2 * Copyright © 2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs
*b
)
38 struct intel_wait
*wait
;
39 unsigned int result
= 0;
41 lockdep_assert_held(&b
->irq_lock
);
46 * N.B. Since task_asleep() and ttwu are not atomic, the
47 * waiter may actually go to sleep after the check, causing
48 * us to suppress a valid wakeup. We prefer to reduce the
49 * number of false positive missed_breadcrumb() warnings
50 * at the expense of a few false negatives, as it it easy
51 * to trigger a false positive under heavy load. Enough
52 * signal should remain from genuine missed_breadcrumb()
53 * for us to detect in CI.
55 bool was_asleep
= task_asleep(wait
->tsk
);
57 result
= ENGINE_WAKEUP_WAITER
;
58 if (wake_up_process(wait
->tsk
) && was_asleep
)
59 result
|= ENGINE_WAKEUP_ASLEEP
;
65 unsigned int intel_engine_wakeup(struct intel_engine_cs
*engine
)
67 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
71 spin_lock_irqsave(&b
->irq_lock
, flags
);
72 result
= __intel_breadcrumbs_wakeup(b
);
73 spin_unlock_irqrestore(&b
->irq_lock
, flags
);
78 static unsigned long wait_timeout(void)
80 return round_jiffies_up(jiffies
+ DRM_I915_HANGCHECK_JIFFIES
);
83 static noinline
void missed_breadcrumb(struct intel_engine_cs
*engine
)
85 if (drm_debug
& DRM_UT_DRIVER
) {
86 struct drm_printer p
= drm_debug_printer(__func__
);
88 intel_engine_dump(engine
, &p
,
89 "%s missed breadcrumb at %pS\n",
90 engine
->name
, __builtin_return_address(0));
93 set_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
);
96 static void intel_breadcrumbs_hangcheck(struct timer_list
*t
)
98 struct intel_engine_cs
*engine
=
99 from_timer(engine
, t
, breadcrumbs
.hangcheck
);
100 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
105 if (b
->hangcheck_interrupts
!= atomic_read(&engine
->irq_count
)) {
106 b
->hangcheck_interrupts
= atomic_read(&engine
->irq_count
);
107 mod_timer(&b
->hangcheck
, wait_timeout());
111 /* We keep the hangcheck timer alive until we disarm the irq, even
112 * if there are no waiters at present.
114 * If the waiter was currently running, assume it hasn't had a chance
115 * to process the pending interrupt (e.g, low priority task on a loaded
116 * system) and wait until it sleeps before declaring a missed interrupt.
118 * If the waiter was asleep (and not even pending a wakeup), then we
119 * must have missed an interrupt as the GPU has stopped advancing
120 * but we still have a waiter. Assuming all batches complete within
121 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
123 if (intel_engine_wakeup(engine
) & ENGINE_WAKEUP_ASLEEP
) {
124 missed_breadcrumb(engine
);
125 mod_timer(&b
->fake_irq
, jiffies
+ 1);
127 mod_timer(&b
->hangcheck
, wait_timeout());
131 static void intel_breadcrumbs_fake_irq(struct timer_list
*t
)
133 struct intel_engine_cs
*engine
= from_timer(engine
, t
,
134 breadcrumbs
.fake_irq
);
135 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
137 /* The timer persists in case we cannot enable interrupts,
138 * or if we have previously seen seqno/interrupt incoherency
139 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
140 * Here the worker will wake up every jiffie in order to kick the
141 * oldest waiter to do the coherent seqno check.
