2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 #include <linux/wait.h>
38 #include <linux/smp_lock.h>
39 #include <linux/pci.h>
42 static u32
configure_new_device(struct controller
* ctrl
, struct pci_func
*func
,
43 u8 behind_bridge
, struct resource_lists
*resources
);
44 static int configure_new_function(struct controller
* ctrl
, struct pci_func
*func
,
45 u8 behind_bridge
, struct resource_lists
*resources
);
46 static void interrupt_event_handler(struct controller
*ctrl
);
48 static struct semaphore event_semaphore
; /* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit
; /* guard ensure thread has exited before calling it quits */
50 static int event_finished
;
51 static unsigned long pushbutton_pending
; /* = 0 */
53 /* things needed for the long_delay function */
54 static struct semaphore delay_sem
;
55 static wait_queue_head_t delay_wait
;
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay
)
60 DECLARE_WAITQUEUE(wait
, current
);
62 /* only allow 1 customer into the delay queue at once
63 * yes this makes some people wait even longer, but who really cares?
64 * this is for _huge_ delays to make the hardware happy as the
65 * signals bounce around
69 init_waitqueue_head(&delay_wait
);
71 add_wait_queue(&delay_wait
, &wait
);
72 msleep_interruptible(jiffies_to_msecs(delay
));
73 remove_wait_queue(&delay_wait
, &wait
);
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8
handle_switch_change(u8 change
, struct controller
* ctrl
)
86 struct pci_func
*func
;
87 struct event_info
*taskInfo
;
93 dbg("cpqsbd: Switch interrupt received.\n");
95 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
96 if (change
& (0x1L
<< hp_slot
)) {
97 /**********************************
99 **********************************/
100 func
= cpqhp_slot_find(ctrl
->bus
,
101 (hp_slot
+ ctrl
->slot_device_offset
), 0);
103 /* this is the structure that tells the worker thread
105 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
106 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
107 taskInfo
->hp_slot
= hp_slot
;
111 temp_word
= ctrl
->ctrl_int_comp
>> 16;
112 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
113 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
115 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
116 /**********************************
118 **********************************/
120 func
->switch_save
= 0;
122 taskInfo
->event_type
= INT_SWITCH_OPEN
;
124 /**********************************
126 **********************************/
128 func
->switch_save
= 0x10;
130 taskInfo
->event_type
= INT_SWITCH_CLOSE
;
139 * cpqhp_find_slot: find the struct slot of given device
140 * @ctrl: scan lots of this controller
141 * @device: the device id to find
143 static struct slot
*cpqhp_find_slot(struct controller
*ctrl
, u8 device
)
145 struct slot
*slot
= ctrl
->slot
;
147 while (slot
&& (slot
->device
!= device
)) {
155 static u8
handle_presence_change(u16 change
, struct controller
* ctrl
)
161 struct pci_func
*func
;
162 struct event_info
*taskInfo
;
168 /**********************************
170 **********************************/
171 dbg("cpqsbd: Presence/Notify input change.\n");
172 dbg(" Changed bits are 0x%4.4x\n", change
);
174 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
175 if (change
& (0x0101 << hp_slot
)) {
176 /**********************************
178 **********************************/
179 func
= cpqhp_slot_find(ctrl
->bus
,
180 (hp_slot
+ ctrl
->slot_device_offset
), 0);
182 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
183 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
184 taskInfo
->hp_slot
= hp_slot
;
188 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ (readb(ctrl
->hpc_reg
+ SLOT_MASK
) >> 4));
192 /* If the switch closed, must be a button
193 * If not in button mode, nevermind */
194 if (func
->switch_save
&& (ctrl
->push_button
== 1)) {
195 temp_word
= ctrl
->ctrl_int_comp
>> 16;
196 temp_byte
= (temp_word
>> hp_slot
) & 0x01;
197 temp_byte
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
199 if (temp_byte
!= func
->presence_save
) {
200 /**************************************
201 * button Pressed (doesn't do anything)
202 **************************************/
203 dbg("hp_slot %d button pressed\n", hp_slot
);
204 taskInfo
->event_type
= INT_BUTTON_PRESS
;
206 /**********************************
207 * button Released - TAKE ACTION!!!!
208 **********************************/
209 dbg("hp_slot %d button released\n", hp_slot
);
210 taskInfo
->event_type
= INT_BUTTON_RELEASE
;
212 /* Cancel if we are still blinking */
213 if ((p_slot
->state
== BLINKINGON_STATE
)
214 || (p_slot
->state
== BLINKINGOFF_STATE
)) {
215 taskInfo
->event_type
= INT_BUTTON_CANCEL
;
216 dbg("hp_slot %d button cancel\n", hp_slot
);
217 } else if ((p_slot
->state
== POWERON_STATE
)
218 || (p_slot
->state
== POWEROFF_STATE
)) {
219 /* info(msg_button_ignore, p_slot->number); */
220 taskInfo
->event_type
= INT_BUTTON_IGNORE
;
221 dbg("hp_slot %d button ignore\n", hp_slot
);
225 /* Switch is open, assume a presence change
226 * Save the presence state */
227 temp_word
= ctrl
->ctrl_int_comp
>> 16;
228 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
229 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
231 if ((!(ctrl
->ctrl_int_comp
& (0x010000 << hp_slot
))) ||
232 (!(ctrl
->ctrl_int_comp
& (0x01000000 << hp_slot
)))) {
234 taskInfo
->event_type
= INT_PRESENCE_ON
;
237 taskInfo
->event_type
= INT_PRESENCE_OFF
;
247 static u8
handle_power_fault(u8 change
, struct controller
* ctrl
)
251 struct pci_func
*func
;
252 struct event_info
*taskInfo
;
257 /**********************************
259 **********************************/
261 info("power fault interrupt\n");
263 for (hp_slot
= 0; hp_slot
< 6; hp_slot
++) {
264 if (change
& (0x01 << hp_slot
)) {
265 /**********************************
267 **********************************/
268 func
= cpqhp_slot_find(ctrl
->bus
,
269 (hp_slot
+ ctrl
->slot_device_offset
), 0);
271 taskInfo
= &(ctrl
->event_queue
[ctrl
->next_event
]);
272 ctrl
->next_event
= (ctrl
->next_event
+ 1) % 10;
273 taskInfo
->hp_slot
= hp_slot
;
277 if (ctrl
->ctrl_int_comp
& (0x00000100 << hp_slot
)) {
278 /**********************************
279 * power fault Cleared
280 **********************************/
283 taskInfo
->event_type
= INT_POWER_FAULT_CLEAR
;
285 /**********************************
287 **********************************/
288 taskInfo
->event_type
= INT_POWER_FAULT
;
291 amber_LED_on (ctrl
, hp_slot
);
292 green_LED_off (ctrl
, hp_slot
);
295 /* this is a fatal condition, we want
296 * to crash the machine to protect from
297 * data corruption. simulated_NMI
298 * shouldn't ever return */
300 simulated_NMI(hp_slot, ctrl); */
302 /* The following code causes a software
303 * crash just in case simulated_NMI did
306 panic(msg_power_fault); */
308 /* set power fault status for this board */
310 info("power fault bit %x set\n", hp_slot
);
321 * sort_by_size: sort nodes on the list by their length, smallest first.
322 * @head: list to sort
325 static int sort_by_size(struct pci_resource
**head
)
327 struct pci_resource
*current_res
;
328 struct pci_resource
*next_res
;
329 int out_of_order
= 1;
334 if (!((*head
)->next
))
337 while (out_of_order
) {
340 /* Special case for swapping list head */
341 if (((*head
)->next
) &&
342 ((*head
)->length
> (*head
)->next
->length
)) {
345 *head
= (*head
)->next
;
346 current_res
->next
= (*head
)->next
;
347 (*head
)->next
= current_res
;
352 while (current_res
->next
&& current_res
->next
->next
) {
353 if (current_res
->next
->length
> current_res
->next
->next
->length
) {
355 next_res
= current_res
->next
;
356 current_res
->next
= current_res
->next
->next
;
357 current_res
= current_res
->next
;
358 next_res
->next
= current_res
->next
;
359 current_res
->next
= next_res
;
361 current_res
= current_res
->next
;
363 } /* End of out_of_order loop */
370 * sort_by_max_size: sort nodes on the list by their length, largest first.
371 * @head: list to sort
374 static int sort_by_max_size(struct pci_resource
**head
)
376 struct pci_resource
*current_res
;
377 struct pci_resource
*next_res
;
378 int out_of_order
= 1;
383 if (!((*head
)->next
))
386 while (out_of_order
) {
389 /* Special case for swapping list head */
390 if (((*head
)->next
) &&
391 ((*head
)->length
< (*head
)->next
->length
)) {
394 *head
= (*head
)->next
;
395 current_res
->next
= (*head
)->next
;
396 (*head
)->next
= current_res
;
401 while (current_res
->next
&& current_res
->next
->next
) {
402 if (current_res
->next
->length
< current_res
->next
->next
->length
) {
404 next_res
= current_res
->next
;
405 current_res
->next
= current_res
->next
->next
;
406 current_res
= current_res
->next
;
407 next_res
->next
= current_res
->next
;
408 current_res
->next
= next_res
;
410 current_res
= current_res
->next
;
412 } /* End of out_of_order loop */
419 * do_pre_bridge_resource_split: find node of resources that are unused
422 static struct pci_resource
*do_pre_bridge_resource_split(struct pci_resource
**head
,
423 struct pci_resource
**orig_head
, u32 alignment
)
425 struct pci_resource
*prevnode
= NULL
;
426 struct pci_resource
*node
;
427 struct pci_resource
*split_node
;
430 dbg("do_pre_bridge_resource_split\n");
432 if (!(*head
) || !(*orig_head
))
435 rc
= cpqhp_resource_sort_and_combine(head
);
440 if ((*head
)->base
!= (*orig_head
)->base
)
443 if ((*head
)->length
== (*orig_head
)->length
)
447 /* If we got here, there the bridge requires some of the resource, but
448 * we may be able to split some off of the front */
452 if (node
->length
& (alignment
-1)) {
453 /* this one isn't an aligned length, so we'll make a new entry
454 * and split it up. */
455 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
460 temp_dword
= (node
->length
| (alignment
-1)) + 1 - alignment
;
462 split_node
->base
= node
->base
;
463 split_node
->length
= temp_dword
;
465 node
->length
-= temp_dword
;
466 node
->base
+= split_node
->length
;
468 /* Put it in the list */
470 split_node
->next
= node
;
473 if (node
->length
< alignment
)
481 while (prevnode
->next
!= node
)
482 prevnode
= prevnode
->next
;
484 prevnode
->next
= node
->next
;
493 * do_bridge_resource_split: find one node of resources that aren't in use
496 static struct pci_resource
*do_bridge_resource_split(struct pci_resource
**head
, u32 alignment
)
498 struct pci_resource
*prevnode
= NULL
;
499 struct pci_resource
*node
;
503 rc
= cpqhp_resource_sort_and_combine(head
);
516 if (node
->length
< alignment
)
519 if (node
->base
& (alignment
- 1)) {
520 /* Short circuit if adjusted size is too small */
521 temp_dword
= (node
->base
| (alignment
-1)) + 1;
522 if ((node
->length
- (temp_dword
- node
->base
)) < alignment
)
525 node
->length
-= (temp_dword
- node
->base
);
526 node
->base
= temp_dword
;
529 if (node
->length
& (alignment
- 1))
530 /* There's stuff in use after this node */
541 * get_io_resource: find first node of given size not in ISA aliasing window.
