[PATCH] aic7xxx_osm build fix
[cris-mirror.git] / drivers / pci / hotplug / cpqphp_ctrl.c
blob10a5a7674a8acb8d3a0bc602a5ce2789a349538e
1 /*
2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
8 * All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 #include <linux/wait.h>
38 #include <linux/smp_lock.h>
39 #include <linux/pci.h>
40 #include "cpqphp.h"
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
48 static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
50 static int event_finished;
51 static unsigned long pushbutton_pending; /* = 0 */
53 /* things needed for the long_delay function */
54 static struct semaphore delay_sem;
55 static wait_queue_head_t delay_wait;
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay)
60 DECLARE_WAITQUEUE(wait, current);
62 /* only allow 1 customer into the delay queue at once
63 * yes this makes some people wait even longer, but who really cares?
64 * this is for _huge_ delays to make the hardware happy as the
65 * signals bounce around
67 down (&delay_sem);
69 init_waitqueue_head(&delay_wait);
71 add_wait_queue(&delay_wait, &wait);
72 msleep_interruptible(jiffies_to_msecs(delay));
73 remove_wait_queue(&delay_wait, &wait);
75 up(&delay_sem);
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8 handle_switch_change(u8 change, struct controller * ctrl)
83 int hp_slot;
84 u8 rc = 0;
85 u16 temp_word;
86 struct pci_func *func;
87 struct event_info *taskInfo;
89 if (!change)
90 return 0;
92 /* Switch Change */
93 dbg("cpqsbd: Switch interrupt received.\n");
95 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96 if (change & (0x1L << hp_slot)) {
97 /**********************************
98 * this one changed.
99 **********************************/
100 func = cpqhp_slot_find(ctrl->bus,
101 (hp_slot + ctrl->slot_device_offset), 0);
103 /* this is the structure that tells the worker thread
104 *what to do */
105 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106 ctrl->next_event = (ctrl->next_event + 1) % 10;
107 taskInfo->hp_slot = hp_slot;
109 rc++;
111 temp_word = ctrl->ctrl_int_comp >> 16;
112 func->presence_save = (temp_word >> hp_slot) & 0x01;
113 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
115 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116 /**********************************
117 * Switch opened
118 **********************************/
120 func->switch_save = 0;
122 taskInfo->event_type = INT_SWITCH_OPEN;
123 } else {
124 /**********************************
125 * Switch closed
126 **********************************/
128 func->switch_save = 0x10;
130 taskInfo->event_type = INT_SWITCH_CLOSE;
135 return rc;
139 * cpqhp_find_slot: find the struct slot of given device
140 * @ctrl: scan lots of this controller
141 * @device: the device id to find
143 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
145 struct slot *slot = ctrl->slot;
147 while (slot && (slot->device != device)) {
148 slot = slot->next;
151 return slot;
155 static u8 handle_presence_change(u16 change, struct controller * ctrl)
157 int hp_slot;
158 u8 rc = 0;
159 u8 temp_byte;
160 u16 temp_word;
161 struct pci_func *func;
162 struct event_info *taskInfo;
163 struct slot *p_slot;
165 if (!change)
166 return 0;
168 /**********************************
169 * Presence Change
170 **********************************/
171 dbg("cpqsbd: Presence/Notify input change.\n");
172 dbg(" Changed bits are 0x%4.4x\n", change );
174 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175 if (change & (0x0101 << hp_slot)) {
176 /**********************************
177 * this one changed.
178 **********************************/
179 func = cpqhp_slot_find(ctrl->bus,
180 (hp_slot + ctrl->slot_device_offset), 0);
182 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183 ctrl->next_event = (ctrl->next_event + 1) % 10;
184 taskInfo->hp_slot = hp_slot;
186 rc++;
188 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189 if (!p_slot)
190 return 0;
192 /* If the switch closed, must be a button
193 * If not in button mode, nevermind */
194 if (func->switch_save && (ctrl->push_button == 1)) {
195 temp_word = ctrl->ctrl_int_comp >> 16;
196 temp_byte = (temp_word >> hp_slot) & 0x01;
197 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
199 if (temp_byte != func->presence_save) {
200 /**************************************
201 * button Pressed (doesn't do anything)
202 **************************************/
203 dbg("hp_slot %d button pressed\n", hp_slot);
204 taskInfo->event_type = INT_BUTTON_PRESS;
205 } else {
206 /**********************************
207 * button Released - TAKE ACTION!!!!
208 **********************************/
209 dbg("hp_slot %d button released\n", hp_slot);
210 taskInfo->event_type = INT_BUTTON_RELEASE;
212 /* Cancel if we are still blinking */
213 if ((p_slot->state == BLINKINGON_STATE)
214 || (p_slot->state == BLINKINGOFF_STATE)) {
215 taskInfo->event_type = INT_BUTTON_CANCEL;
216 dbg("hp_slot %d button cancel\n", hp_slot);
217 } else if ((p_slot->state == POWERON_STATE)
218 || (p_slot->state == POWEROFF_STATE)) {
219 /* info(msg_button_ignore, p_slot->number); */
220 taskInfo->event_type = INT_BUTTON_IGNORE;
221 dbg("hp_slot %d button ignore\n", hp_slot);
224 } else {
225 /* Switch is open, assume a presence change
226 * Save the presence state */
227 temp_word = ctrl->ctrl_int_comp >> 16;
228 func->presence_save = (temp_word >> hp_slot) & 0x01;
229 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
231 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233 /* Present */
234 taskInfo->event_type = INT_PRESENCE_ON;
235 } else {
236 /* Not Present */
237 taskInfo->event_type = INT_PRESENCE_OFF;
243 return rc;
247 static u8 handle_power_fault(u8 change, struct controller * ctrl)
249 int hp_slot;
250 u8 rc = 0;
251 struct pci_func *func;
252 struct event_info *taskInfo;
254 if (!change)
255 return 0;
257 /**********************************
258 * power fault
259 **********************************/
261 info("power fault interrupt\n");
263 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264 if (change & (0x01 << hp_slot)) {
265 /**********************************
266 * this one changed.
267 **********************************/
268 func = cpqhp_slot_find(ctrl->bus,
269 (hp_slot + ctrl->slot_device_offset), 0);
271 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272 ctrl->next_event = (ctrl->next_event + 1) % 10;
273 taskInfo->hp_slot = hp_slot;
275 rc++;
277 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278 /**********************************
279 * power fault Cleared
280 **********************************/
281 func->status = 0x00;
283 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284 } else {
285 /**********************************
286 * power fault
287 **********************************/
288 taskInfo->event_type = INT_POWER_FAULT;
290 if (ctrl->rev < 4) {
291 amber_LED_on (ctrl, hp_slot);
292 green_LED_off (ctrl, hp_slot);
293 set_SOGO (ctrl);
295 /* this is a fatal condition, we want
296 * to crash the machine to protect from
297 * data corruption. simulated_NMI
298 * shouldn't ever return */
299 /* FIXME
300 simulated_NMI(hp_slot, ctrl); */
302 /* The following code causes a software
303 * crash just in case simulated_NMI did
304 * return */
305 /*FIXME
306 panic(msg_power_fault); */
307 } else {
308 /* set power fault status for this board */
309 func->status = 0xFF;
310 info("power fault bit %x set\n", hp_slot);
316 return rc;
321 * sort_by_size: sort nodes on the list by their length, smallest first.
322 * @head: list to sort
325 static int sort_by_size(struct pci_resource **head)
327 struct pci_resource *current_res;
328 struct pci_resource *next_res;
329 int out_of_order = 1;
331 if (!(*head))
332 return 1;
334 if (!((*head)->next))
335 return 0;
337 while (out_of_order) {
338 out_of_order = 0;
340 /* Special case for swapping list head */
341 if (((*head)->next) &&
342 ((*head)->length > (*head)->next->length)) {
343 out_of_order++;
344 current_res = *head;
345 *head = (*head)->next;
346 current_res->next = (*head)->next;
347 (*head)->next = current_res;
350 current_res = *head;
352 while (current_res->next && current_res->next->next) {
353 if (current_res->next->length > current_res->next->next->length) {
354 out_of_order++;
355 next_res = current_res->next;
356 current_res->next = current_res->next->next;
357 current_res = current_res->next;
358 next_res->next = current_res->next;
359 current_res->next = next_res;
360 } else
361 current_res = current_res->next;
363 } /* End of out_of_order loop */
365 return 0;
370 * sort_by_max_size: sort nodes on the list by their length, largest first.