144 spin_lock_irq(&b
->irq_lock
);
145 if (b
->irq_armed
&& !__intel_breadcrumbs_wakeup(b
))
146 __intel_engine_disarm_breadcrumbs(engine
);
147 spin_unlock_irq(&b
->irq_lock
);
151 mod_timer(&b
->fake_irq
, jiffies
+ 1);
154 static void irq_enable(struct intel_engine_cs
*engine
)
157 * FIXME: Ideally we want this on the API boundary, but for the
158 * sake of testing with mock breadcrumbs (no HW so unable to
159 * enable irqs) we place it deep within the bowels, at the point
162 GEM_BUG_ON(!intel_irqs_enabled(engine
->i915
));
164 /* Enabling the IRQ may miss the generation of the interrupt, but
165 * we still need to force the barrier before reading the seqno,
168 set_bit(ENGINE_IRQ_BREADCRUMB
, &engine
->irq_posted
);
170 /* Caller disables interrupts */
171 spin_lock(&engine
->i915
->irq_lock
);
172 engine
->irq_enable(engine
);
173 spin_unlock(&engine
->i915
->irq_lock
);
176 static void irq_disable(struct intel_engine_cs
*engine
)
178 /* Caller disables interrupts */
179 spin_lock(&engine
->i915
->irq_lock
);
180 engine
->irq_disable(engine
);
181 spin_unlock(&engine
->i915
->irq_lock
);
184 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs
*engine
)
186 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
188 lockdep_assert_held(&b
->irq_lock
);
189 GEM_BUG_ON(b
->irq_wait
);
190 GEM_BUG_ON(!b
->irq_armed
);
192 GEM_BUG_ON(!b
->irq_enabled
);
193 if (!--b
->irq_enabled
)
196 b
->irq_armed
= false;
199 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs
*engine
)
201 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
203 spin_lock_irq(&b
->irq_lock
);
204 if (!b
->irq_enabled
++)
206 GEM_BUG_ON(!b
->irq_enabled
); /* no overflow! */
207 spin_unlock_irq(&b
->irq_lock
);
210 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs
*engine
)
212 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
214 spin_lock_irq(&b
->irq_lock
);
215 GEM_BUG_ON(!b
->irq_enabled
); /* no underflow! */
216 if (!--b
->irq_enabled
)
218 spin_unlock_irq(&b
->irq_lock
);
221 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs
*engine
)
223 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
224 struct intel_wait
*wait
, *n
;
227 goto wakeup_signaler
;
230 * We only disarm the irq when we are idle (all requests completed),
231 * so if the bottom-half remains asleep, it missed the request
234 if (intel_engine_wakeup(engine
) & ENGINE_WAKEUP_ASLEEP
)
235 missed_breadcrumb(engine
);
237 spin_lock_irq(&b
->rb_lock
);
239 spin_lock(&b
->irq_lock
);
242 __intel_engine_disarm_breadcrumbs(engine
);
243 spin_unlock(&b
->irq_lock
);
245 rbtree_postorder_for_each_entry_safe(wait
, n
, &b
->waiters
, node
) {
246 RB_CLEAR_NODE(&wait
->node
);
247 wake_up_process(wait
->tsk
);
249 b
->waiters
= RB_ROOT
;
251 spin_unlock_irq(&b
->rb_lock
);
254 * The signaling thread may be asleep holding a reference to a request,
255 * that had its signaling cancelled prior to being preempted. We need
256 * to kick the signaler, just in case, to release any such reference.
259 wake_up_process(b
->signaler
);
262 static bool use_fake_irq(const struct intel_breadcrumbs
*b
)
264 const struct intel_engine_cs
*engine
=
265 container_of(b
, struct intel_engine_cs
, breadcrumbs
);
267 if (!test_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
))
270 /* Only start with the heavy weight fake irq timer if we have not
271 * seen any interrupts since enabling it the first time. If the
272 * interrupts are still arriving, it means we made a mistake in our
273 * engine->seqno_barrier(), a timing error that should be transient
274 * and unlikely to reoccur.
