2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Robert Bragg <robert@sixbynine.org>
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
213 /* HW requires this to be a power of two, between 128k and 16M, though driver
214 * is currently generally designed assuming the largest 16M size is used such
215 * that the overflow cases are unlikely in normal operation.
217 #define OA_BUFFER_SIZE SZ_16M
219 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
222 * DOC: OA Tail Pointer Race
224 * There's a HW race condition between OA unit tail pointer register updates and
225 * writes to memory whereby the tail pointer can sometimes get ahead of what's
226 * been written out to the OA buffer so far (in terms of what's visible to the
229 * Although this can be observed explicitly while copying reports to userspace
230 * by checking for a zeroed report-id field in tail reports, we want to account
231 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
234 * In effect we define a tail pointer for reading that lags the real tail
235 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
236 * time for the corresponding reports to become visible to the CPU.
238 * To manage this we actually track two tail pointers:
239 * 1) An 'aging' tail with an associated timestamp that is tracked until we
240 * can trust the corresponding data is visible to the CPU; at which point
241 * it is considered 'aged'.
242 * 2) An 'aged' tail that can be used for read()ing.
244 * The two separate pointers let us decouple read()s from tail pointer aging.
246 * The tail pointers are checked and updated at a limited rate within a hrtimer
247 * callback (the same callback that is used for delivering EPOLLIN events)
249 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
250 * indicates that an updated tail pointer is needed.
252 * Most of the implementation details for this workaround are in
253 * oa_buffer_check_unlocked() and _append_oa_reports()
255 * Note for posterity: previously the driver used to define an effective tail
256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258 * This was flawed considering that the OA unit may also automatically generate
259 * non-periodic reports (such as on context switch) or the OA unit may be
260 * enabled without any periodic sampling.
262 #define OA_TAIL_MARGIN_NSEC 100000ULL
263 #define INVALID_TAIL_PTR 0xffffffff
265 /* frequency for checking whether the OA unit has written new reports to the
266 * circular OA buffer...
268 #define POLL_FREQUENCY 200
269 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
274 static u32 i915_perf_stream_paranoid
= true;
276 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
277 * of the 64bit timestamp bits to trigger reports from) but there's currently
278 * no known use case for sampling as infrequently as once per 47 thousand years.
280 * Since the timestamps included in OA reports are only 32bits it seems
281 * reasonable to limit the OA exponent where it's still possible to account for
282 * overflow in OA report timestamps.
284 #define OA_EXPONENT_MAX 31
286 #define INVALID_CTX_ID 0xffffffff
288 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
289 #define OAREPORT_REASON_MASK 0x3f
290 #define OAREPORT_REASON_SHIFT 19
291 #define OAREPORT_REASON_TIMER (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO (1<<5)
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298 * The highest sampling frequency we can theoretically program the OA unit
299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301 * Initialized just before we register the sysctl parameter.
303 static int oa_sample_rate_hard_limit
;
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306 * allow that by default unless root...
308 * The default threshold of 100000Hz is based on perf's similar
309 * kernel.perf_event_max_sample_rate sysctl parameter.
311 static u32 i915_oa_max_sample_rate
= 100000;
313 /* XXX: beware if future OA HW adds new report formats that the current
314 * code assumes all reports have a power-of-two size and ~(size - 1) can
315 * be used as a mask to align the OA tail pointer.
317 static struct i915_oa_format hsw_oa_formats
[I915_OA_FORMAT_MAX
] = {
318 [I915_OA_FORMAT_A13
] = { 0, 64 },
319 [I915_OA_FORMAT_A29
] = { 1, 128 },
320 [I915_OA_FORMAT_A13_B8_C8
] = { 2, 128 },
321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 [I915_OA_FORMAT_B4_C8
] = { 4, 64 },
323 [I915_OA_FORMAT_A45_B8_C8
] = { 5, 256 },
324 [I915_OA_FORMAT_B4_C8_A16
] = { 6, 128 },
325 [I915_OA_FORMAT_C4_B8
] = { 7, 64 },
328 static struct i915_oa_format gen8_plus_oa_formats
[I915_OA_FORMAT_MAX
] = {
329 [I915_OA_FORMAT_A12
] = { 0, 64 },
330 [I915_OA_FORMAT_A12_B8_C8
] = { 2, 128 },
331 [I915_OA_FORMAT_A32u40_A4u32_B8_C8
] = { 5, 256 },
332 [I915_OA_FORMAT_C4_B8
] = { 7, 64 },
335 #define SAMPLE_OA_REPORT (1<<0)
338 * struct perf_open_properties - for validated properties given to open a stream
339 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
340 * @single_context: Whether a single or all gpu contexts should be monitored
341 * @ctx_handle: A gem ctx handle for use with @single_context
342 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
343 * @oa_format: An OA unit HW report format
344 * @oa_periodic: Whether to enable periodic OA unit sampling
345 * @oa_period_exponent: The OA unit sampling period is derived from this
347 * As read_properties_unlocked() enumerates and validates the properties given
348 * to open a stream of metrics the configuration is built up in the structure
349 * which starts out zero initialized.
351 struct perf_open_properties
{
354 u64 single_context
:1;
357 /* OA sampling state */
361 int oa_period_exponent
;
364 static void free_oa_config(struct drm_i915_private
*dev_priv
,
365 struct i915_oa_config
*oa_config
)
367 if (!PTR_ERR(oa_config
->flex_regs
))
368 kfree(oa_config
->flex_regs
);
369 if (!PTR_ERR(oa_config
->b_counter_regs
))
370 kfree(oa_config
->b_counter_regs
);
371 if (!PTR_ERR(oa_config
->mux_regs
))
372 kfree(oa_config
->mux_regs
);
376 static void put_oa_config(struct drm_i915_private
*dev_priv
,
377 struct i915_oa_config
*oa_config
)
379 if (!atomic_dec_and_test(&oa_config
->ref_count
))
382 free_oa_config(dev_priv
, oa_config
);
385 static int get_oa_config(struct drm_i915_private
*dev_priv
,
387 struct i915_oa_config
**out_config
)
391 if (metrics_set
== 1) {
392 *out_config
= &dev_priv
->perf
.oa
.test_config
;
393 atomic_inc(&dev_priv
->perf
.oa
.test_config
.ref_count
);
397 ret
= mutex_lock_interruptible(&dev_priv
->perf
.metrics_lock
);
401 *out_config
= idr_find(&dev_priv
->perf
.metrics_idr
, metrics_set
);
405 atomic_inc(&(*out_config
)->ref_count
);
407 mutex_unlock(&dev_priv
->perf
.metrics_lock
);
412 static u32
gen8_oa_hw_tail_read(struct drm_i915_private
*dev_priv
)
414 return I915_READ(GEN8_OATAILPTR
) & GEN8_OATAILPTR_MASK
;
417 static u32
gen7_oa_hw_tail_read(struct drm_i915_private
*dev_priv
)
419 u32 oastatus1
= I915_READ(GEN7_OASTATUS1
);
421 return oastatus1
& GEN7_OASTATUS1_TAIL_MASK
;
425 * oa_buffer_check_unlocked - check for data and update tail ptr state
426 * @dev_priv: i915 device instance
428 * This is either called via fops (for blocking reads in user ctx) or the poll
429 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
430 * if there is data available for userspace to read.
432 * This function is central to providing a workaround for the OA unit tail
433 * pointer having a race with respect to what data is visible to the CPU.
434 * It is responsible for reading tail pointers from the hardware and giving
435 * the pointers time to 'age' before they are made available for reading.
436 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
438 * Besides returning true when there is data available to read() this function
439 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
440 * and .aged_tail_idx state used for reading.
442 * Note: It's safe to read OA config state here unlocked, assuming that this is
443 * only called while the stream is enabled, while the global OA configuration
446 * Returns: %true if the OA buffer contains data, else %false
448 static bool oa_buffer_check_unlocked(struct drm_i915_private
*dev_priv
)
450 int report_size
= dev_priv
->perf
.oa
.oa_buffer
.format_size
;
452 unsigned int aged_idx
;
453 u32 head
, hw_tail
, aged_tail
, aging_tail
;
456 /* We have to consider the (unlikely) possibility that read() errors
457 * could result in an OA buffer reset which might reset the head,
458 * tails[] and aged_tail state.
460 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
462 /* NB: The head we observe here might effectively be a little out of
463 * date (between head and tails[aged_idx].offset if there is currently
464 * a read() in progress.
466 head
= dev_priv
->perf
.oa
.oa_buffer
.head
;
468 aged_idx
= dev_priv
->perf
.oa
.oa_buffer
.aged_tail_idx
;
469 aged_tail
= dev_priv
->perf
.oa
.oa_buffer
.tails
[aged_idx
].offset
;
470 aging_tail
= dev_priv
->perf
.oa
.oa_buffer
.tails
[!aged_idx
].offset
;
472 hw_tail
= dev_priv
->perf
.oa
.ops
.oa_hw_tail_read(dev_priv
);
474 /* The tail pointer increases in 64 byte increments,
475 * not in report_size steps...
477 hw_tail
&= ~(report_size
- 1);
479 now
= ktime_get_mono_fast_ns();
481 /* Update the aged tail
483 * Flip the tail pointer available for read()s once the aging tail is
484 * old enough to trust that the corresponding data will be visible to
487 * Do this before updating the aging pointer in case we may be able to
488 * immediately start aging a new pointer too (if new data has become
489 * available) without needing to wait for a later hrtimer callback.
491 if (aging_tail
!= INVALID_TAIL_PTR
&&
492 ((now
- dev_priv
->perf
.oa
.oa_buffer
.aging_timestamp
) >
493 OA_TAIL_MARGIN_NSEC
)) {
496 dev_priv
->perf
.oa
.oa_buffer
.aged_tail_idx
= aged_idx
;
498 aged_tail
= aging_tail
;
500 /* Mark that we need a new pointer to start aging... */
501 dev_priv
->perf
.oa
.oa_buffer
.tails
[!aged_idx
].offset
= INVALID_TAIL_PTR
;
502 aging_tail
= INVALID_TAIL_PTR
;
505 /* Update the aging tail
507 * We throttle aging tail updates until we have a new tail that
508 * represents >= one report more data than is already available for
509 * reading. This ensures there will be enough data for a successful
510 * read once this new pointer has aged and ensures we will give the new
511 * pointer time to age.
513 if (aging_tail
== INVALID_TAIL_PTR
&&
514 (aged_tail
== INVALID_TAIL_PTR
||
515 OA_TAKEN(hw_tail
, aged_tail
) >= report_size
)) {
516 struct i915_vma
*vma
= dev_priv
->perf
.oa
.oa_buffer
.vma
;
517 u32 gtt_offset
= i915_ggtt_offset(vma
);
519 /* Be paranoid and do a bounds check on the pointer read back
520 * from hardware, just in case some spurious hardware condition
521 * could put the tail out of bounds...
523 if (hw_tail
>= gtt_offset
&&
524 hw_tail
< (gtt_offset
+ OA_BUFFER_SIZE
)) {
525 dev_priv
->perf
.oa
.oa_buffer
.tails
[!aged_idx
].offset
=
526 aging_tail
= hw_tail
;
527 dev_priv
->perf
.oa
.oa_buffer
.aging_timestamp
= now
;
529 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
534 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
536 return aged_tail
== INVALID_TAIL_PTR
?
537 false : OA_TAKEN(aged_tail
, head
) >= report_size
;
541 * append_oa_status - Appends a status record to a userspace read() buffer.
542 * @stream: An i915-perf stream opened for OA metrics
543 * @buf: destination buffer given by userspace
544 * @count: the number of bytes userspace wants to read
545 * @offset: (inout): the current position for writing into @buf
546 * @type: The kind of status to report to userspace
548 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
549 * into the userspace read() buffer.
551 * The @buf @offset will only be updated on success.
553 * Returns: 0 on success, negative error code on failure.
555 static int append_oa_status(struct i915_perf_stream
*stream
,
559 enum drm_i915_perf_record_type type
)
561 struct drm_i915_perf_record_header header
= { type
, 0, sizeof(header
) };
563 if ((count
- *offset
) < header
.size
)
566 if (copy_to_user(buf
+ *offset
, &header
, sizeof(header
)))
569 (*offset
) += header
.size
;
575 * append_oa_sample - Copies single OA report into userspace read() buffer.
576 * @stream: An i915-perf stream opened for OA metrics
577 * @buf: destination buffer given by userspace
578 * @count: the number of bytes userspace wants to read
579 * @offset: (inout): the current position for writing into @buf
580 * @report: A single OA report to (optionally) include as part of the sample
582 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
583 * properties when opening a stream, tracked as `stream->sample_flags`. This
584 * function copies the requested components of a single sample to the given
587 * The @buf @offset will only be updated on success.
589 * Returns: 0 on success, negative error code on failure.
591 static int append_oa_sample(struct i915_perf_stream
*stream
,
597 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
598 int report_size
= dev_priv
->perf
.oa
.oa_buffer
.format_size
;
599 struct drm_i915_perf_record_header header
;
600 u32 sample_flags
= stream
->sample_flags
;
602 header
.type
= DRM_I915_PERF_RECORD_SAMPLE
;
604 header
.size
= stream
->sample_size
;
606 if ((count
- *offset
) < header
.size
)
610 if (copy_to_user(buf
, &header
, sizeof(header
)))
612 buf
+= sizeof(header
);
614 if (sample_flags
& SAMPLE_OA_REPORT
) {
615 if (copy_to_user(buf
, report
, report_size
))
619 (*offset
) += header
.size
;
625 * Copies all buffered OA reports into userspace read() buffer.