371 * @head: list to sort
374 static int sort_by_max_size(struct pci_resource **head)
376 struct pci_resource *current_res;
377 struct pci_resource *next_res;
378 int out_of_order = 1;
380 if (!(*head))
381 return 1;
383 if (!((*head)->next))
384 return 0;
386 while (out_of_order) {
387 out_of_order = 0;
389 /* Special case for swapping list head */
390 if (((*head)->next) &&
391 ((*head)->length < (*head)->next->length)) {
392 out_of_order++;
393 current_res = *head;
394 *head = (*head)->next;
395 current_res->next = (*head)->next;
396 (*head)->next = current_res;
399 current_res = *head;
401 while (current_res->next && current_res->next->next) {
402 if (current_res->next->length < current_res->next->next->length) {
403 out_of_order++;
404 next_res = current_res->next;
405 current_res->next = current_res->next->next;
406 current_res = current_res->next;
407 next_res->next = current_res->next;
408 current_res->next = next_res;
409 } else
410 current_res = current_res->next;
412 } /* End of out_of_order loop */
414 return 0;
419 * do_pre_bridge_resource_split: find node of resources that are unused
422 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423 struct pci_resource **orig_head, u32 alignment)
425 struct pci_resource *prevnode = NULL;
426 struct pci_resource *node;
427 struct pci_resource *split_node;
428 u32 rc;
429 u32 temp_dword;
430 dbg("do_pre_bridge_resource_split\n");
432 if (!(*head) || !(*orig_head))
433 return NULL;
435 rc = cpqhp_resource_sort_and_combine(head);
437 if (rc)
438 return NULL;
440 if ((*head)->base != (*orig_head)->base)
441 return NULL;
443 if ((*head)->length == (*orig_head)->length)
444 return NULL;
447 /* If we got here, there the bridge requires some of the resource, but
448 * we may be able to split some off of the front */
450 node = *head;
452 if (node->length & (alignment -1)) {
453 /* this one isn't an aligned length, so we'll make a new entry
454 * and split it up. */
455 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
457 if (!split_node)
458 return NULL;
460 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
462 split_node->base = node->base;
463 split_node->length = temp_dword;
465 node->length -= temp_dword;
466 node->base += split_node->length;
468 /* Put it in the list */
469 *head = split_node;
470 split_node->next = node;
473 if (node->length < alignment)
474 return NULL;
476 /* Now unlink it */
477 if (*head == node) {
478 *head = node->next;
479 } else {
480 prevnode = *head;
481 while (prevnode->next != node)
482 prevnode = prevnode->next;
484 prevnode->next = node->next;
486 node->next = NULL;
488 return node;
493 * do_bridge_resource_split: find one node of resources that aren't in use
496 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
498 struct pci_resource *prevnode = NULL;
499 struct pci_resource *node;
500 u32 rc;
501 u32 temp_dword;
503 rc = cpqhp_resource_sort_and_combine(head);
505 if (rc)
506 return NULL;
508 node = *head;
510 while (node->next) {
511 prevnode = node;
512 node = node->next;
513 kfree(prevnode);
516 if (node->length < alignment)
517 goto error;
519 if (node->base & (alignment - 1)) {
520 /* Short circuit if adjusted size is too small */
521 temp_dword = (node->base | (alignment-1)) + 1;
522 if ((node->length - (temp_dword - node->base)) < alignment)
523 goto error;
525 node->length -= (temp_dword - node->base);
526 node->base = temp_dword;
529 if (node->length & (alignment - 1))
530 /* There's stuff in use after this node */
531 goto error;
533 return node;
534 error:
535 kfree(node);
536 return NULL;
541 * get_io_resource: find first node of given size not in ISA aliasing window.
542 * @head: list to search
543 * @size: size of node to find, must be a power of two.
545 * Description: this function sorts the resource list by size and then returns
546 * returns the first node of "size" length that is not in the ISA aliasing
547 * window. If it finds a node larger than "size" it will split it up.
550 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
552 struct pci_resource *prevnode;
553 struct pci_resource *node;
554 struct pci_resource *split_node;
555 u32 temp_dword;
557 if (!(*head))
558 return NULL;
560 if ( cpqhp_resource_sort_and_combine(head) )
561 return NULL;
563 if ( sort_by_size(head) )
564 return NULL;
566 for (node = *head; node; node = node->next) {
567 if (node->length < size)
568 continue;
570 if (node->base & (size - 1)) {
571 /* this one isn't base aligned properly
572 * so we'll make a new entry and split it up */
573 temp_dword = (node->base | (size-1)) + 1;
575 /* Short circuit if adjusted size is too small */
576 if ((node->length - (temp_dword - node->base)) < size)
577 continue;
579 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
581 if (!split_node)
582 return NULL;
584 split_node->base = node->base;
585 split_node->length = temp_dword - node->base;
586 node->base = temp_dword;
587 node->length -= split_node->length;
589 /* Put it in the list */
590 split_node->next = node->next;
591 node->next = split_node;
592 } /* End of non-aligned base */
594 /* Don't need to check if too small since we already did */
595 if (node->length > size) {
596 /* this one is longer than we need
597 * so we'll make a new entry and split it up */
598 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
600 if (!split_node)
601 return NULL;
603 split_node->base = node->base + size;
604 split_node->length = node->length - size;
605 node->length = size;
607 /* Put it in the list */
608 split_node->next = node->next;
609 node->next = split_node;
610 } /* End of too big on top end */
612 /* For IO make sure it's not in the ISA aliasing space */
613 if (node->base & 0x300L)
614 continue;
616 /* If we got here, then it is the right size
617 * Now take it out of the list and break */
618 if (*head == node) {
619 *head = node->next;
620 } else {
621 prevnode = *head;
622 while (prevnode->next != node)
623 prevnode = prevnode->next;
625 prevnode->next = node->next;
627 node->next = NULL;
628 break;
631 return node;
636 * get_max_resource: get largest node which has at least the given size.
637 * @head: the list to search the node in
638 * @size: the minimum size of the node to find
640 * Description: Gets the largest node that is at least "size" big from the
641 * list pointed to by head. It aligns the node on top and bottom
642 * to "size" alignment before returning it.
644 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
646 struct pci_resource *max;
647 struct pci_resource *temp;
648 struct pci_resource *split_node;
649 u32 temp_dword;
651 if (cpqhp_resource_sort_and_combine(head))
652 return NULL;
654 if (sort_by_max_size(head))
655 return NULL;
657 for (max = *head; max; max = max->next) {
658 /* If not big enough we could probably just bail,
659 * instead we'll continue to the next. */
660 if (max->length < size)
661 continue;
663 if (max->base & (size - 1)) {
664 /* this one isn't base aligned properly
665 * so we'll make a new entry and split it up */
666 temp_dword = (max->base | (size-1)) + 1;
668 /* Short circuit if adjusted size is too small */
669 if ((max->length - (temp_dword - max->base)) < size)
670 continue;
672 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
674 if (!split_node)
675 return NULL;
677 split_node->base = max->base;
678 split_node->length = temp_dword - max->base;
679 max->base = temp_dword;
680 max->length -= split_node->length;
682 split_node->next = max->next;
683 max->next = split_node;
686 if ((max->base + max->length) & (size - 1)) {
687 /* this one isn't end aligned properly at the top
688 * so we'll make a new entry and split it up */
689 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
691 if (!split_node)
692 return NULL;
693 temp_dword = ((max->base + max->length) & ~(size - 1));
694 split_node->base = temp_dword;
695 split_node->length = max->length + max->base
696 - split_node->base;
697 max->length -= split_node->length;
699 split_node->next = max->next;
700 max->next = split_node;
703 /* Make sure it didn't shrink too much when we aligned it */
704 if (max->length < size)
705 continue;
707 /* Now take it out of the list */
708 temp = *head;
709 if (temp == max) {
710 *head = max->next;
711 } else {
712 while (temp && temp->next != max) {
713 temp = temp->next;
716 temp->next = max->next;
719 max->next = NULL;
720 break;
723 return max;
728 * get_resource: find resource of given size and split up larger ones.
729 * @head: the list to search for resources
730 * @size: the size limit to use
732 * Description: This function sorts the resource list by size and then
733 * returns the first node of "size" length. If it finds a node
734 * larger than "size" it will split it up.
736 * size must be a power of two.
738 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
740 struct pci_resource *prevnode;
741 struct pci_resource *node;
742 struct pci_resource *split_node;
743 u32 temp_dword;
745 if (cpqhp_resource_sort_and_combine(head))
746 return NULL;
748 if (sort_by_size(head))
749 return NULL;
751 for (node = *head; node; node = node->next) {
752 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 __FUNCTION__, size, node, node->base, node->length);
754 if (node->length < size)
755 continue;
757 if (node->base & (size - 1)) {
758 dbg("%s: not aligned\n", __FUNCTION__);
759 /* this one isn't base aligned properly
760 * so we'll make a new entry and split it up */
761 temp_dword = (node->base | (size-1)) + 1;
763 /* Short circuit if adjusted size is too small */
764 if ((node->length - (temp_dword - node->base)) < size)
765 continue;
767 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
769 if (!split_node)
770 return NULL;
772 split_node->base = node->base;
773 split_node->length = temp_dword - node->base;
774 node->base = temp_dword;
775 node->length -= split_node->length;
777 split_node->next = node->next;
778 node->next = split_node;
779 } /* End of non-aligned base */
781 /* Don't need to check if too small since we already did */
782 if (node->length > size) {
783 dbg("%s: too big\n", __FUNCTION__);
784 /* this one is longer than we need
785 * so we'll make a new entry and split it up */
786 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
788 if (!split_node)
789 return NULL;
791 split_node->base = node->base + size;
792 split_node->length = node->length - size;
793 node->length = size;
795 /* Put it in the list */
796 split_node->next = node->next;
797 node->next = split_node;
798 } /* End of too big on top end */
800 dbg("%s: got one!!!\n", __FUNCTION__);
801 /* If we got here, then it is the right size
802 * Now take it out of the list */
803 if (*head == node) {
804 *head = node->next;
805 } else {
806 prevnode = *head;
807 while (prevnode->next != node)
808 prevnode = prevnode->next;
810 prevnode->next = node->next;
812 node->next = NULL;
813 break;
815 return node;
820 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821 * @head: the list to sort and clean up
823 * Description: Sorts all of the nodes in the list in ascending order by
824 * their base addresses. Also does garbage collection by
825 * combining adjacent nodes.