276 return atomic_read(&engine
->irq_count
) == b
->hangcheck_interrupts
;
279 static void enable_fake_irq(struct intel_breadcrumbs
*b
)
281 /* Ensure we never sleep indefinitely */
282 if (!b
->irq_enabled
|| use_fake_irq(b
))
283 mod_timer(&b
->fake_irq
, jiffies
+ 1);
285 mod_timer(&b
->hangcheck
, wait_timeout());
288 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs
*b
)
290 struct intel_engine_cs
*engine
=
291 container_of(b
, struct intel_engine_cs
, breadcrumbs
);
292 struct drm_i915_private
*i915
= engine
->i915
;
295 lockdep_assert_held(&b
->irq_lock
);
299 /* The breadcrumb irq will be disarmed on the interrupt after the
300 * waiters are signaled. This gives us a single interrupt window in
301 * which we can add a new waiter and avoid the cost of re-enabling
306 if (I915_SELFTEST_ONLY(b
->mock
)) {
307 /* For our mock objects we want to avoid interaction
308 * with the real hardware (which is not set up). So
309 * we simply pretend we have enabled the powerwell
310 * and the irq, and leave it up to the mock
311 * implementation to call intel_engine_wakeup()
312 * itself when it wants to simulate a user interrupt,
317 /* Since we are waiting on a request, the GPU should be busy
318 * and should have its own rpm reference. This is tracked
319 * by i915->gt.awake, we can forgo holding our own wakref
320 * for the interrupt as before i915->gt.awake is released (when
321 * the driver is idle) we disarm the breadcrumbs.
324 /* No interrupts? Kick the waiter every jiffie! */
326 if (!b
->irq_enabled
++ &&
327 !test_bit(engine
->id
, &i915
->gpu_error
.test_irq_rings
)) {
336 static inline struct intel_wait
*to_wait(struct rb_node
*node
)
338 return rb_entry(node
, struct intel_wait
, node
);
341 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs
*b
,
342 struct intel_wait
*wait
)
344 lockdep_assert_held(&b
->rb_lock
);
345 GEM_BUG_ON(b
->irq_wait
== wait
);
347 /* This request is completed, so remove it from the tree, mark it as
348 * complete, and *then* wake up the associated task. N.B. when the
349 * task wakes up, it will find the empty rb_node, discern that it
350 * has already been removed from the tree and skip the serialisation
351 * of the b->rb_lock and b->irq_lock. This means that the destruction
352 * of the intel_wait is not serialised with the interrupt handler
353 * by the waiter - it must instead be serialised by the caller.
355 rb_erase(&wait
->node
, &b
->waiters
);
356 RB_CLEAR_NODE(&wait
->node
);
358 wake_up_process(wait
->tsk
); /* implicit smp_wmb() */
361 static inline void __intel_breadcrumbs_next(struct intel_engine_cs
*engine
,
362 struct rb_node
*next
)
364 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
366 spin_lock(&b
->irq_lock
);
367 GEM_BUG_ON(!b
->irq_armed
);
368 GEM_BUG_ON(!b
->irq_wait
);
369 b
->irq_wait
= to_wait(next
);
370 spin_unlock(&b
->irq_lock
);
372 /* We always wake up the next waiter that takes over as the bottom-half
373 * as we may delegate not only the irq-seqno barrier to the next waiter
374 * but also the task of waking up concurrent waiters.
377 wake_up_process(to_wait(next
)->tsk
);
380 static bool __intel_engine_add_wait(struct intel_engine_cs
*engine
,
381 struct intel_wait
*wait
)
383 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
384 struct rb_node
**p
, *parent
, *completed
;
388 /* Insert the request into the retirement ordered list
389 * of waiters by walking the rbtree. If we are the oldest
390 * seqno in the tree (the first to be retired), then
391 * set ourselves as the bottom-half.
393 * As we descend the tree, prune completed branches since we hold the
394 * spinlock we know that the first_waiter must be delayed and can
395 * reduce some of the sequential wake up latency if we take action
396 * ourselves and wake up the completed tasks in parallel. Also, by
397 * removing stale elements in the tree, we may be able to reduce the
398 * ping-pong between the old bottom-half and ourselves as first-waiter.