542 * @head: list to search
543 * @size: size of node to find, must be a power of two.
545 * Description: this function sorts the resource list by size and then returns
546 * returns the first node of "size" length that is not in the ISA aliasing
547 * window. If it finds a node larger than "size" it will split it up.
550 static struct pci_resource
*get_io_resource(struct pci_resource
**head
, u32 size
)
552 struct pci_resource
*prevnode
;
553 struct pci_resource
*node
;
554 struct pci_resource
*split_node
;
560 if ( cpqhp_resource_sort_and_combine(head
) )
563 if ( sort_by_size(head
) )
566 for (node
= *head
; node
; node
= node
->next
) {
567 if (node
->length
< size
)
570 if (node
->base
& (size
- 1)) {
571 /* this one isn't base aligned properly
572 * so we'll make a new entry and split it up */
573 temp_dword
= (node
->base
| (size
-1)) + 1;
575 /* Short circuit if adjusted size is too small */
576 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
579 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
584 split_node
->base
= node
->base
;
585 split_node
->length
= temp_dword
- node
->base
;
586 node
->base
= temp_dword
;
587 node
->length
-= split_node
->length
;
589 /* Put it in the list */
590 split_node
->next
= node
->next
;
591 node
->next
= split_node
;
592 } /* End of non-aligned base */
594 /* Don't need to check if too small since we already did */
595 if (node
->length
> size
) {
596 /* this one is longer than we need
597 * so we'll make a new entry and split it up */
598 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
603 split_node
->base
= node
->base
+ size
;
604 split_node
->length
= node
->length
- size
;
607 /* Put it in the list */
608 split_node
->next
= node
->next
;
609 node
->next
= split_node
;
610 } /* End of too big on top end */
612 /* For IO make sure it's not in the ISA aliasing space */
613 if (node
->base
& 0x300L
)
616 /* If we got here, then it is the right size
617 * Now take it out of the list and break */
622 while (prevnode
->next
!= node
)
623 prevnode
= prevnode
->next
;
625 prevnode
->next
= node
->next
;
636 * get_max_resource: get largest node which has at least the given size.
637 * @head: the list to search the node in
638 * @size: the minimum size of the node to find
640 * Description: Gets the largest node that is at least "size" big from the
641 * list pointed to by head. It aligns the node on top and bottom
642 * to "size" alignment before returning it.
644 static struct pci_resource
*get_max_resource(struct pci_resource
**head
, u32 size
)
646 struct pci_resource
*max
;
647 struct pci_resource
*temp
;
648 struct pci_resource
*split_node
;
651 if (cpqhp_resource_sort_and_combine(head
))
654 if (sort_by_max_size(head
))
657 for (max
= *head
; max
; max
= max
->next
) {
658 /* If not big enough we could probably just bail,
659 * instead we'll continue to the next. */
660 if (max
->length
< size
)
663 if (max
->base
& (size
- 1)) {
664 /* this one isn't base aligned properly
665 * so we'll make a new entry and split it up */
666 temp_dword
= (max
->base
| (size
-1)) + 1;
668 /* Short circuit if adjusted size is too small */
669 if ((max
->length
- (temp_dword
- max
->base
)) < size
)
672 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
677 split_node
->base
= max
->base
;
678 split_node
->length
= temp_dword
- max
->base
;
679 max
->base
= temp_dword
;
680 max
->length
-= split_node
->length
;
682 split_node
->next
= max
->next
;
683 max
->next
= split_node
;
686 if ((max
->base
+ max
->length
) & (size
- 1)) {
687 /* this one isn't end aligned properly at the top
688 * so we'll make a new entry and split it up */
689 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
693 temp_dword
= ((max
->base
+ max
->length
) & ~(size
- 1));
694 split_node
->base
= temp_dword
;
695 split_node
->length
= max
->length
+ max
->base
697 max
->length
-= split_node
->length
;
699 split_node
->next
= max
->next
;
700 max
->next
= split_node
;
703 /* Make sure it didn't shrink too much when we aligned it */
704 if (max
->length
< size
)
707 /* Now take it out of the list */
712 while (temp
&& temp
->next
!= max
) {
716 temp
->next
= max
->next
;
728 * get_resource: find resource of given size and split up larger ones.
729 * @head: the list to search for resources
730 * @size: the size limit to use
732 * Description: This function sorts the resource list by size and then
733 * returns the first node of "size" length. If it finds a node
734 * larger than "size" it will split it up.
736 * size must be a power of two.
738 static struct pci_resource
*get_resource(struct pci_resource
**head
, u32 size
)
740 struct pci_resource
*prevnode
;
741 struct pci_resource
*node
;
742 struct pci_resource
*split_node
;
745 if (cpqhp_resource_sort_and_combine(head
))
748 if (sort_by_size(head
))
751 for (node
= *head
; node
; node
= node
->next
) {
752 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 __FUNCTION__
, size
, node
, node
->base
, node
->length
);
754 if (node
->length
< size
)
757 if (node
->base
& (size
- 1)) {
758 dbg("%s: not aligned\n", __FUNCTION__
);
759 /* this one isn't base aligned properly
760 * so we'll make a new entry and split it up */
761 temp_dword
= (node
->base
| (size
-1)) + 1;
763 /* Short circuit if adjusted size is too small */
764 if ((node
->length
- (temp_dword
- node
->base
)) < size
)
767 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
772 split_node
->base
= node
->base
;
773 split_node
->length
= temp_dword
- node
->base
;
774 node
->base
= temp_dword
;
775 node
->length
-= split_node
->length
;
777 split_node
->next
= node
->next
;
778 node
->next
= split_node
;
779 } /* End of non-aligned base */
781 /* Don't need to check if too small since we already did */
782 if (node
->length
> size
) {
783 dbg("%s: too big\n", __FUNCTION__
);
784 /* this one is longer than we need
785 * so we'll make a new entry and split it up */
786 split_node
= kmalloc(sizeof(*split_node
), GFP_KERNEL
);
791 split_node
->base
= node
->base
+ size
;
792 split_node
->length
= node
->length
- size
;
795 /* Put it in the list */
796 split_node
->next
= node
->next
;
797 node
->next
= split_node
;
798 } /* End of too big on top end */
800 dbg("%s: got one!!!\n", __FUNCTION__
);
801 /* If we got here, then it is the right size
802 * Now take it out of the list */
807 while (prevnode
->next
!= node
)
808 prevnode
= prevnode
->next
;
810 prevnode
->next
= node
->next
;
820 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821 * @head: the list to sort and clean up
823 * Description: Sorts all of the nodes in the list in ascending order by
824 * their base addresses. Also does garbage collection by
825 * combining adjacent nodes.
827 * returns 0 if success
829 int cpqhp_resource_sort_and_combine(struct pci_resource
**head
)
831 struct pci_resource
*node1
;
832 struct pci_resource
*node2
;
833 int out_of_order
= 1;
835 dbg("%s: head = %p, *head = %p\n", __FUNCTION__
, head
, *head
);
840 dbg("*head->next = %p\n",(*head
)->next
);
843 return 0; /* only one item on the list, already sorted! */
845 dbg("*head->base = 0x%x\n",(*head
)->base
);
846 dbg("*head->next->base = 0x%x\n",(*head
)->next
->base
);
847 while (out_of_order
) {
850 /* Special case for swapping list head */
851 if (((*head
)->next
) &&
852 ((*head
)->base
> (*head
)->next
->base
)) {
854 (*head
) = (*head
)->next
;
855 node1
->next
= (*head
)->next
;
856 (*head
)->next
= node1
;
862 while (node1
->next
&& node1
->next
->next
) {
863 if (node1
->next
->base
> node1
->next
->next
->base
) {
866 node1
->next
= node1
->next
->next
;
868 node2
->next
= node1
->next
;
873 } /* End of out_of_order loop */
877 while (node1
&& node1
->next
) {
878 if ((node1
->base
+ node1
->length
) == node1
->next
->base
) {
881 node1
->length
+= node1
->next
->length
;
883 node1
->next
= node1
->next
->next
;
893 irqreturn_t
cpqhp_ctrl_intr(int IRQ
, void *data
, struct pt_regs
*regs
)
895 struct controller
*ctrl
= data
;
896 u8 schedule_flag
= 0;
903 misc
= readw(ctrl
->hpc_reg
+ MISC
);
904 /***************************************
905 * Check to see if it was our interrupt
906 ***************************************/
907 if (!(misc
& 0x000C)) {
912 /**********************************
913 * Serial Output interrupt Pending
914 **********************************/
916 /* Clear the interrupt */
918 writew(misc
, ctrl
->hpc_reg
+ MISC
);
920 /* Read to clear posted writes */
921 misc
= readw(ctrl
->hpc_reg
+ MISC
);
923 dbg ("%s - waking up\n", __FUNCTION__
);
924 wake_up_interruptible(&ctrl
->queue
);
928 /* General-interrupt-input interrupt Pending */
929 Diff
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) ^ ctrl
->ctrl_int_comp
;
931 ctrl
->ctrl_int_comp
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
933 /* Clear the interrupt */
934 writel(Diff
, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
936 /* Read it back to clear any posted writes */
937 temp_dword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
940 /* Clear all interrupts */
941 writel(0xFFFFFFFF, ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
943 schedule_flag
+= handle_switch_change((u8
)(Diff
& 0xFFL
), ctrl
);
944 schedule_flag
+= handle_presence_change((u16
)((Diff
& 0xFFFF0000L
) >> 16), ctrl
);
945 schedule_flag
+= handle_power_fault((u8
)((Diff
& 0xFF00L
) >> 8), ctrl
);
948 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
950 /* Bus reset has completed */
952 writeb(reset
, ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
953 reset
= readb(ctrl
->hpc_reg
+ RESET_FREQ_MODE
);
954 wake_up_interruptible(&ctrl
->queue
);
958 up(&event_semaphore
);
959 dbg("Signal event_semaphore\n");
966 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967 * @busnumber - bus where new node is to be located
969 * Returns pointer to the new node or NULL if unsuccessful
971 struct pci_func
*cpqhp_slot_create(u8 busnumber
)
973 struct pci_func
*new_slot
;
974 struct pci_func
*next
;
976 new_slot
= kmalloc(sizeof(*new_slot
), GFP_KERNEL
);
978 if (new_slot
== NULL
) {
984 memset(new_slot
, 0, sizeof(struct pci_func
));
986 new_slot
->next
= NULL
;
987 new_slot
->configured
= 1;
989 if (cpqhp_slot_list
[busnumber
] == NULL
) {
990 cpqhp_slot_list
[busnumber
] = new_slot
;
992 next
= cpqhp_slot_list
[busnumber
];
993 while (next
->next
!= NULL
)
995 next
->next
= new_slot
;
1002 * slot_remove - Removes a node from the linked list of slots.
