 /* return handle to userspace */
6121 params.handle = start->handle;
6122 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6123 sev_unbind_asid(kvm, start->handle);
6124 ret = -EFAULT;
6125 goto e_free_session;
6128 sev->handle = start->handle;
6129 sev->fd = argp->sev_fd;
6131 e_free_session:
6132 kfree(session_blob);
6133 e_free_dh:
6134 kfree(dh_blob);
6135 e_free:
6136 kfree(start);
6137 return ret;
6140 static int get_num_contig_pages(int idx, struct page **inpages,
6141 unsigned long npages)
6143 unsigned long paddr, next_paddr;
6144 int i = idx + 1, pages = 1;
6146 /* find the number of contiguous pages starting from idx */
6147 paddr = __sme_page_pa(inpages[idx]);
6148 while (i < npages) {
6149 next_paddr = __sme_page_pa(inpages[i++]);
6150 if ((paddr + PAGE_SIZE) == next_paddr) {
6151 pages++;
6152 paddr = next_paddr;
6153 continue;
6155 break;
6158 return pages;
6161 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6163 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6164 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6165 struct kvm_sev_launch_update_data params;
6166 struct sev_data_launch_update_data *data;
6167 struct page **inpages;
6168 int i, ret, pages;
6170 if (!sev_guest(kvm))
6171 return -ENOTTY;
6173 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6174 return -EFAULT;
6176 data = kzalloc(sizeof(*data), GFP_KERNEL);
6177 if (!data)
6178 return -ENOMEM;
6180 vaddr = params.uaddr;
6181 size = params.len;
6182 vaddr_end = vaddr + size;
6184 /* Lock the user memory. */
6185 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6186 if (!inpages) {
6187 ret = -ENOMEM;
6188 goto e_free;
6192 * The LAUNCH_UPDATE command will perform in-place encryption of the
6193 * memory content (i.e it will write the same memory region with C=1).
6194 * It's possible that the cache may contain the data with C=0, i.e.,
6195 * unencrypted so invalidate it first.
6197 sev_clflush_pages(inpages, npages);
6199 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6200 int offset, len;
6203 * If the user buffer is not page-aligned, calculate the offset
6204 * within the page.
6206 offset = vaddr & (PAGE_SIZE - 1);
6208 /* Calculate the number of pages that can be encrypted in one go. */
6209 pages = get_num_contig_pages(i, inpages, npages);
6211 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6213 data->handle = sev->handle;
6214 data->len = len;
6215 data->address = __sme_page_pa(inpages[i]) + offset;
6216 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6217 if (ret)
6218 goto e_unpin;
6220 size -= len;
6221 next_vaddr = vaddr + len;
6224 e_unpin:
6225 /* content of memory is updated, mark pages dirty */
6226 for (i = 0; i < npages; i++) {
6227 set_page_dirty_lock(inpages[i]);
6228 mark_page_accessed(inpages[i]);
6230 /* unlock the user pages */
6231 sev_unpin_memory(kvm, inpages, npages);
6232 e_free:
6233 kfree(data);
6234 return ret;
6237 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6239 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6240 struct sev_data_launch_measure *data;
6241 struct kvm_sev_launch_measure params;
6242 void *blob = NULL;
6243 int ret;
6245 if (!sev_guest(kvm))
6246 return -ENOTTY;
6248 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6249 return -EFAULT;
6251 data = kzalloc(sizeof(*data), GFP_KERNEL);
6252 if (!data)
6253 return -ENOMEM;
6255 /* User wants to query the blob length */
6256 if (!params.len)
6257 goto cmd;
6259 if (params.uaddr) {
6260 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6261 ret = -EINVAL;
6262 goto e_free;
6265 if (!access_ok(VERIFY_WRITE, params.uaddr, params.len)) {
6266 ret = -EFAULT;
6267 goto e_free;
6270 ret = -ENOMEM;
6271 blob = kmalloc(params.len, GFP_KERNEL);
6272 if (!blob)
6273 goto e_free;
6275 data->address = __psp_pa(blob);
6276 data->len = params.len;
6279 cmd:
6280 data->handle = sev->handle;
6281 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6284 * If we query the session length, FW responded with expected data.
