2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/i2c.h>
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
36 #include "drm_dp_helper.h"
39 #define DP_LINK_STATUS_SIZE 6
40 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42 #define DP_LINK_CONFIGURATION_SIZE 9
44 #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
46 struct intel_dp_priv
{
49 uint8_t link_configuration
[DP_LINK_CONFIGURATION_SIZE
];
51 uint8_t save_link_configuration
[DP_LINK_CONFIGURATION_SIZE
];
57 struct intel_output
*intel_output
;
58 struct i2c_adapter adapter
;
59 struct i2c_algo_dp_aux_data algo
;
63 intel_dp_link_train(struct intel_output
*intel_output
, uint32_t DP
,
64 uint8_t link_configuration
[DP_LINK_CONFIGURATION_SIZE
]);
67 intel_dp_link_down(struct intel_output
*intel_output
, uint32_t DP
);
70 intel_edp_link_config (struct intel_output
*intel_output
,
71 int *lane_num
, int *link_bw
)
73 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
75 *lane_num
= dp_priv
->lane_count
;
76 if (dp_priv
->link_bw
== DP_LINK_BW_1_62
)
78 else if (dp_priv
->link_bw
== DP_LINK_BW_2_7
)
83 intel_dp_max_lane_count(struct intel_output
*intel_output
)
85 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
86 int max_lane_count
= 4;
88 if (dp_priv
->dpcd
[0] >= 0x11) {
89 max_lane_count
= dp_priv
->dpcd
[2] & 0x1f;
90 switch (max_lane_count
) {
91 case 1: case 2: case 4:
97 return max_lane_count
;
101 intel_dp_max_link_bw(struct intel_output
*intel_output
)
103 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
104 int max_link_bw
= dp_priv
->dpcd
[1];
106 switch (max_link_bw
) {
107 case DP_LINK_BW_1_62
:
111 max_link_bw
= DP_LINK_BW_1_62
;
118 intel_dp_link_clock(uint8_t link_bw
)
120 if (link_bw
== DP_LINK_BW_2_7
)
126 /* I think this is a fiction */
128 intel_dp_link_required(struct drm_device
*dev
,
129 struct intel_output
*intel_output
, int pixel_clock
)
131 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
133 if (IS_eDP(intel_output
))
134 return (pixel_clock
* dev_priv
->edp_bpp
) / 8;
136 return pixel_clock
* 3;
140 intel_dp_mode_valid(struct drm_connector
*connector
,
141 struct drm_display_mode
*mode
)
143 struct intel_output
*intel_output
= to_intel_output(connector
);
144 int max_link_clock
= intel_dp_link_clock(intel_dp_max_link_bw(intel_output
));
145 int max_lanes
= intel_dp_max_lane_count(intel_output
);
147 if (intel_dp_link_required(connector
->dev
, intel_output
, mode
->clock
)
148 > max_link_clock
* max_lanes
)
149 return MODE_CLOCK_HIGH
;
151 if (mode
->clock
< 10000)
152 return MODE_CLOCK_LOW
;
158 pack_aux(uint8_t *src
, int src_bytes
)
165 for (i
= 0; i
< src_bytes
; i
++)
166 v
|= ((uint32_t) src
[i
]) << ((3-i
) * 8);
171 unpack_aux(uint32_t src
, uint8_t *dst
, int dst_bytes
)
176 for (i
= 0; i
< dst_bytes
; i
++)
177 dst
[i
] = src
>> ((3-i
) * 8);
180 /* hrawclock is 1/4 the FSB frequency */
182 intel_hrawclk(struct drm_device
*dev
)
184 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
187 clkcfg
= I915_READ(CLKCFG
);
188 switch (clkcfg
& CLKCFG_FSB_MASK
) {
197 case CLKCFG_FSB_1067
:
199 case CLKCFG_FSB_1333
:
201 /* these two are just a guess; one of them might be right */
202 case CLKCFG_FSB_1600
:
203 case CLKCFG_FSB_1600_ALT
:
211 intel_dp_aux_ch(struct intel_output
*intel_output
,
212 uint8_t *send
, int send_bytes
,
213 uint8_t *recv
, int recv_size
)
215 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
216 uint32_t output_reg
= dp_priv
->output_reg
;
217 struct drm_device
*dev
= intel_output
->base
.dev
;
218 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
219 uint32_t ch_ctl
= output_reg
+ 0x10;
220 uint32_t ch_data
= ch_ctl
+ 4;
225 uint32_t aux_clock_divider
;
228 /* The clock divider is based off the hrawclk,
229 * and would like to run at 2MHz. So, take the
230 * hrawclk value and divide by 2 and use that
232 if (IS_eDP(intel_output
))
233 aux_clock_divider
= 225; /* eDP input clock at 450Mhz */
234 else if (IS_IRONLAKE(dev
))
235 aux_clock_divider
= 62; /* IRL input clock fixed at 125Mhz */
237 aux_clock_divider
= intel_hrawclk(dev
) / 2;
239 /* Must try at least 3 times according to DP spec */
240 for (try = 0; try < 5; try++) {
241 /* Load the send data into the aux channel data registers */
242 for (i
= 0; i
< send_bytes
; i
+= 4) {
243 uint32_t d
= pack_aux(send
+ i
, send_bytes
- i
);
245 I915_WRITE(ch_data
+ i
, d
);
248 ctl
= (DP_AUX_CH_CTL_SEND_BUSY
|
249 DP_AUX_CH_CTL_TIME_OUT_400us
|
250 (send_bytes
<< DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
) |
251 (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT
) |
252 (aux_clock_divider
<< DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT
) |
254 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
255 DP_AUX_CH_CTL_RECEIVE_ERROR
);
257 /* Send the command and wait for it to complete */
258 I915_WRITE(ch_ctl
, ctl
);
259 (void) I915_READ(ch_ctl
);
262 status
= I915_READ(ch_ctl
);
263 if ((status
& DP_AUX_CH_CTL_SEND_BUSY
) == 0)
267 /* Clear done status and any errors */
268 I915_WRITE(ch_ctl
, (status
|
270 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
271 DP_AUX_CH_CTL_RECEIVE_ERROR
));
272 (void) I915_READ(ch_ctl
);
273 if ((status
& DP_AUX_CH_CTL_TIME_OUT_ERROR
) == 0)
277 if ((status
& DP_AUX_CH_CTL_DONE
) == 0) {
278 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status
);
282 /* Check for timeout or receive error.