626 * @stream: An i915-perf stream opened for OA metrics
627 * @buf: destination buffer given by userspace
628 * @count: the number of bytes userspace wants to read
629 * @offset: (inout): the current position for writing into @buf
631 * Notably any error condition resulting in a short read (-%ENOSPC or
632 * -%EFAULT) will be returned even though one or more records may
633 * have been successfully copied. In this case it's up to the caller
634 * to decide if the error should be squashed before returning to
637 * Note: reports are consumed from the head, and appended to the
638 * tail, so the tail chases the head?... If you think that's mad
639 * and back-to-front you're not alone, but this follows the
640 * Gen PRM naming convention.
642 * Returns: 0 on success, negative error code on failure.
644 static int gen8_append_oa_reports(struct i915_perf_stream
*stream
,
649 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
650 int report_size
= dev_priv
->perf
.oa
.oa_buffer
.format_size
;
651 u8
*oa_buf_base
= dev_priv
->perf
.oa
.oa_buffer
.vaddr
;
652 u32 gtt_offset
= i915_ggtt_offset(dev_priv
->perf
.oa
.oa_buffer
.vma
);
653 u32 mask
= (OA_BUFFER_SIZE
- 1);
654 size_t start_offset
= *offset
;
656 unsigned int aged_tail_idx
;
661 if (WARN_ON(!stream
->enabled
))
664 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
666 head
= dev_priv
->perf
.oa
.oa_buffer
.head
;
667 aged_tail_idx
= dev_priv
->perf
.oa
.oa_buffer
.aged_tail_idx
;
668 tail
= dev_priv
->perf
.oa
.oa_buffer
.tails
[aged_tail_idx
].offset
;
670 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
673 * An invalid tail pointer here means we're still waiting for the poll
674 * hrtimer callback to give us a pointer
676 if (tail
== INVALID_TAIL_PTR
)
680 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
681 * while indexing relative to oa_buf_base.
687 * An out of bounds or misaligned head or tail pointer implies a driver
688 * bug since we validate + align the tail pointers we read from the
689 * hardware and we are in full control of the head pointer which should
690 * only be incremented by multiples of the report size (notably also
691 * all a power of two).
693 if (WARN_ONCE(head
> OA_BUFFER_SIZE
|| head
% report_size
||
694 tail
> OA_BUFFER_SIZE
|| tail
% report_size
,
695 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
701 (taken
= OA_TAKEN(tail
, head
));
702 head
= (head
+ report_size
) & mask
) {
703 u8
*report
= oa_buf_base
+ head
;
704 u32
*report32
= (void *)report
;
709 * All the report sizes factor neatly into the buffer
710 * size so we never expect to see a report split
711 * between the beginning and end of the buffer.
713 * Given the initial alignment check a misalignment
714 * here would imply a driver bug that would result
717 if (WARN_ON((OA_BUFFER_SIZE
- head
) < report_size
)) {
718 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
723 * The reason field includes flags identifying what
724 * triggered this specific report (mostly timer
725 * triggered or e.g. due to a context switch).
727 * This field is never expected to be zero so we can
728 * check that the report isn't invalid before copying
731 reason
= ((report32
[0] >> OAREPORT_REASON_SHIFT
) &
732 OAREPORT_REASON_MASK
);
734 if (__ratelimit(&dev_priv
->perf
.oa
.spurious_report_rs
))
735 DRM_NOTE("Skipping spurious, invalid OA report\n");
740 * XXX: Just keep the lower 21 bits for now since I'm not
741 * entirely sure if the HW touches any of the higher bits in
744 ctx_id
= report32
[2] & 0x1fffff;
747 * Squash whatever is in the CTX_ID field if it's marked as
748 * invalid to be sure we avoid false-positive, single-context
751 * Note: that we don't clear the valid_ctx_bit so userspace can
752 * understand that the ID has been squashed by the kernel.
754 if (!(report32
[0] & dev_priv
->perf
.oa
.gen8_valid_ctx_bit
))
755 ctx_id
= report32
[2] = INVALID_CTX_ID
;
758 * NB: For Gen 8 the OA unit no longer supports clock gating
759 * off for a specific context and the kernel can't securely
760 * stop the counters from updating as system-wide / global
763 * Automatic reports now include a context ID so reports can be
764 * filtered on the cpu but it's not worth trying to
765 * automatically subtract/hide counter progress for other
766 * contexts while filtering since we can't stop userspace
767 * issuing MI_REPORT_PERF_COUNT commands which would still
768 * provide a side-band view of the real values.
770 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
771 * to normalize counters for a single filtered context then it
772 * needs be forwarded bookend context-switch reports so that it
773 * can track switches in between MI_REPORT_PERF_COUNT commands
774 * and can itself subtract/ignore the progress of counters
775 * associated with other contexts. Note that the hardware
776 * automatically triggers reports when switching to a new
777 * context which are tagged with the ID of the newly active
778 * context. To avoid the complexity (and likely fragility) of
779 * reading ahead while parsing reports to try and minimize
780 * forwarding redundant context switch reports (i.e. between
781 * other, unrelated contexts) we simply elect to forward them
784 * We don't rely solely on the reason field to identify context
785 * switches since it's not-uncommon for periodic samples to
786 * identify a switch before any 'context switch' report.
788 if (!dev_priv
->perf
.oa
.exclusive_stream
->ctx
||
789 dev_priv
->perf
.oa
.specific_ctx_id
== ctx_id
||
790 (dev_priv
->perf
.oa
.oa_buffer
.last_ctx_id
==
791 dev_priv
->perf
.oa
.specific_ctx_id
) ||
792 reason
& OAREPORT_REASON_CTX_SWITCH
) {
795 * While filtering for a single context we avoid
796 * leaking the IDs of other contexts.
798 if (dev_priv
->perf
.oa
.exclusive_stream
->ctx
&&
799 dev_priv
->perf
.oa
.specific_ctx_id
!= ctx_id
) {
800 report32
[2] = INVALID_CTX_ID
;
803 ret
= append_oa_sample(stream
, buf
, count
, offset
,
808 dev_priv
->perf
.oa
.oa_buffer
.last_ctx_id
= ctx_id
;
812 * The above reason field sanity check is based on
813 * the assumption that the OA buffer is initially
814 * zeroed and we reset the field after copying so the
815 * check is still meaningful once old reports start
821 if (start_offset
!= *offset
) {
822 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
825 * We removed the gtt_offset for the copy loop above, indexing
826 * relative to oa_buf_base so put back here...
830 I915_WRITE(GEN8_OAHEADPTR
, head
& GEN8_OAHEADPTR_MASK
);
831 dev_priv
->perf
.oa
.oa_buffer
.head
= head
;
833 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
840 * gen8_oa_read - copy status records then buffered OA reports
841 * @stream: An i915-perf stream opened for OA metrics
842 * @buf: destination buffer given by userspace
843 * @count: the number of bytes userspace wants to read
844 * @offset: (inout): the current position for writing into @buf
846 * Checks OA unit status registers and if necessary appends corresponding
847 * status records for userspace (such as for a buffer full condition) and then
848 * initiate appending any buffered OA reports.
850 * Updates @offset according to the number of bytes successfully copied into
851 * the userspace buffer.
853 * NB: some data may be successfully copied to the userspace buffer
854 * even if an error is returned, and this is reflected in the
857 * Returns: zero on success or a negative error code
859 static int gen8_oa_read(struct i915_perf_stream
*stream
,
864 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
868 if (WARN_ON(!dev_priv
->perf
.oa
.oa_buffer
.vaddr
))
871 oastatus
= I915_READ(GEN8_OASTATUS
);
874 * We treat OABUFFER_OVERFLOW as a significant error:
876 * Although theoretically we could handle this more gracefully
877 * sometimes, some Gens don't correctly suppress certain
878 * automatically triggered reports in this condition and so we
879 * have to assume that old reports are now being trampled
882 * Considering how we don't currently give userspace control
883 * over the OA buffer size and always configure a large 16MB
884 * buffer, then a buffer overflow does anyway likely indicate
885 * that something has gone quite badly wrong.
887 if (oastatus
& GEN8_OASTATUS_OABUFFER_OVERFLOW
) {
888 ret
= append_oa_status(stream
, buf
, count
, offset
,
889 DRM_I915_PERF_RECORD_OA_BUFFER_LOST
);
893 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
894 dev_priv
->perf
.oa
.period_exponent
);
896 dev_priv
->perf
.oa
.ops
.oa_disable(dev_priv
);
897 dev_priv
->perf
.oa
.ops
.oa_enable(dev_priv
);
900 * Note: .oa_enable() is expected to re-init the oabuffer and
901 * reset GEN8_OASTATUS for us
903 oastatus
= I915_READ(GEN8_OASTATUS
);
906 if (oastatus
& GEN8_OASTATUS_REPORT_LOST
) {
907 ret
= append_oa_status(stream
, buf
, count
, offset
,
908 DRM_I915_PERF_RECORD_OA_REPORT_LOST
);
911 I915_WRITE(GEN8_OASTATUS
,
912 oastatus
& ~GEN8_OASTATUS_REPORT_LOST
);
915 return gen8_append_oa_reports(stream
, buf
, count
, offset
);
919 * Copies all buffered OA reports into userspace read() buffer.
920 * @stream: An i915-perf stream opened for OA metrics
921 * @buf: destination buffer given by userspace
922 * @count: the number of bytes userspace wants to read
923 * @offset: (inout): the current position for writing into @buf
925 * Notably any error condition resulting in a short read (-%ENOSPC or
926 * -%EFAULT) will be returned even though one or more records may
927 * have been successfully copied. In this case it's up to the caller
928 * to decide if the error should be squashed before returning to
931 * Note: reports are consumed from the head, and appended to the
932 * tail, so the tail chases the head?... If you think that's mad
933 * and back-to-front you're not alone, but this follows the
934 * Gen PRM naming convention.
936 * Returns: 0 on success, negative error code on failure.
938 static int gen7_append_oa_reports(struct i915_perf_stream
*stream
,
943 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
944 int report_size
= dev_priv
->perf
.oa
.oa_buffer
.format_size
;
945 u8
*oa_buf_base
= dev_priv
->perf
.oa
.oa_buffer
.vaddr
;
946 u32 gtt_offset
= i915_ggtt_offset(dev_priv
->perf
.oa
.oa_buffer
.vma
);
947 u32 mask
= (OA_BUFFER_SIZE
- 1);
948 size_t start_offset
= *offset
;
950 unsigned int aged_tail_idx
;
955 if (WARN_ON(!stream
->enabled
))
958 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
960 head
= dev_priv
->perf
.oa
.oa_buffer
.head
;
961 aged_tail_idx
= dev_priv
->perf
.oa
.oa_buffer
.aged_tail_idx
;
962 tail
= dev_priv
->perf
.oa
.oa_buffer
.tails
[aged_tail_idx
].offset
;
964 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
966 /* An invalid tail pointer here means we're still waiting for the poll
967 * hrtimer callback to give us a pointer
969 if (tail
== INVALID_TAIL_PTR
)
972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 * while indexing relative to oa_buf_base.
978 /* An out of bounds or misaligned head or tail pointer implies a driver
979 * bug since we validate + align the tail pointers we read from the
980 * hardware and we are in full control of the head pointer which should
981 * only be incremented by multiples of the report size (notably also
982 * all a power of two).
984 if (WARN_ONCE(head
> OA_BUFFER_SIZE
|| head
% report_size
||
985 tail
> OA_BUFFER_SIZE
|| tail
% report_size
,
986 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
992 (taken
= OA_TAKEN(tail
, head
));
993 head
= (head
+ report_size
) & mask
) {
994 u8
*report
= oa_buf_base
+ head
;
995 u32
*report32
= (void *)report
;
997 /* All the report sizes factor neatly into the buffer
998 * size so we never expect to see a report split
999 * between the beginning and end of the buffer.
1001 * Given the initial alignment check a misalignment
1002 * here would imply a driver bug that would result
1005 if (WARN_ON((OA_BUFFER_SIZE
- head
) < report_size
)) {
1006 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1010 /* The report-ID field for periodic samples includes
1011 * some undocumented flags related to what triggered
1012 * the report and is never expected to be zero so we
1013 * can check that the report isn't invalid before
1014 * copying it to userspace...
1016 if (report32
[0] == 0) {
1017 if (__ratelimit(&dev_priv
->perf
.oa
.spurious_report_rs
))
1018 DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 ret
= append_oa_sample(stream
, buf
, count
, offset
, report
);
1026 /* The above report-id field sanity check is based on
1027 * the assumption that the OA buffer is initially
1028 * zeroed and we reset the field after copying so the
1029 * check is still meaningful once old reports start
1030 * being overwritten.
1035 if (start_offset
!= *offset
) {
1036 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
1038 /* We removed the gtt_offset for the copy loop above, indexing
1039 * relative to oa_buf_base so put back here...
1043 I915_WRITE(GEN7_OASTATUS2
,
1044 ((head
& GEN7_OASTATUS2_HEAD_MASK
) |
1045 OA_MEM_SELECT_GGTT
));
1046 dev_priv
->perf
.oa
.oa_buffer
.head
= head
;
1048 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
1055 * gen7_oa_read - copy status records then buffered OA reports
1056 * @stream: An i915-perf stream opened for OA metrics
1057 * @buf: destination buffer given by userspace
1058 * @count: the number of bytes userspace wants to read
1059 * @offset: (inout): the current position for writing into @buf
1061 * Checks Gen 7 specific OA unit status registers and if necessary appends
1062 * corresponding status records for userspace (such as for a buffer full
1063 * condition) and then initiate appending any buffered OA reports.
1065 * Updates @offset according to the number of bytes successfully copied into
1066 * the userspace buffer.
1068 * Returns: zero on success or a negative error code
1070 static int gen7_oa_read(struct i915_perf_stream
*stream
,
1075 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1079 if (WARN_ON(!dev_priv
->perf
.oa
.oa_buffer
.vaddr
))
1082 oastatus1
= I915_READ(GEN7_OASTATUS1
);
1084 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 * bits while the OA unit is enabled (while the tail pointer
1086 * may be updated asynchronously) so we ignore status bits
1087 * that have already been reported to userspace.