827 * returns 0 if success
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
831 struct pci_resource *node1;
832 struct pci_resource *node2;
833 int out_of_order = 1;
835 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
837 if (!(*head))
838 return 1;
840 dbg("*head->next = %p\n",(*head)->next);
842 if (!(*head)->next)
843 return 0; /* only one item on the list, already sorted! */
845 dbg("*head->base = 0x%x\n",(*head)->base);
846 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847 while (out_of_order) {
848 out_of_order = 0;
850 /* Special case for swapping list head */
851 if (((*head)->next) &&
852 ((*head)->base > (*head)->next->base)) {
853 node1 = *head;
854 (*head) = (*head)->next;
855 node1->next = (*head)->next;
856 (*head)->next = node1;
857 out_of_order++;
860 node1 = (*head);
862 while (node1->next && node1->next->next) {
863 if (node1->next->base > node1->next->next->base) {
864 out_of_order++;
865 node2 = node1->next;
866 node1->next = node1->next->next;
867 node1 = node1->next;
868 node2->next = node1->next;
869 node1->next = node2;
870 } else
871 node1 = node1->next;
873 } /* End of out_of_order loop */
875 node1 = *head;
877 while (node1 && node1->next) {
878 if ((node1->base + node1->length) == node1->next->base) {
879 /* Combine */
880 dbg("8..\n");
881 node1->length += node1->next->length;
882 node2 = node1->next;
883 node1->next = node1->next->next;
884 kfree(node2);
885 } else
886 node1 = node1->next;
889 return 0;
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data, struct pt_regs *regs)
895 struct controller *ctrl = data;
896 u8 schedule_flag = 0;
897 u8 reset;
898 u16 misc;
899 u32 Diff;
900 u32 temp_dword;
903 misc = readw(ctrl->hpc_reg + MISC);
904 /***************************************
905 * Check to see if it was our interrupt
906 ***************************************/
907 if (!(misc & 0x000C)) {
908 return IRQ_NONE;
911 if (misc & 0x0004) {
912 /**********************************
913 * Serial Output interrupt Pending
914 **********************************/
916 /* Clear the interrupt */
917 misc |= 0x0004;
918 writew(misc, ctrl->hpc_reg + MISC);
920 /* Read to clear posted writes */
921 misc = readw(ctrl->hpc_reg + MISC);
923 dbg ("%s - waking up\n", __FUNCTION__);
924 wake_up_interruptible(&ctrl->queue);
927 if (misc & 0x0008) {
928 /* General-interrupt-input interrupt Pending */
929 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
931 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
933 /* Clear the interrupt */
934 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
936 /* Read it back to clear any posted writes */
937 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
939 if (!Diff)
940 /* Clear all interrupts */
941 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
943 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
948 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949 if (reset & 0x40) {
950 /* Bus reset has completed */
951 reset &= 0xCF;
952 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954 wake_up_interruptible(&ctrl->queue);
957 if (schedule_flag) {
958 up(&event_semaphore);
959 dbg("Signal event_semaphore\n");
961 return IRQ_HANDLED;
966 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967 * @busnumber - bus where new node is to be located
969 * Returns pointer to the new node or NULL if unsuccessful
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
973 struct pci_func *new_slot;
974 struct pci_func *next;
976 new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
978 if (new_slot == NULL) {
979 /* I'm not dead yet!
980 * You will be. */
981 return new_slot;
984 memset(new_slot, 0, sizeof(struct pci_func));
986 new_slot->next = NULL;
987 new_slot->configured = 1;
989 if (cpqhp_slot_list[busnumber] == NULL) {
990 cpqhp_slot_list[busnumber] = new_slot;
991 } else {
992 next = cpqhp_slot_list[busnumber];
993 while (next->next != NULL)
994 next = next->next;
995 next->next = new_slot;
997 return new_slot;
1002 * slot_remove - Removes a node from the linked list of slots.
1003 * @old_slot: slot to remove
1005 * Returns 0 if successful, !0 otherwise.
1007 static int slot_remove(struct pci_func * old_slot)
1009 struct pci_func *next;
1011 if (old_slot == NULL)
1012 return 1;
1014 next = cpqhp_slot_list[old_slot->bus];
1016 if (next == NULL) {
1017 return 1;
1020 if (next == old_slot) {
1021 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1022 cpqhp_destroy_board_resources(old_slot);
1023 kfree(old_slot);
1024 return 0;
1027 while ((next->next != old_slot) && (next->next != NULL)) {
1028 next = next->next;
1031 if (next->next == old_slot) {
1032 next->next = old_slot->next;
1033 cpqhp_destroy_board_resources(old_slot);
1034 kfree(old_slot);
1035 return 0;
1036 } else
1037 return 2;
1042 * bridge_slot_remove - Removes a node from the linked list of slots.
1043 * @bridge: bridge to remove
1045 * Returns 0 if successful, !0 otherwise.
1047 static int bridge_slot_remove(struct pci_func *bridge)
1049 u8 subordinateBus, secondaryBus;
1050 u8 tempBus;
1051 struct pci_func *next;
1053 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1054 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1056 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1057 next = cpqhp_slot_list[tempBus];
1059 while (!slot_remove(next)) {
1060 next = cpqhp_slot_list[tempBus];
1064 next = cpqhp_slot_list[bridge->bus];
1066 if (next == NULL)
1067 return 1;
1069 if (next == bridge) {
1070 cpqhp_slot_list[bridge->bus] = bridge->next;
1071 goto out;
1074 while ((next->next != bridge) && (next->next != NULL))
1075 next = next->next;
1077 if (next->next != bridge)
1078 return 2;
1079 next->next = bridge->next;
1080 out:
1081 kfree(bridge);
1082 return 0;
1087 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1088 * @bus: bus to find
1089 * @device: device to find
1090 * @index: is 0 for first function found, 1 for the second...
1092 * Returns pointer to the node if successful, %NULL otherwise.
1094 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1096 int found = -1;
1097 struct pci_func *func;
1099 func = cpqhp_slot_list[bus];
1101 if ((func == NULL) || ((func->device == device) && (index == 0)))
1102 return func;
1104 if (func->device == device)
1105 found++;
1107 while (func->next != NULL) {
1108 func = func->next;
1110 if (func->device == device)
1111 found++;
1113 if (found == index)
1114 return func;
1117 return NULL;
1121 /* DJZ: I don't think is_bridge will work as is.
1122 * FIXME */
1123 static int is_bridge(struct pci_func * func)
1125 /* Check the header type */
1126 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1127 return 1;
1128 else
1129 return 0;
1134 * set_controller_speed - set the frequency and/or mode of a specific
1135 * controller segment.
1137 * @ctrl: controller to change frequency/mode for.
1138 * @adapter_speed: the speed of the adapter we want to match.
1139 * @hp_slot: the slot number where the adapter is installed.
1141 * Returns 0 if we successfully change frequency and/or mode to match the
1142 * adapter speed.
1145 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1147 struct slot *slot;
1148 u8 reg;
1149 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1150 u16 reg16;
1151 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1153 if (ctrl->speed == adapter_speed)
1154 return 0;
1156 /* We don't allow freq/mode changes if we find another adapter running
1157 * in another slot on this controller */
1158 for(slot = ctrl->slot; slot; slot = slot->next) {
1159 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1160 continue;
1161 if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1162 continue;
1163 if (slot->hotplug_slot->info->adapter_status == 0)
1164 continue;
1165 /* If another adapter is running on the same segment but at a
1166 * lower speed/mode, we allow the new adapter to function at
1167 * this rate if supported */
1168 if (ctrl->speed < adapter_speed)
1169 return 0;
1171 return 1;
1174 /* If the controller doesn't support freq/mode changes and the
1175 * controller is running at a higher mode, we bail */
1176 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1177 return 1;
1179 /* But we allow the adapter to run at a lower rate if possible */
1180 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1181 return 0;
1183 /* We try to set the max speed supported by both the adapter and
1184 * controller */
1185 if (ctrl->speed_capability < adapter_speed) {
1186 if (ctrl->speed == ctrl->speed_capability)
1187 return 0;
1188 adapter_speed = ctrl->speed_capability;
1191 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1192 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1194 set_SOGO(ctrl);
1195 wait_for_ctrl_irq(ctrl);
1197 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1198 reg = 0xF5;
1199 else
1200 reg = 0xF4;
1201 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1203 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1204 reg16 &= ~0x000F;
1205 switch(adapter_speed) {
1206 case(PCI_SPEED_133MHz_PCIX):
1207 reg = 0x75;
1208 reg16 |= 0xB;
1209 break;
1210 case(PCI_SPEED_100MHz_PCIX):
1211 reg = 0x74;
1212 reg16 |= 0xA;
1213 break;
1214 case(PCI_SPEED_66MHz_PCIX):
1215 reg = 0x73;
1216 reg16 |= 0x9;
1217 break;
1218 case(PCI_SPEED_66MHz):
1219 reg = 0x73;
1220 reg16 |= 0x1;
1221 break;
1222 default: /* 33MHz PCI 2.2 */
1223 reg = 0x71;
1224 break;
1227 reg16 |= 0xB << 12;
1228 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1230 mdelay(5);
1232 /* Reenable interrupts */
1233 writel(0, ctrl->hpc_reg + INT_MASK);
1235 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1237 /* Restart state machine */
1238 reg = ~0xF;
1239 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1240 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1242 /* Only if mode change...*/
1243 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1244 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1245 set_SOGO(ctrl);
1247 wait_for_ctrl_irq(ctrl);
1248 mdelay(1100);
1250 /* Restore LED/Slot state */
1251 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1252 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1254 set_SOGO(ctrl);
1255 wait_for_ctrl_irq(ctrl);
1257 ctrl->speed = adapter_speed;
1258 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1260 info("Successfully changed frequency/mode for adapter in slot %d\n",
1261 slot->number);
1262 return 0;
1265 /* the following routines constitute the bulk of the
1266 hotplug controller logic
1271 * board_replaced - Called after a board has been replaced in the system.
1273 * This is only used if we don't have resources for hot add
1274 * Turns power on for the board
1275 * Checks to see if board is the same
1276 * If board is same, reconfigures it
1277 * If board isn't same, turns it back off.
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1282 u8 hp_slot;
1283 u8 temp_byte;
1284 u8 adapter_speed;
1285 u32 index;
1286 u32 rc = 0;
1287 u32 src = 8;
1289 hp_slot = func->device - ctrl->slot_device_offset;
1291 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1292 /**********************************
1293 * The switch is open.