283 * Timeouts occur when the sink is not connected
285 if (status
& DP_AUX_CH_CTL_RECEIVE_ERROR
) {
286 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status
);
290 /* Timeouts occur when the device isn't connected, so they're
291 * "normal" -- don't fill the kernel log with these */
292 if (status
& DP_AUX_CH_CTL_TIME_OUT_ERROR
) {
293 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status
);
297 /* Unload any bytes sent back from the other side */
298 recv_bytes
= ((status
& DP_AUX_CH_CTL_MESSAGE_SIZE_MASK
) >>
299 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
);
301 if (recv_bytes
> recv_size
)
302 recv_bytes
= recv_size
;
304 for (i
= 0; i
< recv_bytes
; i
+= 4) {
305 uint32_t d
= I915_READ(ch_data
+ i
);
307 unpack_aux(d
, recv
+ i
, recv_bytes
- i
);
313 /* Write data to the aux channel in native mode */
315 intel_dp_aux_native_write(struct intel_output
*intel_output
,
316 uint16_t address
, uint8_t *send
, int send_bytes
)
325 msg
[0] = AUX_NATIVE_WRITE
<< 4;
326 msg
[1] = address
>> 8;
327 msg
[2] = address
& 0xff;
328 msg
[3] = send_bytes
- 1;
329 memcpy(&msg
[4], send
, send_bytes
);
330 msg_bytes
= send_bytes
+ 4;
332 ret
= intel_dp_aux_ch(intel_output
, msg
, msg_bytes
, &ack
, 1);
335 if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_ACK
)
337 else if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_DEFER
)
345 /* Write a single byte to the aux channel in native mode */
347 intel_dp_aux_native_write_1(struct intel_output
*intel_output
,
348 uint16_t address
, uint8_t byte
)
350 return intel_dp_aux_native_write(intel_output
, address
, &byte
, 1);
353 /* read bytes from a native aux channel */
355 intel_dp_aux_native_read(struct intel_output
*intel_output
,
356 uint16_t address
, uint8_t *recv
, int recv_bytes
)
365 msg
[0] = AUX_NATIVE_READ
<< 4;
366 msg
[1] = address
>> 8;
367 msg
[2] = address
& 0xff;
368 msg
[3] = recv_bytes
- 1;
371 reply_bytes
= recv_bytes
+ 1;
374 ret
= intel_dp_aux_ch(intel_output
, msg
, msg_bytes
,
381 if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_ACK
) {
382 memcpy(recv
, reply
+ 1, ret
- 1);
385 else if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_DEFER
)
393 intel_dp_i2c_aux_ch(struct i2c_adapter
*adapter
, int mode
,
394 uint8_t write_byte
, uint8_t *read_byte
)
396 struct i2c_algo_dp_aux_data
*algo_data
= adapter
->algo_data
;
397 struct intel_dp_priv
*dp_priv
= container_of(adapter
,
398 struct intel_dp_priv
,
400 struct intel_output
*intel_output
= dp_priv
->intel_output
;
401 uint16_t address
= algo_data
->address
;
408 /* Set up the command byte */
409 if (mode
& MODE_I2C_READ
)
410 msg
[0] = AUX_I2C_READ
<< 4;
412 msg
[0] = AUX_I2C_WRITE
<< 4;
414 if (!(mode
& MODE_I2C_STOP
))
415 msg
[0] |= AUX_I2C_MOT
<< 4;
417 msg
[1] = address
>> 8;
439 ret
= intel_dp_aux_ch(intel_output
,
443 DRM_DEBUG_KMS("aux_ch failed %d\n", ret
);
446 switch (reply
[0] & AUX_I2C_REPLY_MASK
) {
447 case AUX_I2C_REPLY_ACK
:
448 if (mode
== MODE_I2C_READ
) {
449 *read_byte
= reply
[1];
451 return reply_bytes
- 1;
452 case AUX_I2C_REPLY_NACK
:
453 DRM_DEBUG_KMS("aux_ch nack\n");
455 case AUX_I2C_REPLY_DEFER
:
456 DRM_DEBUG_KMS("aux_ch defer\n");
460 DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply
[0]);
467 intel_dp_i2c_init(struct intel_output
*intel_output