1003 * @old_slot: slot to remove
1005 * Returns 0 if successful, !0 otherwise.
1007 static int slot_remove(struct pci_func
* old_slot
)
1009 struct pci_func
*next
;
1011 if (old_slot
== NULL
)
1014 next
= cpqhp_slot_list
[old_slot
->bus
];
1020 if (next
== old_slot
) {
1021 cpqhp_slot_list
[old_slot
->bus
] = old_slot
->next
;
1022 cpqhp_destroy_board_resources(old_slot
);
1027 while ((next
->next
!= old_slot
) && (next
->next
!= NULL
)) {
1031 if (next
->next
== old_slot
) {
1032 next
->next
= old_slot
->next
;
1033 cpqhp_destroy_board_resources(old_slot
);
1042 * bridge_slot_remove - Removes a node from the linked list of slots.
1043 * @bridge: bridge to remove
1045 * Returns 0 if successful, !0 otherwise.
1047 static int bridge_slot_remove(struct pci_func
*bridge
)
1049 u8 subordinateBus
, secondaryBus
;
1051 struct pci_func
*next
;
1053 secondaryBus
= (bridge
->config_space
[0x06] >> 8) & 0xFF;
1054 subordinateBus
= (bridge
->config_space
[0x06] >> 16) & 0xFF;
1056 for (tempBus
= secondaryBus
; tempBus
<= subordinateBus
; tempBus
++) {
1057 next
= cpqhp_slot_list
[tempBus
];
1059 while (!slot_remove(next
)) {
1060 next
= cpqhp_slot_list
[tempBus
];
1064 next
= cpqhp_slot_list
[bridge
->bus
];
1069 if (next
== bridge
) {
1070 cpqhp_slot_list
[bridge
->bus
] = bridge
->next
;
1074 while ((next
->next
!= bridge
) && (next
->next
!= NULL
))
1077 if (next
->next
!= bridge
)
1079 next
->next
= bridge
->next
;
1087 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1089 * @device: device to find
1090 * @index: is 0 for first function found, 1 for the second...
1092 * Returns pointer to the node if successful, %NULL otherwise.
1094 struct pci_func
*cpqhp_slot_find(u8 bus
, u8 device
, u8 index
)
1097 struct pci_func
*func
;
1099 func
= cpqhp_slot_list
[bus
];
1101 if ((func
== NULL
) || ((func
->device
== device
) && (index
== 0)))
1104 if (func
->device
== device
)
1107 while (func
->next
!= NULL
) {
1110 if (func
->device
== device
)
1121 /* DJZ: I don't think is_bridge will work as is.
1123 static int is_bridge(struct pci_func
* func
)
1125 /* Check the header type */
1126 if (((func
->config_space
[0x03] >> 16) & 0xFF) == 0x01)
1134 * set_controller_speed - set the frequency and/or mode of a specific
1135 * controller segment.
1137 * @ctrl: controller to change frequency/mode for.
1138 * @adapter_speed: the speed of the adapter we want to match.
1139 * @hp_slot: the slot number where the adapter is installed.
1141 * Returns 0 if we successfully change frequency and/or mode to match the
1145 static u8
set_controller_speed(struct controller
*ctrl
, u8 adapter_speed
, u8 hp_slot
)
1149 u8 slot_power
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1151 u32 leds
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
1153 if (ctrl
->speed
== adapter_speed
)
1156 /* We don't allow freq/mode changes if we find another adapter running
1157 * in another slot on this controller */
1158 for(slot
= ctrl
->slot
; slot
; slot
= slot
->next
) {
1159 if (slot
->device
== (hp_slot
+ ctrl
->slot_device_offset
))
1161 if (!slot
->hotplug_slot
&& !slot
->hotplug_slot
->info
)
1163 if (slot
->hotplug_slot
->info
->adapter_status
== 0)
1165 /* If another adapter is running on the same segment but at a
1166 * lower speed/mode, we allow the new adapter to function at
1167 * this rate if supported */
1168 if (ctrl
->speed
< adapter_speed
)
1174 /* If the controller doesn't support freq/mode changes and the
1175 * controller is running at a higher mode, we bail */
1176 if ((ctrl
->speed
> adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1179 /* But we allow the adapter to run at a lower rate if possible */
1180 if ((ctrl
->speed
< adapter_speed
) && (!ctrl
->pcix_speed_capability
))
1183 /* We try to set the max speed supported by both the adapter and
1185 if (ctrl
->speed_capability
< adapter_speed
) {
1186 if (ctrl
->speed
== ctrl
->speed_capability
)
1188 adapter_speed
= ctrl
->speed_capability
;
1191 writel(0x0L
, ctrl
->hpc_reg
+ LED_CONTROL
);
1192 writeb(0x00, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1195 wait_for_ctrl_irq(ctrl
);
1197 if (adapter_speed
!= PCI_SPEED_133MHz_PCIX
)
1201 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1203 reg16
= readw(ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1205 switch(adapter_speed
) {
1206 case(PCI_SPEED_133MHz_PCIX
):
1210 case(PCI_SPEED_100MHz_PCIX
):
1214 case(PCI_SPEED_66MHz_PCIX
):
1218 case(PCI_SPEED_66MHz
):
1222 default: /* 33MHz PCI 2.2 */
1228 writew(reg16
, ctrl
->hpc_reg
+ NEXT_CURR_FREQ
);
1232 /* Reenable interrupts */
1233 writel(0, ctrl
->hpc_reg
+ INT_MASK
);
1235 pci_write_config_byte(ctrl
->pci_dev
, 0x41, reg
);
1237 /* Restart state machine */
1239 pci_read_config_byte(ctrl
->pci_dev
, 0x43, ®
);
1240 pci_write_config_byte(ctrl
->pci_dev
, 0x43, reg
);
1242 /* Only if mode change...*/
1243 if (((ctrl
->speed
== PCI_SPEED_66MHz
) && (adapter_speed
== PCI_SPEED_66MHz_PCIX
)) ||
1244 ((ctrl
->speed
== PCI_SPEED_66MHz_PCIX
) && (adapter_speed
== PCI_SPEED_66MHz
)))
1247 wait_for_ctrl_irq(ctrl
);
1250 /* Restore LED/Slot state */
1251 writel(leds
, ctrl
->hpc_reg
+ LED_CONTROL
);
1252 writeb(slot_power
, ctrl
->hpc_reg
+ SLOT_ENABLE
);
1255 wait_for_ctrl_irq(ctrl
);
1257 ctrl
->speed
= adapter_speed
;
1258 slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1260 info("Successfully changed frequency/mode for adapter in slot %d\n",
1265 /* the following routines constitute the bulk of the
1266 hotplug controller logic
1271 * board_replaced - Called after a board has been replaced in the system.
1273 * This is only used if we don't have resources for hot add
1274 * Turns power on for the board
1275 * Checks to see if board is the same
1276 * If board is same, reconfigures it
1277 * If board isn't same, turns it back off.
1280 static u32
board_replaced(struct pci_func
*func
, struct controller
*ctrl
)
1289 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1291 if (readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
) & (0x01L
<< hp_slot
)) {
1292 /**********************************
1293 * The switch is open.