1294 **********************************/
1295 rc = INTERLOCK_OPEN;
1296 } else if (is_slot_enabled (ctrl, hp_slot)) {
1297 /**********************************
1298 * The board is already on
1299 **********************************/
1300 rc = CARD_FUNCTIONING;
1301 } else {
1302 down(&ctrl->crit_sect);
1304 /* turn on board without attaching to the bus */
1305 enable_slot_power (ctrl, hp_slot);
1307 set_SOGO(ctrl);
1309 /* Wait for SOBS to be unset */
1310 wait_for_ctrl_irq (ctrl);
1312 /* Change bits in slot power register to force another shift out
1313 * NOTE: this is to work around the timer bug */
1314 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1315 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1316 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1318 set_SOGO(ctrl);
1320 /* Wait for SOBS to be unset */
1321 wait_for_ctrl_irq (ctrl);
1323 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1324 if (ctrl->speed != adapter_speed)
1325 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1326 rc = WRONG_BUS_FREQUENCY;
1328 /* turn off board without attaching to the bus */
1329 disable_slot_power (ctrl, hp_slot);
1331 set_SOGO(ctrl);
1333 /* Wait for SOBS to be unset */
1334 wait_for_ctrl_irq (ctrl);
1336 up(&ctrl->crit_sect);
1338 if (rc)
1339 return rc;
1341 down(&ctrl->crit_sect);
1343 slot_enable (ctrl, hp_slot);
1344 green_LED_blink (ctrl, hp_slot);
1346 amber_LED_off (ctrl, hp_slot);
1348 set_SOGO(ctrl);
1350 /* Wait for SOBS to be unset */
1351 wait_for_ctrl_irq (ctrl);
1353 up(&ctrl->crit_sect);
1355 /* Wait for ~1 second because of hot plug spec */
1356 long_delay(1*HZ);
1358 /* Check for a power fault */
1359 if (func->status == 0xFF) {
1360 /* power fault occurred, but it was benign */
1361 rc = POWER_FAILURE;
1362 func->status = 0;
1363 } else
1364 rc = cpqhp_valid_replace(ctrl, func);
1366 if (!rc) {
1367 /* It must be the same board */
1369 rc = cpqhp_configure_board(ctrl, func);
1371 if (rc || src) {
1372 /* If configuration fails, turn it off
1373 * Get slot won't work for devices behind
1374 * bridges, but in this case it will always be
1375 * called for the "base" bus/dev/func of an
1376 * adapter. */
1378 down(&ctrl->crit_sect);
1380 amber_LED_on (ctrl, hp_slot);
1381 green_LED_off (ctrl, hp_slot);
1382 slot_disable (ctrl, hp_slot);
1384 set_SOGO(ctrl);
1386 /* Wait for SOBS to be unset */
1387 wait_for_ctrl_irq (ctrl);
1389 up(&ctrl->crit_sect);
1391 if (rc)
1392 return rc;
1393 else
1394 return 1;
1397 func->status = 0;
1398 func->switch_save = 0x10;
1400 index = 1;
1401 while (((func = cpqhp_slot_find(func->bus, func->device, index)) != NULL) && !rc) {
1402 rc |= cpqhp_configure_board(ctrl, func);
1403 index++;
1406 if (rc) {
1407 /* If configuration fails, turn it off
1408 * Get slot won't work for devices behind
1409 * bridges, but in this case it will always be
1410 * called for the "base" bus/dev/func of an
1411 * adapter. */
1413 down(&ctrl->crit_sect);
1415 amber_LED_on (ctrl, hp_slot);
1416 green_LED_off (ctrl, hp_slot);
1417 slot_disable (ctrl, hp_slot);
1419 set_SOGO(ctrl);
1421 /* Wait for SOBS to be unset */
1422 wait_for_ctrl_irq (ctrl);
1424 up(&ctrl->crit_sect);
1426 return rc;
1428 /* Done configuring so turn LED on full time */
1430 down(&ctrl->crit_sect);
1432 green_LED_on (ctrl, hp_slot);
1434 set_SOGO(ctrl);
1436 /* Wait for SOBS to be unset */
1437 wait_for_ctrl_irq (ctrl);
1439 up(&ctrl->crit_sect);
1440 rc = 0;
1441 } else {
1442 /* Something is wrong
1444 * Get slot won't work for devices behind bridges, but
1445 * in this case it will always be called for the "base"
1446 * bus/dev/func of an adapter. */
1448 down(&ctrl->crit_sect);
1450 amber_LED_on (ctrl, hp_slot);
1451 green_LED_off (ctrl, hp_slot);
1452 slot_disable (ctrl, hp_slot);
1454 set_SOGO(ctrl);
1456 /* Wait for SOBS to be unset */
1457 wait_for_ctrl_irq (ctrl);
1459 up(&ctrl->crit_sect);
1463 return rc;
1469 * board_added - Called after a board has been added to the system.
1471 * Turns power on for the board
1472 * Configures board
1475 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1477 u8 hp_slot;
1478 u8 temp_byte;
1479 u8 adapter_speed;
1480 int index;
1481 u32 temp_register = 0xFFFFFFFF;
1482 u32 rc = 0;
1483 struct pci_func *new_slot = NULL;
1484 struct slot *p_slot;
1485 struct resource_lists res_lists;
1487 hp_slot = func->device - ctrl->slot_device_offset;
1488 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1489 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1491 down(&ctrl->crit_sect);
1493 /* turn on board without attaching to the bus */
1494 enable_slot_power(ctrl, hp_slot);
1496 set_SOGO(ctrl);
1498 /* Wait for SOBS to be unset */
1499 wait_for_ctrl_irq (ctrl);
1501 /* Change bits in slot power register to force another shift out
1502 * NOTE: this is to work around the timer bug */
1503 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1504 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1505 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1507 set_SOGO(ctrl);
1509 /* Wait for SOBS to be unset */
1510 wait_for_ctrl_irq (ctrl);
1512 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1513 if (ctrl->speed != adapter_speed)
1514 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1515 rc = WRONG_BUS_FREQUENCY;
1517 /* turn off board without attaching to the bus */
1518 disable_slot_power (ctrl, hp_slot);
1520 set_SOGO(ctrl);
1522 /* Wait for SOBS to be unset */
1523 wait_for_ctrl_irq(ctrl);
1525 up(&ctrl->crit_sect);
1527 if (rc)
1528 return rc;
1530 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1532 /* turn on board and blink green LED */
1534 dbg("%s: before down\n", __FUNCTION__);
1535 down(&ctrl->crit_sect);
1536 dbg("%s: after down\n", __FUNCTION__);
1538 dbg("%s: before slot_enable\n", __FUNCTION__);
1539 slot_enable (ctrl, hp_slot);
1541 dbg("%s: before green_LED_blink\n", __FUNCTION__);
1542 green_LED_blink (ctrl, hp_slot);
1544 dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1545 amber_LED_off (ctrl, hp_slot);
1547 dbg("%s: before set_SOGO\n", __FUNCTION__);
1548 set_SOGO(ctrl);
1550 /* Wait for SOBS to be unset */
1551 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1552 wait_for_ctrl_irq (ctrl);
1553 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1555 dbg("%s: before up\n", __FUNCTION__);
1556 up(&ctrl->crit_sect);
1557 dbg("%s: after up\n", __FUNCTION__);
1559 /* Wait for ~1 second because of hot plug spec */
1560 dbg("%s: before long_delay\n", __FUNCTION__);
1561 long_delay(1*HZ);
1562 dbg("%s: after long_delay\n", __FUNCTION__);
1564 dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1565 /* Check for a power fault */
1566 if (func->status == 0xFF) {
1567 /* power fault occurred, but it was benign */
1568 temp_register = 0xFFFFFFFF;
1569 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1570 rc = POWER_FAILURE;
1571 func->status = 0;
1572 } else {
1573 /* Get vendor/device ID u32 */
1574 ctrl->pci_bus->number = func->bus;
1575 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1576 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1577 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1579 if (rc != 0) {
1580 /* Something's wrong here */
1581 temp_register = 0xFFFFFFFF;
1582 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1584 /* Preset return code. It will be changed later if things go okay. */
1585 rc = NO_ADAPTER_PRESENT;
1588 /* All F's is an empty slot or an invalid board */
1589 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1590 res_lists.io_head = ctrl->io_head;
1591 res_lists.mem_head = ctrl->mem_head;
1592 res_lists.p_mem_head = ctrl->p_mem_head;
1593 res_lists.bus_head = ctrl->bus_head;
1594 res_lists.irqs = NULL;
1596 rc = configure_new_device(ctrl, func, 0, &res_lists);
1598 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1599 ctrl->io_head = res_lists.io_head;
1600 ctrl->mem_head = res_lists.mem_head;
1601 ctrl->p_mem_head = res_lists.p_mem_head;
1602 ctrl->bus_head = res_lists.bus_head;
1604 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1605 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1606 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1607 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1609 if (rc) {
1610 down(&ctrl->crit_sect);
1612 amber_LED_on (ctrl, hp_slot);
1613 green_LED_off (ctrl, hp_slot);
1614 slot_disable (ctrl, hp_slot);
1616 set_SOGO(ctrl);
1618 /* Wait for SOBS to be unset */
1619 wait_for_ctrl_irq (ctrl);
1621 up(&ctrl->crit_sect);
1622 return rc;
1623 } else {
1624 cpqhp_save_slot_config(ctrl, func);
1628 func->status = 0;
1629 func->switch_save = 0x10;
1630 func->is_a_board = 0x01;
1632 /* next, we will instantiate the linux pci_dev structures (with
1633 * appropriate driver notification, if already present) */
1634 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1635 index = 0;
1636 do {
1637 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1638 if (new_slot && !new_slot->pci_dev) {
1639 cpqhp_configure_device(ctrl, new_slot);
1641 } while (new_slot);
1643 down(&ctrl->crit_sect);
1645 green_LED_on (ctrl, hp_slot);
1647 set_SOGO(ctrl);
1649 /* Wait for SOBS to be unset */
1650 wait_for_ctrl_irq (ctrl);
1652 up(&ctrl->crit_sect);
1653 } else {
1654 down(&ctrl->crit_sect);
1656 amber_LED_on (ctrl, hp_slot);
1657 green_LED_off (ctrl, hp_slot);
1658 slot_disable (ctrl, hp_slot);
1660 set_SOGO(ctrl);
1662 /* Wait for SOBS to be unset */
1663 wait_for_ctrl_irq (ctrl);
1665 up(&ctrl->crit_sect);
1667 return rc;
1669 return 0;
1674 * remove_board - Turns off slot and LED's
1677 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1679 int index;
1680 u8 skip = 0;
1681 u8 device;
1682 u8 hp_slot;
1683 u8 temp_byte;
1684 u32 rc;
1685 struct resource_lists res_lists;
1686 struct pci_func *temp_func;
1688 if (cpqhp_unconfigure_device(func))
1689 return 1;
1691 device = func->device;
1693 hp_slot = func->device - ctrl->slot_device_offset;
1694 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1696 /* When we get here, it is safe to change base address registers.