, const char *name
)
469 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
471 DRM_DEBUG_KMS("i2c_init %s\n", name
);
472 dp_priv
->algo
.running
= false;
473 dp_priv
->algo
.address
= 0;
474 dp_priv
->algo
.aux_ch
= intel_dp_i2c_aux_ch
;
476 memset(&dp_priv
->adapter
, '\0', sizeof (dp_priv
->adapter
));
477 dp_priv
->adapter
.owner
= THIS_MODULE
;
478 dp_priv
->adapter
.class = I2C_CLASS_DDC
;
479 strncpy (dp_priv
->adapter
.name
, name
, sizeof(dp_priv
->adapter
.name
) - 1);
480 dp_priv
->adapter
.name
[sizeof(dp_priv
->adapter
.name
) - 1] = '\0';
481 dp_priv
->adapter
.algo_data
= &dp_priv
->algo
;
482 dp_priv
->adapter
.dev
.parent
= &intel_output
->base
.kdev
;
484 return i2c_dp_aux_add_bus(&dp_priv
->adapter
);
488 intel_dp_mode_fixup(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
489 struct drm_display_mode
*adjusted_mode
)
491 struct intel_output
*intel_output
= enc_to_intel_output(encoder
);
492 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
493 int lane_count
, clock
;
494 int max_lane_count
= intel_dp_max_lane_count(intel_output
);
495 int max_clock
= intel_dp_max_link_bw(intel_output
) == DP_LINK_BW_2_7
? 1 : 0;
496 static int bws
[2] = { DP_LINK_BW_1_62
, DP_LINK_BW_2_7
};
498 for (lane_count
= 1; lane_count
<= max_lane_count
; lane_count
<<= 1) {
499 for (clock
= 0; clock
<= max_clock
; clock
++) {
500 int link_avail
= intel_dp_link_clock(bws
[clock
]) * lane_count
;
502 if (intel_dp_link_required(encoder
->dev
, intel_output
, mode
->clock
)
504 dp_priv
->link_bw
= bws
[clock
];
505 dp_priv
->lane_count
= lane_count
;
506 adjusted_mode
->clock
= intel_dp_link_clock(dp_priv
->link_bw
);
507 DRM_DEBUG_KMS("Display port link bw %02x lane "
508 "count %d clock %d\n",
509 dp_priv
->link_bw
, dp_priv
->lane_count
,
510 adjusted_mode
->clock
);
518 struct intel_dp_m_n
{
527 intel_reduce_ratio(uint32_t *num
, uint32_t *den
)
529 while (*num
> 0xffffff || *den
> 0xffffff) {
536 intel_dp_compute_m_n(int bytes_per_pixel
,
540 struct intel_dp_m_n
*m_n
)
543 m_n
->gmch_m
= pixel_clock
* bytes_per_pixel
;
544 m_n
->gmch_n
= link_clock
* nlanes
;
545 intel_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
546 m_n
->link_m
= pixel_clock
;
547 m_n
->link_n
= link_clock
;
548 intel_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
552 intel_dp_set_m_n(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
,
553 struct drm_display_mode
*adjusted_mode
)
555 struct drm_device
*dev
= crtc
->dev
;
556 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
557 struct drm_connector
*connector
;
558 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
559 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
561 struct intel_dp_m_n m_n
;
564 * Find the lane count in the intel_output private
566 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
567 struct intel_output
*intel_output
= to_intel_output(connector
);
568 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
570 if (!connector
->encoder
|| connector
->encoder
->crtc
!= crtc
)
573 if (intel_output
->type
== INTEL_OUTPUT_DISPLAYPORT
) {
574 lane_count
= dp_priv
->lane_count
;
580 * Compute the GMCH and Link ratios. The '3' here is
581 * the number of bytes_per_pixel post-LUT, which we always
582 * set up for 8-bits of R/G/B, or 3 bytes total.