1294 **********************************/
1295 rc
= INTERLOCK_OPEN
;
1296 } else if (is_slot_enabled (ctrl
, hp_slot
)) {
1297 /**********************************
1298 * The board is already on
1299 **********************************/
1300 rc
= CARD_FUNCTIONING
;
1302 down(&ctrl
->crit_sect
);
1304 /* turn on board without attaching to the bus */
1305 enable_slot_power (ctrl
, hp_slot
);
1309 /* Wait for SOBS to be unset */
1310 wait_for_ctrl_irq (ctrl
);
1312 /* Change bits in slot power register to force another shift out
1313 * NOTE: this is to work around the timer bug */
1314 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1315 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1316 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1320 /* Wait for SOBS to be unset */
1321 wait_for_ctrl_irq (ctrl
);
1323 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1324 if (ctrl
->speed
!= adapter_speed
)
1325 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1326 rc
= WRONG_BUS_FREQUENCY
;
1328 /* turn off board without attaching to the bus */
1329 disable_slot_power (ctrl
, hp_slot
);
1333 /* Wait for SOBS to be unset */
1334 wait_for_ctrl_irq (ctrl
);
1336 up(&ctrl
->crit_sect
);
1341 down(&ctrl
->crit_sect
);
1343 slot_enable (ctrl
, hp_slot
);
1344 green_LED_blink (ctrl
, hp_slot
);
1346 amber_LED_off (ctrl
, hp_slot
);
1350 /* Wait for SOBS to be unset */
1351 wait_for_ctrl_irq (ctrl
);
1353 up(&ctrl
->crit_sect
);
1355 /* Wait for ~1 second because of hot plug spec */
1358 /* Check for a power fault */
1359 if (func
->status
== 0xFF) {
1360 /* power fault occurred, but it was benign */
1364 rc
= cpqhp_valid_replace(ctrl
, func
);
1367 /* It must be the same board */
1369 rc
= cpqhp_configure_board(ctrl
, func
);
1372 /* If configuration fails, turn it off
1373 * Get slot won't work for devices behind
1374 * bridges, but in this case it will always be
1375 * called for the "base" bus/dev/func of an
1378 down(&ctrl
->crit_sect
);
1380 amber_LED_on (ctrl
, hp_slot
);
1381 green_LED_off (ctrl
, hp_slot
);
1382 slot_disable (ctrl
, hp_slot
);
1386 /* Wait for SOBS to be unset */
1387 wait_for_ctrl_irq (ctrl
);
1389 up(&ctrl
->crit_sect
);
1398 func
->switch_save
= 0x10;
1401 while (((func
= cpqhp_slot_find(func
->bus
, func
->device
, index
)) != NULL
) && !rc
) {
1402 rc
|= cpqhp_configure_board(ctrl
, func
);
1407 /* If configuration fails, turn it off
1408 * Get slot won't work for devices behind
1409 * bridges, but in this case it will always be
1410 * called for the "base" bus/dev/func of an
1413 down(&ctrl
->crit_sect
);
1415 amber_LED_on (ctrl
, hp_slot
);
1416 green_LED_off (ctrl
, hp_slot
);
1417 slot_disable (ctrl
, hp_slot
);
1421 /* Wait for SOBS to be unset */
1422 wait_for_ctrl_irq (ctrl
);
1424 up(&ctrl
->crit_sect
);
1428 /* Done configuring so turn LED on full time */
1430 down(&ctrl
->crit_sect
);
1432 green_LED_on (ctrl
, hp_slot
);
1436 /* Wait for SOBS to be unset */
1437 wait_for_ctrl_irq (ctrl
);
1439 up(&ctrl
->crit_sect
);
1442 /* Something is wrong
1444 * Get slot won't work for devices behind bridges, but
1445 * in this case it will always be called for the "base"
1446 * bus/dev/func of an adapter. */
1448 down(&ctrl
->crit_sect
);
1450 amber_LED_on (ctrl
, hp_slot
);
1451 green_LED_off (ctrl
, hp_slot
);
1452 slot_disable (ctrl
, hp_slot
);
1456 /* Wait for SOBS to be unset */
1457 wait_for_ctrl_irq (ctrl
);
1459 up(&ctrl
->crit_sect
);
1469 * board_added - Called after a board has been added to the system.
1471 * Turns power on for the board
1475 static u32
board_added(struct pci_func
*func
, struct controller
*ctrl
)
1481 u32 temp_register
= 0xFFFFFFFF;
1483 struct pci_func
*new_slot
= NULL
;
1484 struct slot
*p_slot
;
1485 struct resource_lists res_lists
;
1487 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1488 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1489 __FUNCTION__
, func
->device
, ctrl
->slot_device_offset
, hp_slot
);
1491 down(&ctrl
->crit_sect
);
1493 /* turn on board without attaching to the bus */
1494 enable_slot_power(ctrl
, hp_slot
);
1498 /* Wait for SOBS to be unset */
1499 wait_for_ctrl_irq (ctrl
);
1501 /* Change bits in slot power register to force another shift out
1502 * NOTE: this is to work around the timer bug */
1503 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_POWER
);
1504 writeb(0x00, ctrl
->hpc_reg
+ SLOT_POWER
);
1505 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_POWER
);
1509 /* Wait for SOBS to be unset */
1510 wait_for_ctrl_irq (ctrl
);
1512 adapter_speed
= get_adapter_speed(ctrl
, hp_slot
);
1513 if (ctrl
->speed
!= adapter_speed
)
1514 if (set_controller_speed(ctrl
, adapter_speed
, hp_slot
))
1515 rc
= WRONG_BUS_FREQUENCY
;
1517 /* turn off board without attaching to the bus */
1518 disable_slot_power (ctrl
, hp_slot
);
1522 /* Wait for SOBS to be unset */
1523 wait_for_ctrl_irq(ctrl
);
1525 up(&ctrl
->crit_sect
);
1530 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1532 /* turn on board and blink green LED */
1534 dbg("%s: before down\n", __FUNCTION__
);
1535 down(&ctrl
->crit_sect
);
1536 dbg("%s: after down\n", __FUNCTION__
);
1538 dbg("%s: before slot_enable\n", __FUNCTION__
);
1539 slot_enable (ctrl
, hp_slot
);
1541 dbg("%s: before green_LED_blink\n", __FUNCTION__
);
1542 green_LED_blink (ctrl
, hp_slot
);
1544 dbg("%s: before amber_LED_blink\n", __FUNCTION__
);
1545 amber_LED_off (ctrl
, hp_slot
);
1547 dbg("%s: before set_SOGO\n", __FUNCTION__
);
1550 /* Wait for SOBS to be unset */
1551 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__
);
1552 wait_for_ctrl_irq (ctrl
);
1553 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__
);
1555 dbg("%s: before up\n", __FUNCTION__
);
1556 up(&ctrl
->crit_sect
);
1557 dbg("%s: after up\n", __FUNCTION__
);
1559 /* Wait for ~1 second because of hot plug spec */
1560 dbg("%s: before long_delay\n", __FUNCTION__
);
1562 dbg("%s: after long_delay\n", __FUNCTION__
);
1564 dbg("%s: func status = %x\n", __FUNCTION__
, func
->status
);
1565 /* Check for a power fault */
1566 if (func
->status
== 0xFF) {
1567 /* power fault occurred, but it was benign */
1568 temp_register
= 0xFFFFFFFF;
1569 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__
, temp_register
);
1573 /* Get vendor/device ID u32 */
1574 ctrl
->pci_bus
->number
= func
->bus
;
1575 rc
= pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), PCI_VENDOR_ID
, &temp_register
);
1576 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__
, rc
);
1577 dbg("%s: temp_register is %x\n", __FUNCTION__
, temp_register
);
1580 /* Something's wrong here */
1581 temp_register
= 0xFFFFFFFF;
1582 dbg("%s: temp register set to %x by error\n", __FUNCTION__
, temp_register
);
1584 /* Preset return code. It will be changed later if things go okay. */
1585 rc
= NO_ADAPTER_PRESENT
;
1588 /* All F's is an empty slot or an invalid board */
1589 if (temp_register
!= 0xFFFFFFFF) { /* Check for a board in the slot */
1590 res_lists
.io_head
= ctrl
->io_head
;
1591 res_lists
.mem_head
= ctrl
->mem_head
;
1592 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1593 res_lists
.bus_head
= ctrl
->bus_head
;
1594 res_lists
.irqs
= NULL
;
1596 rc
= configure_new_device(ctrl
, func
, 0, &res_lists
);
1598 dbg("%s: back from configure_new_device\n", __FUNCTION__
);
1599 ctrl
->io_head
= res_lists
.io_head
;
1600 ctrl
->mem_head
= res_lists
.mem_head
;
1601 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1602 ctrl
->bus_head
= res_lists
.bus_head
;
1604 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1605 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1606 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1607 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1610 down(&ctrl
->crit_sect
);
1612 amber_LED_on (ctrl
, hp_slot
);
1613 green_LED_off (ctrl
, hp_slot
);
1614 slot_disable (ctrl
, hp_slot
);
1618 /* Wait for SOBS to be unset */
1619 wait_for_ctrl_irq (ctrl
);
1621 up(&ctrl
->crit_sect
);
1624 cpqhp_save_slot_config(ctrl
, func
);
1629 func
->switch_save
= 0x10;
1630 func
->is_a_board
= 0x01;
1632 /* next, we will instantiate the linux pci_dev structures (with
1633 * appropriate driver notification, if already present) */
1634 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__
);
1637 new_slot
= cpqhp_slot_find(ctrl
->bus
, func
->device
, index
++);
1638 if (new_slot
&& !new_slot
->pci_dev
) {
1639 cpqhp_configure_device(ctrl
, new_slot
);
1643 down(&ctrl
->crit_sect
);
1645 green_LED_on (ctrl
, hp_slot
);
1649 /* Wait for SOBS to be unset */
1650 wait_for_ctrl_irq (ctrl
);
1652 up(&ctrl
->crit_sect
);
1654 down(&ctrl
->crit_sect
);
1656 amber_LED_on (ctrl
, hp_slot
);
1657 green_LED_off (ctrl
, hp_slot
);
1658 slot_disable (ctrl
, hp_slot
);
1662 /* Wait for SOBS to be unset */
1663 wait_for_ctrl_irq (ctrl
);
1665 up(&ctrl
->crit_sect
);
1674 * remove_board - Turns off slot and LED's
1677 static u32
remove_board(struct pci_func
* func
, u32 replace_flag
, struct controller
* ctrl
)
1685 struct resource_lists res_lists
;
1686 struct pci_func
*temp_func
;
1688 if (cpqhp_unconfigure_device(func
))
1691 device
= func
->device
;
1693 hp_slot
= func
->device
- ctrl
->slot_device_offset
;
1694 dbg("In %s, hp_slot = %d\n", __FUNCTION__
, hp_slot
);
1696 /* When we get here, it is safe to change base address registers.