1089 oastatus1
&= ~dev_priv
->perf
.oa
.gen7_latched_oastatus1
;
1091 /* We treat OABUFFER_OVERFLOW as a significant error:
1093 * - The status can be interpreted to mean that the buffer is
1094 * currently full (with a higher precedence than OA_TAKEN()
1095 * which will start to report a near-empty buffer after an
1096 * overflow) but it's awkward that we can't clear the status
1097 * on Haswell, so without a reset we won't be able to catch
1100 * - Since it also implies the HW has started overwriting old
1101 * reports it may also affect our sanity checks for invalid
1102 * reports when copying to userspace that assume new reports
1103 * are being written to cleared memory.
1105 * - In the future we may want to introduce a flight recorder
1106 * mode where the driver will automatically maintain a safe
1107 * guard band between head/tail, avoiding this overflow
1108 * condition, but we avoid the added driver complexity for
1111 if (unlikely(oastatus1
& GEN7_OASTATUS1_OABUFFER_OVERFLOW
)) {
1112 ret
= append_oa_status(stream
, buf
, count
, offset
,
1113 DRM_I915_PERF_RECORD_OA_BUFFER_LOST
);
1117 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1118 dev_priv
->perf
.oa
.period_exponent
);
1120 dev_priv
->perf
.oa
.ops
.oa_disable(dev_priv
);
1121 dev_priv
->perf
.oa
.ops
.oa_enable(dev_priv
);
1123 oastatus1
= I915_READ(GEN7_OASTATUS1
);
1126 if (unlikely(oastatus1
& GEN7_OASTATUS1_REPORT_LOST
)) {
1127 ret
= append_oa_status(stream
, buf
, count
, offset
,
1128 DRM_I915_PERF_RECORD_OA_REPORT_LOST
);
1131 dev_priv
->perf
.oa
.gen7_latched_oastatus1
|=
1132 GEN7_OASTATUS1_REPORT_LOST
;
1135 return gen7_append_oa_reports(stream
, buf
, count
, offset
);
1139 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140 * @stream: An i915-perf stream opened for OA metrics
1142 * Called when userspace tries to read() from a blocking stream FD opened
1143 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144 * OA buffer and wakes us.
1146 * Note: it's acceptable to have this return with some false positives
1147 * since any subsequent read handling will return -EAGAIN if there isn't
1148 * really data ready for userspace yet.
1150 * Returns: zero on success or a negative error code
1152 static int i915_oa_wait_unlocked(struct i915_perf_stream
*stream
)
1154 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1156 /* We would wait indefinitely if periodic sampling is not enabled */
1157 if (!dev_priv
->perf
.oa
.periodic
)
1160 return wait_event_interruptible(dev_priv
->perf
.oa
.poll_wq
,
1161 oa_buffer_check_unlocked(dev_priv
));
1165 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1166 * @stream: An i915-perf stream opened for OA metrics
1167 * @file: An i915 perf stream file
1168 * @wait: poll() state table
1170 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1171 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1172 * when it sees data ready to read in the circular OA buffer.
1174 static void i915_oa_poll_wait(struct i915_perf_stream
*stream
,
1178 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1180 poll_wait(file
, &dev_priv
->perf
.oa
.poll_wq
, wait
);
1184 * i915_oa_read - just calls through to &i915_oa_ops->read
1185 * @stream: An i915-perf stream opened for OA metrics
1186 * @buf: destination buffer given by userspace
1187 * @count: the number of bytes userspace wants to read
1188 * @offset: (inout): the current position for writing into @buf
1190 * Updates @offset according to the number of bytes successfully copied into
1191 * the userspace buffer.
1193 * Returns: zero on success or a negative error code
1195 static int i915_oa_read(struct i915_perf_stream
*stream
,
1200 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1202 return dev_priv
->perf
.oa
.ops
.read(stream
, buf
, count
, offset
);
1206 * oa_get_render_ctx_id - determine and hold ctx hw id
1207 * @stream: An i915-perf stream opened for OA metrics
1209 * Determine the render context hw id, and ensure it remains fixed for the
1210 * lifetime of the stream. This ensures that we don't have to worry about
1211 * updating the context ID in OACONTROL on the fly.
1213 * Returns: zero on success or a negative error code
1215 static int oa_get_render_ctx_id(struct i915_perf_stream
*stream
)
1217 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1219 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
)) {
1220 dev_priv
->perf
.oa
.specific_ctx_id
= stream
->ctx
->hw_id
;
1222 struct intel_engine_cs
*engine
= dev_priv
->engine
[RCS
];
1223 struct intel_ring
*ring
;
1226 ret
= i915_mutex_lock_interruptible(&dev_priv
->drm
);
1231 * As the ID is the gtt offset of the context's vma we
1232 * pin the vma to ensure the ID remains fixed.
1234 * NB: implied RCS engine...
1236 ring
= engine
->context_pin(engine
, stream
->ctx
);
1237 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1239 return PTR_ERR(ring
);
1243 * Explicitly track the ID (instead of calling
1244 * i915_ggtt_offset() on the fly) considering the difference
1245 * with gen8+ and execlists
1247 dev_priv
->perf
.oa
.specific_ctx_id
=
1248 i915_ggtt_offset(stream
->ctx
->engine
[engine
->id
].state
);
1255 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1256 * @stream: An i915-perf stream opened for OA metrics
1258 * In case anything needed doing to ensure the context HW ID would remain valid
1259 * for the lifetime of the stream, then that can be undone here.
1261 static void oa_put_render_ctx_id(struct i915_perf_stream
*stream
)
1263 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1265 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
)) {
1266 dev_priv
->perf
.oa
.specific_ctx_id
= INVALID_CTX_ID
;
1268 struct intel_engine_cs
*engine
= dev_priv
->engine
[RCS
];
1270 mutex_lock(&dev_priv
->drm
.struct_mutex
);
1272 dev_priv
->perf
.oa
.specific_ctx_id
= INVALID_CTX_ID
;
1273 engine
->context_unpin(engine
, stream
->ctx
);
1275 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1280 free_oa_buffer(struct drm_i915_private
*i915
)
1282 mutex_lock(&i915
->drm
.struct_mutex
);
1284 i915_gem_object_unpin_map(i915
->perf
.oa
.oa_buffer
.vma
->obj
);
1285 i915_vma_unpin(i915
->perf
.oa
.oa_buffer
.vma
);
1286 i915_gem_object_put(i915
->perf
.oa
.oa_buffer
.vma
->obj
);
1288 i915
->perf
.oa
.oa_buffer
.vma
= NULL
;
1289 i915
->perf
.oa
.oa_buffer
.vaddr
= NULL
;
1291 mutex_unlock(&i915
->drm
.struct_mutex
);
1294 static void i915_oa_stream_destroy(struct i915_perf_stream
*stream
)
1296 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1298 BUG_ON(stream
!= dev_priv
->perf
.oa
.exclusive_stream
);
1301 * Unset exclusive_stream first, it will be checked while disabling
1302 * the metric set on gen8+.
1304 mutex_lock(&dev_priv
->drm
.struct_mutex
);
1305 dev_priv
->perf
.oa
.exclusive_stream
= NULL
;
1306 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1308 dev_priv
->perf
.oa
.ops
.disable_metric_set(dev_priv
);
1310 free_oa_buffer(dev_priv
);
1312 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
1313 intel_runtime_pm_put(dev_priv
);
1316 oa_put_render_ctx_id(stream
);
1318 put_oa_config(dev_priv
, stream
->oa_config
);
1320 if (dev_priv
->perf
.oa
.spurious_report_rs
.missed
) {
1321 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1322 dev_priv
->perf
.oa
.spurious_report_rs
.missed
);
1326 static void gen7_init_oa_buffer(struct drm_i915_private
*dev_priv
)
1328 u32 gtt_offset
= i915_ggtt_offset(dev_priv
->perf
.oa
.oa_buffer
.vma
);
1329 unsigned long flags
;
1331 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
1333 /* Pre-DevBDW: OABUFFER must be set with counters off,
1334 * before OASTATUS1, but after OASTATUS2
1336 I915_WRITE(GEN7_OASTATUS2
, gtt_offset
| OA_MEM_SELECT_GGTT
); /* head */
1337 dev_priv
->perf
.oa
.oa_buffer
.head
= gtt_offset
;
1339 I915_WRITE(GEN7_OABUFFER
, gtt_offset
);
1341 I915_WRITE(GEN7_OASTATUS1
, gtt_offset
| OABUFFER_SIZE_16M
); /* tail */
1343 /* Mark that we need updated tail pointers to read from... */
1344 dev_priv
->perf
.oa
.oa_buffer
.tails
[0].offset
= INVALID_TAIL_PTR
;
1345 dev_priv
->perf
.oa
.oa_buffer
.tails
[1].offset
= INVALID_TAIL_PTR
;
1347 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
1349 /* On Haswell we have to track which OASTATUS1 flags we've
1350 * already seen since they can't be cleared while periodic
1351 * sampling is enabled.
1353 dev_priv
->perf
.oa
.gen7_latched_oastatus1
= 0;
1355 /* NB: although the OA buffer will initially be allocated
1356 * zeroed via shmfs (and so this memset is redundant when
1357 * first allocating), we may re-init the OA buffer, either
1358 * when re-enabling a stream or in error/reset paths.
1360 * The reason we clear the buffer for each re-init is for the
1361 * sanity check in gen7_append_oa_reports() that looks at the
1362 * report-id field to make sure it's non-zero which relies on
1363 * the assumption that new reports are being written to zeroed
1366 memset(dev_priv
->perf
.oa
.oa_buffer
.vaddr
, 0, OA_BUFFER_SIZE
);
1368 /* Maybe make ->pollin per-stream state if we support multiple
1369 * concurrent streams in the future.
1371 dev_priv
->perf
.oa
.pollin
= false;
1374 static void gen8_init_oa_buffer(struct drm_i915_private
*dev_priv
)
1376 u32 gtt_offset
= i915_ggtt_offset(dev_priv
->perf
.oa
.oa_buffer
.vma
);
1377 unsigned long flags
;
1379 spin_lock_irqsave(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
1381 I915_WRITE(GEN8_OASTATUS
, 0);
1382 I915_WRITE(GEN8_OAHEADPTR
, gtt_offset
);
1383 dev_priv
->perf
.oa
.oa_buffer
.head
= gtt_offset
;
1385 I915_WRITE(GEN8_OABUFFER_UDW
, 0);
1390 * "This MMIO must be set before the OATAILPTR
1391 * register and after the OAHEADPTR register. This is
1392 * to enable proper functionality of the overflow
1395 I915_WRITE(GEN8_OABUFFER
, gtt_offset
|
1396 OABUFFER_SIZE_16M
| OA_MEM_SELECT_GGTT
);
1397 I915_WRITE(GEN8_OATAILPTR
, gtt_offset
& GEN8_OATAILPTR_MASK
);
1399 /* Mark that we need updated tail pointers to read from... */
1400 dev_priv
->perf
.oa
.oa_buffer
.tails
[0].offset
= INVALID_TAIL_PTR
;
1401 dev_priv
->perf
.oa
.oa_buffer
.tails
[1].offset
= INVALID_TAIL_PTR
;
1404 * Reset state used to recognise context switches, affecting which
1405 * reports we will forward to userspace while filtering for a single
1408 dev_priv
->perf
.oa
.oa_buffer
.last_ctx_id
= INVALID_CTX_ID
;
1410 spin_unlock_irqrestore(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
, flags
);
1413 * NB: although the OA buffer will initially be allocated
1414 * zeroed via shmfs (and so this memset is redundant when
1415 * first allocating), we may re-init the OA buffer, either
1416 * when re-enabling a stream or in error/reset paths.
1418 * The reason we clear the buffer for each re-init is for the
1419 * sanity check in gen8_append_oa_reports() that looks at the
1420 * reason field to make sure it's non-zero which relies on
1421 * the assumption that new reports are being written to zeroed
1424 memset(dev_priv
->perf
.oa
.oa_buffer
.vaddr
, 0, OA_BUFFER_SIZE
);
1427 * Maybe make ->pollin per-stream state if we support multiple
1428 * concurrent streams in the future.
1430 dev_priv
->perf
.oa
.pollin
= false;
1433 static int alloc_oa_buffer(struct drm_i915_private
*dev_priv
)
1435 struct drm_i915_gem_object
*bo
;
1436 struct i915_vma
*vma
;
1439 if (WARN_ON(dev_priv
->perf
.oa
.oa_buffer
.vma
))
1442 ret
= i915_mutex_lock_interruptible(&dev_priv
->drm
);
1446 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE
);
1447 BUILD_BUG_ON(OA_BUFFER_SIZE
< SZ_128K
|| OA_BUFFER_SIZE
> SZ_16M
);
1449 bo
= i915_gem_object_create(dev_priv
, OA_BUFFER_SIZE
);
1451 DRM_ERROR("Failed to allocate OA buffer\n");
1456 ret
= i915_gem_object_set_cache_level(bo
, I915_CACHE_LLC
);
1460 /* PreHSW required 512K alignment, HSW requires 16M */
1461 vma
= i915_gem_object_ggtt_pin(bo
, NULL
, 0, SZ_16M
, 0);
1466 dev_priv
->perf
.oa
.oa_buffer
.vma
= vma
;
1468 dev_priv
->perf
.oa
.oa_buffer
.vaddr
=
1469 i915_gem_object_pin_map(bo
, I915_MAP_WB
);
1470 if (IS_ERR(dev_priv
->perf
.oa
.oa_buffer
.vaddr
)) {
1471 ret
= PTR_ERR(dev_priv
->perf
.oa
.oa_buffer
.vaddr
);
1475 dev_priv
->perf
.oa
.ops
.init_oa_buffer(dev_priv
);
1477 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1478 i915_ggtt_offset(dev_priv
->perf
.oa
.oa_buffer
.vma
),
1479 dev_priv
->perf
.oa
.oa_buffer
.vaddr
);
1484 __i915_vma_unpin(vma
);
1487 i915_gem_object_put(bo
);
1489 dev_priv
->perf
.oa
.oa_buffer
.vaddr
= NULL
;
1490 dev_priv
->perf
.oa
.oa_buffer
.vma
= NULL
;
1493 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1497 static void config_oa_regs(struct drm_i915_private
*dev_priv
,
1498 const struct i915_oa_reg
*regs
,
1503 for (i
= 0; i
< n_regs
; i
++) {
1504 const struct i915_oa_reg
*reg
= regs
+ i
;
1506 I915_WRITE(reg
->addr
, reg
->value
);
1510 static int hsw_enable_metric_set(struct drm_i915_private
*dev_priv
,
1511 const struct i915_oa_config
*oa_config
)
1515 * OA unit is using “crclk” for its functionality. When trunk
1516 * level clock gating takes place, OA clock would be gated,
1517 * unable to count the events from non-render clock domain.