584 intel_dp_compute_m_n(3, lane_count
,
585 mode
->clock
, adjusted_mode
->clock
, &m_n
);
587 if (IS_IRONLAKE(dev
)) {
588 if (intel_crtc
->pipe
== 0) {
589 I915_WRITE(TRANSA_DATA_M1
,
590 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
592 I915_WRITE(TRANSA_DATA_N1
, m_n
.gmch_n
);
593 I915_WRITE(TRANSA_DP_LINK_M1
, m_n
.link_m
);
594 I915_WRITE(TRANSA_DP_LINK_N1
, m_n
.link_n
);
596 I915_WRITE(TRANSB_DATA_M1
,
597 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
599 I915_WRITE(TRANSB_DATA_N1
, m_n
.gmch_n
);
600 I915_WRITE(TRANSB_DP_LINK_M1
, m_n
.link_m
);
601 I915_WRITE(TRANSB_DP_LINK_N1
, m_n
.link_n
);
604 if (intel_crtc
->pipe
== 0) {
605 I915_WRITE(PIPEA_GMCH_DATA_M
,
606 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
608 I915_WRITE(PIPEA_GMCH_DATA_N
,
610 I915_WRITE(PIPEA_DP_LINK_M
, m_n
.link_m
);
611 I915_WRITE(PIPEA_DP_LINK_N
, m_n
.link_n
);
613 I915_WRITE(PIPEB_GMCH_DATA_M
,
614 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
616 I915_WRITE(PIPEB_GMCH_DATA_N
,
618 I915_WRITE(PIPEB_DP_LINK_M
, m_n
.link_m
);
619 I915_WRITE(PIPEB_DP_LINK_N
, m_n
.link_n
);
625 intel_dp_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
626 struct drm_display_mode
*adjusted_mode
)
628 struct intel_output
*intel_output
= enc_to_intel_output(encoder
);
629 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
630 struct drm_crtc
*crtc
= intel_output
->enc
.crtc
;
631 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
633 dp_priv
->DP
= (DP_LINK_TRAIN_OFF
|
639 switch (dp_priv
->lane_count
) {
641 dp_priv
->DP
|= DP_PORT_WIDTH_1
;
644 dp_priv
->DP
|= DP_PORT_WIDTH_2
;
647 dp_priv
->DP
|= DP_PORT_WIDTH_4
;
650 if (dp_priv
->has_audio
)
651 dp_priv
->DP
|= DP_AUDIO_OUTPUT_ENABLE
;
653 memset(dp_priv
->link_configuration
, 0, DP_LINK_CONFIGURATION_SIZE
);
654 dp_priv
->link_configuration
[0] = dp_priv
->link_bw
;
655 dp_priv
->link_configuration
[1] = dp_priv
->lane_count
;
658 * Check for DPCD version > 1.1,
659 * enable enahanced frame stuff in that case
661 if (dp_priv
->dpcd
[0] >= 0x11) {
662 dp_priv
->link_configuration
[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN
;
663 dp_priv
->DP
|= DP_ENHANCED_FRAMING
;
666 if (intel_crtc
->pipe
== 1)
667 dp_priv
->DP
|= DP_PIPEB_SELECT
;
669 if (IS_eDP(intel_output
)) {
670 /* don't miss out required setting for eDP */
671 dp_priv
->DP
|= DP_PLL_ENABLE
;
672 if (adjusted_mode
->clock
< 200000)
673 dp_priv
->DP
|= DP_PLL_FREQ_160MHZ
;
675 dp_priv
->DP
|= DP_PLL_FREQ_270MHZ
;
679 static void ironlake_edp_backlight_on (struct drm_device
*dev
)
681 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
685 pp
= I915_READ(PCH_PP_CONTROL
);
686 pp
|= EDP_BLC_ENABLE
;
687 I915_WRITE(PCH_PP_CONTROL
, pp
);
690 static void ironlake_edp_backlight_off (struct drm_device
*dev
)
692 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
696 pp
= I915_READ(PCH_PP_CONTROL
);
697 pp
&= ~EDP_BLC_ENABLE
;
698 I915_WRITE(PCH_PP_CONTROL
, pp
);
702 intel_dp_dpms(struct drm_encoder
*encoder
, int mode
)
704 struct intel_output
*intel_output
= enc_to_intel_output(encoder
);
705 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
706 struct drm_device
*dev
= intel_output
->base
.dev
;
707 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
708 uint32_t dp_reg
= I915_READ(dp_priv
->output_reg
);
710 if (mode
!= DRM_MODE_DPMS_ON
) {
711 if (dp_reg
& DP_PORT_EN
) {
712 intel_dp_link_down(intel_output
, dp_priv
->DP
);
713 if (IS_eDP(intel_output
))
714 ironlake_edp_backlight_off(dev
);
717 if (!(dp_reg
& DP_PORT_EN
)) {
718 intel_dp_link_train(intel_output
, dp_priv
->DP
, dp_priv
->link_configuration
);
719 if (IS_eDP(intel_output
))
720 ironlake_edp_backlight_on(dev
);
723 dp_priv
->dpms_mode
= mode
;
727 * Fetch AUX CH registers 0x202 - 0x207 which contain
728 * link status information
731 intel_dp_get_link_status(struct intel_output
*intel_output
,
732 uint8_t link_status
[DP_LINK_STATUS_SIZE
])
736 ret
= intel_dp_aux_native_read(intel_output
,
738 link_status
, DP_LINK_STATUS_SIZE
);
739 if (ret
!= DP_LINK_STATUS_SIZE
)
745 intel_dp_link_status(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
748 return link_status
[r
- DP_LANE0_1_STATUS
];
752 intel_dp_save(struct drm_connector
*connector
)
754 struct intel_output
*intel_output
= to_intel_output(connector
);
755 struct drm_device
*dev
= intel_output
->base
.dev
;
756 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
757 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
759 dp_priv
->save_DP
= I915_READ(dp_priv
->output_reg
);
760 intel_dp_aux_native_read(intel_output
, DP_LINK_BW_SET
,
761 dp_priv
->save_link_configuration
,
762 sizeof (dp_priv
->save_link_configuration
));
766 intel_get_adjust_request_voltage(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
769 int i
= DP_ADJUST_REQUEST_LANE0_1
+ (lane
>> 1);
770 int s
= ((lane
& 1) ?
771 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT
:
772 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT
);
773 uint8_t l
= intel_dp_link_status(link_status
, i
);
775 return ((l
>> s
) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT
;
779 intel_get_adjust_request_pre_emphasis(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
782 int i
= DP_ADJUST_REQUEST_LANE0_1
+ (lane
>> 1);
783 int s
= ((lane
& 1) ?