1697 * We will attempt to save the base address register lengths */
1698 if (replace_flag
|| !ctrl
->add_support
)
1699 rc
= cpqhp_save_base_addr_length(ctrl
, func
);
1700 else if (!func
->bus_head
&& !func
->mem_head
&&
1701 !func
->p_mem_head
&& !func
->io_head
) {
1702 /* Here we check to see if we've saved any of the board's
1703 * resources already. If so, we'll skip the attempt to
1704 * determine what's being used. */
1706 temp_func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1708 if (temp_func
->bus_head
|| temp_func
->mem_head
1709 || temp_func
->p_mem_head
|| temp_func
->io_head
) {
1713 temp_func
= cpqhp_slot_find(temp_func
->bus
, temp_func
->device
, index
++);
1717 rc
= cpqhp_save_used_resources(ctrl
, func
);
1719 /* Change status to shutdown */
1720 if (func
->is_a_board
)
1721 func
->status
= 0x01;
1722 func
->configured
= 0;
1724 down(&ctrl
->crit_sect
);
1726 green_LED_off (ctrl
, hp_slot
);
1727 slot_disable (ctrl
, hp_slot
);
1731 /* turn off SERR for slot */
1732 temp_byte
= readb(ctrl
->hpc_reg
+ SLOT_SERR
);
1733 temp_byte
&= ~(0x01 << hp_slot
);
1734 writeb(temp_byte
, ctrl
->hpc_reg
+ SLOT_SERR
);
1736 /* Wait for SOBS to be unset */
1737 wait_for_ctrl_irq (ctrl
);
1739 up(&ctrl
->crit_sect
);
1741 if (!replace_flag
&& ctrl
->add_support
) {
1743 res_lists
.io_head
= ctrl
->io_head
;
1744 res_lists
.mem_head
= ctrl
->mem_head
;
1745 res_lists
.p_mem_head
= ctrl
->p_mem_head
;
1746 res_lists
.bus_head
= ctrl
->bus_head
;
1748 cpqhp_return_board_resources(func
, &res_lists
);
1750 ctrl
->io_head
= res_lists
.io_head
;
1751 ctrl
->mem_head
= res_lists
.mem_head
;
1752 ctrl
->p_mem_head
= res_lists
.p_mem_head
;
1753 ctrl
->bus_head
= res_lists
.bus_head
;
1755 cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1756 cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1757 cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1758 cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1760 if (is_bridge(func
)) {
1761 bridge_slot_remove(func
);
1765 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
1768 /* Setup slot structure with entry for empty slot */
1769 func
= cpqhp_slot_create(ctrl
->bus
);
1774 func
->bus
= ctrl
->bus
;
1775 func
->device
= device
;
1777 func
->configured
= 0;
1778 func
->switch_save
= 0x10;
1779 func
->is_a_board
= 0;
1780 func
->p_task_event
= NULL
;
1786 static void pushbutton_helper_thread(unsigned long data
)
1788 pushbutton_pending
= data
;
1789 up(&event_semaphore
);
1793 /* this is the main worker thread */
1794 static int event_thread(void* data
)
1796 struct controller
*ctrl
;
1798 daemonize("phpd_event");
1803 dbg("!!!!event_thread sleeping\n");
1804 down_interruptible (&event_semaphore
);
1805 dbg("event_thread woken finished = %d\n", event_finished
);
1806 if (event_finished
) break;
1808 if (pushbutton_pending
)
1809 cpqhp_pushbutton_thread(pushbutton_pending
);
1811 for (ctrl
= cpqhp_ctrl_list
; ctrl
; ctrl
=ctrl
->next
)
1812 interrupt_event_handler(ctrl
);
1814 dbg("event_thread signals exit\n");
1820 int cpqhp_event_start_thread(void)
1824 /* initialize our semaphores */
1825 init_MUTEX(&delay_sem
);
1826 init_MUTEX_LOCKED(&event_semaphore
);
1827 init_MUTEX_LOCKED(&event_exit
);
1830 pid
= kernel_thread(event_thread
, NULL
, 0);
1832 err ("Can't start up our event thread\n");
1835 dbg("Our event thread pid = %d\n", pid
);
1840 void cpqhp_event_stop_thread(void)
1843 dbg("event_thread finish command given\n");
1844 up(&event_semaphore
);
1845 dbg("wait for event_thread to exit\n");
1850 static int update_slot_info(struct controller
*ctrl
, struct slot
*slot
)
1852 struct hotplug_slot_info
*info
;
1855 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
1859 info
->power_status
= get_slot_enabled(ctrl
, slot
);
1860 info
->attention_status
= cpq_get_attention_status(ctrl
, slot
);
1861 info
->latch_status
= cpq_get_latch_status(ctrl
, slot
);
1862 info
->adapter_status
= get_presence_status(ctrl
, slot
);
1863 result
= pci_hp_change_slot_info(slot
->hotplug_slot
, info
);
1868 static void interrupt_event_handler(struct controller
*ctrl
)
1872 struct pci_func
*func
;
1874 struct slot
*p_slot
;
1879 for (loop
= 0; loop
< 10; loop
++) {
1880 /* dbg("loop %d\n", loop); */
1881 if (ctrl
->event_queue
[loop
].event_type
!= 0) {
1882 hp_slot
= ctrl
->event_queue
[loop
].hp_slot
;
1884 func
= cpqhp_slot_find(ctrl
->bus
, (hp_slot
+ ctrl
->slot_device_offset
), 0);
1888 p_slot
= cpqhp_find_slot(ctrl
, hp_slot
+ ctrl
->slot_device_offset
);
1892 dbg("hp_slot %d, func %p, p_slot %p\n",
1893 hp_slot
, func
, p_slot
);
1895 if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_PRESS
) {
1896 dbg("button pressed\n");
1897 } else if (ctrl
->event_queue
[loop
].event_type
==
1898 INT_BUTTON_CANCEL
) {
1899 dbg("button cancel\n");
1900 del_timer(&p_slot
->task_event
);
1902 down(&ctrl
->crit_sect
);
1904 if (p_slot
->state
== BLINKINGOFF_STATE
) {
1906 dbg("turn on green LED\n");
1907 green_LED_on (ctrl
, hp_slot
);
1908 } else if (p_slot
->state
== BLINKINGON_STATE
) {
1910 dbg("turn off green LED\n");
1911 green_LED_off (ctrl
, hp_slot
);
1914 info(msg_button_cancel
, p_slot
->number
);
1916 p_slot
->state
= STATIC_STATE
;
1918 amber_LED_off (ctrl
, hp_slot
);
1922 /* Wait for SOBS to be unset */
1923 wait_for_ctrl_irq (ctrl
);
1925 up(&ctrl
->crit_sect
);
1927 /*** button Released (No action on press...) */
1928 else if (ctrl
->event_queue
[loop
].event_type
== INT_BUTTON_RELEASE
) {
1929 dbg("button release\n");
1931 if (is_slot_enabled (ctrl
, hp_slot
)) {
1932 dbg("slot is on\n");
1933 p_slot
->state
= BLINKINGOFF_STATE
;
1934 info(msg_button_off
, p_slot
->number
);
1936 dbg("slot is off\n");
1937 p_slot
->state
= BLINKINGON_STATE
;
1938 info(msg_button_on
, p_slot
->number
);
1940 down(&ctrl
->crit_sect
);
1942 dbg("blink green LED and turn off amber\n");
1944 amber_LED_off (ctrl
, hp_slot
);
1945 green_LED_blink (ctrl
, hp_slot
);
1949 /* Wait for SOBS to be unset */
1950 wait_for_ctrl_irq (ctrl
);
1952 up(&ctrl
->crit_sect
);
1953 init_timer(&p_slot
->task_event
);
1954 p_slot
->hp_slot
= hp_slot
;
1955 p_slot
->ctrl
= ctrl
;
1956 /* p_slot->physical_slot = physical_slot; */
1957 p_slot
->task_event
.expires
= jiffies
+ 5 * HZ
; /* 5 second delay */
1958 p_slot
->task_event
.function
= pushbutton_helper_thread
;
1959 p_slot
->task_event
.data
= (u32
) p_slot
;
1961 dbg("add_timer p_slot = %p\n", p_slot
);
1962 add_timer(&p_slot
->task_event
);
1964 /***********POWER FAULT */
1965 else if (ctrl
->event_queue
[loop
].event_type
== INT_POWER_FAULT
) {
1966 dbg("power fault\n");
1968 /* refresh notification */
1970 update_slot_info(ctrl
, p_slot
);
1973 ctrl
->event_queue
[loop
].event_type
= 0;
1977 } /* End of FOR loop */
1985 * cpqhp_pushbutton_thread
1987 * Scheduled procedure to handle blocking stuff for the pushbuttons
1988 * Handles all pending events and exits.