1518 * Render clock gating must be disabled when OA is enabled to
1519 * count the events from non-render domain. Unit level clock
1520 * gating for RCS should also be disabled.
1522 I915_WRITE(GEN7_MISCCPCTL
, (I915_READ(GEN7_MISCCPCTL
) &
1523 ~GEN7_DOP_CLOCK_GATE_ENABLE
));
1524 I915_WRITE(GEN6_UCGCTL1
, (I915_READ(GEN6_UCGCTL1
) |
1525 GEN6_CSUNIT_CLOCK_GATE_DISABLE
));
1527 config_oa_regs(dev_priv
, oa_config
->mux_regs
, oa_config
->mux_regs_len
);
1529 /* It apparently takes a fairly long time for a new MUX
1530 * configuration to be be applied after these register writes.
1531 * This delay duration was derived empirically based on the
1532 * render_basic config but hopefully it covers the maximum
1533 * configuration latency.
1535 * As a fallback, the checks in _append_oa_reports() to skip
1536 * invalid OA reports do also seem to work to discard reports
1537 * generated before this config has completed - albeit not
1540 * Unfortunately this is essentially a magic number, since we
1541 * don't currently know of a reliable mechanism for predicting
1542 * how long the MUX config will take to apply and besides
1543 * seeing invalid reports we don't know of a reliable way to
1544 * explicitly check that the MUX config has landed.
1546 * It's even possible we've miss characterized the underlying
1547 * problem - it just seems like the simplest explanation why
1548 * a delay at this location would mitigate any invalid reports.
1550 usleep_range(15000, 20000);
1552 config_oa_regs(dev_priv
, oa_config
->b_counter_regs
,
1553 oa_config
->b_counter_regs_len
);
1558 static void hsw_disable_metric_set(struct drm_i915_private
*dev_priv
)
1560 I915_WRITE(GEN6_UCGCTL1
, (I915_READ(GEN6_UCGCTL1
) &
1561 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE
));
1562 I915_WRITE(GEN7_MISCCPCTL
, (I915_READ(GEN7_MISCCPCTL
) |
1563 GEN7_DOP_CLOCK_GATE_ENABLE
));
1565 I915_WRITE(GDT_CHICKEN_BITS
, (I915_READ(GDT_CHICKEN_BITS
) &
1570 * NB: It must always remain pointer safe to run this even if the OA unit
1571 * has been disabled.
1573 * It's fine to put out-of-date values into these per-context registers
1574 * in the case that the OA unit has been disabled.
1576 static void gen8_update_reg_state_unlocked(struct i915_gem_context
*ctx
,
1578 const struct i915_oa_config
*oa_config
)
1580 struct drm_i915_private
*dev_priv
= ctx
->i915
;
1581 u32 ctx_oactxctrl
= dev_priv
->perf
.oa
.ctx_oactxctrl_offset
;
1582 u32 ctx_flexeu0
= dev_priv
->perf
.oa
.ctx_flexeu0_offset
;
1583 /* The MMIO offsets for Flex EU registers aren't contiguous */
1585 i915_mmio_reg_offset(EU_PERF_CNTL0
),
1586 i915_mmio_reg_offset(EU_PERF_CNTL1
),
1587 i915_mmio_reg_offset(EU_PERF_CNTL2
),
1588 i915_mmio_reg_offset(EU_PERF_CNTL3
),
1589 i915_mmio_reg_offset(EU_PERF_CNTL4
),
1590 i915_mmio_reg_offset(EU_PERF_CNTL5
),
1591 i915_mmio_reg_offset(EU_PERF_CNTL6
),
1595 reg_state
[ctx_oactxctrl
] = i915_mmio_reg_offset(GEN8_OACTXCONTROL
);
1596 reg_state
[ctx_oactxctrl
+1] = (dev_priv
->perf
.oa
.period_exponent
<<
1597 GEN8_OA_TIMER_PERIOD_SHIFT
) |
1598 (dev_priv
->perf
.oa
.periodic
?
1599 GEN8_OA_TIMER_ENABLE
: 0) |
1600 GEN8_OA_COUNTER_RESUME
;
1602 for (i
= 0; i
< ARRAY_SIZE(flex_mmio
); i
++) {
1603 u32 state_offset
= ctx_flexeu0
+ i
* 2;
1604 u32 mmio
= flex_mmio
[i
];
1607 * This arbitrary default will select the 'EU FPU0 Pipeline
1608 * Active' event. In the future it's anticipated that there
1609 * will be an explicit 'No Event' we can select, but not yet...
1616 for (j
= 0; j
< oa_config
->flex_regs_len
; j
++) {
1617 if (i915_mmio_reg_offset(oa_config
->flex_regs
[j
].addr
) == mmio
) {
1618 value
= oa_config
->flex_regs
[j
].value
;
1624 reg_state
[state_offset
] = mmio
;
1625 reg_state
[state_offset
+1] = value
;
1630 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1631 * is only used by the kernel context.
1633 static int gen8_emit_oa_config(struct drm_i915_gem_request
*req
,
1634 const struct i915_oa_config
*oa_config
)
1636 struct drm_i915_private
*dev_priv
= req
->i915
;
1637 /* The MMIO offsets for Flex EU registers aren't contiguous */
1639 i915_mmio_reg_offset(EU_PERF_CNTL0
),
1640 i915_mmio_reg_offset(EU_PERF_CNTL1
),
1641 i915_mmio_reg_offset(EU_PERF_CNTL2
),
1642 i915_mmio_reg_offset(EU_PERF_CNTL3
),
1643 i915_mmio_reg_offset(EU_PERF_CNTL4
),
1644 i915_mmio_reg_offset(EU_PERF_CNTL5
),
1645 i915_mmio_reg_offset(EU_PERF_CNTL6
),
1650 cs
= intel_ring_begin(req
, ARRAY_SIZE(flex_mmio
) * 2 + 4);
1654 *cs
++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio
) + 1);
1656 *cs
++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL
);
1657 *cs
++ = (dev_priv
->perf
.oa
.period_exponent
<< GEN8_OA_TIMER_PERIOD_SHIFT
) |
1658 (dev_priv
->perf
.oa
.periodic
? GEN8_OA_TIMER_ENABLE
: 0) |
1659 GEN8_OA_COUNTER_RESUME
;
1661 for (i
= 0; i
< ARRAY_SIZE(flex_mmio
); i
++) {
1662 u32 mmio
= flex_mmio
[i
];
1665 * This arbitrary default will select the 'EU FPU0 Pipeline
1666 * Active' event. In the future it's anticipated that there
1667 * will be an explicit 'No Event' we can select, but not
1675 for (j
= 0; j
< oa_config
->flex_regs_len
; j
++) {
1676 if (i915_mmio_reg_offset(oa_config
->flex_regs
[j
].addr
) == mmio
) {
1677 value
= oa_config
->flex_regs
[j
].value
;
1688 intel_ring_advance(req
, cs
);
1693 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private
*dev_priv
,
1694 const struct i915_oa_config
*oa_config
)
1696 struct intel_engine_cs
*engine
= dev_priv
->engine
[RCS
];
1697 struct i915_gem_timeline
*timeline
;
1698 struct drm_i915_gem_request
*req
;
1701 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
1703 i915_gem_retire_requests(dev_priv
);
1705 req
= i915_gem_request_alloc(engine
, dev_priv
->kernel_context
);
1707 return PTR_ERR(req
);
1709 ret
= gen8_emit_oa_config(req
, oa_config
);
1711 i915_add_request(req
);
1715 /* Queue this switch after all other activity */
1716 list_for_each_entry(timeline
, &dev_priv
->gt
.timelines
, link
) {
1717 struct drm_i915_gem_request
*prev
;
1718 struct intel_timeline
*tl
;
1720 tl
= &timeline
->engine
[engine
->id
];
1721 prev
= i915_gem_active_raw(&tl
->last_request
,
1722 &dev_priv
->drm
.struct_mutex
);
1724 i915_sw_fence_await_sw_fence_gfp(&req
->submit
,
1729 i915_add_request(req
);
1735 * Manages updating the per-context aspects of the OA stream
1736 * configuration across all contexts.
1738 * The awkward consideration here is that OACTXCONTROL controls the
1739 * exponent for periodic sampling which is primarily used for system
1740 * wide profiling where we'd like a consistent sampling period even in
1741 * the face of context switches.
1743 * Our approach of updating the register state context (as opposed to
1744 * say using a workaround batch buffer) ensures that the hardware
1745 * won't automatically reload an out-of-date timer exponent even
1746 * transiently before a WA BB could be parsed.
1748 * This function needs to:
1749 * - Ensure the currently running context's per-context OA state is
1751 * - Ensure that all existing contexts will have the correct per-context
1752 * OA state if they are scheduled for use.
1753 * - Ensure any new contexts will be initialized with the correct
1754 * per-context OA state.
1756 * Note: it's only the RCS/Render context that has any OA state.
1758 static int gen8_configure_all_contexts(struct drm_i915_private
*dev_priv
,
1759 const struct i915_oa_config
*oa_config
,
1762 struct i915_gem_context
*ctx
;
1764 unsigned int wait_flags
= I915_WAIT_LOCKED
;
1766 if (interruptible
) {
1767 ret
= i915_mutex_lock_interruptible(&dev_priv
->drm
);
1771 wait_flags
|= I915_WAIT_INTERRUPTIBLE
;
1773 mutex_lock(&dev_priv
->drm
.struct_mutex
);
1776 /* Switch away from any user context. */
1777 ret
= gen8_switch_to_updated_kernel_context(dev_priv
, oa_config
);
1782 * The OA register config is setup through the context image. This image
1783 * might be written to by the GPU on context switch (in particular on
1784 * lite-restore). This means we can't safely update a context's image,
1785 * if this context is scheduled/submitted to run on the GPU.
1787 * We could emit the OA register config through the batch buffer but
1788 * this might leave small interval of time where the OA unit is
1789 * configured at an invalid sampling period.
1791 * So far the best way to work around this issue seems to be draining
1792 * the GPU from any submitted work.
1794 ret
= i915_gem_wait_for_idle(dev_priv
, wait_flags
);
1798 /* Update all contexts now that we've stalled the submission. */
1799 list_for_each_entry(ctx
, &dev_priv
->contexts
.list
, link
) {
1800 struct intel_context
*ce
= &ctx
->engine
[RCS
];
1803 /* OA settings will be set upon first use */
1807 regs
= i915_gem_object_pin_map(ce
->state
->obj
, I915_MAP_WB
);
1809 ret
= PTR_ERR(regs
);
1813 ce
->state
->obj
->mm
.dirty
= true;
1814 regs
+= LRC_STATE_PN
* PAGE_SIZE
/ sizeof(*regs
);
1816 gen8_update_reg_state_unlocked(ctx
, regs
, oa_config
);
1818 i915_gem_object_unpin_map(ce
->state
->obj
);
1822 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1827 static int gen8_enable_metric_set(struct drm_i915_private
*dev_priv
,
1828 const struct i915_oa_config
*oa_config
)
1833 * We disable slice/unslice clock ratio change reports on SKL since
1834 * they are too noisy. The HW generates a lot of redundant reports
1835 * where the ratio hasn't really changed causing a lot of redundant
1836 * work to processes and increasing the chances we'll hit buffer
1839 * Although we don't currently use the 'disable overrun' OABUFFER
1840 * feature it's worth noting that clock ratio reports have to be
1841 * disabled before considering to use that feature since the HW doesn't
1842 * correctly block these reports.
1844 * Currently none of the high-level metrics we have depend on knowing
1845 * this ratio to normalize.
1847 * Note: This register is not power context saved and restored, but
1848 * that's OK considering that we disable RC6 while the OA unit is
1851 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1852 * be read back from automatically triggered reports, as part of the
1855 if (IS_GEN9(dev_priv
) || IS_GEN10(dev_priv
)) {
1856 I915_WRITE(GEN8_OA_DEBUG
,
1857 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS
|
1858 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO
));
1862 * Update all contexts prior writing the mux configurations as we need
1863 * to make sure all slices/subslices are ON before writing to NOA
1866 ret
= gen8_configure_all_contexts(dev_priv
, oa_config
, true);
1870 config_oa_regs(dev_priv
, oa_config
->mux_regs
, oa_config
->mux_regs_len
);
1872 config_oa_regs(dev_priv
, oa_config
->b_counter_regs
,
1873 oa_config
->b_counter_regs_len
);
1878 static void gen8_disable_metric_set(struct drm_i915_private
*dev_priv
)
1880 /* Reset all contexts' slices/subslices configurations. */
1881 gen8_configure_all_contexts(dev_priv
, NULL
, false);
1883 I915_WRITE(GDT_CHICKEN_BITS
, (I915_READ(GDT_CHICKEN_BITS
) &
1888 static void gen10_disable_metric_set(struct drm_i915_private
*dev_priv
)
1890 /* Reset all contexts' slices/subslices configurations. */
1891 gen8_configure_all_contexts(dev_priv
, NULL
, false);
1893 /* Make sure we disable noa to save power. */
1894 I915_WRITE(RPM_CONFIG1
,
1895 I915_READ(RPM_CONFIG1
) & ~GEN10_GT_NOA_ENABLE
);
1898 static void gen7_oa_enable(struct drm_i915_private
*dev_priv
)
1901 * Reset buf pointers so we don't forward reports from before now.