784 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT
:
785 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT
);
786 uint8_t l
= intel_dp_link_status(link_status
, i
);
788 return ((l
>> s
) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT
;
793 static char *voltage_names
[] = {
794 "0.4V", "0.6V", "0.8V", "1.2V"
796 static char *pre_emph_names
[] = {
797 "0dB", "3.5dB", "6dB", "9.5dB"
799 static char *link_train_names
[] = {
800 "pattern 1", "pattern 2", "idle", "off"
805 * These are source-specific values; current Intel hardware supports
806 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
808 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
811 intel_dp_pre_emphasis_max(uint8_t voltage_swing
)
813 switch (voltage_swing
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
814 case DP_TRAIN_VOLTAGE_SWING_400
:
815 return DP_TRAIN_PRE_EMPHASIS_6
;
816 case DP_TRAIN_VOLTAGE_SWING_600
:
817 return DP_TRAIN_PRE_EMPHASIS_6
;
818 case DP_TRAIN_VOLTAGE_SWING_800
:
819 return DP_TRAIN_PRE_EMPHASIS_3_5
;
820 case DP_TRAIN_VOLTAGE_SWING_1200
:
822 return DP_TRAIN_PRE_EMPHASIS_0
;
827 intel_get_adjust_train(struct intel_output
*intel_output
,
828 uint8_t link_status
[DP_LINK_STATUS_SIZE
],
830 uint8_t train_set
[4])
836 for (lane
= 0; lane
< lane_count
; lane
++) {
837 uint8_t this_v
= intel_get_adjust_request_voltage(link_status
, lane
);
838 uint8_t this_p
= intel_get_adjust_request_pre_emphasis(link_status
, lane
);
846 if (v
>= I830_DP_VOLTAGE_MAX
)
847 v
= I830_DP_VOLTAGE_MAX
| DP_TRAIN_MAX_SWING_REACHED
;
849 if (p
>= intel_dp_pre_emphasis_max(v
))
850 p
= intel_dp_pre_emphasis_max(v
) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED
;
852 for (lane
= 0; lane
< 4; lane
++)
853 train_set
[lane
] = v
| p
;
857 intel_dp_signal_levels(uint8_t train_set
, int lane_count
)
859 uint32_t signal_levels
= 0;
861 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
862 case DP_TRAIN_VOLTAGE_SWING_400
:
864 signal_levels
|= DP_VOLTAGE_0_4
;
866 case DP_TRAIN_VOLTAGE_SWING_600
:
867 signal_levels
|= DP_VOLTAGE_0_6
;
869 case DP_TRAIN_VOLTAGE_SWING_800
:
870 signal_levels
|= DP_VOLTAGE_0_8
;
872 case DP_TRAIN_VOLTAGE_SWING_1200
:
873 signal_levels
|= DP_VOLTAGE_1_2
;
876 switch (train_set
& DP_TRAIN_PRE_EMPHASIS_MASK
) {
877 case DP_TRAIN_PRE_EMPHASIS_0
:
879 signal_levels
|= DP_PRE_EMPHASIS_0
;
881 case DP_TRAIN_PRE_EMPHASIS_3_5
:
882 signal_levels
|= DP_PRE_EMPHASIS_3_5
;
884 case DP_TRAIN_PRE_EMPHASIS_6
:
885 signal_levels
|= DP_PRE_EMPHASIS_6
;
887 case DP_TRAIN_PRE_EMPHASIS_9_5
:
888 signal_levels
|= DP_PRE_EMPHASIS_9_5
;
891 return signal_levels
;
895 intel_get_lane_status(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
898 int i
= DP_LANE0_1_STATUS
+ (lane
>> 1);
899 int s
= (lane
& 1) * 4;
900 uint8_t l
= intel_dp_link_status(link_status
, i
);
902 return (l
>> s
) & 0xf;
905 /* Check for clock recovery is done on all channels */
907 intel_clock_recovery_ok(uint8_t link_status
[DP_LINK_STATUS_SIZE
], int lane_count
)
912 for (lane
= 0; lane
< lane_count
; lane
++) {
913 lane_status
= intel_get_lane_status(link_status
, lane
);
914 if ((lane_status
& DP_LANE_CR_DONE
) == 0)
920 /* Check to see if channel eq is done on all channels */
921 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
922 DP_LANE_CHANNEL_EQ_DONE|\
923 DP_LANE_SYMBOL_LOCKED)
925 intel_channel_eq_ok(uint8_t link_status
[DP_LINK_STATUS_SIZE
], int lane_count
)
931 lane_align
= intel_dp_link_status(link_status
,
932 DP_LANE_ALIGN_STATUS_UPDATED
);
933 if ((lane_align
& DP_INTERLANE_ALIGN_DONE
) == 0)
935 for (lane
= 0; lane
< lane_count
; lane
++) {
936 lane_status
= intel_get_lane_status(link_status
, lane
);
937 if ((lane_status
& CHANNEL_EQ_BITS
) != CHANNEL_EQ_BITS
)
944 intel_dp_set_link_train(struct intel_output
*intel_output
,
945 uint32_t dp_reg_value
,
946 uint8_t dp_train_pat
,
947 uint8_t train_set
[4],
950 struct drm_device
*dev
= intel_output
->base
.dev
;
951 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