1991 void cpqhp_pushbutton_thread(unsigned long slot
)
1995 struct pci_func
*func
;
1996 struct slot
*p_slot
= (struct slot
*) slot
;
1997 struct controller
*ctrl
= (struct controller
*) p_slot
->ctrl
;
1999 pushbutton_pending
= 0;
2000 hp_slot
= p_slot
->hp_slot
;
2002 device
= p_slot
->device
;
2004 if (is_slot_enabled(ctrl
, hp_slot
)) {
2005 p_slot
->state
= POWEROFF_STATE
;
2006 /* power Down board */
2007 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
2008 dbg("In power_down_board, func = %p, ctrl = %p\n", func
, ctrl
);
2010 dbg("Error! func NULL in %s\n", __FUNCTION__
);
2014 if (func
!= NULL
&& ctrl
!= NULL
) {
2015 if (cpqhp_process_SS(ctrl
, func
) != 0) {
2016 amber_LED_on (ctrl
, hp_slot
);
2017 green_LED_on (ctrl
, hp_slot
);
2021 /* Wait for SOBS to be unset */
2022 wait_for_ctrl_irq (ctrl
);
2026 p_slot
->state
= STATIC_STATE
;
2028 p_slot
->state
= POWERON_STATE
;
2031 func
= cpqhp_slot_find(p_slot
->bus
, p_slot
->device
, 0);
2032 dbg("In add_board, func = %p, ctrl = %p\n", func
, ctrl
);
2034 dbg("Error! func NULL in %s\n", __FUNCTION__
);
2038 if (func
!= NULL
&& ctrl
!= NULL
) {
2039 if (cpqhp_process_SI(ctrl
, func
) != 0) {
2040 amber_LED_on(ctrl
, hp_slot
);
2041 green_LED_off(ctrl
, hp_slot
);
2045 /* Wait for SOBS to be unset */
2046 wait_for_ctrl_irq (ctrl
);
2050 p_slot
->state
= STATIC_STATE
;
2057 int cpqhp_process_SI(struct controller
*ctrl
, struct pci_func
*func
)
2063 struct slot
* p_slot
;
2064 int physical_slot
= 0;
2068 device
= func
->device
;
2069 hp_slot
= device
- ctrl
->slot_device_offset
;
2070 p_slot
= cpqhp_find_slot(ctrl
, device
);
2072 physical_slot
= p_slot
->number
;
2074 /* Check to see if the interlock is closed */
2075 tempdword
= readl(ctrl
->hpc_reg
+ INT_INPUT_CLEAR
);
2077 if (tempdword
& (0x01 << hp_slot
)) {
2081 if (func
->is_a_board
) {
2082 rc
= board_replaced(func
, ctrl
);
2087 func
= cpqhp_slot_create(ctrl
->bus
);
2091 func
->bus
= ctrl
->bus
;
2092 func
->device
= device
;
2094 func
->configured
= 0;
2095 func
->is_a_board
= 1;
2097 /* We have to save the presence info for these slots */
2098 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2099 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2100 func
->presence_save
|= (temp_word
>> (hp_slot
+ 7)) & 0x02;
2102 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2103 func
->switch_save
= 0;
2105 func
->switch_save
= 0x10;
2108 rc
= board_added(func
, ctrl
);
2110 if (is_bridge(func
)) {
2111 bridge_slot_remove(func
);
2115 /* Setup slot structure with entry for empty slot */
2116 func
= cpqhp_slot_create(ctrl
->bus
);
2121 func
->bus
= ctrl
->bus
;
2122 func
->device
= device
;
2124 func
->configured
= 0;
2125 func
->is_a_board
= 0;
2127 /* We have to save the presence info for these slots */
2128 temp_word
= ctrl
->ctrl_int_comp
>> 16;
2129 func
->presence_save
= (temp_word
>> hp_slot
) & 0x01;
2130 func
->presence_save
|=
2131 (temp_word
>> (hp_slot
+ 7)) & 0x02;
2133 if (ctrl
->ctrl_int_comp
& (0x1L
<< hp_slot
)) {
2134 func
->switch_save
= 0;
2136 func
->switch_save
= 0x10;
2142 dbg("%s: rc = %d\n", __FUNCTION__
, rc
);
2146 update_slot_info(ctrl
, p_slot
);
2152 int cpqhp_process_SS(struct controller
*ctrl
, struct pci_func
*func
)
2154 u8 device
, class_code
, header_type
, BCR
;
2159 struct slot
* p_slot
;
2160 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
2161 int physical_slot
=0;
2163 device
= func
->device
;
2164 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2165 p_slot
= cpqhp_find_slot(ctrl
, device
);
2167 physical_slot
= p_slot
->number
;
2170 /* Make sure there are no video controllers here */
2171 while (func
&& !rc
) {
2172 pci_bus
->number
= func
->bus
;
2173 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2175 /* Check the Class Code */
2176 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2180 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2181 /* Display/Video adapter (not supported) */
2182 rc
= REMOVE_NOT_SUPPORTED
;
2184 /* See if it's a bridge */
2185 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
2189 /* If it's a bridge, check the VGA Enable bit */
2190 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
2191 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, &BCR
);
2195 /* If the VGA Enable bit is set, remove isn't
2197 if (BCR
& PCI_BRIDGE_CTL_VGA
) {
2198 rc
= REMOVE_NOT_SUPPORTED
;
2203 func
= cpqhp_slot_find(ctrl
->bus
, device
, index
++);
2206 func
= cpqhp_slot_find(ctrl
->bus
, device
, 0);
2207 if ((func
!= NULL
) && !rc
) {
2208 /* FIXME: Replace flag should be passed into process_SS */
2209 replace_flag
= !(ctrl
->add_support
);
2210 rc
= remove_board(func
, replace_flag
, ctrl
);
2216 update_slot_info(ctrl
, p_slot
);
2222 * switch_leds: switch the leds, go from one site to the other.
2223 * @ctrl: controller to use
2224 * @num_of_slots: number of slots to use
2225 * @direction: 1 to start from the left side, 0 to start right.
2227 static void switch_leds(struct controller
*ctrl
, const int num_of_slots
,
2228 u32
*work_LED
, const int direction
)
2232 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2234 *work_LED
= *work_LED
>> 1;
2236 *work_LED
= *work_LED
<< 1;
2237 writel(*work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2241 /* Wait for SOGO interrupt */
2242 wait_for_ctrl_irq(ctrl
);
2244 /* Get ready for next iteration */
2245 long_delay((2*HZ
)/10);
2250 * hardware_test - runs hardware tests
2252 * For hot plug ctrl folks to play with.
2253 * test_num is the number written to the "test" file in sysfs
2256 int cpqhp_hardware_test(struct controller
*ctrl
, int test_num
)
2263 num_of_slots
= readb(ctrl
->hpc_reg
+ SLOT_MASK
) & 0x0f;
2267 /* Do stuff here! */
2269 /* Do that funky LED thing */
2270 /* so we can restore them later */
2271 save_LED
= readl(ctrl
->hpc_reg
+ LED_CONTROL
);
2272 work_LED
= 0x01010101;
2273 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2274 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2275 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2276 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2278 work_LED
= 0x01010000;
2279 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2280 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2281 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2282 work_LED
= 0x00000101;
2283 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2284 switch_leds(ctrl
, num_of_slots
, &work_LED
, 0);
2285 switch_leds(ctrl
, num_of_slots
, &work_LED
, 1);
2287 work_LED
= 0x01010000;
2288 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2289 for (loop
= 0; loop
< num_of_slots
; loop
++) {
2292 /* Wait for SOGO interrupt */
2293 wait_for_ctrl_irq (ctrl
);
2295 /* Get ready for next iteration */
2296 long_delay((3*HZ
)/10);
2297 work_LED
= work_LED
>> 16;
2298 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2302 /* Wait for SOGO interrupt */
2303 wait_for_ctrl_irq (ctrl
);
2305 /* Get ready for next iteration */
2306 long_delay((3*HZ
)/10);
2307 work_LED
= work_LED
<< 16;
2308 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2309 work_LED
= work_LED
<< 1;
2310 writel(work_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2313 /* put it back the way it was */
2314 writel(save_LED
, ctrl
->hpc_reg
+ LED_CONTROL
);
2318 /* Wait for SOBS to be unset */
2319 wait_for_ctrl_irq (ctrl
);
2322 /* Do other stuff here! */
2333 * configure_new_device - Configures the PCI header information of one board.
2335 * @ctrl: pointer to controller structure
2336 * @func: pointer to function structure
2337 * @behind_bridge: 1 if this is a recursive call, 0 if not
2338 * @resources: pointer to set of resource lists
2340 * Returns 0 if success
2343 static u32
configure_new_device(struct controller
* ctrl
, struct pci_func
* func
,
2344 u8 behind_bridge
, struct resource_lists
* resources
)
2346 u8 temp_byte
, function
, max_functions
, stop_it
;
2349 struct pci_func
*new_slot
;
2354 dbg("%s\n", __FUNCTION__
);
2355 /* Check for Multi-function device */
2356 ctrl
->pci_bus
->number
= func
->bus
;
2357 rc
= pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, func
->function
), 0x0E, &temp_byte
);
2359 dbg("%s: rc = %d\n", __FUNCTION__
, rc
);
2363 if (temp_byte
& 0x80) /* Multi-function device */
2371 rc
= configure_new_function(ctrl
, new_slot
, behind_bridge
, resources
);
2374 dbg("configure_new_function failed %d\n",rc
);
2378 new_slot
= cpqhp_slot_find(new_slot
->bus
, new_slot
->device
, index
++);
2381 cpqhp_return_board_resources(new_slot
, resources
);
2391 /* The following loop skips to the next present function
2392 * and creates a board structure */
2394 while ((function
< max_functions
) && (!stop_it
)) {
2395 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(func
->device
, function
), 0x00, &ID
);
2397 if (ID
== 0xFFFFFFFF) { /* There's nothing there. */
2399 } else { /* There's something there */
2400 /* Setup slot structure. */
2401 new_slot
= cpqhp_slot_create(func
->bus
);
2403 if (new_slot
== NULL
)
2406 new_slot
->bus
= func
->bus
;
2407 new_slot
->device
= func
->device
;
2408 new_slot
->function
= function
;
2409 new_slot
->is_a_board
= 1;
2410 new_slot
->status
= 0;
2416 } while (function
< max_functions
);
2417 dbg("returning from configure_new_device\n");
2424 Configuration logic that involves the hotplug data structures and
2430 * configure_new_function - Configures the PCI header information of one device
2432 * @ctrl: pointer to controller structure
2433 * @func: pointer to function structure
2434 * @behind_bridge: 1 if this is a recursive call, 0 if not
2435 * @resources: pointer to set of resource lists
2437 * Calls itself recursively for bridged devices.