6286 if (!params.len)
6287 goto done;
6289 if (ret)
6290 goto e_free_blob;
6292 if (blob) {
6293 if (copy_to_user((void __user *)(uintptr_t)params.uaddr, blob, params.len))
6294 ret = -EFAULT;
6297 done:
6298 params.len = data->len;
6299 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6300 ret = -EFAULT;
6301 e_free_blob:
6302 kfree(blob);
6303 e_free:
6304 kfree(data);
6305 return ret;
6308 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6310 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6311 struct sev_data_launch_finish *data;
6312 int ret;
6314 if (!sev_guest(kvm))
6315 return -ENOTTY;
6317 data = kzalloc(sizeof(*data), GFP_KERNEL);
6318 if (!data)
6319 return -ENOMEM;
6321 data->handle = sev->handle;
6322 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6324 kfree(data);
6325 return ret;
6328 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6330 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6331 struct kvm_sev_guest_status params;
6332 struct sev_data_guest_status *data;
6333 int ret;
6335 if (!sev_guest(kvm))
6336 return -ENOTTY;
6338 data = kzalloc(sizeof(*data), GFP_KERNEL);
6339 if (!data)
6340 return -ENOMEM;
6342 data->handle = sev->handle;
6343 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6344 if (ret)
6345 goto e_free;
6347 params.policy = data->policy;
6348 params.state = data->state;
6349 params.handle = data->handle;
6351 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6352 ret = -EFAULT;
6353 e_free:
6354 kfree(data);
6355 return ret;
6358 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6359 unsigned long dst, int size,
6360 int *error, bool enc)
6362 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6363 struct sev_data_dbg *data;
6364 int ret;
6366 data = kzalloc(sizeof(*data), GFP_KERNEL);
6367 if (!data)
6368 return -ENOMEM;
6370 data->handle = sev->handle;
6371 data->dst_addr = dst;
6372 data->src_addr = src;
6373 data->len = size;
6375 ret = sev_issue_cmd(kvm,
6376 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6377 data, error);
6378 kfree(data);
6379 return ret;
6382 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6383 unsigned long dst_paddr, int sz, int *err)
6385 int offset;
6388 * Its safe to read more than we are asked, caller should ensure that
6389 * destination has enough space.
6391 src_paddr = round_down(src_paddr, 16);
6392 offset = src_paddr & 15;
6393 sz = round_up(sz + offset, 16);
6395 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6398 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6399 unsigned long __user dst_uaddr,
6400 unsigned long dst_paddr,
6401 int size, int *err)
6403 struct page *tpage = NULL;
6404 int ret, offset;
6406 /* if inputs are not 16-byte then use intermediate buffer */
6407 if (!IS_ALIGNED(dst_paddr, 16) ||
6408 !IS_ALIGNED(paddr, 16) ||
6409 !IS_ALIGNED(size, 16)) {
6410 tpage = (void *)alloc_page(GFP_KERNEL);
6411 if (!tpage)
6412 return -ENOMEM;
6414 dst_paddr = __sme_page_pa(tpage);
6417 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6418 if (ret)
6419 goto e_free;
6421 if (tpage) {
6422 offset = paddr & 15;
6423 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6424 page_address(tpage) + offset, size))
6425 ret = -EFAULT;
6428 e_free:
6429 if (tpage)
6430 __free_page(tpage);
6432 return ret;
6435 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6436 unsigned long __user vaddr,
6437 unsigned long dst_paddr,
6438 unsigned long __user dst_vaddr,
6439 int size, int *error)
6441 struct page *src_tpage = NULL;
6442 struct page *dst_tpage = NULL;
6443 int ret, len = size;
6445 /* If source buffer is not aligned then use an intermediate buffer */
6446 if (!IS_ALIGNED(vaddr, 16)) {
6447 src_tpage = alloc_page(GFP_KERNEL);
6448 if (!src_tpage)
6449 return -ENOMEM;
6451 if (copy_from_user(page_address(src_tpage),
6452 (void __user *)(uintptr_t)vaddr, size)) {
6453 __free_page(src_tpage);
6454 return -EFAULT;
6457 paddr = __sme_page_pa(src_tpage);
6461 * If destination buffer or length is not aligned then do read-modify-write:
6462 * - decrypt destination in an intermediate buffer
6463 * - copy the source buffer in an intermediate buffer
6464 * - use the intermediate buffer as source buffer
6466 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6467 int dst_offset;
6469 dst_tpage = alloc_page(GFP_KERNEL);
6470 if (!dst_tpage) {
6471 ret = -ENOMEM;
6472 goto e_free;
6475 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6476 __sme_page_pa(dst_tpage), size, error);
6477 if (ret)
6478 goto e_free;
6481 * If source is kernel buffer then use memcpy() otherwise
6482 * copy_from_user().