1903 * Think carefully if considering trying to avoid this, since it
1904 * also ensures status flags and the buffer itself are cleared
1905 * in error paths, and we have checks for invalid reports based
1906 * on the assumption that certain fields are written to zeroed
1907 * memory which this helps maintains.
1909 gen7_init_oa_buffer(dev_priv
);
1911 if (dev_priv
->perf
.oa
.exclusive_stream
->enabled
) {
1912 struct i915_gem_context
*ctx
=
1913 dev_priv
->perf
.oa
.exclusive_stream
->ctx
;
1914 u32 ctx_id
= dev_priv
->perf
.oa
.specific_ctx_id
;
1916 bool periodic
= dev_priv
->perf
.oa
.periodic
;
1917 u32 period_exponent
= dev_priv
->perf
.oa
.period_exponent
;
1918 u32 report_format
= dev_priv
->perf
.oa
.oa_buffer
.format
;
1920 I915_WRITE(GEN7_OACONTROL
,
1921 (ctx_id
& GEN7_OACONTROL_CTX_MASK
) |
1923 GEN7_OACONTROL_TIMER_PERIOD_SHIFT
) |
1924 (periodic
? GEN7_OACONTROL_TIMER_ENABLE
: 0) |
1925 (report_format
<< GEN7_OACONTROL_FORMAT_SHIFT
) |
1926 (ctx
? GEN7_OACONTROL_PER_CTX_ENABLE
: 0) |
1927 GEN7_OACONTROL_ENABLE
);
1929 I915_WRITE(GEN7_OACONTROL
, 0);
1932 static void gen8_oa_enable(struct drm_i915_private
*dev_priv
)
1934 u32 report_format
= dev_priv
->perf
.oa
.oa_buffer
.format
;
1937 * Reset buf pointers so we don't forward reports from before now.
1939 * Think carefully if considering trying to avoid this, since it
1940 * also ensures status flags and the buffer itself are cleared
1941 * in error paths, and we have checks for invalid reports based
1942 * on the assumption that certain fields are written to zeroed
1943 * memory which this helps maintains.
1945 gen8_init_oa_buffer(dev_priv
);
1948 * Note: we don't rely on the hardware to perform single context
1949 * filtering and instead filter on the cpu based on the context-id
1952 I915_WRITE(GEN8_OACONTROL
, (report_format
<<
1953 GEN8_OA_REPORT_FORMAT_SHIFT
) |
1954 GEN8_OA_COUNTER_ENABLE
);
1958 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1959 * @stream: An i915 perf stream opened for OA metrics
1961 * [Re]enables hardware periodic sampling according to the period configured
1962 * when opening the stream. This also starts a hrtimer that will periodically
1963 * check for data in the circular OA buffer for notifying userspace (e.g.
1964 * during a read() or poll()).
1966 static void i915_oa_stream_enable(struct i915_perf_stream
*stream
)
1968 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
1970 dev_priv
->perf
.oa
.ops
.oa_enable(dev_priv
);
1972 if (dev_priv
->perf
.oa
.periodic
)
1973 hrtimer_start(&dev_priv
->perf
.oa
.poll_check_timer
,
1974 ns_to_ktime(POLL_PERIOD
),
1975 HRTIMER_MODE_REL_PINNED
);
1978 static void gen7_oa_disable(struct drm_i915_private
*dev_priv
)
1980 I915_WRITE(GEN7_OACONTROL
, 0);
1983 static void gen8_oa_disable(struct drm_i915_private
*dev_priv
)
1985 I915_WRITE(GEN8_OACONTROL
, 0);
1989 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1990 * @stream: An i915 perf stream opened for OA metrics
1992 * Stops the OA unit from periodically writing counter reports into the
1993 * circular OA buffer. This also stops the hrtimer that periodically checks for
1994 * data in the circular OA buffer, for notifying userspace.
1996 static void i915_oa_stream_disable(struct i915_perf_stream
*stream
)
1998 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
2000 dev_priv
->perf
.oa
.ops
.oa_disable(dev_priv
);
2002 if (dev_priv
->perf
.oa
.periodic
)
2003 hrtimer_cancel(&dev_priv
->perf
.oa
.poll_check_timer
);
2006 static const struct i915_perf_stream_ops i915_oa_stream_ops
= {
2007 .destroy
= i915_oa_stream_destroy
,
2008 .enable
= i915_oa_stream_enable
,
2009 .disable
= i915_oa_stream_disable
,
2010 .wait_unlocked
= i915_oa_wait_unlocked
,
2011 .poll_wait
= i915_oa_poll_wait
,
2012 .read
= i915_oa_read
,
2016 * i915_oa_stream_init - validate combined props for OA stream and init
2017 * @stream: An i915 perf stream
2018 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2019 * @props: The property state that configures stream (individually validated)
2021 * While read_properties_unlocked() validates properties in isolation it
2022 * doesn't ensure that the combination necessarily makes sense.
2024 * At this point it has been determined that userspace wants a stream of
2025 * OA metrics, but still we need to further validate the combined
2026 * properties are OK.
2028 * If the configuration makes sense then we can allocate memory for
2029 * a circular OA buffer and apply the requested metric set configuration.
2031 * Returns: zero on success or a negative error code.
2033 static int i915_oa_stream_init(struct i915_perf_stream
*stream
,
2034 struct drm_i915_perf_open_param
*param
,
2035 struct perf_open_properties
*props
)
2037 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
2041 /* If the sysfs metrics/ directory wasn't registered for some
2042 * reason then don't let userspace try their luck with config
2045 if (!dev_priv
->perf
.metrics_kobj
) {
2046 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2050 if (!(props
->sample_flags
& SAMPLE_OA_REPORT
)) {
2051 DRM_DEBUG("Only OA report sampling supported\n");
2055 if (!dev_priv
->perf
.oa
.ops
.init_oa_buffer
) {
2056 DRM_DEBUG("OA unit not supported\n");
2060 /* To avoid the complexity of having to accurately filter
2061 * counter reports and marshal to the appropriate client
2062 * we currently only allow exclusive access
2064 if (dev_priv
->perf
.oa
.exclusive_stream
) {
2065 DRM_DEBUG("OA unit already in use\n");
2069 if (!props
->oa_format
) {
2070 DRM_DEBUG("OA report format not specified\n");
2074 /* We set up some ratelimit state to potentially throttle any _NOTES
2075 * about spurious, invalid OA reports which we don't forward to
2078 * The initialization is associated with opening the stream (not driver
2079 * init) considering we print a _NOTE about any throttling when closing
2080 * the stream instead of waiting until driver _fini which no one would
2083 * Using the same limiting factors as printk_ratelimit()
2085 ratelimit_state_init(&dev_priv
->perf
.oa
.spurious_report_rs
,
2087 /* Since we use a DRM_NOTE for spurious reports it would be
2088 * inconsistent to let __ratelimit() automatically print a warning for
2091 ratelimit_set_flags(&dev_priv
->perf
.oa
.spurious_report_rs
,
2092 RATELIMIT_MSG_ON_RELEASE
);
2094 stream
->sample_size
= sizeof(struct drm_i915_perf_record_header
);
2096 format_size
= dev_priv
->perf
.oa
.oa_formats
[props
->oa_format
].size
;
2098 stream
->sample_flags
|= SAMPLE_OA_REPORT
;
2099 stream
->sample_size
+= format_size
;
2101 dev_priv
->perf
.oa
.oa_buffer
.format_size
= format_size
;
2102 if (WARN_ON(dev_priv
->perf
.oa
.oa_buffer
.format_size
== 0))
2105 dev_priv
->perf
.oa
.oa_buffer
.format
=
2106 dev_priv
->perf
.oa
.oa_formats
[props
->oa_format
].format
;
2108 dev_priv
->perf
.oa
.periodic
= props
->oa_periodic
;
2109 if (dev_priv
->perf
.oa
.periodic
)
2110 dev_priv
->perf
.oa
.period_exponent
= props
->oa_period_exponent
;
2113 ret
= oa_get_render_ctx_id(stream
);
2118 ret
= get_oa_config(dev_priv
, props
->metrics_set
, &stream
->oa_config
);
2122 /* PRM - observability performance counters:
2124 * OACONTROL, performance counter enable, note:
2126 * "When this bit is set, in order to have coherent counts,
2127 * RC6 power state and trunk clock gating must be disabled.
2128 * This can be achieved by programming MMIO registers as
2129 * 0xA094=0 and 0xA090[31]=1"
2131 * In our case we are expecting that taking pm + FORCEWAKE
2132 * references will effectively disable RC6.
2134 intel_runtime_pm_get(dev_priv
);
2135 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
2137 ret
= alloc_oa_buffer(dev_priv
);
2139 goto err_oa_buf_alloc
;
2141 ret
= dev_priv
->perf
.oa
.ops
.enable_metric_set(dev_priv
,
2146 stream
->ops
= &i915_oa_stream_ops
;
2148 /* Lock device for exclusive_stream access late because
2149 * enable_metric_set() might lock as well on gen8+.
2151 ret
= i915_mutex_lock_interruptible(&dev_priv
->drm
);
2155 dev_priv
->perf
.oa
.exclusive_stream
= stream
;
2157 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
2162 dev_priv
->perf
.oa
.ops
.disable_metric_set(dev_priv
);
2165 free_oa_buffer(dev_priv
);
2168 put_oa_config(dev_priv
, stream
->oa_config
);
2170 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
2171 intel_runtime_pm_put(dev_priv
);
2175 oa_put_render_ctx_id(stream
);
2180 void i915_oa_init_reg_state(struct intel_engine_cs
*engine
,
2181 struct i915_gem_context
*ctx
,
2184 struct i915_perf_stream
*stream
;
2186 if (engine
->id
!= RCS
)
2189 stream
= engine
->i915
->perf
.oa
.exclusive_stream
;
2191 gen8_update_reg_state_unlocked(ctx
, reg_state
, stream
->oa_config
);
2195 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2196 * @stream: An i915 perf stream
2197 * @file: An i915 perf stream file
2198 * @buf: destination buffer given by userspace
2199 * @count: the number of bytes userspace wants to read
2200 * @ppos: (inout) file seek position (unused)
2202 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2203 * ensure that if we've successfully copied any data then reporting that takes
2204 * precedence over any internal error status, so the data isn't lost.
2206 * For example ret will be -ENOSPC whenever there is more buffered data than
2207 * can be copied to userspace, but that's only interesting if we weren't able
2208 * to copy some data because it implies the userspace buffer is too small to
2209 * receive a single record (and we never split records).
2211 * Another case with ret == -EFAULT is more of a grey area since it would seem
2212 * like bad form for userspace to ask us to overrun its buffer, but the user
2215 * http://yarchive.net/comp/linux/partial_reads_writes.html
2217 * Returns: The number of bytes copied or a negative error code on failure.
2219 static ssize_t
i915_perf_read_locked(struct i915_perf_stream
*stream
,
2225 /* Note we keep the offset (aka bytes read) separate from any
2226 * error status so that the final check for whether we return
2227 * the bytes read with a higher precedence than any error (see
2228 * comment below) doesn't need to be handled/duplicated in
2229 * stream->ops->read() implementations.
2232 int ret
= stream
->ops
->read(stream
, buf
, count
, &offset
);
2234 return offset
?: (ret
?: -EAGAIN
);
2238 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2239 * @file: An i915 perf stream file
2240 * @buf: destination buffer given by userspace
2241 * @count: the number of bytes userspace wants to read
2242 * @ppos: (inout) file seek position (unused)
2244 * The entry point for handling a read() on a stream file descriptor from
2245 * userspace. Most of the work is left to the i915_perf_read_locked() and
2246 * &i915_perf_stream_ops->read but to save having stream implementations (of
2247 * which we might have multiple later) we handle blocking read here.
2249 * We can also consistently treat trying to read from a disabled stream
2250 * as an IO error so implementations can assume the stream is enabled
2253 * Returns: The number of bytes copied or a negative error code on failure.
2255 static ssize_t
i915_perf_read(struct file
*file
,
2260 struct i915_perf_stream
*stream
= file
->private_data
;
2261 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
2264 /* To ensure it's handled consistently we simply treat all reads of a
2265 * disabled stream as an error. In particular it might otherwise lead
2266 * to a deadlock for blocking file descriptors...
2268 if (!stream
->enabled
)
2271 if (!(file
->f_flags
& O_NONBLOCK
)) {
2272 /* There's the small chance of false positives from
2273 * stream->ops->wait_unlocked.
