Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / net / tls / tls_main.c
blobe9b4b53ab53e08b2b8ddaf7e57da9d0a9862a4b1
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/module.h>
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
42 #include <net/tls.h>
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
48 enum {
49 TLS_BASE_TX,
50 TLS_SW_TX,
51 TLS_NUM_CONFIG,
54 static struct proto tls_prots[TLS_NUM_CONFIG];
56 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
58 sk->sk_prot = &tls_prots[ctx->tx_conf];
61 int wait_on_pending_writer(struct sock *sk, long *timeo)
63 int rc = 0;
64 DEFINE_WAIT_FUNC(wait, woken_wake_function);
66 add_wait_queue(sk_sleep(sk), &wait);
67 while (1) {
68 if (!*timeo) {
69 rc = -EAGAIN;
70 break;
73 if (signal_pending(current)) {
74 rc = sock_intr_errno(*timeo);
75 break;
78 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
79 break;
81 remove_wait_queue(sk_sleep(sk), &wait);
82 return rc;
85 int tls_push_sg(struct sock *sk,
86 struct tls_context *ctx,
87 struct scatterlist *sg,
88 u16 first_offset,
89 int flags)
91 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
92 int ret = 0;
93 struct page *p;
94 size_t size;
95 int offset = first_offset;
97 size = sg->length - offset;
98 offset += sg->offset;
100 while (1) {
101 if (sg_is_last(sg))
102 sendpage_flags = flags;
104 /* is sending application-limited? */
105 tcp_rate_check_app_limited(sk);
106 p = sg_page(sg);
107 retry:
108 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
110 if (ret != size) {
111 if (ret > 0) {
112 offset += ret;
113 size -= ret;
114 goto retry;
117 offset -= sg->offset;
118 ctx->partially_sent_offset = offset;
119 ctx->partially_sent_record = (void *)sg;
120 return ret;
123 put_page(p);
124 sk_mem_uncharge(sk, sg->length);
125 sg = sg_next(sg);
126 if (!sg)
127 break;
129 offset = sg->offset;
130 size = sg->length;
133 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
135 return 0;
138 static int tls_handle_open_record(struct sock *sk, int flags)
140 struct tls_context *ctx = tls_get_ctx(sk);
142 if (tls_is_pending_open_record(ctx))
143 return ctx->push_pending_record(sk, flags);
145 return 0;
148 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
149 unsigned char *record_type)
151 struct cmsghdr *cmsg;
152 int rc = -EINVAL;
154 for_each_cmsghdr(cmsg, msg) {
155 if (!CMSG_OK(msg, cmsg))
156 return -EINVAL;
157 if (cmsg->cmsg_level != SOL_TLS)
158 continue;
160 switch (cmsg->cmsg_type) {
161 case TLS_SET_RECORD_TYPE:
162 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
163 return -EINVAL;
165 if (msg->msg_flags & MSG_MORE)
166 return -EINVAL;
168 rc = tls_handle_open_record(sk, msg->msg_flags);
169 if (rc)
170 return rc;
172 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
173 rc = 0;
174 break;
175 default:
176 return -EINVAL;
180 return rc;
183 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
184 int flags, long *timeo)
186 struct scatterlist *sg;
187 u16 offset;
189 if (!tls_is_partially_sent_record(ctx))
190 return ctx->push_pending_record(sk, flags);
192 sg = ctx->partially_sent_record;
193 offset = ctx->partially_sent_offset;
195 ctx->partially_sent_record = NULL;
196 return tls_push_sg(sk, ctx, sg, offset, flags);
199 static void tls_write_space(struct sock *sk)
201 struct tls_context *ctx = tls_get_ctx(sk);
203 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
204 gfp_t sk_allocation = sk->sk_allocation;
205 int rc;
206 long timeo = 0;
208 sk->sk_allocation = GFP_ATOMIC;