2438 * Returns 0 if success
2441 static int configure_new_function(struct controller
*ctrl
, struct pci_func
*func
,
2443 struct resource_lists
*resources
)
2458 struct pci_resource
*mem_node
;
2459 struct pci_resource
*p_mem_node
;
2460 struct pci_resource
*io_node
;
2461 struct pci_resource
*bus_node
;
2462 struct pci_resource
*hold_mem_node
;
2463 struct pci_resource
*hold_p_mem_node
;
2464 struct pci_resource
*hold_IO_node
;
2465 struct pci_resource
*hold_bus_node
;
2466 struct irq_mapping irqs
;
2467 struct pci_func
*new_slot
;
2468 struct pci_bus
*pci_bus
;
2469 struct resource_lists temp_resources
;
2471 pci_bus
= ctrl
->pci_bus
;
2472 pci_bus
->number
= func
->bus
;
2473 devfn
= PCI_DEVFN(func
->device
, func
->function
);
2475 /* Check for Bridge */
2476 rc
= pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &temp_byte
);
2480 if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) { /* PCI-PCI Bridge */
2481 /* set Primary bus */
2482 dbg("set Primary bus = %d\n", func
->bus
);
2483 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_PRIMARY_BUS
, func
->bus
);
2487 /* find range of busses to use */
2488 dbg("find ranges of buses to use\n");
2489 bus_node
= get_max_resource(&(resources
->bus_head
), 1);
2491 /* If we don't have any busses to allocate, we can't continue */
2495 /* set Secondary bus */
2496 temp_byte
= bus_node
->base
;
2497 dbg("set Secondary bus = %d\n", bus_node
->base
);
2498 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, temp_byte
);
2502 /* set subordinate bus */
2503 temp_byte
= bus_node
->base
+ bus_node
->length
- 1;
2504 dbg("set subordinate bus = %d\n", bus_node
->base
+ bus_node
->length
- 1);
2505 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2509 /* set subordinate Latency Timer and base Latency Timer */
2511 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_SEC_LATENCY_TIMER
, temp_byte
);
2514 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_LATENCY_TIMER
, temp_byte
);
2518 /* set Cache Line size */
2520 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_CACHE_LINE_SIZE
, temp_byte
);
2524 /* Setup the IO, memory, and prefetchable windows */
2525 io_node
= get_max_resource(&(resources
->io_head
), 0x1000);
2528 mem_node
= get_max_resource(&(resources
->mem_head
), 0x100000);
2531 p_mem_node
= get_max_resource(&(resources
->p_mem_head
), 0x100000);
2534 dbg("Setup the IO, memory, and prefetchable windows\n");
2536 dbg("(base, len, next) (%x, %x, %p)\n", io_node
->base
,
2537 io_node
->length
, io_node
->next
);
2539 dbg("(base, len, next) (%x, %x, %p)\n", mem_node
->base
,
2540 mem_node
->length
, mem_node
->next
);
2541 dbg("p_mem_node\n");
2542 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node
->base
,
2543 p_mem_node
->length
, p_mem_node
->next
);
2545 /* set up the IRQ info */
2546 if (!resources
->irqs
) {
2547 irqs
.barber_pole
= 0;
2548 irqs
.interrupt
[0] = 0;
2549 irqs
.interrupt
[1] = 0;
2550 irqs
.interrupt
[2] = 0;
2551 irqs
.interrupt
[3] = 0;
2554 irqs
.barber_pole
= resources
->irqs
->barber_pole
;
2555 irqs
.interrupt
[0] = resources
->irqs
->interrupt
[0];
2556 irqs
.interrupt
[1] = resources
->irqs
->interrupt
[1];
2557 irqs
.interrupt
[2] = resources
->irqs
->interrupt
[2];
2558 irqs
.interrupt
[3] = resources
->irqs
->interrupt
[3];
2559 irqs
.valid_INT
= resources
->irqs
->valid_INT
;
2562 /* set up resource lists that are now aligned on top and bottom
2563 * for anything behind the bridge. */
2564 temp_resources
.bus_head
= bus_node
;
2565 temp_resources
.io_head
= io_node
;
2566 temp_resources
.mem_head
= mem_node
;
2567 temp_resources
.p_mem_head
= p_mem_node
;
2568 temp_resources
.irqs
= &irqs
;
2570 /* Make copies of the nodes we are going to pass down so that
2571 * if there is a problem,we can just use these to free resources */
2572 hold_bus_node
= kmalloc(sizeof(*hold_bus_node
), GFP_KERNEL
);
2573 hold_IO_node
= kmalloc(sizeof(*hold_IO_node
), GFP_KERNEL
);
2574 hold_mem_node
= kmalloc(sizeof(*hold_mem_node
), GFP_KERNEL
);
2575 hold_p_mem_node
= kmalloc(sizeof(*hold_p_mem_node
), GFP_KERNEL
);
2577 if (!hold_bus_node
|| !hold_IO_node
|| !hold_mem_node
|| !hold_p_mem_node
) {
2578 kfree(hold_bus_node
);
2579 kfree(hold_IO_node
);
2580 kfree(hold_mem_node
);
2581 kfree(hold_p_mem_node
);
2586 memcpy(hold_bus_node
, bus_node
, sizeof(struct pci_resource
));
2588 bus_node
->base
+= 1;
2589 bus_node
->length
-= 1;
2590 bus_node
->next
= NULL
;
2592 /* If we have IO resources copy them and fill in the bridge's
2593 * IO range registers */
2595 memcpy(hold_IO_node
, io_node
, sizeof(struct pci_resource
));
2596 io_node
->next
= NULL
;
2598 /* set IO base and Limit registers */
2599 temp_byte
= io_node
->base
>> 8;
2600 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2602 temp_byte
= (io_node
->base
+ io_node
->length
- 1) >> 8;
2603 rc
= pci_bus_write_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2605 kfree(hold_IO_node
);
2606 hold_IO_node
= NULL
;
2609 /* If we have memory resources copy them and fill in the
2610 * bridge's memory range registers. Otherwise, fill in the
2611 * range registers with values that disable them. */
2613 memcpy(hold_mem_node
, mem_node
, sizeof(struct pci_resource
));
2614 mem_node
->next
= NULL
;
2616 /* set Mem base and Limit registers */
2617 temp_word
= mem_node
->base
>> 16;
2618 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2620 temp_word
= (mem_node
->base
+ mem_node
->length
- 1) >> 16;
2621 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2624 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2627 rc
= pci_bus_write_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2629 kfree(hold_mem_node
);
2630 hold_mem_node
= NULL
;
2633 /* If we have prefetchable memory resources copy them and
2634 * fill in the bridge's memory range registers. Otherwise,
2635 * fill in the range registers with values that disable them. */
2637 memcpy(hold_p_mem_node
, p_mem_node
, sizeof(struct pci_resource
));
2638 p_mem_node
->next
= NULL
;
2640 /* set Pre Mem base and Limit registers */
2641 temp_word
= p_mem_node
->base
>> 16;
2642 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2644 temp_word
= (p_mem_node
->base
+ p_mem_node
->length
- 1) >> 16;
2645 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2648 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2651 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2653 kfree(hold_p_mem_node
);
2654 hold_p_mem_node
= NULL
;
2657 /* Adjust this to compensate for extra adjustment in first loop */
2662 /* Here we actually find the devices and configure them */
2663 for (device
= 0; (device
<= 0x1F) && !rc
; device
++) {
2664 irqs
.barber_pole
= (irqs
.barber_pole
+ 1) & 0x03;
2667 pci_bus
->number
= hold_bus_node
->base
;
2668 pci_bus_read_config_dword (pci_bus
, PCI_DEVFN(device
, 0), 0x00, &ID
);
2669 pci_bus
->number
= func
->bus
;
2671 if (ID
!= 0xFFFFFFFF) { /* device present */
2672 /* Setup slot structure. */
2673 new_slot
= cpqhp_slot_create(hold_bus_node
->base
);
2675 if (new_slot
== NULL
) {
2680 new_slot
->bus
= hold_bus_node
->base
;
2681 new_slot
->device
= device
;
2682 new_slot
->function
= 0;
2683 new_slot
->is_a_board
= 1;
2684 new_slot
->status
= 0;
2686 rc
= configure_new_device(ctrl
, new_slot
, 1, &temp_resources
);
2687 dbg("configure_new_device rc=0x%x\n",rc
);
2688 } /* End of IF (device in slot?) */
2689 } /* End of FOR loop */
2693 /* save the interrupt routing information */
2694 if (resources
->irqs
) {
2695 resources
->irqs
->interrupt
[0] = irqs
.interrupt
[0];
2696 resources
->irqs
->interrupt
[1] = irqs
.interrupt
[1];
2697 resources
->irqs
->interrupt
[2] = irqs
.interrupt
[2];
2698 resources
->irqs
->interrupt
[3] = irqs
.interrupt
[3];
2699 resources
->irqs
->valid_INT
= irqs
.valid_INT
;
2700 } else if (!behind_bridge
) {
2701 /* We need to hook up the interrupts here */
2702 for (cloop
= 0; cloop
< 4; cloop
++) {
2703 if (irqs
.valid_INT
& (0x01 << cloop
)) {
2704 rc
= cpqhp_set_irq(func
->bus
, func
->device
,
2705 0x0A + cloop
, irqs
.interrupt
[cloop
]);
2709 } /* end of for loop */
2711 /* Return unused bus resources
2712 * First use the temporary node to store information for
2714 if (hold_bus_node
&& bus_node
&& temp_resources
.bus_head
) {
2715 hold_bus_node
->length
= bus_node
->base
- hold_bus_node
->base
;
2717 hold_bus_node
->next
= func
->bus_head
;
2718 func
->bus_head
= hold_bus_node
;
2720 temp_byte
= temp_resources
.bus_head
->base
- 1;
2722 /* set subordinate bus */
2723 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, temp_byte
);
2725 if (temp_resources
.bus_head
->length
== 0) {
2726 kfree(temp_resources
.bus_head
);
2727 temp_resources
.bus_head
= NULL
;
2729 return_resource(&(resources
->bus_head
), temp_resources
.bus_head
);
2733 /* If we have IO space available and there is some left,
2734 * return the unused portion */
2735 if (hold_IO_node
&& temp_resources
.io_head
) {
2736 io_node
= do_pre_bridge_resource_split(&(temp_resources
.io_head
),
2737 &hold_IO_node
, 0x1000);
2739 /* Check if we were able to split something off */
2741 hold_IO_node
->base
= io_node
->base
+ io_node
->length
;
2743 temp_byte
= (hold_IO_node
->base
) >> 8;
2744 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_IO_BASE
, temp_byte
);
2746 return_resource(&(resources
->io_head
), io_node
);
2749 io_node
= do_bridge_resource_split(&(temp_resources
.io_head
), 0x1000);
2751 /* Check if we were able to split something off */
2753 /* First use the temporary node to store
2754 * information for the board */
2755 hold_IO_node
->length
= io_node
->base
- hold_IO_node
->base
;
2757 /* If we used any, add it to the board's list */
2758 if (hold_IO_node
->length
) {
2759 hold_IO_node
->next
= func
->io_head
;
2760 func
->io_head
= hold_IO_node
;
2762 temp_byte
= (io_node
->base
- 1) >> 8;
2763 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_IO_LIMIT
, temp_byte
);
2765 return_resource(&(resources
->io_head
), io_node
);
2767 /* it doesn't need any IO */
2769 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_IO_LIMIT