6484 dst_offset = dst_paddr & 15;
6486 if (src_tpage)
6487 memcpy(page_address(dst_tpage) + dst_offset,
6488 page_address(src_tpage), size);
6489 else {
6490 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6491 (void __user *)(uintptr_t)vaddr, size)) {
6492 ret = -EFAULT;
6493 goto e_free;
6497 paddr = __sme_page_pa(dst_tpage);
6498 dst_paddr = round_down(dst_paddr, 16);
6499 len = round_up(size, 16);
6502 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6504 e_free:
6505 if (src_tpage)
6506 __free_page(src_tpage);
6507 if (dst_tpage)
6508 __free_page(dst_tpage);
6509 return ret;
6512 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6514 unsigned long vaddr, vaddr_end, next_vaddr;
6515 unsigned long dst_vaddr, dst_vaddr_end;
6516 struct page **src_p, **dst_p;
6517 struct kvm_sev_dbg debug;
6518 unsigned long n;
6519 int ret, size;
6521 if (!sev_guest(kvm))
6522 return -ENOTTY;
6524 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6525 return -EFAULT;
6527 vaddr = debug.src_uaddr;
6528 size = debug.len;
6529 vaddr_end = vaddr + size;
6530 dst_vaddr = debug.dst_uaddr;
6531 dst_vaddr_end = dst_vaddr + size;
6533 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6534 int len, s_off, d_off;
6536 /* lock userspace source and destination page */
6537 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6538 if (!src_p)
6539 return -EFAULT;
6541 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6542 if (!dst_p) {
6543 sev_unpin_memory(kvm, src_p, n);
6544 return -EFAULT;
6548 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6549 * memory content (i.e it will write the same memory region with C=1).
6550 * It's possible that the cache may contain the data with C=0, i.e.,
6551 * unencrypted so invalidate it first.
6553 sev_clflush_pages(src_p, 1);
6554 sev_clflush_pages(dst_p, 1);
6557 * Since user buffer may not be page aligned, calculate the
6558 * offset within the page.
6560 s_off = vaddr & ~PAGE_MASK;
6561 d_off = dst_vaddr & ~PAGE_MASK;
6562 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6564 if (dec)
6565 ret = __sev_dbg_decrypt_user(kvm,
6566 __sme_page_pa(src_p[0]) + s_off,
6567 dst_vaddr,
6568 __sme_page_pa(dst_p[0]) + d_off,
6569 len, &argp->error);
6570 else
6571 ret = __sev_dbg_encrypt_user(kvm,
6572 __sme_page_pa(src_p[0]) + s_off,
6573 vaddr,
6574 __sme_page_pa(dst_p[0]) + d_off,
6575 dst_vaddr,
6576 len, &argp->error);
6578 sev_unpin_memory(kvm, src_p, 1);
6579 sev_unpin_memory(kvm, dst_p, 1);
6581 if (ret)
6582 goto err;
6584 next_vaddr = vaddr + len;
6585 dst_vaddr = dst_vaddr + len;
6586 size -= len;
6588 err:
6589 return ret;
6592 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6594 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6595 struct sev_data_launch_secret *data;
6596 struct kvm_sev_launch_secret params;
6597 struct page **pages;
6598 void *blob, *hdr;
6599 unsigned long n;
6600 int ret;
6602 if (!sev_guest(kvm))
6603 return -ENOTTY;
6605 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6606 return -EFAULT;
6608 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6609 if (!pages)
6610 return -ENOMEM;
6613 * The secret must be copied into contiguous memory region, lets verify
6614 * that userspace memory pages are contiguous before we issue command.