2275 * E.g. with single context filtering since we only wait until
2276 * oabuffer has >= 1 report we don't immediately know whether
2277 * any reports really belong to the current context
2280 ret
= stream
->ops
->wait_unlocked(stream
);
2284 mutex_lock(&dev_priv
->perf
.lock
);
2285 ret
= i915_perf_read_locked(stream
, file
,
2287 mutex_unlock(&dev_priv
->perf
.lock
);
2288 } while (ret
== -EAGAIN
);
2290 mutex_lock(&dev_priv
->perf
.lock
);
2291 ret
= i915_perf_read_locked(stream
, file
, buf
, count
, ppos
);
2292 mutex_unlock(&dev_priv
->perf
.lock
);
2295 /* We allow the poll checking to sometimes report false positive EPOLLIN
2296 * events where we might actually report EAGAIN on read() if there's
2297 * not really any data available. In this situation though we don't
2298 * want to enter a busy loop between poll() reporting a EPOLLIN event
2299 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2300 * effectively ensures we back off until the next hrtimer callback
2301 * before reporting another EPOLLIN event.
2303 if (ret
>= 0 || ret
== -EAGAIN
) {
2304 /* Maybe make ->pollin per-stream state if we support multiple
2305 * concurrent streams in the future.
2307 dev_priv
->perf
.oa
.pollin
= false;
2313 static enum hrtimer_restart
oa_poll_check_timer_cb(struct hrtimer
*hrtimer
)
2315 struct drm_i915_private
*dev_priv
=
2316 container_of(hrtimer
, typeof(*dev_priv
),
2317 perf
.oa
.poll_check_timer
);
2319 if (oa_buffer_check_unlocked(dev_priv
)) {
2320 dev_priv
->perf
.oa
.pollin
= true;
2321 wake_up(&dev_priv
->perf
.oa
.poll_wq
);
2324 hrtimer_forward_now(hrtimer
, ns_to_ktime(POLL_PERIOD
));
2326 return HRTIMER_RESTART
;
2330 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2331 * @dev_priv: i915 device instance
2332 * @stream: An i915 perf stream
2333 * @file: An i915 perf stream file
2334 * @wait: poll() state table
2336 * For handling userspace polling on an i915 perf stream, this calls through to
2337 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2338 * will be woken for new stream data.
2340 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2341 * with any non-file-operation driver hooks.
2343 * Returns: any poll events that are ready without sleeping
2345 static __poll_t
i915_perf_poll_locked(struct drm_i915_private
*dev_priv
,
2346 struct i915_perf_stream
*stream
,
2350 __poll_t events
= 0;
2352 stream
->ops
->poll_wait(stream
, file
, wait
);
2354 /* Note: we don't explicitly check whether there's something to read
2355 * here since this path may be very hot depending on what else
2356 * userspace is polling, or on the timeout in use. We rely solely on
2357 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2360 if (dev_priv
->perf
.oa
.pollin
)
2367 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2368 * @file: An i915 perf stream file
2369 * @wait: poll() state table
2371 * For handling userspace polling on an i915 perf stream, this ensures
2372 * poll_wait() gets called with a wait queue that will be woken for new stream
2375 * Note: Implementation deferred to i915_perf_poll_locked()
2377 * Returns: any poll events that are ready without sleeping
2379 static __poll_t
i915_perf_poll(struct file
*file
, poll_table
*wait
)
2381 struct i915_perf_stream
*stream
= file
->private_data
;
2382 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
2385 mutex_lock(&dev_priv
->perf
.lock
);
2386 ret
= i915_perf_poll_locked(dev_priv
, stream
, file
, wait
);
2387 mutex_unlock(&dev_priv
->perf
.lock
);
2393 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2394 * @stream: A disabled i915 perf stream
2396 * [Re]enables the associated capture of data for this stream.
2398 * If a stream was previously enabled then there's currently no intention
2399 * to provide userspace any guarantee about the preservation of previously
2402 static void i915_perf_enable_locked(struct i915_perf_stream
*stream
)
2404 if (stream
->enabled
)
2407 /* Allow stream->ops->enable() to refer to this */
2408 stream
->enabled
= true;
2410 if (stream
->ops
->enable
)
2411 stream
->ops
->enable(stream
);
2415 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2416 * @stream: An enabled i915 perf stream
2418 * Disables the associated capture of data for this stream.
2420 * The intention is that disabling an re-enabling a stream will ideally be
2421 * cheaper than destroying and re-opening a stream with the same configuration,
2422 * though there are no formal guarantees about what state or buffered data
2423 * must be retained between disabling and re-enabling a stream.
2425 * Note: while a stream is disabled it's considered an error for userspace
2426 * to attempt to read from the stream (-EIO).
2428 static void i915_perf_disable_locked(struct i915_perf_stream
*stream
)
2430 if (!stream
->enabled
)
2433 /* Allow stream->ops->disable() to refer to this */
2434 stream
->enabled
= false;
2436 if (stream
->ops
->disable
)
2437 stream
->ops
->disable(stream
);
2441 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2442 * @stream: An i915 perf stream
2443 * @cmd: the ioctl request
2444 * @arg: the ioctl data
2446 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2447 * with any non-file-operation driver hooks.
2449 * Returns: zero on success or a negative error code. Returns -EINVAL for
2450 * an unknown ioctl request.
2452 static long i915_perf_ioctl_locked(struct i915_perf_stream
*stream
,
2457 case I915_PERF_IOCTL_ENABLE
:
2458 i915_perf_enable_locked(stream
);
2460 case I915_PERF_IOCTL_DISABLE
:
2461 i915_perf_disable_locked(stream
);
2469 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2470 * @file: An i915 perf stream file
2471 * @cmd: the ioctl request
2472 * @arg: the ioctl data
2474 * Implementation deferred to i915_perf_ioctl_locked().
2476 * Returns: zero on success or a negative error code. Returns -EINVAL for
2477 * an unknown ioctl request.
2479 static long i915_perf_ioctl(struct file
*file
,
2483 struct i915_perf_stream
*stream
= file
->private_data
;
2484 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
2487 mutex_lock(&dev_priv
->perf
.lock
);
2488 ret
= i915_perf_ioctl_locked(stream
, cmd
, arg
);
2489 mutex_unlock(&dev_priv
->perf
.lock
);
2495 * i915_perf_destroy_locked - destroy an i915 perf stream
2496 * @stream: An i915 perf stream
2498 * Frees all resources associated with the given i915 perf @stream, disabling
2499 * any associated data capture in the process.
2501 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2502 * with any non-file-operation driver hooks.
2504 static void i915_perf_destroy_locked(struct i915_perf_stream
*stream
)
2506 if (stream
->enabled
)
2507 i915_perf_disable_locked(stream
);
2509 if (stream
->ops
->destroy
)
2510 stream
->ops
->destroy(stream
);
2512 list_del(&stream
->link
);
2515 i915_gem_context_put(stream
->ctx
);
2521 * i915_perf_release - handles userspace close() of a stream file
2522 * @inode: anonymous inode associated with file
2523 * @file: An i915 perf stream file
2525 * Cleans up any resources associated with an open i915 perf stream file.
2527 * NB: close() can't really fail from the userspace point of view.
2529 * Returns: zero on success or a negative error code.
2531 static int i915_perf_release(struct inode
*inode
, struct file
*file
)
2533 struct i915_perf_stream
*stream
= file
->private_data
;
2534 struct drm_i915_private
*dev_priv
= stream
->dev_priv
;
2536 mutex_lock(&dev_priv
->perf
.lock
);
2537 i915_perf_destroy_locked(stream
);
2538 mutex_unlock(&dev_priv
->perf
.lock
);
2544 static const struct file_operations fops
= {
2545 .owner
= THIS_MODULE
,
2546 .llseek
= no_llseek
,
2547 .release
= i915_perf_release
,
2548 .poll
= i915_perf_poll
,
2549 .read
= i915_perf_read
,
2550 .unlocked_ioctl
= i915_perf_ioctl
,
2551 /* Our ioctl have no arguments, so it's safe to use the same function
2552 * to handle 32bits compatibility.
2554 .compat_ioctl
= i915_perf_ioctl
,
2559 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2560 * @dev_priv: i915 device instance
2561 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2562 * @props: individually validated u64 property value pairs
2565 * See i915_perf_ioctl_open() for interface details.
2567 * Implements further stream config validation and stream initialization on
2568 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2569 * taken to serialize with any non-file-operation driver hooks.
2571 * Note: at this point the @props have only been validated in isolation and
2572 * it's still necessary to validate that the combination of properties makes
2575 * In the case where userspace is interested in OA unit metrics then further
2576 * config validation and stream initialization details will be handled by
2577 * i915_oa_stream_init(). The code here should only validate config state that
2578 * will be relevant to all stream types / backends.
2580 * Returns: zero on success or a negative error code.
2583 i915_perf_open_ioctl_locked(struct drm_i915_private
*dev_priv
,
2584 struct drm_i915_perf_open_param
*param
,
2585 struct perf_open_properties
*props
,
2586 struct drm_file
*file
)
2588 struct i915_gem_context
*specific_ctx
= NULL
;
2589 struct i915_perf_stream
*stream
= NULL
;
2590 unsigned long f_flags
= 0;
2591 bool privileged_op
= true;
2595 if (props
->single_context
) {
2596 u32 ctx_handle
= props
->ctx_handle
;
2597 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
2599 specific_ctx
= i915_gem_context_lookup(file_priv
, ctx_handle
);
2600 if (!specific_ctx
) {
2601 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2609 * On Haswell the OA unit supports clock gating off for a specific
2610 * context and in this mode there's no visibility of metrics for the
2611 * rest of the system, which we consider acceptable for a
2612 * non-privileged client.
2614 * For Gen8+ the OA unit no longer supports clock gating off for a
2615 * specific context and the kernel can't securely stop the counters
2616 * from updating as system-wide / global values. Even though we can
2617 * filter reports based on the included context ID we can't block
2618 * clients from seeing the raw / global counter values via
2619 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2620 * enable the OA unit by default.
2622 if (IS_HASWELL(dev_priv
) && specific_ctx
)
2623 privileged_op
= false;
2625 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2626 * we check a dev.i915.perf_stream_paranoid sysctl option
2627 * to determine if it's ok to access system wide OA counters
2628 * without CAP_SYS_ADMIN privileges.
2630 if (privileged_op
&&
2631 i915_perf_stream_paranoid
&& !capable(CAP_SYS_ADMIN
)) {
2632 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2637 stream
= kzalloc(sizeof(*stream
), GFP_KERNEL
);
2643 stream
->dev_priv
= dev_priv
;
2644 stream
->ctx
= specific_ctx
;
2646 ret
= i915_oa_stream_init(stream
, param
, props
);
2650 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2651 * to have _stream_init check the combination of sample flags more
2652 * thoroughly, but still this is the expected result at this point.
2654 if (WARN_ON(stream
->sample_flags
!= props
->sample_flags
)) {
2659 list_add(&stream
->link
, &dev_priv
->perf
.streams
);
2661 if (param
->flags
& I915_PERF_FLAG_FD_CLOEXEC
)
2662 f_flags
|= O_CLOEXEC
;
2663 if (param
->flags
& I915_PERF_FLAG_FD_NONBLOCK
)
2664 f_flags
|= O_NONBLOCK
;
2666 stream_fd
= anon_inode_getfd("[i915_perf]", &fops
, stream
, f_flags
);
2667 if (stream_fd
< 0) {
2672 if (!(param
->flags
& I915_PERF_FLAG_DISABLED
))
2673 i915_perf_enable_locked(stream
);
2678 list_del(&stream
->link
);
2680 if (stream
->ops
->destroy
)
2681 stream
->ops
->destroy(stream
);
2686 i915_gem_context_put(specific_ctx
);
2691 static u64
oa_exponent_to_ns(struct drm_i915_private
*dev_priv
, int exponent
)
2693 return div64_u64(1000000000ULL * (2ULL << exponent
),
2694 1000ULL * INTEL_INFO(dev_priv
)->cs_timestamp_frequency_khz
);
2698 * read_properties_unlocked - validate + copy userspace stream open properties
2699 * @dev_priv: i915 device instance
2700 * @uprops: The array of u64 key value pairs given by userspace
2701 * @n_props: The number of key value pairs expected in @uprops
2702 * @props: The stream configuration built up while validating properties
2704 * Note this function only validates properties in isolation it doesn't
2705 * validate that the combination of properties makes sense or that all
2706 * properties necessary for a particular kind of stream have been set.
2708 * Note that there currently aren't any ordering requirements for properties so
2709 * we shouldn't validate or assume anything about ordering here. This doesn't
2710 * rule out defining new properties with ordering requirements in the future.
2712 static int read_properties_unlocked(struct drm_i915_private
*dev_priv
,
2715 struct perf_open_properties
*props
)
2717 u64 __user
*uprop
= uprops
;
2720 memset(props
, 0, sizeof(struct perf_open_properties
));
2723 DRM_DEBUG("No i915 perf properties given\n");
2727 /* Considering that ID = 0 is reserved and assuming that we don't
2728 * (currently) expect any configurations to ever specify duplicate
2729 * values for a particular property ID then the last _PROP_MAX value is
2730 * one greater than the maximum number of properties we expect to get
2733 if (n_props
>= DRM_I915_PERF_PROP_MAX
) {
2734 DRM_DEBUG("More i915 perf properties specified than exist\n");
2738 for (i
= 0; i
< n_props
; i
++) {
2739 u64 oa_period
, oa_freq_hz
;
2743 ret
= get_user(id
, uprop
);
2747 ret
= get_user(value
, uprop
+ 1);
2751 if (id
== 0 || id
>= DRM_I915_PERF_PROP_MAX
) {
2752 DRM_DEBUG("Unknown i915 perf property ID\n");
2756 switch ((enum drm_i915_perf_property_id
)id
) {
2757 case DRM_I915_PERF_PROP_CTX_HANDLE
:
2758 props
->single_context
= 1;
2759 props
->ctx_handle
= value
;
2761 case DRM_I915_PERF_PROP_SAMPLE_OA
:
2762 props
->sample_flags
|= SAMPLE_OA_REPORT
;
2764 case DRM_I915_PERF_PROP_OA_METRICS_SET
:
2766 DRM_DEBUG("Unknown OA metric set ID\n");
2769 props
->metrics_set
= value
;
2771 case DRM_I915_PERF_PROP_OA_FORMAT
:
2772 if (value
== 0 || value
>= I915_OA_FORMAT_MAX
) {
2773 DRM_DEBUG("Out-of-range OA report format %llu\n",
2777 if (!dev_priv
->perf
.oa
.oa_formats
[value
].size
) {
2778 DRM_DEBUG("Unsupported OA report format %llu\n",
2782 props
->oa_format
= value
;
2784 case DRM_I915_PERF_PROP_OA_EXPONENT
:
2785 if (value
> OA_EXPONENT_MAX
) {
2786 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2791 /* Theoretically we can program the OA unit to sample
2792 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2793 * for BXT. We don't allow such high sampling
2794 * frequencies by default unless root.