1697 * We will attempt to save the base address register lengths */
1698 if (replace_flag || !ctrl->add_support)
1699 rc = cpqhp_save_base_addr_length(ctrl, func);
1700 else if (!func->bus_head && !func->mem_head &&
1701 !func->p_mem_head && !func->io_head) {
1702 /* Here we check to see if we've saved any of the board's
1703 * resources already. If so, we'll skip the attempt to
1704 * determine what's being used. */
1705 index = 0;
1706 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1707 while (temp_func) {
1708 if (temp_func->bus_head || temp_func->mem_head
1709 || temp_func->p_mem_head || temp_func->io_head) {
1710 skip = 1;
1711 break;
1713 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1716 if (!skip)
1717 rc = cpqhp_save_used_resources(ctrl, func);
1719 /* Change status to shutdown */
1720 if (func->is_a_board)
1721 func->status = 0x01;
1722 func->configured = 0;
1724 down(&ctrl->crit_sect);
1726 green_LED_off (ctrl, hp_slot);
1727 slot_disable (ctrl, hp_slot);
1729 set_SOGO(ctrl);
1731 /* turn off SERR for slot */
1732 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1733 temp_byte &= ~(0x01 << hp_slot);
1734 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1736 /* Wait for SOBS to be unset */
1737 wait_for_ctrl_irq (ctrl);
1739 up(&ctrl->crit_sect);
1741 if (!replace_flag && ctrl->add_support) {
1742 while (func) {
1743 res_lists.io_head = ctrl->io_head;
1744 res_lists.mem_head = ctrl->mem_head;
1745 res_lists.p_mem_head = ctrl->p_mem_head;
1746 res_lists.bus_head = ctrl->bus_head;
1748 cpqhp_return_board_resources(func, &res_lists);
1750 ctrl->io_head = res_lists.io_head;
1751 ctrl->mem_head = res_lists.mem_head;
1752 ctrl->p_mem_head = res_lists.p_mem_head;
1753 ctrl->bus_head = res_lists.bus_head;
1755 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1756 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1757 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1758 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1760 if (is_bridge(func)) {
1761 bridge_slot_remove(func);
1762 } else
1763 slot_remove(func);
1765 func = cpqhp_slot_find(ctrl->bus, device, 0);
1768 /* Setup slot structure with entry for empty slot */
1769 func = cpqhp_slot_create(ctrl->bus);
1771 if (func == NULL)
1772 return 1;
1774 func->bus = ctrl->bus;
1775 func->device = device;
1776 func->function = 0;
1777 func->configured = 0;
1778 func->switch_save = 0x10;
1779 func->is_a_board = 0;
1780 func->p_task_event = NULL;
1783 return 0;
1786 static void pushbutton_helper_thread(unsigned long data)
1788 pushbutton_pending = data;
1789 up(&event_semaphore);
1793 /* this is the main worker thread */
1794 static int event_thread(void* data)
1796 struct controller *ctrl;
1797 lock_kernel();
1798 daemonize("phpd_event");
1800 unlock_kernel();
1802 while (1) {
1803 dbg("!!!!event_thread sleeping\n");
1804 down_interruptible (&event_semaphore);
1805 dbg("event_thread woken finished = %d\n", event_finished);
1806 if (event_finished) break;
1807 /* Do stuff here */
1808 if (pushbutton_pending)
1809 cpqhp_pushbutton_thread(pushbutton_pending);
1810 else
1811 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1812 interrupt_event_handler(ctrl);
1814 dbg("event_thread signals exit\n");
1815 up(&event_exit);
1816 return 0;
1820 int cpqhp_event_start_thread(void)
1822 int pid;
1824 /* initialize our semaphores */
1825 init_MUTEX(&delay_sem);
1826 init_MUTEX_LOCKED(&event_semaphore);
1827 init_MUTEX_LOCKED(&event_exit);
1828 event_finished=0;
1830 pid = kernel_thread(event_thread, NULL, 0);
1831 if (pid < 0) {
1832 err ("Can't start up our event thread\n");
1833 return -1;
1835 dbg("Our event thread pid = %d\n", pid);
1836 return 0;
1840 void cpqhp_event_stop_thread(void)
1842 event_finished = 1;
1843 dbg("event_thread finish command given\n");
1844 up(&event_semaphore);
1845 dbg("wait for event_thread to exit\n");
1846 down(&event_exit);
1850 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1852 struct hotplug_slot_info *info;
1853 int result;
1855 info = kmalloc(sizeof(*info), GFP_KERNEL);
1856 if (!info)
1857 return -ENOMEM;
1859 info->power_status = get_slot_enabled(ctrl, slot);
1860 info->attention_status = cpq_get_attention_status(ctrl, slot);
1861 info->latch_status = cpq_get_latch_status(ctrl, slot);
1862 info->adapter_status = get_presence_status(ctrl, slot);
1863 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1864 kfree (info);
1865 return result;
1868 static void interrupt_event_handler(struct controller *ctrl)
1870 int loop = 0;
1871 int change = 1;
1872 struct pci_func *func;
1873 u8 hp_slot;
1874 struct slot *p_slot;
1876 while (change) {
1877 change = 0;
1879 for (loop = 0; loop < 10; loop++) {
1880 /* dbg("loop %d\n", loop); */
1881 if (ctrl->event_queue[loop].event_type != 0) {
1882 hp_slot = ctrl->event_queue[loop].hp_slot;
1884 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1885 if (!func)
1886 return;
1888 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1889 if (!p_slot)
1890 return;
1892 dbg("hp_slot %d, func %p, p_slot %p\n",
1893 hp_slot, func, p_slot);
1895 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1896 dbg("button pressed\n");
1897 } else if (ctrl->event_queue[loop].event_type ==
1898 INT_BUTTON_CANCEL) {
1899 dbg("button cancel\n");
1900 del_timer(&p_slot->task_event);
1902 down(&ctrl->crit_sect);
1904 if (p_slot->state == BLINKINGOFF_STATE) {
1905 /* slot is on */
1906 dbg("turn on green LED\n");
1907 green_LED_on (ctrl, hp_slot);
1908 } else if (p_slot->state == BLINKINGON_STATE) {
1909 /* slot is off */
1910 dbg("turn off green LED\n");
1911 green_LED_off (ctrl, hp_slot);
1914 info(msg_button_cancel, p_slot->number);
1916 p_slot->state = STATIC_STATE;
1918 amber_LED_off (ctrl, hp_slot);
1920 set_SOGO(ctrl);
1922 /* Wait for SOBS to be unset */
1923 wait_for_ctrl_irq (ctrl);
1925 up(&ctrl->crit_sect);
1927 /*** button Released (No action on press...) */
1928 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1929 dbg("button release\n");
1931 if (is_slot_enabled (ctrl, hp_slot)) {
1932 dbg("slot is on\n");
1933 p_slot->state = BLINKINGOFF_STATE;
1934 info(msg_button_off, p_slot->number);
1935 } else {
1936 dbg("slot is off\n");
1937 p_slot->state = BLINKINGON_STATE;
1938 info(msg_button_on, p_slot->number);
1940 down(&ctrl->crit_sect);
1942 dbg("blink green LED and turn off amber\n");
1944 amber_LED_off (ctrl, hp_slot);
1945 green_LED_blink (ctrl, hp_slot);
1947 set_SOGO(ctrl);
1949 /* Wait for SOBS to be unset */
1950 wait_for_ctrl_irq (ctrl);
1952 up(&ctrl->crit_sect);
1953 init_timer(&p_slot->task_event);
1954 p_slot->hp_slot = hp_slot;
1955 p_slot->ctrl = ctrl;
1956 /* p_slot->physical_slot = physical_slot; */
1957 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1958 p_slot->task_event.function = pushbutton_helper_thread;
1959 p_slot->task_event.data = (u32) p_slot;
1961 dbg("add_timer p_slot = %p\n", p_slot);
1962 add_timer(&p_slot->task_event);
1964 /***********POWER FAULT */
1965 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1966 dbg("power fault\n");
1967 } else {
1968 /* refresh notification */
1969 if (p_slot)
1970 update_slot_info(ctrl, p_slot);
1973 ctrl->event_queue[loop].event_type = 0;
1975 change = 1;
1977 } /* End of FOR loop */
1980 return;
1985 * cpqhp_pushbutton_thread
1987 * Scheduled procedure to handle blocking stuff for the pushbuttons
1988 * Handles all pending events and exits.