209 rc = tls_push_pending_closed_record(sk, ctx,
210 MSG_DONTWAIT |
211 MSG_NOSIGNAL,
212 &timeo);
213 sk->sk_allocation = sk_allocation;
215 if (rc < 0)
216 return;
219 ctx->sk_write_space(sk);
222 static void tls_sk_proto_close(struct sock *sk, long timeout)
224 struct tls_context *ctx = tls_get_ctx(sk);
225 long timeo = sock_sndtimeo(sk, 0);
226 void (*sk_proto_close)(struct sock *sk, long timeout);
228 lock_sock(sk);
229 sk_proto_close = ctx->sk_proto_close;
231 if (ctx->tx_conf == TLS_BASE_TX) {
232 kfree(ctx);
233 goto skip_tx_cleanup;
236 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
237 tls_handle_open_record(sk, 0);
239 if (ctx->partially_sent_record) {
240 struct scatterlist *sg = ctx->partially_sent_record;
242 while (1) {
243 put_page(sg_page(sg));
244 sk_mem_uncharge(sk, sg->length);
246 if (sg_is_last(sg))
247 break;
248 sg++;
252 kfree(ctx->rec_seq);
253 kfree(ctx->iv);
255 if (ctx->tx_conf == TLS_SW_TX)
256 tls_sw_free_tx_resources(sk);
258 skip_tx_cleanup:
259 release_sock(sk);
260 sk_proto_close(sk, timeout);
263 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
264 int __user *optlen)
266 int rc = 0;
267 struct tls_context *ctx = tls_get_ctx(sk);
268 struct tls_crypto_info *crypto_info;
269 int len;
271 if (get_user(len, optlen))
272 return -EFAULT;
274 if (!optval || (len < sizeof(*crypto_info))) {
275 rc = -EINVAL;
276 goto out;
279 if (!ctx) {
280 rc = -EBUSY;
281 goto out;
284 /* get user crypto info */
285 crypto_info = &ctx->crypto_send;
287 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
288 rc = -EBUSY;
289 goto out;
292 if (len == sizeof(*crypto_info)) {
293 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
294 rc = -EFAULT;
295 goto out;
298 switch (crypto_info->cipher_type) {
299 case TLS_CIPHER_AES_GCM_128: {
300 struct tls12_crypto_info_aes_gcm_128 *
301 crypto_info_aes_gcm_128 =
302 container_of(crypto_info,
303 struct tls12_crypto_info_aes_gcm_128,
304 info);
306 if (len != sizeof(*crypto_info_aes_gcm_128)) {
307 rc = -EINVAL;
308 goto out;
310 lock_sock(sk);
311 memcpy(crypto_info_aes_gcm_128->iv,
312 ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
313 TLS_CIPHER_AES_GCM_128_IV_SIZE);
314 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->rec_seq,
315 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
316 release_sock(sk);
317 if (copy_to_user(optval,
318 crypto_info_aes_gcm_128,
319 sizeof(*crypto_info_aes_gcm_128)))
320 rc = -EFAULT;
321 break;
323 default:
324 rc = -EINVAL;
327 out:
328 return rc;
331 static int do_tls_getsockopt(struct sock *sk, int optname,
332 char __user *optval, int __user *optlen)
334 int rc = 0;
336 switch (optname) {
337 case TLS_TX:
338 rc = do_tls_getsockopt_tx(sk, optval, optlen);
339 break;
340 default:
341 rc = -ENOPROTOOPT;
342 break;
344 return rc;
347 static int tls_getsockopt(struct sock *sk, int level, int optname,
348 char __user *optval, int __user *optlen)
350 struct tls_context *ctx = tls_get_ctx(sk);
352 if (level != SOL_TLS)
353 return ctx->getsockopt(sk, level, optname, optval, optlen);
355 return do_tls_getsockopt(sk, optname, optval, optlen);
358 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
359 unsigned int optlen)
361 struct tls_crypto_info *crypto_info;
362 struct tls_context *ctx = tls_get_ctx(sk);
363 int rc = 0;
364 int tx_conf;
366 if (!optval || (optlen < sizeof(*crypto_info))) {
367 rc = -EINVAL;
368 goto out;
371 crypto_info = &ctx->crypto_send;
372 /* Currently we don't support set crypto info more than one time */