404 seqno
= intel_engine_get_seqno(engine
);
406 /* If the request completed before we managed to grab the spinlock,
407 * return now before adding ourselves to the rbtree. We let the
408 * current bottom-half handle any pending wakeups and instead
409 * try and get out of the way quickly.
411 if (i915_seqno_passed(seqno
, wait
->seqno
)) {
412 RB_CLEAR_NODE(&wait
->node
);
416 p
= &b
->waiters
.rb_node
;
419 if (wait
->seqno
== to_wait(parent
)->seqno
) {
420 /* We have multiple waiters on the same seqno, select
421 * the highest priority task (that with the smallest
422 * task->prio) to serve as the bottom-half for this
425 if (wait
->tsk
->prio
> to_wait(parent
)->tsk
->prio
) {
426 p
= &parent
->rb_right
;
429 p
= &parent
->rb_left
;
431 } else if (i915_seqno_passed(wait
->seqno
,
432 to_wait(parent
)->seqno
)) {
433 p
= &parent
->rb_right
;
434 if (i915_seqno_passed(seqno
, to_wait(parent
)->seqno
))
439 p
= &parent
->rb_left
;
442 rb_link_node(&wait
->node
, parent
, p
);
443 rb_insert_color(&wait
->node
, &b
->waiters
);
446 spin_lock(&b
->irq_lock
);
448 /* After assigning ourselves as the new bottom-half, we must
449 * perform a cursory check to prevent a missed interrupt.
450 * Either we miss the interrupt whilst programming the hardware,
451 * or if there was a previous waiter (for a later seqno) they
452 * may be woken instead of us (due to the inherent race
453 * in the unlocked read of b->irq_seqno_bh in the irq handler)
454 * and so we miss the wake up.
456 armed
= __intel_breadcrumbs_enable_irq(b
);
457 spin_unlock(&b
->irq_lock
);
461 /* Advance the bottom-half (b->irq_wait) before we wake up
462 * the waiters who may scribble over their intel_wait
463 * just as the interrupt handler is dereferencing it via
467 struct rb_node
*next
= rb_next(completed
);
468 GEM_BUG_ON(next
== &wait
->node
);
469 __intel_breadcrumbs_next(engine
, next
);
473 struct intel_wait
*crumb
= to_wait(completed
);
474 completed
= rb_prev(completed
);
475 __intel_breadcrumbs_finish(b
, crumb
);
479 GEM_BUG_ON(!b
->irq_wait
);
480 GEM_BUG_ON(!b
->irq_armed
);
481 GEM_BUG_ON(rb_first(&b
->waiters
) != &b
->irq_wait
->node
);
486 bool intel_engine_add_wait(struct intel_engine_cs
*engine
,
487 struct intel_wait
*wait
)
489 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
492 spin_lock_irq(&b
->rb_lock
);
493 armed
= __intel_engine_add_wait(engine
, wait
);
494 spin_unlock_irq(&b
->rb_lock
);
498 /* Make the caller recheck if its request has already started. */
499 return i915_seqno_passed(intel_engine_get_seqno(engine
),
503 static inline bool chain_wakeup(struct rb_node
*rb
, int priority
)
505 return rb
&& to_wait(rb
)->tsk
->prio
<= priority
;
508 static inline int wakeup_priority(struct intel_breadcrumbs
*b
,
509 struct task_struct
*tsk
)
511 if (tsk
== b
->signaler
)
517 static void __intel_engine_remove_wait(struct intel_engine_cs
*engine
,
518 struct intel_wait
*wait
)
520 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
522 lockdep_assert_held(&b
->rb_lock
);
524 if (RB_EMPTY_NODE(&wait
->node
))
527 if (b
->irq_wait
== wait
) {
528 const int priority
= wakeup_priority(b
, wait
->tsk
);
529 struct rb_node
*next
;
531 /* We are the current bottom-half. Find the next candidate,
532 * the first waiter in the queue on the remaining oldest
533 * request. As multiple seqnos may complete in the time it
534 * takes us to wake up and find the next waiter, we have to
535 * wake up that waiter for it to perform its own coherent
538 next
= rb_next(&wait
->node
);
539 if (chain_wakeup(next
, priority
)) {
540 /* If the next waiter is already complete,
541 * wake it up and continue onto the next waiter. So
542 * if have a small herd, they will wake up in parallel
543 * rather than sequentially, which should reduce
544 * the overall latency in waking all the completed
547 * However, waking up a chain adds extra latency to
548 * the first_waiter. This is undesirable if that
549 * waiter is a high priority task.