952 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
955 I915_WRITE(dp_priv
->output_reg
, dp_reg_value
);
956 POSTING_READ(dp_priv
->output_reg
);
958 intel_wait_for_vblank(dev
);
960 intel_dp_aux_native_write_1(intel_output
,
961 DP_TRAINING_PATTERN_SET
,
964 ret
= intel_dp_aux_native_write(intel_output
,
965 DP_TRAINING_LANE0_SET
, train_set
, 4);
973 intel_dp_link_train(struct intel_output
*intel_output
, uint32_t DP
,
974 uint8_t link_configuration
[DP_LINK_CONFIGURATION_SIZE
])
976 struct drm_device
*dev
= intel_output
->base
.dev
;
977 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
978 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
979 uint8_t train_set
[4];
980 uint8_t link_status
[DP_LINK_STATUS_SIZE
];
983 bool clock_recovery
= false;
984 bool channel_eq
= false;
988 /* Write the link configuration data */
989 intel_dp_aux_native_write(intel_output
, 0x100,
990 link_configuration
, DP_LINK_CONFIGURATION_SIZE
);
993 DP
&= ~DP_LINK_TRAIN_MASK
;
994 memset(train_set
, 0, 4);
997 clock_recovery
= false;
999 /* Use train_set[0] to set the voltage and pre emphasis values */
1000 uint32_t signal_levels
= intel_dp_signal_levels(train_set
[0], dp_priv
->lane_count
);
1001 DP
= (DP
& ~(DP_VOLTAGE_MASK
|DP_PRE_EMPHASIS_MASK
)) | signal_levels
;
1003 if (!intel_dp_set_link_train(intel_output
, DP
| DP_LINK_TRAIN_PAT_1
,
1004 DP_TRAINING_PATTERN_1
, train_set
, first
))
1007 /* Set training pattern 1 */
1010 if (!intel_dp_get_link_status(intel_output
, link_status
))
1013 if (intel_clock_recovery_ok(link_status
, dp_priv
->lane_count
)) {
1014 clock_recovery
= true;
1018 /* Check to see if we've tried the max voltage */
1019 for (i
= 0; i
< dp_priv
->lane_count
; i
++)
1020 if ((train_set
[i
] & DP_TRAIN_MAX_SWING_REACHED
) == 0)
1022 if (i
== dp_priv
->lane_count
)
1025 /* Check to see if we've tried the same voltage 5 times */
1026 if ((train_set
[0] & DP_TRAIN_VOLTAGE_SWING_MASK
) == voltage
) {
1032 voltage
= train_set
[0] & DP_TRAIN_VOLTAGE_SWING_MASK
;
1034 /* Compute new train_set as requested by target */
1035 intel_get_adjust_train(intel_output
, link_status
, dp_priv
->lane_count
, train_set
);
1038 /* channel equalization */
1042 /* Use train_set[0] to set the voltage and pre emphasis values */
1043 uint32_t signal_levels
= intel_dp_signal_levels(train_set
[0], dp_priv
->lane_count
);
1044 DP
= (DP
& ~(DP_VOLTAGE_MASK
|DP_PRE_EMPHASIS_MASK
)) | signal_levels
;
1046 /* channel eq pattern */
1047 if (!intel_dp_set_link_train(intel_output
, DP
| DP_LINK_TRAIN_PAT_2
,
1048 DP_TRAINING_PATTERN_2
, train_set
,
1053 if (!intel_dp_get_link_status(intel_output
, link_status
))
1056 if (intel_channel_eq_ok(link_status
, dp_priv
->lane_count
)) {
1065 /* Compute new train_set as requested by target */
1066 intel_get_adjust_train(intel_output
, link_status
, dp_priv
->lane_count
, train_set
);
1070 I915_WRITE(dp_priv
->output_reg
, DP
| DP_LINK_TRAIN_OFF
);
1071 POSTING_READ(dp_priv
->output_reg
);
1072 intel_dp_aux_native_write_1(intel_output
,
1073 DP_TRAINING_PATTERN_SET
, DP_TRAINING_PATTERN_DISABLE
);
1077 intel_dp_link_down(struct intel_output
*intel_output
, uint32_t DP
)
1079 struct drm_device
*dev
= intel_output
->base
.dev
;
1080 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1081 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
1083 DRM_DEBUG_KMS("\n");
1085 if (IS_eDP(intel_output
)) {
1086 DP
&= ~DP_PLL_ENABLE
;
1087 I915_WRITE(dp_priv
->output_reg
, DP
);
1088 POSTING_READ(dp_priv
->output_reg
);
1092 DP
&= ~DP_LINK_TRAIN_MASK
;
1093 I915_WRITE(dp_priv
->output_reg
, DP
| DP_LINK_TRAIN_PAT_IDLE
);
1094 POSTING_READ(dp_priv
->output_reg
);
1098 if (IS_eDP(intel_output
))
1099 DP
|= DP_LINK_TRAIN_OFF
;
1100 I915_WRITE(dp_priv
->output_reg
, DP
& ~DP_PORT_EN
);
1101 POSTING_READ(dp_priv
->output_reg
);
1105 intel_dp_restore(struct drm_connector
*connector
)
1107 struct intel_output
*intel_output
= to_intel_output(connector
);
1108 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