373 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
374 rc = -EBUSY;
375 goto out;
378 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
379 if (rc) {
380 rc = -EFAULT;
381 goto err_crypto_info;
384 /* check version */
385 if (crypto_info->version != TLS_1_2_VERSION) {
386 rc = -ENOTSUPP;
387 goto err_crypto_info;
390 switch (crypto_info->cipher_type) {
391 case TLS_CIPHER_AES_GCM_128: {
392 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
393 rc = -EINVAL;
394 goto err_crypto_info;
396 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
397 optlen - sizeof(*crypto_info));
398 if (rc) {
399 rc = -EFAULT;
400 goto err_crypto_info;
402 break;
404 default:
405 rc = -EINVAL;
406 goto err_crypto_info;
409 /* currently SW is default, we will have ethtool in future */
410 rc = tls_set_sw_offload(sk, ctx);
411 tx_conf = TLS_SW_TX;
412 if (rc)
413 goto err_crypto_info;
415 ctx->tx_conf = tx_conf;
416 update_sk_prot(sk, ctx);
417 ctx->sk_write_space = sk->sk_write_space;
418 sk->sk_write_space = tls_write_space;
419 goto out;
421 err_crypto_info:
422 memset(crypto_info, 0, sizeof(*crypto_info));
423 out:
424 return rc;
427 static int do_tls_setsockopt(struct sock *sk, int optname,
428 char __user *optval, unsigned int optlen)
430 int rc = 0;
432 switch (optname) {
433 case TLS_TX:
434 lock_sock(sk);
435 rc = do_tls_setsockopt_tx(sk, optval, optlen);
436 release_sock(sk);
437 break;
438 default:
439 rc = -ENOPROTOOPT;
440 break;
442 return rc;
445 static int tls_setsockopt(struct sock *sk, int level, int optname,
446 char __user *optval, unsigned int optlen)
448 struct tls_context *ctx = tls_get_ctx(sk);
450 if (level != SOL_TLS)
451 return ctx->setsockopt(sk, level, optname, optval, optlen);
453 return do_tls_setsockopt(sk, optname, optval, optlen);
456 static int tls_init(struct sock *sk)
458 struct inet_connection_sock *icsk = inet_csk(sk);
459 struct tls_context *ctx;
460 int rc = 0;
462 /* The TLS ulp is currently supported only for TCP sockets
463 * in ESTABLISHED state.
464 * Supporting sockets in LISTEN state will require us
465 * to modify the accept implementation to clone rather then
466 * share the ulp context.
468 if (sk->sk_state != TCP_ESTABLISHED)
469 return -ENOTSUPP;
471 /* allocate tls context */
472 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
473 if (!ctx) {
474 rc = -ENOMEM;
475 goto out;
477 icsk->icsk_ulp_data = ctx;
478 ctx->setsockopt = sk->sk_prot->setsockopt;
479 ctx->getsockopt = sk->sk_prot->getsockopt;
480 ctx->sk_proto_close = sk->sk_prot->close;
482 ctx->tx_conf = TLS_BASE_TX;
483 update_sk_prot(sk, ctx);
484 out:
485 return rc;
488 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
489 .name = "tls",
490 .uid = TCP_ULP_TLS,
491 .user_visible = true,
492 .owner = THIS_MODULE,
493 .init = tls_init,
496 static void build_protos(struct proto *prot, struct proto *base)
498 prot[TLS_BASE_TX] = *base;
499 prot[TLS_BASE_TX].setsockopt = tls_setsockopt;
500 prot[TLS_BASE_TX].getsockopt = tls_getsockopt;
501 prot[TLS_BASE_TX].close = tls_sk_proto_close;
503 prot[TLS_SW_TX] = prot[TLS_BASE_TX];
504 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
505 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
508 static int __init tls_register(void)
510 build_protos(tls_prots, &tcp_prot);
512 tcp_register_ulp(&tcp_tls_ulp_ops);
514 return 0;
517 static void __exit tls_unregister(void)
519 tcp_unregister_ulp(&tcp_tls_ulp_ops);
522 module_init(tls_register);
523 module_exit(tls_unregister);