551 u32 seqno
= intel_engine_get_seqno(engine
);
553 while (i915_seqno_passed(seqno
, to_wait(next
)->seqno
)) {
554 struct rb_node
*n
= rb_next(next
);
556 __intel_breadcrumbs_finish(b
, to_wait(next
));
558 if (!chain_wakeup(next
, priority
))
563 __intel_breadcrumbs_next(engine
, next
);
565 GEM_BUG_ON(rb_first(&b
->waiters
) == &wait
->node
);
568 GEM_BUG_ON(RB_EMPTY_NODE(&wait
->node
));
569 rb_erase(&wait
->node
, &b
->waiters
);
570 RB_CLEAR_NODE(&wait
->node
);
573 GEM_BUG_ON(b
->irq_wait
== wait
);
574 GEM_BUG_ON(rb_first(&b
->waiters
) !=
575 (b
->irq_wait
? &b
->irq_wait
->node
: NULL
));
578 void intel_engine_remove_wait(struct intel_engine_cs
*engine
,
579 struct intel_wait
*wait
)
581 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
583 /* Quick check to see if this waiter was already decoupled from
584 * the tree by the bottom-half to avoid contention on the spinlock
587 if (RB_EMPTY_NODE(&wait
->node
)) {
588 GEM_BUG_ON(READ_ONCE(b
->irq_wait
) == wait
);
592 spin_lock_irq(&b
->rb_lock
);
593 __intel_engine_remove_wait(engine
, wait
);
594 spin_unlock_irq(&b
->rb_lock
);
597 static bool signal_complete(const struct drm_i915_gem_request
*request
)
603 * Carefully check if the request is complete, giving time for the
604 * seqno to be visible or if the GPU hung.
606 return __i915_request_irq_complete(request
);
609 static struct drm_i915_gem_request
*to_signaler(struct rb_node
*rb
)
611 return rb_entry(rb
, struct drm_i915_gem_request
, signaling
.node
);
614 static void signaler_set_rtpriority(void)
616 struct sched_param param
= { .sched_priority
= 1 };
618 sched_setscheduler_nocheck(current
, SCHED_FIFO
, ¶m
);
621 static int intel_breadcrumbs_signaler(void *arg
)
623 struct intel_engine_cs
*engine
= arg
;
624 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
625 struct drm_i915_gem_request
*request
;
627 /* Install ourselves with high priority to reduce signalling latency */
628 signaler_set_rtpriority();
631 bool do_schedule
= true;
633 set_current_state(TASK_INTERRUPTIBLE
);
635 /* We are either woken up by the interrupt bottom-half,
636 * or by a client adding a new signaller. In both cases,
637 * the GPU seqno may have advanced beyond our oldest signal.
638 * If it has, propagate the signal, remove the waiter and
639 * check again with the next oldest signal. Otherwise we
640 * need to wait for a new interrupt from the GPU or for
644 request
= rcu_dereference(b
->first_signal
);
646 request
= i915_gem_request_get_rcu(request
);
648 if (signal_complete(request
)) {
649 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
,
650 &request
->fence
.flags
)) {
652 dma_fence_signal(&request
->fence
);
653 GEM_BUG_ON(!i915_gem_request_completed(request
));
654 local_bh_enable(); /* kick start the tasklets */
657 spin_lock_irq(&b
->rb_lock
);
659 /* Wake up all other completed waiters and select the
660 * next bottom-half for the next user interrupt.