1991 void cpqhp_pushbutton_thread(unsigned long slot)
1993 u8 hp_slot;
1994 u8 device;
1995 struct pci_func *func;
1996 struct slot *p_slot = (struct slot *) slot;
1997 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1999 pushbutton_pending = 0;
2000 hp_slot = p_slot->hp_slot;
2002 device = p_slot->device;
2004 if (is_slot_enabled(ctrl, hp_slot)) {
2005 p_slot->state = POWEROFF_STATE;
2006 /* power Down board */
2007 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
2008 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
2009 if (!func) {
2010 dbg("Error! func NULL in %s\n", __FUNCTION__);
2011 return ;
2014 if (func != NULL && ctrl != NULL) {
2015 if (cpqhp_process_SS(ctrl, func) != 0) {
2016 amber_LED_on (ctrl, hp_slot);
2017 green_LED_on (ctrl, hp_slot);
2019 set_SOGO(ctrl);
2021 /* Wait for SOBS to be unset */
2022 wait_for_ctrl_irq (ctrl);
2026 p_slot->state = STATIC_STATE;
2027 } else {
2028 p_slot->state = POWERON_STATE;
2029 /* slot is off */
2031 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
2032 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
2033 if (!func) {
2034 dbg("Error! func NULL in %s\n", __FUNCTION__);
2035 return ;
2038 if (func != NULL && ctrl != NULL) {
2039 if (cpqhp_process_SI(ctrl, func) != 0) {
2040 amber_LED_on(ctrl, hp_slot);
2041 green_LED_off(ctrl, hp_slot);
2043 set_SOGO(ctrl);
2045 /* Wait for SOBS to be unset */
2046 wait_for_ctrl_irq (ctrl);
2050 p_slot->state = STATIC_STATE;
2053 return;
2057 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2059 u8 device, hp_slot;
2060 u16 temp_word;
2061 u32 tempdword;
2062 int rc;
2063 struct slot* p_slot;
2064 int physical_slot = 0;
2066 tempdword = 0;
2068 device = func->device;
2069 hp_slot = device - ctrl->slot_device_offset;
2070 p_slot = cpqhp_find_slot(ctrl, device);
2071 if (p_slot)
2072 physical_slot = p_slot->number;
2074 /* Check to see if the interlock is closed */
2075 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2077 if (tempdword & (0x01 << hp_slot)) {
2078 return 1;
2081 if (func->is_a_board) {
2082 rc = board_replaced(func, ctrl);
2083 } else {
2084 /* add board */
2085 slot_remove(func);
2087 func = cpqhp_slot_create(ctrl->bus);
2088 if (func == NULL)
2089 return 1;
2091 func->bus = ctrl->bus;
2092 func->device = device;
2093 func->function = 0;
2094 func->configured = 0;
2095 func->is_a_board = 1;
2097 /* We have to save the presence info for these slots */
2098 temp_word = ctrl->ctrl_int_comp >> 16;
2099 func->presence_save = (temp_word >> hp_slot) & 0x01;
2100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2103 func->switch_save = 0;
2104 } else {
2105 func->switch_save = 0x10;
2108 rc = board_added(func, ctrl);
2109 if (rc) {
2110 if (is_bridge(func)) {
2111 bridge_slot_remove(func);
2112 } else
2113 slot_remove(func);
2115 /* Setup slot structure with entry for empty slot */
2116 func = cpqhp_slot_create(ctrl->bus);
2118 if (func == NULL)
2119 return 1;
2121 func->bus = ctrl->bus;
2122 func->device = device;
2123 func->function = 0;
2124 func->configured = 0;
2125 func->is_a_board = 0;
2127 /* We have to save the presence info for these slots */
2128 temp_word = ctrl->ctrl_int_comp >> 16;
2129 func->presence_save = (temp_word >> hp_slot) & 0x01;
2130 func->presence_save |=
2131 (temp_word >> (hp_slot + 7)) & 0x02;
2133 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2134 func->switch_save = 0;
2135 } else {
2136 func->switch_save = 0x10;
2141 if (rc) {
2142 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2145 if (p_slot)
2146 update_slot_info(ctrl, p_slot);
2148 return rc;
2152 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2154 u8 device, class_code, header_type, BCR;
2155 u8 index = 0;
2156 u8 replace_flag;
2157 u32 rc = 0;
2158 unsigned int devfn;
2159 struct slot* p_slot;
2160 struct pci_bus *pci_bus = ctrl->pci_bus;
2161 int physical_slot=0;
2163 device = func->device;
2164 func = cpqhp_slot_find(ctrl->bus, device, index++);
2165 p_slot = cpqhp_find_slot(ctrl, device);
2166 if (p_slot) {
2167 physical_slot = p_slot->number;
2170 /* Make sure there are no video controllers here */
2171 while (func && !rc) {
2172 pci_bus->number = func->bus;
2173 devfn = PCI_DEVFN(func->device, func->function);
2175 /* Check the Class Code */
2176 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2177 if (rc)
2178 return rc;
2180 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2181 /* Display/Video adapter (not supported) */
2182 rc = REMOVE_NOT_SUPPORTED;
2183 } else {
2184 /* See if it's a bridge */
2185 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2186 if (rc)
2187 return rc;
2189 /* If it's a bridge, check the VGA Enable bit */
2190 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2191 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2192 if (rc)
2193 return rc;
2195 /* If the VGA Enable bit is set, remove isn't
2196 * supported */
2197 if (BCR & PCI_BRIDGE_CTL_VGA) {
2198 rc = REMOVE_NOT_SUPPORTED;
2203 func = cpqhp_slot_find(ctrl->bus, device, index++);
2206 func = cpqhp_slot_find(ctrl->bus, device, 0);
2207 if ((func != NULL) && !rc) {
2208 /* FIXME: Replace flag should be passed into process_SS */
2209 replace_flag = !(ctrl->add_support);
2210 rc = remove_board(func, replace_flag, ctrl);
2211 } else if (!rc) {
2212 rc = 1;
2215 if (p_slot)
2216 update_slot_info(ctrl, p_slot);
2218 return rc;
2222 * switch_leds: switch the leds, go from one site to the other.
2223 * @ctrl: controller to use
2224 * @num_of_slots: number of slots to use
2225 * @direction: 1 to start from the left side, 0 to start right.
2227 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2228 u32 *work_LED, const int direction)
2230 int loop;
2232 for (loop = 0; loop < num_of_slots; loop++) {
2233 if (direction)
2234 *work_LED = *work_LED >> 1;
2235 else
2236 *work_LED = *work_LED << 1;
2237 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2239 set_SOGO(ctrl);
2241 /* Wait for SOGO interrupt */
2242 wait_for_ctrl_irq(ctrl);
2244 /* Get ready for next iteration */
2245 long_delay((2*HZ)/10);
2250 * hardware_test - runs hardware tests
2252 * For hot plug ctrl folks to play with.
2253 * test_num is the number written to the "test" file in sysfs
2256 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2258 u32 save_LED;
2259 u32 work_LED;
2260 int loop;
2261 int num_of_slots;
2263 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2265 switch (test_num) {
2266 case 1:
2267 /* Do stuff here! */
2269 /* Do that funky LED thing */
2270 /* so we can restore them later */
2271 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2272 work_LED = 0x01010101;
2273 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2274 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2275 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2276 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2278 work_LED = 0x01010000;
2279 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2280 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2281 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2282 work_LED = 0x00000101;
2283 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2284 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2285 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2287 work_LED = 0x01010000;
2288 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2289 for (loop = 0; loop < num_of_slots; loop++) {
2290 set_SOGO(ctrl);
2292 /* Wait for SOGO interrupt */
2293 wait_for_ctrl_irq (ctrl);
2295 /* Get ready for next iteration */
2296 long_delay((3*HZ)/10);
2297 work_LED = work_LED >> 16;
2298 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2300 set_SOGO(ctrl);
2302 /* Wait for SOGO interrupt */
2303 wait_for_ctrl_irq (ctrl);
2305 /* Get ready for next iteration */
2306 long_delay((3*HZ)/10);
2307 work_LED = work_LED << 16;
2308 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2309 work_LED = work_LED << 1;
2310 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2313 /* put it back the way it was */
2314 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2316 set_SOGO(ctrl);
2318 /* Wait for SOBS to be unset */
2319 wait_for_ctrl_irq (ctrl);
2320 break;
2321 case 2:
2322 /* Do other stuff here! */
2323 break;
2324 case 3:
2325 /* and more... */
2326 break;
2328 return 0;
2333 * configure_new_device - Configures the PCI header information of one board.
2335 * @ctrl: pointer to controller structure
2336 * @func: pointer to function structure
2337 * @behind_bridge: 1 if this is a recursive call, 0 if not
2338 * @resources: pointer to set of resource lists
2340 * Returns 0 if success
2343 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2344 u8 behind_bridge, struct resource_lists * resources)
2346 u8 temp_byte, function, max_functions, stop_it;
2347 int rc;
2348 u32 ID;
2349 struct pci_func *new_slot;
2350 int index;
2352 new_slot = func;
2354 dbg("%s\n", __FUNCTION__);
2355 /* Check for Multi-function device */
2356 ctrl->pci_bus->number = func->bus;
2357 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2358 if (rc) {
2359 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2360 return rc;
2363 if (temp_byte & 0x80) /* Multi-function device */
2364 max_functions = 8;
2365 else
2366 max_functions = 1;
2368 function = 0;
2370 do {
2371 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2373 if (rc) {
2374 dbg("configure_new_function failed %d\n",rc);
2375 index = 0;
2377 while (new_slot) {
2378 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2380 if (new_slot)
2381 cpqhp_return_board_resources(new_slot, resources);
2384 return rc;
2387 function++;
2389 stop_it = 0;
2391 /* The following loop skips to the next present function
2392 * and creates a board structure */
2394 while ((function < max_functions) && (!stop_it)) {
2395 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2397 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2398 function++;
2399 } else { /* There's something there */
2400 /* Setup slot structure. */
2401 new_slot = cpqhp_slot_create(func->bus);
2403 if (new_slot == NULL)
2404 return 1;
2406 new_slot->bus = func->bus;
2407 new_slot->device = func->device;
2408 new_slot->function = function;
2409 new_slot->is_a_board = 1;
2410 new_slot->status = 0;
2412 stop_it++;
2416 } while (function < max_functions);
2417 dbg("returning from configure_new_device\n");
2419 return 0;
2424 Configuration logic that involves the hotplug data structures and
2425 their bookkeeping
2430 * configure_new_function - Configures the PCI header information of one device
2432 * @ctrl: pointer to controller structure
2433 * @func: pointer to function structure
2434 * @behind_bridge: 1 if this is a recursive call, 0 if not
2435 * @resources: pointer to set of resource lists
2437 * Calls itself recursively for bridged devices.