1110 if (dp_priv
->save_DP
& DP_PORT_EN
)
1111 intel_dp_link_train(intel_output
, dp_priv
->save_DP
, dp_priv
->save_link_configuration
);
1113 intel_dp_link_down(intel_output
, dp_priv
->save_DP
);
1117 * According to DP spec
1120 * 2. Configure link according to Receiver Capabilities
1121 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1122 * 4. Check link status on receipt of hot-plug interrupt
1126 intel_dp_check_link_status(struct intel_output
*intel_output
)
1128 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
1129 uint8_t link_status
[DP_LINK_STATUS_SIZE
];
1131 if (!intel_output
->enc
.crtc
)
1134 if (!intel_dp_get_link_status(intel_output
, link_status
)) {
1135 intel_dp_link_down(intel_output
, dp_priv
->DP
);
1139 if (!intel_channel_eq_ok(link_status
, dp_priv
->lane_count
))
1140 intel_dp_link_train(intel_output
, dp_priv
->DP
, dp_priv
->link_configuration
);
1143 static enum drm_connector_status
1144 ironlake_dp_detect(struct drm_connector
*connector
)
1146 struct intel_output
*intel_output
= to_intel_output(connector
);
1147 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
1148 enum drm_connector_status status
;
1150 status
= connector_status_disconnected
;
1151 if (intel_dp_aux_native_read(intel_output
,
1152 0x000, dp_priv
->dpcd
,
1153 sizeof (dp_priv
->dpcd
)) == sizeof (dp_priv
->dpcd
))
1155 if (dp_priv
->dpcd
[0] != 0)
1156 status
= connector_status_connected
;
1162 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1164 * \return true if DP port is connected.
1165 * \return false if DP port is disconnected.
1167 static enum drm_connector_status
1168 intel_dp_detect(struct drm_connector
*connector
)
1170 struct intel_output
*intel_output
= to_intel_output(connector
);
1171 struct drm_device
*dev
= intel_output
->base
.dev
;
1172 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1173 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
1175 enum drm_connector_status status
;
1177 dp_priv
->has_audio
= false;
1179 if (IS_IRONLAKE(dev
))
1180 return ironlake_dp_detect(connector
);
1182 temp
= I915_READ(PORT_HOTPLUG_EN
);
1184 I915_WRITE(PORT_HOTPLUG_EN
,
1186 DPB_HOTPLUG_INT_EN
|
1187 DPC_HOTPLUG_INT_EN
|
1188 DPD_HOTPLUG_INT_EN
);
1190 POSTING_READ(PORT_HOTPLUG_EN
);
1192 switch (dp_priv
->output_reg
) {
1194 bit
= DPB_HOTPLUG_INT_STATUS
;
1197 bit
= DPC_HOTPLUG_INT_STATUS
;
1200 bit
= DPD_HOTPLUG_INT_STATUS
;
1203 return connector_status_unknown
;
1206 temp
= I915_READ(PORT_HOTPLUG_STAT
);
1208 if ((temp
& bit
) == 0)
1209 return connector_status_disconnected
;
1211 status
= connector_status_disconnected
;
1212 if (intel_dp_aux_native_read(intel_output
,
1213 0x000, dp_priv
->dpcd
,
1214 sizeof (dp_priv
->dpcd
)) == sizeof (dp_priv
->dpcd
))
1216 if (dp_priv
->dpcd
[0] != 0)
1217 status
= connector_status_connected
;
1222 static int intel_dp_get_modes(struct drm_connector
*connector
)
1224 struct intel_output
*intel_output
= to_intel_output(connector
);
1225 struct drm_device
*dev
= intel_output
->base
.dev
;
1226 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1229 /* We should parse the EDID data and find out if it has an audio sink
1232 ret
= intel_ddc_get_modes(intel_output
);
1236 /* if eDP has no EDID, try to use fixed panel mode from VBT */
1237 if (IS_eDP(intel_output
)) {
1238 if (dev_priv
->panel_fixed_mode
!= NULL
) {
1239 struct drm_display_mode
*mode
;
1240 mode
= drm_mode_duplicate(dev
, dev_priv
->panel_fixed_mode
);
1241 drm_mode_probed_add(connector
, mode
);
1249 intel_dp_destroy (struct drm_connector
*connector
)
1251 struct intel_output
*intel_output
= to_intel_output(connector
);
1253 if (intel_output
->i2c_bus
)
1254 intel_i2c_destroy(intel_output
->i2c_bus
);
1255 drm_sysfs_connector_remove(connector
);
1256 drm_connector_cleanup(connector
);
1257 kfree(intel_output
);
1260 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs
= {
1261 .dpms
= intel_dp_dpms
,
1262 .mode_fixup
= intel_dp_mode_fixup
,
1263 .prepare
= intel_encoder_prepare
,
1264 .mode_set