662 __intel_engine_remove_wait(engine
,
663 &request
->signaling
.wait
);
665 /* Find the next oldest signal. Note that as we have
666 * not been holding the lock, another client may
667 * have installed an even older signal than the one
668 * we just completed - so double check we are still
669 * the oldest before picking the next one.
671 if (request
== rcu_access_pointer(b
->first_signal
)) {
673 rb_next(&request
->signaling
.node
);
674 rcu_assign_pointer(b
->first_signal
,
675 rb
? to_signaler(rb
) : NULL
);
677 rb_erase(&request
->signaling
.node
, &b
->signals
);
678 RB_CLEAR_NODE(&request
->signaling
.node
);
680 spin_unlock_irq(&b
->rb_lock
);
682 i915_gem_request_put(request
);
684 /* If the engine is saturated we may be continually
685 * processing completed requests. This angers the
686 * NMI watchdog if we never let anything else
687 * have access to the CPU. Let's pretend to be nice
688 * and relinquish the CPU if we burn through the
689 * entire RT timeslice!
691 do_schedule
= need_resched();
694 if (unlikely(do_schedule
)) {
695 if (kthread_should_park())
698 if (unlikely(kthread_should_stop())) {
699 i915_gem_request_put(request
);
705 i915_gem_request_put(request
);
707 __set_current_state(TASK_RUNNING
);
712 void intel_engine_enable_signaling(struct drm_i915_gem_request
*request
,
715 struct intel_engine_cs
*engine
= request
->engine
;
716 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
719 /* Note that we may be called from an interrupt handler on another
720 * device (e.g. nouveau signaling a fence completion causing us
721 * to submit a request, and so enable signaling). As such,
722 * we need to make sure that all other users of b->rb_lock protect
723 * against interrupts, i.e. use spin_lock_irqsave.
726 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
727 GEM_BUG_ON(!irqs_disabled());
728 lockdep_assert_held(&request
->lock
);
730 seqno
= i915_gem_request_global_seqno(request
);
734 request
->signaling
.wait
.tsk
= b
->signaler
;
735 request
->signaling
.wait
.request
= request
;
736 request
->signaling
.wait
.seqno
= seqno
;
737 i915_gem_request_get(request
);
739 spin_lock(&b
->rb_lock
);
741 /* First add ourselves into the list of waiters, but register our
742 * bottom-half as the signaller thread. As per usual, only the oldest
743 * waiter (not just signaller) is tasked as the bottom-half waking
744 * up all completed waiters after the user interrupt.
746 * If we are the oldest waiter, enable the irq (after which we
747 * must double check that the seqno did not complete).
749 wakeup
&= __intel_engine_add_wait(engine
, &request
->signaling
.wait
);
751 if (!__i915_gem_request_completed(request
, seqno
)) {
752 struct rb_node
*parent
, **p
;
755 /* Now insert ourselves into the retirement ordered list of
756 * signals on this engine. We track the oldest seqno as that
757 * will be the first signal to complete.