2438 * Returns 0 if success
2441 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2442 u8 behind_bridge,
2443 struct resource_lists *resources)
2445 int cloop;
2446 u8 IRQ = 0;
2447 u8 temp_byte;
2448 u8 device;
2449 u8 class_code;
2450 u16 command;
2451 u16 temp_word;
2452 u32 temp_dword;
2453 u32 rc;
2454 u32 temp_register;
2455 u32 base;
2456 u32 ID;
2457 unsigned int devfn;
2458 struct pci_resource *mem_node;
2459 struct pci_resource *p_mem_node;
2460 struct pci_resource *io_node;
2461 struct pci_resource *bus_node;
2462 struct pci_resource *hold_mem_node;
2463 struct pci_resource *hold_p_mem_node;
2464 struct pci_resource *hold_IO_node;
2465 struct pci_resource *hold_bus_node;
2466 struct irq_mapping irqs;
2467 struct pci_func *new_slot;
2468 struct pci_bus *pci_bus;
2469 struct resource_lists temp_resources;
2471 pci_bus = ctrl->pci_bus;
2472 pci_bus->number = func->bus;
2473 devfn = PCI_DEVFN(func->device, func->function);
2475 /* Check for Bridge */
2476 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2477 if (rc)
2478 return rc;
2480 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2481 /* set Primary bus */
2482 dbg("set Primary bus = %d\n", func->bus);
2483 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2484 if (rc)
2485 return rc;
2487 /* find range of busses to use */
2488 dbg("find ranges of buses to use\n");
2489 bus_node = get_max_resource(&(resources->bus_head), 1);
2491 /* If we don't have any busses to allocate, we can't continue */
2492 if (!bus_node)
2493 return -ENOMEM;
2495 /* set Secondary bus */
2496 temp_byte = bus_node->base;
2497 dbg("set Secondary bus = %d\n", bus_node->base);
2498 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2499 if (rc)
2500 return rc;
2502 /* set subordinate bus */
2503 temp_byte = bus_node->base + bus_node->length - 1;
2504 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2505 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2506 if (rc)
2507 return rc;
2509 /* set subordinate Latency Timer and base Latency Timer */
2510 temp_byte = 0x40;
2511 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2512 if (rc)
2513 return rc;
2514 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2515 if (rc)
2516 return rc;
2518 /* set Cache Line size */
2519 temp_byte = 0x08;
2520 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2521 if (rc)
2522 return rc;
2524 /* Setup the IO, memory, and prefetchable windows */
2525 io_node = get_max_resource(&(resources->io_head), 0x1000);
2526 if (!io_node)
2527 return -ENOMEM;
2528 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2529 if (!mem_node)
2530 return -ENOMEM;
2531 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2532 if (!p_mem_node)
2533 return -ENOMEM;
2534 dbg("Setup the IO, memory, and prefetchable windows\n");
2535 dbg("io_node\n");
2536 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2537 io_node->length, io_node->next);
2538 dbg("mem_node\n");
2539 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2540 mem_node->length, mem_node->next);
2541 dbg("p_mem_node\n");
2542 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2543 p_mem_node->length, p_mem_node->next);
2545 /* set up the IRQ info */
2546 if (!resources->irqs) {
2547 irqs.barber_pole = 0;
2548 irqs.interrupt[0] = 0;
2549 irqs.interrupt[1] = 0;
2550 irqs.interrupt[2] = 0;
2551 irqs.interrupt[3] = 0;
2552 irqs.valid_INT = 0;
2553 } else {
2554 irqs.barber_pole = resources->irqs->barber_pole;
2555 irqs.interrupt[0] = resources->irqs->interrupt[0];
2556 irqs.interrupt[1] = resources->irqs->interrupt[1];
2557 irqs.interrupt[2] = resources->irqs->interrupt[2];
2558 irqs.interrupt[3] = resources->irqs->interrupt[3];
2559 irqs.valid_INT = resources->irqs->valid_INT;
2562 /* set up resource lists that are now aligned on top and bottom
2563 * for anything behind the bridge. */
2564 temp_resources.bus_head = bus_node;
2565 temp_resources.io_head = io_node;
2566 temp_resources.mem_head = mem_node;
2567 temp_resources.p_mem_head = p_mem_node;
2568 temp_resources.irqs = &irqs;
2570 /* Make copies of the nodes we are going to pass down so that
2571 * if there is a problem,we can just use these to free resources */
2572 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2573 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2574 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2575 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2577 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2578 kfree(hold_bus_node);
2579 kfree(hold_IO_node);
2580 kfree(hold_mem_node);
2581 kfree(hold_p_mem_node);
2583 return 1;
2586 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2588 bus_node->base += 1;
2589 bus_node->length -= 1;
2590 bus_node->next = NULL;
2592 /* If we have IO resources copy them and fill in the bridge's
2593 * IO range registers */
2594 if (io_node) {
2595 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2596 io_node->next = NULL;
2598 /* set IO base and Limit registers */
2599 temp_byte = io_node->base >> 8;
2600 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2602 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2603 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2604 } else {
2605 kfree(hold_IO_node);
2606 hold_IO_node = NULL;
2609 /* If we have memory resources copy them and fill in the
2610 * bridge's memory range registers. Otherwise, fill in the
2611 * range registers with values that disable them. */
2612 if (mem_node) {
2613 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2614 mem_node->next = NULL;
2616 /* set Mem base and Limit registers */
2617 temp_word = mem_node->base >> 16;
2618 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2620 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2621 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2622 } else {
2623 temp_word = 0xFFFF;
2624 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2626 temp_word = 0x0000;
2627 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2629 kfree(hold_mem_node);
2630 hold_mem_node = NULL;
2633 /* If we have prefetchable memory resources copy them and
2634 * fill in the bridge's memory range registers. Otherwise,
2635 * fill in the range registers with values that disable them. */
2636 if (p_mem_node) {
2637 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2638 p_mem_node->next = NULL;
2640 /* set Pre Mem base and Limit registers */
2641 temp_word = p_mem_node->base >> 16;
2642 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2644 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2645 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2646 } else {
2647 temp_word = 0xFFFF;
2648 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2650 temp_word = 0x0000;
2651 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2653 kfree(hold_p_mem_node);
2654 hold_p_mem_node = NULL;
2657 /* Adjust this to compensate for extra adjustment in first loop */
2658 irqs.barber_pole--;
2660 rc = 0;
2662 /* Here we actually find the devices and configure them */
2663 for (device = 0; (device <= 0x1F) && !rc; device++) {
2664 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2666 ID = 0xFFFFFFFF;
2667 pci_bus->number = hold_bus_node->base;
2668 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2669 pci_bus->number = func->bus;
2671 if (ID != 0xFFFFFFFF) { /* device present */
2672 /* Setup slot structure. */
2673 new_slot = cpqhp_slot_create(hold_bus_node->base);
2675 if (new_slot == NULL) {
2676 rc = -ENOMEM;
2677 continue;
2680 new_slot->bus = hold_bus_node->base;
2681 new_slot->device = device;
2682 new_slot->function = 0;
2683 new_slot->is_a_board = 1;
2684 new_slot->status = 0;
2686 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2687 dbg("configure_new_device rc=0x%x\n",rc);
2688 } /* End of IF (device in slot?) */
2689 } /* End of FOR loop */
2691 if (rc)
2692 goto free_and_out;
2693 /* save the interrupt routing information */
2694 if (resources->irqs) {
2695 resources->irqs->interrupt[0] = irqs.interrupt[0];
2696 resources->irqs->interrupt[1] = irqs.interrupt[1];
2697 resources->irqs->interrupt[2] = irqs.interrupt[2];
2698 resources->irqs->interrupt[3] = irqs.interrupt[3];
2699 resources->irqs->valid_INT = irqs.valid_INT;
2700 } else if (!behind_bridge) {
2701 /* We need to hook up the interrupts here */
2702 for (cloop = 0; cloop < 4; cloop++) {
2703 if (irqs.valid_INT & (0x01 << cloop)) {
2704 rc = cpqhp_set_irq(func->bus, func->device,
2705 0x0A + cloop, irqs.interrupt[cloop]);
2706 if (rc)
2707 goto free_and_out;
2709 } /* end of for loop */
2711 /* Return unused bus resources
2712 * First use the temporary node to store information for
2713 * the board */
2714 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2715 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2717 hold_bus_node->next = func->bus_head;
2718 func->bus_head = hold_bus_node;
2720 temp_byte = temp_resources.bus_head->base - 1;
2722 /* set subordinate bus */
2723 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2725 if (temp_resources.bus_head->length == 0) {
2726 kfree(temp_resources.bus_head);
2727 temp_resources.bus_head = NULL;
2728 } else {
2729 return_resource(&(resources->bus_head), temp_resources.bus_head);
2733 /* If we have IO space available and there is some left,
2734 * return the unused portion */
2735 if (hold_IO_node && temp_resources.io_head) {
2736 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2737 &hold_IO_node, 0x1000);
2739 /* Check if we were able to split something off */
2740 if (io_node) {
2741 hold_IO_node->base = io_node->base + io_node->length;
2743 temp_byte = (hold_IO_node->base) >> 8;
2744 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2746 return_resource(&(resources->io_head), io_node);
2749 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2751 /* Check if we were able to split something off */
2752 if (io_node) {
2753 /* First use the temporary node to store
2754 * information for the board */
2755 hold_IO_node->length = io_node->base - hold_IO_node->base;
2757 /* If we used any, add it to the board's list */
2758 if (hold_IO_node->length) {
2759 hold_IO_node->next = func->io_head;
2760 func->io_head = hold_IO_node;
2762 temp_byte = (io_node->base - 1) >> 8;
2763 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2765 return_resource(&(resources->io_head), io_node);