= intel_dp_mode_set
,
1265 .commit
= intel_encoder_commit
,
1268 static const struct drm_connector_funcs intel_dp_connector_funcs
= {
1269 .dpms
= drm_helper_connector_dpms
,
1270 .save
= intel_dp_save
,
1271 .restore
= intel_dp_restore
,
1272 .detect
= intel_dp_detect
,
1273 .fill_modes
= drm_helper_probe_single_connector_modes
,
1274 .destroy
= intel_dp_destroy
,
1277 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs
= {
1278 .get_modes
= intel_dp_get_modes
,
1279 .mode_valid
= intel_dp_mode_valid
,
1280 .best_encoder
= intel_best_encoder
,
1283 static void intel_dp_enc_destroy(struct drm_encoder
*encoder
)
1285 drm_encoder_cleanup(encoder
);
1288 static const struct drm_encoder_funcs intel_dp_enc_funcs
= {
1289 .destroy
= intel_dp_enc_destroy
,
1293 intel_dp_hot_plug(struct intel_output
*intel_output
)
1295 struct intel_dp_priv
*dp_priv
= intel_output
->dev_priv
;
1297 if (dp_priv
->dpms_mode
== DRM_MODE_DPMS_ON
)
1298 intel_dp_check_link_status(intel_output
);
1302 intel_dp_init(struct drm_device
*dev
, int output_reg
)
1304 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1305 struct drm_connector
*connector
;
1306 struct intel_output
*intel_output
;
1307 struct intel_dp_priv
*dp_priv
;
1308 const char *name
= NULL
;
1310 intel_output
= kcalloc(sizeof(struct intel_output
) +
1311 sizeof(struct intel_dp_priv
), 1, GFP_KERNEL
);
1315 dp_priv
= (struct intel_dp_priv
*)(intel_output
+ 1);
1317 connector
= &intel_output
->base
;
1318 drm_connector_init(dev
, connector
, &intel_dp_connector_funcs
,
1319 DRM_MODE_CONNECTOR_DisplayPort
);
1320 drm_connector_helper_add(connector
, &intel_dp_connector_helper_funcs
);
1322 if (output_reg
== DP_A
)
1323 intel_output
->type
= INTEL_OUTPUT_EDP
;
1325 intel_output
->type
= INTEL_OUTPUT_DISPLAYPORT
;
1327 if (output_reg
== DP_B
|| output_reg
== PCH_DP_B
)
1328 intel_output
->clone_mask
= (1 << INTEL_DP_B_CLONE_BIT
);
1329 else if (output_reg
== DP_C
|| output_reg
== PCH_DP_C
)
1330 intel_output
->clone_mask
= (1 << INTEL_DP_C_CLONE_BIT
);
1331 else if (output_reg
== DP_D
|| output_reg
== PCH_DP_D
)
1332 intel_output
->clone_mask
= (1 << INTEL_DP_D_CLONE_BIT
);
1334 if (IS_eDP(intel_output
))
1335 intel_output
->clone_mask
= (1 << INTEL_EDP_CLONE_BIT
);
1337 intel_output
->crtc_mask
= (1 << 0) | (1 << 1);
1338 connector
->interlace_allowed
= true;
1339 connector
->doublescan_allowed
= 0;
1341 dp_priv
->intel_output
= intel_output
;
1342 dp_priv
->output_reg
= output_reg
;
1343 dp_priv
->has_audio
= false;
1344 dp_priv
->dpms_mode
= DRM_MODE_DPMS_ON
;
1345 intel_output
->dev_priv
= dp_priv
;
1347 drm_encoder_init(dev
, &intel_output
->enc
, &intel_dp_enc_funcs
,
1348 DRM_MODE_ENCODER_TMDS
);
1349 drm_encoder_helper_add(&intel_output
->enc
, &intel_dp_helper_funcs
);
1351 drm_mode_connector_attach_encoder(&intel_output
->base
,
1352 &intel_output
->enc
);
1353 drm_sysfs_connector_add(connector
);
1355 /* Set up the DDC bus. */
1356 switch (output_reg
) {
1362 dev_priv
->hotplug_supported_mask
|=
1363 HDMIB_HOTPLUG_INT_STATUS
;
1368 dev_priv
->hotplug_supported_mask
|=
1369 HDMIC_HOTPLUG_INT_STATUS
;
1374 dev_priv
->hotplug_supported_mask
|=
1375 HDMID_HOTPLUG_INT_STATUS
;
1380 intel_dp_i2c_init(intel_output
, name
);
1382 intel_output
->ddc_bus
= &dp_priv
->adapter
;
1383 intel_output
->hot_plug
= intel_dp_hot_plug
;
1385 if (output_reg
== DP_A
) {
1386 /* initialize panel mode from VBT if available for eDP */
1387 if (dev_priv
->lfp_lvds_vbt_mode
) {
1388 dev_priv
->panel_fixed_mode
=
1389 drm_mode_duplicate(dev
, dev_priv
->lfp_lvds_vbt_mode
);
1390 if (dev_priv
->panel_fixed_mode
) {
1391 dev_priv
->panel_fixed_mode
->type
|=
1392 DRM_MODE_TYPE_PREFERRED
;
1397 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1398 * 0xd. Failure to do so will result in spurious interrupts being
1399 * generated on the port when a cable is not attached.
1401 if (IS_G4X(dev
) && !IS_GM45(dev
)) {
1402 u32 temp
= I915_READ(PEG_BAND_GAP_DATA
);
1403 I915_WRITE(PEG_BAND_GAP_DATA
, (temp
& ~0xf) | 0xd);