6616 if (get_num_contig_pages(0, pages, n) != n) {
6617 ret = -EINVAL;
6618 goto e_unpin_memory;
6621 ret = -ENOMEM;
6622 data = kzalloc(sizeof(*data), GFP_KERNEL);
6623 if (!data)
6624 goto e_unpin_memory;
6626 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6627 if (IS_ERR(blob)) {
6628 ret = PTR_ERR(blob);
6629 goto e_free;
6632 data->trans_address = __psp_pa(blob);
6633 data->trans_len = params.trans_len;
6635 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6636 if (IS_ERR(hdr)) {
6637 ret = PTR_ERR(hdr);
6638 goto e_free_blob;
6640 data->trans_address = __psp_pa(blob);
6641 data->trans_len = params.trans_len;
6643 data->handle = sev->handle;
6644 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6646 kfree(hdr);
6648 e_free_blob:
6649 kfree(blob);
6650 e_free:
6651 kfree(data);
6652 e_unpin_memory:
6653 sev_unpin_memory(kvm, pages, n);
6654 return ret;
6657 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6659 struct kvm_sev_cmd sev_cmd;
6660 int r;
6662 if (!svm_sev_enabled())
6663 return -ENOTTY;
6665 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6666 return -EFAULT;
6668 mutex_lock(&kvm->lock);
6670 switch (sev_cmd.id) {
6671 case KVM_SEV_INIT:
6672 r = sev_guest_init(kvm, &sev_cmd);
6673 break;
6674 case KVM_SEV_LAUNCH_START:
6675 r = sev_launch_start(kvm, &sev_cmd);
6676 break;
6677 case KVM_SEV_LAUNCH_UPDATE_DATA:
6678 r = sev_launch_update_data(kvm, &sev_cmd);
6679 break;
6680 case KVM_SEV_LAUNCH_MEASURE:
6681 r = sev_launch_measure(kvm, &sev_cmd);
6682 break;
6683 case KVM_SEV_LAUNCH_FINISH:
6684 r = sev_launch_finish(kvm, &sev_cmd);
6685 break;
6686 case KVM_SEV_GUEST_STATUS:
6687 r = sev_guest_status(kvm, &sev_cmd);
6688 break;
6689 case KVM_SEV_DBG_DECRYPT:
6690 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6691 break;
6692 case KVM_SEV_DBG_ENCRYPT:
6693 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6694 break;
6695 case KVM_SEV_LAUNCH_SECRET:
6696 r = sev_launch_secret(kvm, &sev_cmd);
6697 break;
6698 default:
6699 r = -EINVAL;
6700 goto out;
6703 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6704 r = -EFAULT;
6706 out:
6707 mutex_unlock(&kvm->lock);
6708 return r;
6711 static int svm_register_enc_region(struct kvm *kvm,
6712 struct kvm_enc_region *range)
6714 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6715 struct enc_region *region;
6716 int ret = 0;
6718 if (!sev_guest(kvm))
6719 return -ENOTTY;
6721 region = kzalloc(sizeof(*region), GFP_KERNEL);
6722 if (!region)
6723 return -ENOMEM;
6725 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6726 if (!region->pages) {
6727 ret = -ENOMEM;
6728 goto e_free;
6732 * The guest may change the memory encryption attribute from C=0 -> C=1
6733 * or vice versa for this memory range. Lets make sure caches are
6734 * flushed to ensure that guest data gets written into memory with
6735 * correct C-bit.
6737 sev_clflush_pages(region->pages, region->npages);
6739 region->uaddr = range->addr;
6740 region->size = range->size;
6742 mutex_lock(&kvm->lock);
6743 list_add_tail(&region->list, &sev->regions_list);
6744 mutex_unlock(&kvm->lock);
6746 return ret;
6748 e_free:
6749 kfree(region);
6750 return ret;
6753 static struct enc_region *
6754 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6756 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6757 struct list_head *head = &sev->regions_list;
6758 struct enc_region *i;
6760 list_for_each_entry(i, head, list) {
6761 if (i->uaddr == range->addr &&
6762 i->size == range->size)
6763 return i;
6766 return NULL;
6770 static int svm_unregister_enc_region(struct kvm *kvm,
6771 struct kvm_enc_region *range)
6773 struct enc_region *region;
6774 int ret;
6776 mutex_lock(&kvm->lock);
6778 if (!sev_guest(kvm)) {
6779 ret = -ENOTTY;
6780 goto failed;
6783 region = find_enc_region(kvm, range);
6784 if (!region) {
6785 ret = -EINVAL;
6786 goto failed;
6789 __unregister_enc_region_locked(kvm, region);
6791 mutex_unlock(&kvm->lock);
6792 return 0;
6794 failed:
6795 mutex_unlock(&kvm->lock);
6796 return ret;
6799 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
6800 .cpu_has_kvm_support = has_svm,
6801 .disabled_by_bios = is_disabled,
6802 .hardware_setup = svm_hardware_setup,
6803 .hardware_unsetup = svm_hardware_unsetup,