, temp_word
);
2771 return_resource(&(resources
->io_head
), io_node
);
2772 kfree(hold_IO_node
);
2775 /* it used most of the range */
2776 hold_IO_node
->next
= func
->io_head
;
2777 func
->io_head
= hold_IO_node
;
2779 } else if (hold_IO_node
) {
2780 /* it used the whole range */
2781 hold_IO_node
->next
= func
->io_head
;
2782 func
->io_head
= hold_IO_node
;
2784 /* If we have memory space available and there is some left,
2785 * return the unused portion */
2786 if (hold_mem_node
&& temp_resources
.mem_head
) {
2787 mem_node
= do_pre_bridge_resource_split(&(temp_resources
. mem_head
),
2788 &hold_mem_node
, 0x100000);
2790 /* Check if we were able to split something off */
2792 hold_mem_node
->base
= mem_node
->base
+ mem_node
->length
;
2794 temp_word
= (hold_mem_node
->base
) >> 16;
2795 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_BASE
, temp_word
);
2797 return_resource(&(resources
->mem_head
), mem_node
);
2800 mem_node
= do_bridge_resource_split(&(temp_resources
.mem_head
), 0x100000);
2802 /* Check if we were able to split something off */
2804 /* First use the temporary node to store
2805 * information for the board */
2806 hold_mem_node
->length
= mem_node
->base
- hold_mem_node
->base
;
2808 if (hold_mem_node
->length
) {
2809 hold_mem_node
->next
= func
->mem_head
;
2810 func
->mem_head
= hold_mem_node
;
2812 /* configure end address */
2813 temp_word
= (mem_node
->base
- 1) >> 16;
2814 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2816 /* Return unused resources to the pool */
2817 return_resource(&(resources
->mem_head
), mem_node
);
2819 /* it doesn't need any Mem */
2821 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_MEMORY_LIMIT
, temp_word
);
2823 return_resource(&(resources
->mem_head
), mem_node
);
2824 kfree(hold_mem_node
);
2827 /* it used most of the range */
2828 hold_mem_node
->next
= func
->mem_head
;
2829 func
->mem_head
= hold_mem_node
;
2831 } else if (hold_mem_node
) {
2832 /* it used the whole range */
2833 hold_mem_node
->next
= func
->mem_head
;
2834 func
->mem_head
= hold_mem_node
;
2836 /* If we have prefetchable memory space available and there
2837 * is some left at the end, return the unused portion */
2838 if (hold_p_mem_node
&& temp_resources
.p_mem_head
) {
2839 p_mem_node
= do_pre_bridge_resource_split(&(temp_resources
.p_mem_head
),
2840 &hold_p_mem_node
, 0x100000);
2842 /* Check if we were able to split something off */
2844 hold_p_mem_node
->base
= p_mem_node
->base
+ p_mem_node
->length
;
2846 temp_word
= (hold_p_mem_node
->base
) >> 16;
2847 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, temp_word
);
2849 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2852 p_mem_node
= do_bridge_resource_split(&(temp_resources
.p_mem_head
), 0x100000);
2854 /* Check if we were able to split something off */
2856 /* First use the temporary node to store
2857 * information for the board */
2858 hold_p_mem_node
->length
= p_mem_node
->base
- hold_p_mem_node
->base
;
2860 /* If we used any, add it to the board's list */
2861 if (hold_p_mem_node
->length
) {
2862 hold_p_mem_node
->next
= func
->p_mem_head
;
2863 func
->p_mem_head
= hold_p_mem_node
;
2865 temp_word
= (p_mem_node
->base
- 1) >> 16;
2866 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2868 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2870 /* it doesn't need any PMem */
2872 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, temp_word
);
2874 return_resource(&(resources
->p_mem_head
), p_mem_node
);
2875 kfree(hold_p_mem_node
);
2878 /* it used the most of the range */
2879 hold_p_mem_node
->next
= func
->p_mem_head
;
2880 func
->p_mem_head
= hold_p_mem_node
;
2882 } else if (hold_p_mem_node
) {
2883 /* it used the whole range */
2884 hold_p_mem_node
->next
= func
->p_mem_head
;
2885 func
->p_mem_head
= hold_p_mem_node
;
2887 /* We should be configuring an IRQ and the bridge's base address
2888 * registers if it needs them. Although we have never seen such
2892 command
= 0x0157; /* = PCI_COMMAND_IO |
2893 * PCI_COMMAND_MEMORY |
2894 * PCI_COMMAND_MASTER |
2895 * PCI_COMMAND_INVALIDATE |
2896 * PCI_COMMAND_PARITY |
2897 * PCI_COMMAND_SERR */
2898 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_COMMAND
, command
);
2900 /* set Bridge Control Register */
2901 command
= 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2902 * PCI_BRIDGE_CTL_SERR |
2903 * PCI_BRIDGE_CTL_NO_ISA */
2904 rc
= pci_bus_write_config_word (pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
2905 } else if ((temp_byte
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
2906 /* Standard device */
2907 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
2909 if (class_code
== PCI_BASE_CLASS_DISPLAY
) {
2910 /* Display (video) adapter (not supported) */
2911 return DEVICE_TYPE_NOT_SUPPORTED
;
2913 /* Figure out IO and memory needs */
2914 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
2915 temp_register
= 0xFFFFFFFF;
2917 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus
->number
, devfn
, cloop
);
2918 rc
= pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
2920 rc
= pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &temp_register
);
2921 dbg("CND: base = 0x%x\n", temp_register
);
2923 if (temp_register
) { /* If this register is implemented */
2924 if ((temp_register
& 0x03L
) == 0x01) {
2927 /* set base = amount of IO space */
2928 base
= temp_register
& 0xFFFFFFFC;
2931 dbg("CND: length = 0x%x\n", base
);
2932 io_node
= get_io_resource(&(resources
->io_head
), base
);
2933 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2934 io_node
->base
, io_node
->length
, io_node
->next
);
2935 dbg("func (%p) io_head (%p)\n", func
, func
->io_head
);
2937 /* allocate the resource to the board */
2939 base
= io_node
->base
;
2941 io_node
->next
= func
->io_head
;
2942 func
->io_head
= io_node
;
2945 } else if ((temp_register
& 0x0BL
) == 0x08) {
2946 /* Map prefetchable memory */
2947 base
= temp_register
& 0xFFFFFFF0;
2950 dbg("CND: length = 0x%x\n", base
);
2951 p_mem_node
= get_resource(&(resources
->p_mem_head
), base
);
2953 /* allocate the resource to the board */
2955 base
= p_mem_node
->base
;
2957 p_mem_node
->next
= func
->p_mem_head
;
2958 func
->p_mem_head
= p_mem_node
;
2961 } else if ((temp_register
& 0x0BL
) == 0x00) {
2963 base
= temp_register
& 0xFFFFFFF0;
2966 dbg("CND: length = 0x%x\n", base
);
2967 mem_node
= get_resource(&(resources
->mem_head
), base
);
2969 /* allocate the resource to the board */
2971 base
= mem_node
->base
;
2973 mem_node
->next
= func
->mem_head
;
2974 func
->mem_head
= mem_node
;
2977 } else if ((temp_register
& 0x0BL
) == 0x04) {
2979 base
= temp_register
& 0xFFFFFFF0;
2982 dbg("CND: length = 0x%x\n", base
);
2983 mem_node
= get_resource(&(resources
->mem_head
), base
);
2985 /* allocate the resource to the board */
2987 base
= mem_node
->base
;
2989 mem_node
->next
= func
->mem_head
;
2990 func
->mem_head
= mem_node
;
2993 } else if ((temp_register
& 0x0BL
) == 0x06) {
2994 /* Those bits are reserved, we can't handle this */
2997 /* Requesting space below 1M */
2998 return NOT_ENOUGH_RESOURCES
;
3001 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
3003 /* Check for 64-bit base */
3004 if ((temp_register
& 0x07L
) == 0x04) {
3007 /* Upper 32 bits of address always zero
3008 * on today's systems */
3009 /* FIXME this is probably not true on
3010 * Alpha and ia64??? */
3012 rc
= pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, base
);
3015 } /* End of base register loop */
3016 if (cpqhp_legacy_mode
) {
3017 /* Figure out which interrupt pin this function uses */
3018 rc
= pci_bus_read_config_byte (pci_bus
, devfn
,
3019 PCI_INTERRUPT_PIN
, &temp_byte
);
3021 /* If this function needs an interrupt and we are behind
3022 * a bridge and the pin is tied to something that's
3023 * alread mapped, set this one the same */
3024 if (temp_byte
&& resources
->irqs
&&
3025 (resources
->irqs
->valid_INT
&
3026 (0x01 << ((temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03)))) {
3027 /* We have to share with something already set up */
3028 IRQ
= resources
->irqs
->interrupt
[(temp_byte
+
3029 resources
->irqs
->barber_pole
- 1) & 0x03];
3031 /* Program IRQ based on card type */
3032 rc
= pci_bus_read_config_byte (pci_bus
, devfn
, 0x0B, &class_code
);
3034 if (class_code
== PCI_BASE_CLASS_STORAGE
) {
3035 IRQ
= cpqhp_disk_irq
;
3037 IRQ
= cpqhp_nic_irq
;
3042 rc
= pci_bus_write_config_byte (pci_bus
, devfn
, PCI_INTERRUPT_LINE
, IRQ
);
3045 if (!behind_bridge
) {
3046 rc
= cpqhp_set_irq(func
->bus
, func
->device
, temp_byte
+ 0x09, IRQ
);
3050 /* TBD - this code may also belong in the other clause
3051 * of this If statement */
3052 resources
->irqs
->interrupt
[(temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03] = IRQ
;
3053 resources
->irqs
->valid_INT
|= 0x01 << (temp_byte
+ resources
->irqs
->barber_pole
- 1) & 0x03;
3058 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
3059 PCI_LATENCY_TIMER
, temp_byte
);
3061 /* Cache Line size */
3063 rc
= pci_bus_write_config_byte(pci_bus
, devfn
,
3064 PCI_CACHE_LINE_SIZE
, temp_byte
);
3066 /* disable ROM base Address */
3068 rc
= pci_bus_write_config_word(pci_bus
, devfn
,
3069 PCI_ROM_ADDRESS
, temp_dword
);
3072 temp_word
= 0x0157; /* = PCI_COMMAND_IO |
3073 * PCI_COMMAND_MEMORY |
3074 * PCI_COMMAND_MASTER |
3075 * PCI_COMMAND_INVALIDATE |
3076 * PCI_COMMAND_PARITY |
3077 * PCI_COMMAND_SERR */
3078 rc
= pci_bus_write_config_word (pci_bus
, devfn
,
3079 PCI_COMMAND
, temp_word
);
3080 } else { /* End of Not-A-Bridge else */
3081 /* It's some strange type of PCI adapter (Cardbus?) */
3082 return DEVICE_TYPE_NOT_SUPPORTED
;
3085 func
->configured
= 1;
3089 cpqhp_destroy_resource_list (&temp_resources
);
3091 return_resource(&(resources
-> bus_head
), hold_bus_node
);
3092 return_resource(&(resources
-> io_head
), hold_IO_node
);
3093 return_resource(&(resources
-> mem_head
), hold_mem_node
);
3094 return_resource(&(resources
-> p_mem_head
), hold_p_mem_node
);