2797 BUILD_BUG_ON(sizeof(oa_period
) != 8);
2798 oa_period
= oa_exponent_to_ns(dev_priv
, value
);
2800 /* This check is primarily to ensure that oa_period <=
2801 * UINT32_MAX (before passing to do_div which only
2802 * accepts a u32 denominator), but we can also skip
2803 * checking anything < 1Hz which implicitly can't be
2804 * limited via an integer oa_max_sample_rate.
2806 if (oa_period
<= NSEC_PER_SEC
) {
2807 u64 tmp
= NSEC_PER_SEC
;
2808 do_div(tmp
, oa_period
);
2813 if (oa_freq_hz
> i915_oa_max_sample_rate
&&
2814 !capable(CAP_SYS_ADMIN
)) {
2815 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2816 i915_oa_max_sample_rate
);
2820 props
->oa_periodic
= true;
2821 props
->oa_period_exponent
= value
;
2823 case DRM_I915_PERF_PROP_MAX
:
2835 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2837 * @data: ioctl data copied from userspace (unvalidated)
2840 * Validates the stream open parameters given by userspace including flags
2841 * and an array of u64 key, value pair properties.
2843 * Very little is assumed up front about the nature of the stream being
2844 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2845 * i915-perf stream is expected to be a suitable interface for other forms of
2846 * buffered data written by the GPU besides periodic OA metrics.
2848 * Note we copy the properties from userspace outside of the i915 perf
2849 * mutex to avoid an awkward lockdep with mmap_sem.
2851 * Most of the implementation details are handled by
2852 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2853 * mutex for serializing with any non-file-operation driver hooks.
2855 * Return: A newly opened i915 Perf stream file descriptor or negative
2856 * error code on failure.
2858 int i915_perf_open_ioctl(struct drm_device
*dev
, void *data
,
2859 struct drm_file
*file
)
2861 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2862 struct drm_i915_perf_open_param
*param
= data
;
2863 struct perf_open_properties props
;
2864 u32 known_open_flags
;
2867 if (!dev_priv
->perf
.initialized
) {
2868 DRM_DEBUG("i915 perf interface not available for this system\n");
2872 known_open_flags
= I915_PERF_FLAG_FD_CLOEXEC
|
2873 I915_PERF_FLAG_FD_NONBLOCK
|
2874 I915_PERF_FLAG_DISABLED
;
2875 if (param
->flags
& ~known_open_flags
) {
2876 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2880 ret
= read_properties_unlocked(dev_priv
,
2881 u64_to_user_ptr(param
->properties_ptr
),
2882 param
->num_properties
,
2887 mutex_lock(&dev_priv
->perf
.lock
);
2888 ret
= i915_perf_open_ioctl_locked(dev_priv
, param
, &props
, file
);
2889 mutex_unlock(&dev_priv
->perf
.lock
);
2895 * i915_perf_register - exposes i915-perf to userspace
2896 * @dev_priv: i915 device instance
2898 * In particular OA metric sets are advertised under a sysfs metrics/
2899 * directory allowing userspace to enumerate valid IDs that can be
2900 * used to open an i915-perf stream.
2902 void i915_perf_register(struct drm_i915_private
*dev_priv
)
2906 if (!dev_priv
->perf
.initialized
)
2909 /* To be sure we're synchronized with an attempted
2910 * i915_perf_open_ioctl(); considering that we register after
2911 * being exposed to userspace.
2913 mutex_lock(&dev_priv
->perf
.lock
);
2915 dev_priv
->perf
.metrics_kobj
=
2916 kobject_create_and_add("metrics",
2917 &dev_priv
->drm
.primary
->kdev
->kobj
);
2918 if (!dev_priv
->perf
.metrics_kobj
)
2921 sysfs_attr_init(&dev_priv
->perf
.oa
.test_config
.sysfs_metric_id
.attr
);
2923 if (IS_HASWELL(dev_priv
)) {
2924 i915_perf_load_test_config_hsw(dev_priv
);
2925 } else if (IS_BROADWELL(dev_priv
)) {
2926 i915_perf_load_test_config_bdw(dev_priv
);
2927 } else if (IS_CHERRYVIEW(dev_priv
)) {
2928 i915_perf_load_test_config_chv(dev_priv
);
2929 } else if (IS_SKYLAKE(dev_priv
)) {
2930 if (IS_SKL_GT2(dev_priv
))
2931 i915_perf_load_test_config_sklgt2(dev_priv
);
2932 else if (IS_SKL_GT3(dev_priv
))
2933 i915_perf_load_test_config_sklgt3(dev_priv
);
2934 else if (IS_SKL_GT4(dev_priv
))
2935 i915_perf_load_test_config_sklgt4(dev_priv
);
2936 } else if (IS_BROXTON(dev_priv
)) {
2937 i915_perf_load_test_config_bxt(dev_priv
);
2938 } else if (IS_KABYLAKE(dev_priv
)) {
2939 if (IS_KBL_GT2(dev_priv
))
2940 i915_perf_load_test_config_kblgt2(dev_priv
);
2941 else if (IS_KBL_GT3(dev_priv
))
2942 i915_perf_load_test_config_kblgt3(dev_priv
);
2943 } else if (IS_GEMINILAKE(dev_priv
)) {
2944 i915_perf_load_test_config_glk(dev_priv
);
2945 } else if (IS_COFFEELAKE(dev_priv
)) {
2946 if (IS_CFL_GT2(dev_priv
))
2947 i915_perf_load_test_config_cflgt2(dev_priv
);
2948 if (IS_CFL_GT3(dev_priv
))
2949 i915_perf_load_test_config_cflgt3(dev_priv
);
2950 } else if (IS_CANNONLAKE(dev_priv
)) {
2951 i915_perf_load_test_config_cnl(dev_priv
);
2954 if (dev_priv
->perf
.oa
.test_config
.id
== 0)
2957 ret
= sysfs_create_group(dev_priv
->perf
.metrics_kobj
,
2958 &dev_priv
->perf
.oa
.test_config
.sysfs_metric
);
2962 atomic_set(&dev_priv
->perf
.oa
.test_config
.ref_count
, 1);
2967 kobject_put(dev_priv
->perf
.metrics_kobj
);
2968 dev_priv
->perf
.metrics_kobj
= NULL
;
2971 mutex_unlock(&dev_priv
->perf
.lock
);
2975 * i915_perf_unregister - hide i915-perf from userspace
2976 * @dev_priv: i915 device instance
2978 * i915-perf state cleanup is split up into an 'unregister' and
2979 * 'deinit' phase where the interface is first hidden from
2980 * userspace by i915_perf_unregister() before cleaning up
2981 * remaining state in i915_perf_fini().
2983 void i915_perf_unregister(struct drm_i915_private
*dev_priv
)
2985 if (!dev_priv
->perf
.metrics_kobj
)
2988 sysfs_remove_group(dev_priv
->perf
.metrics_kobj
,
2989 &dev_priv
->perf
.oa
.test_config
.sysfs_metric
);
2991 kobject_put(dev_priv
->perf
.metrics_kobj
);
2992 dev_priv
->perf
.metrics_kobj
= NULL
;
2995 static bool gen8_is_valid_flex_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
2997 static const i915_reg_t flex_eu_regs
[] = {
3008 for (i
= 0; i
< ARRAY_SIZE(flex_eu_regs
); i
++) {
3009 if (i915_mmio_reg_offset(flex_eu_regs
[i
]) == addr
)
3015 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
3017 return (addr
>= i915_mmio_reg_offset(OASTARTTRIG1
) &&
3018 addr
<= i915_mmio_reg_offset(OASTARTTRIG8
)) ||
3019 (addr
>= i915_mmio_reg_offset(OAREPORTTRIG1
) &&
3020 addr
<= i915_mmio_reg_offset(OAREPORTTRIG8
)) ||
3021 (addr
>= i915_mmio_reg_offset(OACEC0_0
) &&
3022 addr
<= i915_mmio_reg_offset(OACEC7_1
));
3025 static bool gen7_is_valid_mux_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
3027 return addr
== i915_mmio_reg_offset(HALF_SLICE_CHICKEN2
) ||
3028 (addr
>= i915_mmio_reg_offset(MICRO_BP0_0
) &&
3029 addr
<= i915_mmio_reg_offset(NOA_WRITE
)) ||
3030 (addr
>= i915_mmio_reg_offset(OA_PERFCNT1_LO
) &&
3031 addr
<= i915_mmio_reg_offset(OA_PERFCNT2_HI
)) ||
3032 (addr
>= i915_mmio_reg_offset(OA_PERFMATRIX_LO
) &&
3033 addr
<= i915_mmio_reg_offset(OA_PERFMATRIX_HI
));
3036 static bool gen8_is_valid_mux_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
3038 return gen7_is_valid_mux_addr(dev_priv
, addr
) ||
3039 addr
== i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT
) ||
3040 (addr
>= i915_mmio_reg_offset(RPM_CONFIG0
) &&
3041 addr
<= i915_mmio_reg_offset(NOA_CONFIG(8)));
3044 static bool gen10_is_valid_mux_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
3046 return gen8_is_valid_mux_addr(dev_priv
, addr
) ||
3047 (addr
>= i915_mmio_reg_offset(OA_PERFCNT3_LO
) &&
3048 addr
<= i915_mmio_reg_offset(OA_PERFCNT4_HI
));
3051 static bool hsw_is_valid_mux_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
3053 return gen7_is_valid_mux_addr(dev_priv
, addr
) ||
3054 (addr
>= 0x25100 && addr
<= 0x2FF90) ||
3055 (addr
>= i915_mmio_reg_offset(HSW_MBVID2_NOA0
) &&
3056 addr
<= i915_mmio_reg_offset(HSW_MBVID2_NOA9
)) ||
3057 addr
== i915_mmio_reg_offset(HSW_MBVID2_MISR0
);
3060 static bool chv_is_valid_mux_addr(struct drm_i915_private
*dev_priv
, u32 addr
)
3062 return gen7_is_valid_mux_addr(dev_priv
, addr
) ||
3063 (addr
>= 0x182300 && addr
<= 0x1823A4);
3066 static uint32_t mask_reg_value(u32 reg
, u32 val
)
3068 /* HALF_SLICE_CHICKEN2 is programmed with a the
3069 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3070 * programmed by userspace doesn't change this.
3072 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2
) == reg
)
3073 val
= val
& ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE
);
3075 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3076 * indicated by its name and a bunch of selection fields used by OA
3079 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT
) == reg
)
3080 val
= val
& ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE
);
3085 static struct i915_oa_reg
*alloc_oa_regs(struct drm_i915_private
*dev_priv
,
3086 bool (*is_valid
)(struct drm_i915_private
*dev_priv
, u32 addr
),
3090 struct i915_oa_reg
*oa_regs
;
3097 if (!access_ok(VERIFY_READ
, regs
, n_regs
* sizeof(u32
) * 2))
3098 return ERR_PTR(-EFAULT
);
3100 /* No is_valid function means we're not allowing any register to be programmed. */
3101 GEM_BUG_ON(!is_valid
);
3103 return ERR_PTR(-EINVAL
);
3105 oa_regs
= kmalloc_array(n_regs
, sizeof(*oa_regs
), GFP_KERNEL
);
3107 return ERR_PTR(-ENOMEM
);
3109 for (i
= 0; i
< n_regs
; i
++) {
3112 err
= get_user(addr
, regs
);
3116 if (!is_valid(dev_priv
, addr
)) {
3117 DRM_DEBUG("Invalid oa_reg address: %X\n", addr
);
3122 err
= get_user(value
, regs
+ 1);
3126 oa_regs
[i
].addr
= _MMIO(addr
);
3127 oa_regs
[i
].value
= mask_reg_value(addr
, value
);
3136 return ERR_PTR(err
);
3139 static ssize_t
show_dynamic_id(struct device
*dev
,
3140 struct device_attribute
*attr
,
3143 struct i915_oa_config
*oa_config
=
3144 container_of(attr
, typeof(*oa_config
), sysfs_metric_id
);
3146 return sprintf(buf
, "%d\n", oa_config
->id
);
3149 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private
*dev_priv
,
3150 struct i915_oa_config
*oa_config
)
3152 sysfs_attr_init(&oa_config
->sysfs_metric_id
.attr
);
3153 oa_config
->sysfs_metric_id
.attr
.name
= "id";
3154 oa_config
->sysfs_metric_id
.attr
.mode
= S_IRUGO
;
3155 oa_config
->sysfs_metric_id
.show
= show_dynamic_id
;
3156 oa_config
->sysfs_metric_id
.store
= NULL
;
3158 oa_config
->attrs
[0] = &oa_config
->sysfs_metric_id
.attr
;
3159 oa_config
->attrs
[1] = NULL
;
3161 oa_config
->sysfs_metric
.name
= oa_config
->uuid
;
3162 oa_config
->sysfs_metric
.attrs
= oa_config
->attrs
;
3164 return sysfs_create_group(dev_priv
->perf
.metrics_kobj
,
3165 &oa_config
->sysfs_metric
);
3169 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3171 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3172 * userspace (unvalidated)
3175 * Validates the submitted OA register to be saved into a new OA config that
3176 * can then be used for programming the OA unit and its NOA network.