2766 } else {
2767 /* it doesn't need any IO */
2768 temp_word = 0x0000;
2769 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2771 return_resource(&(resources->io_head), io_node);
2772 kfree(hold_IO_node);
2774 } else {
2775 /* it used most of the range */
2776 hold_IO_node->next = func->io_head;
2777 func->io_head = hold_IO_node;
2779 } else if (hold_IO_node) {
2780 /* it used the whole range */
2781 hold_IO_node->next = func->io_head;
2782 func->io_head = hold_IO_node;
2784 /* If we have memory space available and there is some left,
2785 * return the unused portion */
2786 if (hold_mem_node && temp_resources.mem_head) {
2787 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2788 &hold_mem_node, 0x100000);
2790 /* Check if we were able to split something off */
2791 if (mem_node) {
2792 hold_mem_node->base = mem_node->base + mem_node->length;
2794 temp_word = (hold_mem_node->base) >> 16;
2795 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2797 return_resource(&(resources->mem_head), mem_node);
2800 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2802 /* Check if we were able to split something off */
2803 if (mem_node) {
2804 /* First use the temporary node to store
2805 * information for the board */
2806 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2808 if (hold_mem_node->length) {
2809 hold_mem_node->next = func->mem_head;
2810 func->mem_head = hold_mem_node;
2812 /* configure end address */
2813 temp_word = (mem_node->base - 1) >> 16;
2814 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2816 /* Return unused resources to the pool */
2817 return_resource(&(resources->mem_head), mem_node);
2818 } else {
2819 /* it doesn't need any Mem */
2820 temp_word = 0x0000;
2821 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2823 return_resource(&(resources->mem_head), mem_node);
2824 kfree(hold_mem_node);
2826 } else {
2827 /* it used most of the range */
2828 hold_mem_node->next = func->mem_head;
2829 func->mem_head = hold_mem_node;
2831 } else if (hold_mem_node) {
2832 /* it used the whole range */
2833 hold_mem_node->next = func->mem_head;
2834 func->mem_head = hold_mem_node;
2836 /* If we have prefetchable memory space available and there
2837 * is some left at the end, return the unused portion */
2838 if (hold_p_mem_node && temp_resources.p_mem_head) {
2839 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2840 &hold_p_mem_node, 0x100000);
2842 /* Check if we were able to split something off */
2843 if (p_mem_node) {
2844 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2846 temp_word = (hold_p_mem_node->base) >> 16;
2847 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2849 return_resource(&(resources->p_mem_head), p_mem_node);
2852 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2854 /* Check if we were able to split something off */
2855 if (p_mem_node) {
2856 /* First use the temporary node to store
2857 * information for the board */
2858 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2860 /* If we used any, add it to the board's list */
2861 if (hold_p_mem_node->length) {
2862 hold_p_mem_node->next = func->p_mem_head;
2863 func->p_mem_head = hold_p_mem_node;
2865 temp_word = (p_mem_node->base - 1) >> 16;
2866 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2868 return_resource(&(resources->p_mem_head), p_mem_node);
2869 } else {
2870 /* it doesn't need any PMem */
2871 temp_word = 0x0000;
2872 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2874 return_resource(&(resources->p_mem_head), p_mem_node);
2875 kfree(hold_p_mem_node);
2877 } else {
2878 /* it used the most of the range */
2879 hold_p_mem_node->next = func->p_mem_head;
2880 func->p_mem_head = hold_p_mem_node;
2882 } else if (hold_p_mem_node) {
2883 /* it used the whole range */
2884 hold_p_mem_node->next = func->p_mem_head;
2885 func->p_mem_head = hold_p_mem_node;
2887 /* We should be configuring an IRQ and the bridge's base address
2888 * registers if it needs them. Although we have never seen such
2889 * a device */
2891 /* enable card */
2892 command = 0x0157; /* = PCI_COMMAND_IO |
2893 * PCI_COMMAND_MEMORY |
2894 * PCI_COMMAND_MASTER |
2895 * PCI_COMMAND_INVALIDATE |
2896 * PCI_COMMAND_PARITY |
2897 * PCI_COMMAND_SERR */
2898 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2900 /* set Bridge Control Register */
2901 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2902 * PCI_BRIDGE_CTL_SERR |
2903 * PCI_BRIDGE_CTL_NO_ISA */
2904 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2905 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2906 /* Standard device */
2907 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2909 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2910 /* Display (video) adapter (not supported) */
2911 return DEVICE_TYPE_NOT_SUPPORTED;
2913 /* Figure out IO and memory needs */
2914 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2915 temp_register = 0xFFFFFFFF;
2917 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2918 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2920 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2921 dbg("CND: base = 0x%x\n", temp_register);
2923 if (temp_register) { /* If this register is implemented */
2924 if ((temp_register & 0x03L) == 0x01) {
2925 /* Map IO */
2927 /* set base = amount of IO space */
2928 base = temp_register & 0xFFFFFFFC;
2929 base = ~base + 1;
2931 dbg("CND: length = 0x%x\n", base);
2932 io_node = get_io_resource(&(resources->io_head), base);
2933 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2934 io_node->base, io_node->length, io_node->next);
2935 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2937 /* allocate the resource to the board */
2938 if (io_node) {
2939 base = io_node->base;
2941 io_node->next = func->io_head;
2942 func->io_head = io_node;
2943 } else
2944 return -ENOMEM;
2945 } else if ((temp_register & 0x0BL) == 0x08) {
2946 /* Map prefetchable memory */
2947 base = temp_register & 0xFFFFFFF0;
2948 base = ~base + 1;
2950 dbg("CND: length = 0x%x\n", base);
2951 p_mem_node = get_resource(&(resources->p_mem_head), base);
2953 /* allocate the resource to the board */
2954 if (p_mem_node) {
2955 base = p_mem_node->base;
2957 p_mem_node->next = func->p_mem_head;
2958 func->p_mem_head = p_mem_node;
2959 } else
2960 return -ENOMEM;
2961 } else if ((temp_register & 0x0BL) == 0x00) {
2962 /* Map memory */
2963 base = temp_register & 0xFFFFFFF0;
2964 base = ~base + 1;
2966 dbg("CND: length = 0x%x\n", base);
2967 mem_node = get_resource(&(resources->mem_head), base);
2969 /* allocate the resource to the board */
2970 if (mem_node) {
2971 base = mem_node->base;
2973 mem_node->next = func->mem_head;
2974 func->mem_head = mem_node;
2975 } else
2976 return -ENOMEM;
2977 } else if ((temp_register & 0x0BL) == 0x04) {
2978 /* Map memory */
2979 base = temp_register & 0xFFFFFFF0;
2980 base = ~base + 1;
2982 dbg("CND: length = 0x%x\n", base);
2983 mem_node = get_resource(&(resources->mem_head), base);
2985 /* allocate the resource to the board */
2986 if (mem_node) {
2987 base = mem_node->base;
2989 mem_node->next = func->mem_head;
2990 func->mem_head = mem_node;
2991 } else
2992 return -ENOMEM;
2993 } else if ((temp_register & 0x0BL) == 0x06) {
2994 /* Those bits are reserved, we can't handle this */
2995 return 1;
2996 } else {
2997 /* Requesting space below 1M */
2998 return NOT_ENOUGH_RESOURCES;
3001 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
3003 /* Check for 64-bit base */
3004 if ((temp_register & 0x07L) == 0x04) {
3005 cloop += 4;
3007 /* Upper 32 bits of address always zero
3008 * on today's systems */
3009 /* FIXME this is probably not true on
3010 * Alpha and ia64??? */
3011 base = 0;
3012 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
3015 } /* End of base register loop */
3016 if (cpqhp_legacy_mode) {
3017 /* Figure out which interrupt pin this function uses */
3018 rc = pci_bus_read_config_byte (pci_bus, devfn,
3019 PCI_INTERRUPT_PIN, &temp_byte);
3021 /* If this function needs an interrupt and we are behind
3022 * a bridge and the pin is tied to something that's
3023 * alread mapped, set this one the same */
3024 if (temp_byte && resources->irqs &&
3025 (resources->irqs->valid_INT &
3026 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
3027 /* We have to share with something already set up */
3028 IRQ = resources->irqs->interrupt[(temp_byte +
3029 resources->irqs->barber_pole - 1) & 0x03];
3030 } else {
3031 /* Program IRQ based on card type */
3032 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
3034 if (class_code == PCI_BASE_CLASS_STORAGE) {
3035 IRQ = cpqhp_disk_irq;
3036 } else {
3037 IRQ = cpqhp_nic_irq;
3041 /* IRQ Line */
3042 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
3045 if (!behind_bridge) {
3046 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
3047 if (rc)
3048 return 1;
3049 } else {
3050 /* TBD - this code may also belong in the other clause
3051 * of this If statement */
3052 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
3053 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
3056 /* Latency Timer */
3057 temp_byte = 0x40;
3058 rc = pci_bus_write_config_byte(pci_bus, devfn,
3059 PCI_LATENCY_TIMER, temp_byte);
3061 /* Cache Line size */
3062 temp_byte = 0x08;
3063 rc = pci_bus_write_config_byte(pci_bus, devfn,
3064 PCI_CACHE_LINE_SIZE, temp_byte);
3066 /* disable ROM base Address */
3067 temp_dword = 0x00L;
3068 rc = pci_bus_write_config_word(pci_bus, devfn,
3069 PCI_ROM_ADDRESS, temp_dword);
3071 /* enable card */
3072 temp_word = 0x0157; /* = PCI_COMMAND_IO |
3073 * PCI_COMMAND_MEMORY |
3074 * PCI_COMMAND_MASTER |
3075 * PCI_COMMAND_INVALIDATE |
3076 * PCI_COMMAND_PARITY |
3077 * PCI_COMMAND_SERR */
3078 rc = pci_bus_write_config_word (pci_bus, devfn,
3079 PCI_COMMAND, temp_word);
3080 } else { /* End of Not-A-Bridge else */
3081 /* It's some strange type of PCI adapter (Cardbus?) */
3082 return DEVICE_TYPE_NOT_SUPPORTED;
3085 func->configured = 1;
3087 return 0;
3088 free_and_out:
3089 cpqhp_destroy_resource_list (&temp_resources);
3091 return_resource(&(resources-> bus_head), hold_bus_node);
3092 return_resource(&(resources-> io_head), hold_IO_node);
3093 return_resource(&(resources-> mem_head), hold_mem_node);
3094 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3095 return rc;