6804 .check_processor_compatibility = svm_check_processor_compat,
6805 .hardware_enable = svm_hardware_enable,
6806 .hardware_disable = svm_hardware_disable,
6807 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
6808 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
6810 .vcpu_create = svm_create_vcpu,
6811 .vcpu_free = svm_free_vcpu,
6812 .vcpu_reset = svm_vcpu_reset,
6814 .vm_init = avic_vm_init,
6815 .vm_destroy = svm_vm_destroy,
6817 .prepare_guest_switch = svm_prepare_guest_switch,
6818 .vcpu_load = svm_vcpu_load,
6819 .vcpu_put = svm_vcpu_put,
6820 .vcpu_blocking = svm_vcpu_blocking,
6821 .vcpu_unblocking = svm_vcpu_unblocking,
6823 .update_bp_intercept = update_bp_intercept,
6824 .get_msr = svm_get_msr,
6825 .set_msr = svm_set_msr,
6826 .get_segment_base = svm_get_segment_base,
6827 .get_segment = svm_get_segment,
6828 .set_segment = svm_set_segment,
6829 .get_cpl = svm_get_cpl,
6830 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
6831 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
6832 .decache_cr3 = svm_decache_cr3,
6833 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
6834 .set_cr0 = svm_set_cr0,
6835 .set_cr3 = svm_set_cr3,
6836 .set_cr4 = svm_set_cr4,
6837 .set_efer = svm_set_efer,
6838 .get_idt = svm_get_idt,
6839 .set_idt = svm_set_idt,
6840 .get_gdt = svm_get_gdt,
6841 .set_gdt = svm_set_gdt,
6842 .get_dr6 = svm_get_dr6,
6843 .set_dr6 = svm_set_dr6,
6844 .set_dr7 = svm_set_dr7,
6845 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
6846 .cache_reg = svm_cache_reg,
6847 .get_rflags = svm_get_rflags,
6848 .set_rflags = svm_set_rflags,
6850 .tlb_flush = svm_flush_tlb,
6852 .run = svm_vcpu_run,
6853 .handle_exit = handle_exit,
6854 .skip_emulated_instruction = skip_emulated_instruction,
6855 .set_interrupt_shadow = svm_set_interrupt_shadow,
6856 .get_interrupt_shadow = svm_get_interrupt_shadow,
6857 .patch_hypercall = svm_patch_hypercall,
6858 .set_irq = svm_set_irq,
6859 .set_nmi = svm_inject_nmi,
6860 .queue_exception = svm_queue_exception,
6861 .cancel_injection = svm_cancel_injection,
6862 .interrupt_allowed = svm_interrupt_allowed,
6863 .nmi_allowed = svm_nmi_allowed,
6864 .get_nmi_mask = svm_get_nmi_mask,
6865 .set_nmi_mask = svm_set_nmi_mask,
6866 .enable_nmi_window = enable_nmi_window,
6867 .enable_irq_window = enable_irq_window,
6868 .update_cr8_intercept = update_cr8_intercept,
6869 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
6870 .get_enable_apicv = svm_get_enable_apicv,
6871 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
6872 .load_eoi_exitmap = svm_load_eoi_exitmap,
6873 .hwapic_irr_update = svm_hwapic_irr_update,
6874 .hwapic_isr_update = svm_hwapic_isr_update,
6875 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
6876 .apicv_post_state_restore = avic_post_state_restore,
6878 .set_tss_addr = svm_set_tss_addr,
6879 .get_tdp_level = get_npt_level,
6880 .get_mt_mask = svm_get_mt_mask,
6882 .get_exit_info = svm_get_exit_info,
6884 .get_lpage_level = svm_get_lpage_level,
6886 .cpuid_update = svm_cpuid_update,
6888 .rdtscp_supported = svm_rdtscp_supported,
6889 .invpcid_supported = svm_invpcid_supported,
6890 .mpx_supported = svm_mpx_supported,
6891 .xsaves_supported = svm_xsaves_supported,
6892 .umip_emulated = svm_umip_emulated,
6894 .set_supported_cpuid = svm_set_supported_cpuid,
6896 .has_wbinvd_exit = svm_has_wbinvd_exit,
6898 .write_tsc_offset = svm_write_tsc_offset,
6900 .set_tdp_cr3 = set_tdp_cr3,
6902 .check_intercept = svm_check_intercept,
6903 .handle_external_intr = svm_handle_external_intr,
6905 .sched_in = svm_sched_in,
6907 .pmu_ops = &amd_pmu_ops,
6908 .deliver_posted_interrupt = svm_deliver_avic_intr,
6909 .update_pi_irte = svm_update_pi_irte,
6910 .setup_mce = svm_setup_mce,
6912 .smi_allowed = svm_smi_allowed,
6913 .pre_enter_smm = svm_pre_enter_smm,
6914 .pre_leave_smm = svm_pre_leave_smm,
6915 .enable_smi_window = enable_smi_window,
6917 .mem_enc_op = svm_mem_enc_op,
6918 .mem_enc_reg_region = svm_register_enc_region,
6919 .mem_enc_unreg_region = svm_unregister_enc_region,
6922 static int __init svm_init(void)
6924 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
6925 __alignof__(struct vcpu_svm), THIS_MODULE);
6928 static void __exit svm_exit(void)
6930 kvm_exit();
6933 module_init(svm_init)
6934 module_exit(svm_exit)