3178 * Returns: A new allocated config number to be used with the perf open ioctl
3179 * or a negative error code on failure.
3181 int i915_perf_add_config_ioctl(struct drm_device
*dev
, void *data
,
3182 struct drm_file
*file
)
3184 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3185 struct drm_i915_perf_oa_config
*args
= data
;
3186 struct i915_oa_config
*oa_config
, *tmp
;
3189 if (!dev_priv
->perf
.initialized
) {
3190 DRM_DEBUG("i915 perf interface not available for this system\n");
3194 if (!dev_priv
->perf
.metrics_kobj
) {
3195 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3199 if (i915_perf_stream_paranoid
&& !capable(CAP_SYS_ADMIN
)) {
3200 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3204 if ((!args
->mux_regs_ptr
|| !args
->n_mux_regs
) &&
3205 (!args
->boolean_regs_ptr
|| !args
->n_boolean_regs
) &&
3206 (!args
->flex_regs_ptr
|| !args
->n_flex_regs
)) {
3207 DRM_DEBUG("No OA registers given\n");
3211 oa_config
= kzalloc(sizeof(*oa_config
), GFP_KERNEL
);
3213 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3217 atomic_set(&oa_config
->ref_count
, 1);
3219 if (!uuid_is_valid(args
->uuid
)) {
3220 DRM_DEBUG("Invalid uuid format for OA config\n");
3225 /* Last character in oa_config->uuid will be 0 because oa_config is
3228 memcpy(oa_config
->uuid
, args
->uuid
, sizeof(args
->uuid
));
3230 oa_config
->mux_regs_len
= args
->n_mux_regs
;
3231 oa_config
->mux_regs
=
3232 alloc_oa_regs(dev_priv
,
3233 dev_priv
->perf
.oa
.ops
.is_valid_mux_reg
,
3234 u64_to_user_ptr(args
->mux_regs_ptr
),
3237 if (IS_ERR(oa_config
->mux_regs
)) {
3238 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3239 err
= PTR_ERR(oa_config
->mux_regs
);
3243 oa_config
->b_counter_regs_len
= args
->n_boolean_regs
;
3244 oa_config
->b_counter_regs
=
3245 alloc_oa_regs(dev_priv
,
3246 dev_priv
->perf
.oa
.ops
.is_valid_b_counter_reg
,
3247 u64_to_user_ptr(args
->boolean_regs_ptr
),
3248 args
->n_boolean_regs
);
3250 if (IS_ERR(oa_config
->b_counter_regs
)) {
3251 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3252 err
= PTR_ERR(oa_config
->b_counter_regs
);
3256 if (INTEL_GEN(dev_priv
) < 8) {
3257 if (args
->n_flex_regs
!= 0) {
3262 oa_config
->flex_regs_len
= args
->n_flex_regs
;
3263 oa_config
->flex_regs
=
3264 alloc_oa_regs(dev_priv
,
3265 dev_priv
->perf
.oa
.ops
.is_valid_flex_reg
,
3266 u64_to_user_ptr(args
->flex_regs_ptr
),
3269 if (IS_ERR(oa_config
->flex_regs
)) {
3270 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3271 err
= PTR_ERR(oa_config
->flex_regs
);
3276 err
= mutex_lock_interruptible(&dev_priv
->perf
.metrics_lock
);
3280 /* We shouldn't have too many configs, so this iteration shouldn't be
3283 idr_for_each_entry(&dev_priv
->perf
.metrics_idr
, tmp
, id
) {
3284 if (!strcmp(tmp
->uuid
, oa_config
->uuid
)) {
3285 DRM_DEBUG("OA config already exists with this uuid\n");
3291 err
= create_dynamic_oa_sysfs_entry(dev_priv
, oa_config
);
3293 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3297 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3298 oa_config
->id
= idr_alloc(&dev_priv
->perf
.metrics_idr
,
3301 if (oa_config
->id
< 0) {
3302 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3303 err
= oa_config
->id
;
3307 mutex_unlock(&dev_priv
->perf
.metrics_lock
);
3309 return oa_config
->id
;
3312 mutex_unlock(&dev_priv
->perf
.metrics_lock
);
3314 put_oa_config(dev_priv
, oa_config
);
3315 DRM_DEBUG("Failed to add new OA config\n");
3320 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3322 * @data: ioctl data (pointer to u64 integer) copied from userspace
3325 * Configs can be removed while being used, the will stop appearing in sysfs
3326 * and their content will be freed when the stream using the config is closed.
3328 * Returns: 0 on success or a negative error code on failure.
3330 int i915_perf_remove_config_ioctl(struct drm_device
*dev
, void *data
,
3331 struct drm_file
*file
)
3333 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3335 struct i915_oa_config
*oa_config
;
3338 if (!dev_priv
->perf
.initialized
) {
3339 DRM_DEBUG("i915 perf interface not available for this system\n");
3343 if (i915_perf_stream_paranoid
&& !capable(CAP_SYS_ADMIN
)) {
3344 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3348 ret
= mutex_lock_interruptible(&dev_priv
->perf
.metrics_lock
);
3352 oa_config
= idr_find(&dev_priv
->perf
.metrics_idr
, *arg
);
3354 DRM_DEBUG("Failed to remove unknown OA config\n");
3359 GEM_BUG_ON(*arg
!= oa_config
->id
);
3361 sysfs_remove_group(dev_priv
->perf
.metrics_kobj
,
3362 &oa_config
->sysfs_metric
);
3364 idr_remove(&dev_priv
->perf
.metrics_idr
, *arg
);
3365 put_oa_config(dev_priv
, oa_config
);
3368 mutex_unlock(&dev_priv
->perf
.metrics_lock
);
3373 static struct ctl_table oa_table
[] = {
3375 .procname
= "perf_stream_paranoid",
3376 .data
= &i915_perf_stream_paranoid
,
3377 .maxlen
= sizeof(i915_perf_stream_paranoid
),
3379 .proc_handler
= proc_dointvec_minmax
,
3384 .procname
= "oa_max_sample_rate",
3385 .data
= &i915_oa_max_sample_rate
,
3386 .maxlen
= sizeof(i915_oa_max_sample_rate
),
3388 .proc_handler
= proc_dointvec_minmax
,
3390 .extra2
= &oa_sample_rate_hard_limit
,
3395 static struct ctl_table i915_root
[] = {
3405 static struct ctl_table dev_root
[] = {
3416 * i915_perf_init - initialize i915-perf state on module load
3417 * @dev_priv: i915 device instance
3419 * Initializes i915-perf state without exposing anything to userspace.
3421 * Note: i915-perf initialization is split into an 'init' and 'register'
3422 * phase with the i915_perf_register() exposing state to userspace.
3424 void i915_perf_init(struct drm_i915_private
*dev_priv
)
3426 if (IS_HASWELL(dev_priv
)) {
3427 dev_priv
->perf
.oa
.ops
.is_valid_b_counter_reg
=
3428 gen7_is_valid_b_counter_addr
;
3429 dev_priv
->perf
.oa
.ops
.is_valid_mux_reg
=
3430 hsw_is_valid_mux_addr
;
3431 dev_priv
->perf
.oa
.ops
.is_valid_flex_reg
= NULL
;
3432 dev_priv
->perf
.oa
.ops
.init_oa_buffer
= gen7_init_oa_buffer
;
3433 dev_priv
->perf
.oa
.ops
.enable_metric_set
= hsw_enable_metric_set
;
3434 dev_priv
->perf
.oa
.ops
.disable_metric_set
= hsw_disable_metric_set
;
3435 dev_priv
->perf
.oa
.ops
.oa_enable
= gen7_oa_enable
;
3436 dev_priv
->perf
.oa
.ops
.oa_disable
= gen7_oa_disable
;
3437 dev_priv
->perf
.oa
.ops
.read
= gen7_oa_read
;
3438 dev_priv
->perf
.oa
.ops
.oa_hw_tail_read
=
3439 gen7_oa_hw_tail_read
;
3441 dev_priv
->perf
.oa
.oa_formats
= hsw_oa_formats
;
3442 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
)) {
3443 /* Note: that although we could theoretically also support the
3444 * legacy ringbuffer mode on BDW (and earlier iterations of
3445 * this driver, before upstreaming did this) it didn't seem
3446 * worth the complexity to maintain now that BDW+ enable
3447 * execlist mode by default.
3449 dev_priv
->perf
.oa
.oa_formats
= gen8_plus_oa_formats
;
3451 dev_priv
->perf
.oa
.ops
.init_oa_buffer
= gen8_init_oa_buffer
;
3452 dev_priv
->perf
.oa
.ops
.oa_enable
= gen8_oa_enable
;
3453 dev_priv
->perf
.oa
.ops
.oa_disable
= gen8_oa_disable
;
3454 dev_priv
->perf
.oa
.ops
.read
= gen8_oa_read
;
3455 dev_priv
->perf
.oa
.ops
.oa_hw_tail_read
= gen8_oa_hw_tail_read
;
3457 if (IS_GEN8(dev_priv
) || IS_GEN9(dev_priv
)) {
3458 dev_priv
->perf
.oa
.ops
.is_valid_b_counter_reg
=
3459 gen7_is_valid_b_counter_addr
;
3460 dev_priv
->perf
.oa
.ops
.is_valid_mux_reg
=
3461 gen8_is_valid_mux_addr
;
3462 dev_priv
->perf
.oa
.ops
.is_valid_flex_reg
=
3463 gen8_is_valid_flex_addr
;
3465 if (IS_CHERRYVIEW(dev_priv
)) {
3466 dev_priv
->perf
.oa
.ops
.is_valid_mux_reg
=
3467 chv_is_valid_mux_addr
;
3470 dev_priv
->perf
.oa
.ops
.enable_metric_set
= gen8_enable_metric_set
;
3471 dev_priv
->perf
.oa
.ops
.disable_metric_set
= gen8_disable_metric_set
;
3473 if (IS_GEN8(dev_priv
)) {
3474 dev_priv
->perf
.oa
.ctx_oactxctrl_offset
= 0x120;
3475 dev_priv
->perf
.oa
.ctx_flexeu0_offset
= 0x2ce;
3477 dev_priv
->perf
.oa
.gen8_valid_ctx_bit
= (1<<25);
3479 dev_priv
->perf
.oa
.ctx_oactxctrl_offset
= 0x128;
3480 dev_priv
->perf
.oa
.ctx_flexeu0_offset
= 0x3de;
3482 dev_priv
->perf
.oa
.gen8_valid_ctx_bit
= (1<<16);
3484 } else if (IS_GEN10(dev_priv
)) {
3485 dev_priv
->perf
.oa
.ops
.is_valid_b_counter_reg
=
3486 gen7_is_valid_b_counter_addr
;
3487 dev_priv
->perf
.oa
.ops
.is_valid_mux_reg
=
3488 gen10_is_valid_mux_addr
;
3489 dev_priv
->perf
.oa
.ops
.is_valid_flex_reg
=
3490 gen8_is_valid_flex_addr
;
3492 dev_priv
->perf
.oa
.ops
.enable_metric_set
= gen8_enable_metric_set
;
3493 dev_priv
->perf
.oa
.ops
.disable_metric_set
= gen10_disable_metric_set
;
3495 dev_priv
->perf
.oa
.ctx_oactxctrl_offset
= 0x128;
3496 dev_priv
->perf
.oa
.ctx_flexeu0_offset
= 0x3de;
3498 dev_priv
->perf
.oa
.gen8_valid_ctx_bit
= (1<<16);
3502 if (dev_priv
->perf
.oa
.ops
.enable_metric_set
) {
3503 hrtimer_init(&dev_priv
->perf
.oa
.poll_check_timer
,
3504 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3505 dev_priv
->perf
.oa
.poll_check_timer
.function
= oa_poll_check_timer_cb
;
3506 init_waitqueue_head(&dev_priv
->perf
.oa
.poll_wq
);
3508 INIT_LIST_HEAD(&dev_priv
->perf
.streams
);
3509 mutex_init(&dev_priv
->perf
.lock
);
3510 spin_lock_init(&dev_priv
->perf
.oa
.oa_buffer
.ptr_lock
);
3512 oa_sample_rate_hard_limit
= 1000 *
3513 (INTEL_INFO(dev_priv
)->cs_timestamp_frequency_khz
/ 2);
3514 dev_priv
->perf
.sysctl_header
= register_sysctl_table(dev_root
);
3516 mutex_init(&dev_priv
->perf
.metrics_lock
);
3517 idr_init(&dev_priv
->perf
.metrics_idr
);
3519 dev_priv
->perf
.initialized
= true;
3523 static int destroy_config(int id
, void *p
, void *data
)
3525 struct drm_i915_private
*dev_priv
= data
;
3526 struct i915_oa_config
*oa_config
= p
;
3528 put_oa_config(dev_priv
, oa_config
);
3534 * i915_perf_fini - Counter part to i915_perf_init()
3535 * @dev_priv: i915 device instance
3537 void i915_perf_fini(struct drm_i915_private
*dev_priv
)
3539 if (!dev_priv
->perf
.initialized
)
3542 idr_for_each(&dev_priv
->perf
.metrics_idr
, destroy_config
, dev_priv
);
3543 idr_destroy(&dev_priv
->perf
.metrics_idr
);
3545 unregister_sysctl_table(dev_priv
->perf
.sysctl_header
);
3547 memset(&dev_priv
->perf
.oa
.ops
, 0, sizeof(dev_priv
->perf
.oa
.ops
));
3549 dev_priv
->perf
.initialized
= false;