761 p
= &b
->signals
.rb_node
;
764 if (i915_seqno_passed(seqno
,
765 to_signaler(parent
)->signaling
.wait
.seqno
)) {
766 p
= &parent
->rb_right
;
769 p
= &parent
->rb_left
;
772 rb_link_node(&request
->signaling
.node
, parent
, p
);
773 rb_insert_color(&request
->signaling
.node
, &b
->signals
);
775 rcu_assign_pointer(b
->first_signal
, request
);
777 __intel_engine_remove_wait(engine
, &request
->signaling
.wait
);
778 i915_gem_request_put(request
);
782 spin_unlock(&b
->rb_lock
);
785 wake_up_process(b
->signaler
);
788 void intel_engine_cancel_signaling(struct drm_i915_gem_request
*request
)
790 struct intel_engine_cs
*engine
= request
->engine
;
791 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
793 GEM_BUG_ON(!irqs_disabled());
794 lockdep_assert_held(&request
->lock
);
795 GEM_BUG_ON(!request
->signaling
.wait
.seqno
);
797 spin_lock(&b
->rb_lock
);
799 if (!RB_EMPTY_NODE(&request
->signaling
.node
)) {
800 if (request
== rcu_access_pointer(b
->first_signal
)) {
802 rb_next(&request
->signaling
.node
);
803 rcu_assign_pointer(b
->first_signal
,
804 rb
? to_signaler(rb
) : NULL
);
806 rb_erase(&request
->signaling
.node
, &b
->signals
);
807 RB_CLEAR_NODE(&request
->signaling
.node
);
808 i915_gem_request_put(request
);
811 __intel_engine_remove_wait(engine
, &request
->signaling
.wait
);
813 spin_unlock(&b
->rb_lock
);
815 request
->signaling
.wait
.seqno
= 0;
818 int intel_engine_init_breadcrumbs(struct intel_engine_cs
*engine
)
820 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
821 struct task_struct
*tsk
;
823 spin_lock_init(&b
->rb_lock
);
824 spin_lock_init(&b
->irq_lock
);
826 timer_setup(&b
->fake_irq
, intel_breadcrumbs_fake_irq
, 0);
827 timer_setup(&b
->hangcheck
, intel_breadcrumbs_hangcheck
, 0);
829 /* Spawn a thread to provide a common bottom-half for all signals.
830 * As this is an asynchronous interface we cannot steal the current
831 * task for handling the bottom-half to the user interrupt, therefore
832 * we create a thread to do the coherent seqno dance after the
833 * interrupt and then signal the waitqueue (via the dma-buf/fence).
835 tsk
= kthread_run(intel_breadcrumbs_signaler
, engine
,
836 "i915/signal:%d", engine
->id
);
845 static void cancel_fake_irq(struct intel_engine_cs
*engine
)
847 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
849 del_timer_sync(&b
->hangcheck
);
850 del_timer_sync(&b
->fake_irq
);
851 clear_bit(engine
->id
, &engine
->i915
->gpu_error
.missed_irq_rings
);
854 void intel_engine_reset_breadcrumbs(struct intel_engine_cs
*engine
)
856 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
858 cancel_fake_irq(engine
);
859 spin_lock_irq(&b
->irq_lock
);
866 /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
867 * GPU is active and may have already executed the MI_USER_INTERRUPT
868 * before the CPU is ready to receive. However, the engine is currently
869 * idle (we haven't started it yet), there is no possibility for a
870 * missed interrupt as we enabled the irq and so we can clear the
871 * immediate wakeup (until a real interrupt arrives for the waiter).
873 clear_bit(ENGINE_IRQ_BREADCRUMB
, &engine
->irq_posted
);
878 spin_unlock_irq(&b
->irq_lock
);
881 void intel_engine_fini_breadcrumbs(struct intel_engine_cs
*engine
)
883 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
885 /* The engines should be idle and all requests accounted for! */
886 WARN_ON(READ_ONCE(b
->irq_wait
));
887 WARN_ON(!RB_EMPTY_ROOT(&b
->waiters
));
888 WARN_ON(rcu_access_pointer(b
->first_signal
));
889 WARN_ON(!RB_EMPTY_ROOT(&b
->signals
));
891 if (!IS_ERR_OR_NULL(b
->signaler
))
892 kthread_stop(b
->signaler
);
894 cancel_fake_irq(engine
);
897 bool intel_breadcrumbs_busy(struct intel_engine_cs
*engine
)
899 struct intel_breadcrumbs
*b
= &engine
->breadcrumbs
;
902 spin_lock_irq(&b
->rb_lock
);
905 wake_up_process(b
->irq_wait
->tsk
);
909 if (rcu_access_pointer(b
->first_signal
)) {
910 wake_up_process(b
->signaler
);
914 spin_unlock_irq(&b
->rb_lock
);
919 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
920 #include "selftests/intel_breadcrumbs.c"