Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / xfs / xfs_log.c
blob3e5ba1ecc08047904b6b5d533482632ee65098a6
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_log.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
37 #include "xfs_sb.h"
39 kmem_zone_t *xfs_log_ticket_zone;
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44 struct xlog *log,
45 struct xlog_ticket *ticket,
46 struct xlog_in_core **iclog,
47 xfs_lsn_t *commitlsnp);
49 STATIC struct xlog *
50 xlog_alloc_log(
51 struct xfs_mount *mp,
52 struct xfs_buftarg *log_target,
53 xfs_daddr_t blk_offset,
54 int num_bblks);
55 STATIC int
56 xlog_space_left(
57 struct xlog *log,
58 atomic64_t *head);
59 STATIC int
60 xlog_sync(
61 struct xlog *log,
62 struct xlog_in_core *iclog);
63 STATIC void
64 xlog_dealloc_log(
65 struct xlog *log);
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71 struct xlog *log,
72 int aborted,
73 struct xlog_in_core *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76 struct xlog *log,
77 int len,
78 struct xlog_in_core **iclog,
79 struct xlog_ticket *ticket,
80 int *continued_write,
81 int *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84 struct xlog *log,
85 struct xlog_in_core *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88 struct xlog *log,
89 struct xlog_in_core *iclog,
90 int eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93 struct xlog *log,
94 struct xlog_in_core *iclog);
96 STATIC void
97 xlog_grant_push_ail(
98 struct xlog *log,
99 int need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102 struct xlog *log,
103 struct xlog_ticket *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106 struct xlog *log,
107 struct xlog_ticket *ticket);
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112 struct xlog *log,
113 void *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116 struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119 struct xlog *log,
120 struct xlog_in_core *iclog,
121 int count,
122 bool syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125 struct xlog *log,
126 struct xlog_in_core *iclog,
127 xfs_lsn_t tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
135 STATIC int
136 xlog_iclogs_empty(
137 struct xlog *log);
139 static void
140 xlog_grant_sub_space(
141 struct xlog *log,
142 atomic64_t *head,
143 int bytes)
145 int64_t head_val = atomic64_read(head);
146 int64_t new, old;
148 do {
149 int cycle, space;
151 xlog_crack_grant_head_val(head_val, &cycle, &space);
153 space -= bytes;
154 if (space < 0) {
155 space += log->l_logsize;
156 cycle--;
159 old = head_val;
160 new = xlog_assign_grant_head_val(cycle, space);
161 head_val = atomic64_cmpxchg(head, old, new);
162 } while (head_val != old);
165 static void
166 xlog_grant_add_space(
167 struct xlog *log,
168 atomic64_t *head,
169 int bytes)
171 int64_t head_val = atomic64_read(head);
172 int64_t new, old;
174 do {
175 int tmp;
176 int cycle, space;
178 xlog_crack_grant_head_val(head_val, &cycle, &space);
180 tmp = log->l_logsize - space;
181 if (tmp > bytes)
182 space += bytes;
183 else {
184 space = bytes - tmp;
185 cycle++;
188 old = head_val;
189 new = xlog_assign_grant_head_val(cycle, space);
190 head_val = atomic64_cmpxchg(head, old, new);
191 } while (head_val != old);
194 STATIC void
195 xlog_grant_head_init(
196 struct xlog_grant_head *head)
198 xlog_assign_grant_head(&head->grant, 1, 0);
199 INIT_LIST_HEAD(&head->waiters);
200 spin_lock_init(&head->lock);
203 STATIC void
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head *head)
207 struct xlog_ticket *tic;
209 spin_lock(&head->lock);
210 list_for_each_entry(tic, &head->waiters, t_queue)
211 wake_up_process(tic->t_task);
212 spin_unlock(&head->lock);
215 static inline int
216 xlog_ticket_reservation(
217 struct xlog *log,
218 struct xlog_grant_head *head,
219 struct xlog_ticket *tic)
221 if (head == &log->l_write_head) {
222 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223 return tic->t_unit_res;
224 } else {
225 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226 return tic->t_unit_res * tic->t_cnt;
227 else
228 return tic->t_unit_res;
232 STATIC bool
233 xlog_grant_head_wake(
234 struct xlog *log,
235 struct xlog_grant_head *head,
236 int *free_bytes)
238 struct xlog_ticket *tic;
239 int need_bytes;
241 list_for_each_entry(tic, &head->waiters, t_queue) {
242 need_bytes = xlog_ticket_reservation(log, head, tic);
243 if (*free_bytes < need_bytes)
244 return false;
246 *free_bytes -= need_bytes;
247 trace_xfs_log_grant_wake_up(log, tic);
248 wake_up_process(tic->t_task);
251 return true;
254 STATIC int
255 xlog_grant_head_wait(
256 struct xlog *log,
257 struct xlog_grant_head *head,
258 struct xlog_ticket *tic,
259 int need_bytes) __releases(&head->lock)
260 __acquires(&head->lock)
262 list_add_tail(&tic->t_queue, &head->waiters);
264 do {
265 if (XLOG_FORCED_SHUTDOWN(log))
266 goto shutdown;
267 xlog_grant_push_ail(log, need_bytes);
269 __set_current_state(TASK_UNINTERRUPTIBLE);
270 spin_unlock(&head->lock);
272 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
274 trace_xfs_log_grant_sleep(log, tic);
275 schedule();
276 trace_xfs_log_grant_wake(log, tic);
278 spin_lock(&head->lock);
279 if (XLOG_FORCED_SHUTDOWN(log))
280 goto shutdown;
281 } while (xlog_space_left(log, &head->grant) < need_bytes);
283 list_del_init(&tic->t_queue);
284 return 0;
285 shutdown:
286 list_del_init(&tic->t_queue);
287 return -EIO;
291 * Atomically get the log space required for a log ticket.
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
299 * every pass.
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
307 STATIC int
308 xlog_grant_head_check(
309 struct xlog *log,
310 struct xlog_grant_head *head,
311 struct xlog_ticket *tic,
312 int *need_bytes)
314 int free_bytes;
315 int error = 0;
317 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
325 *need_bytes = xlog_ticket_reservation(log, head, tic);
326 free_bytes = xlog_space_left(log, &head->grant);
327 if (!list_empty_careful(&head->waiters)) {
328 spin_lock(&head->lock);
329 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330 free_bytes < *need_bytes) {
331 error = xlog_grant_head_wait(log, head, tic,
332 *need_bytes);
334 spin_unlock(&head->lock);
335 } else if (free_bytes < *need_bytes) {
336 spin_lock(&head->lock);
337 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338 spin_unlock(&head->lock);
341 return error;
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
347 tic->t_res_num = 0;
348 tic->t_res_arr_sum = 0;
349 tic->t_res_num_ophdrs = 0;
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
355 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356 /* add to overflow and start again */
357 tic->t_res_o_flow += tic->t_res_arr_sum;
358 tic->t_res_num = 0;
359 tic->t_res_arr_sum = 0;
362 tic->t_res_arr[tic->t_res_num].r_len = len;
363 tic->t_res_arr[tic->t_res_num].r_type = type;
364 tic->t_res_arr_sum += len;
365 tic->t_res_num++;
369 * Replenish the byte reservation required by moving the grant write head.
372 xfs_log_regrant(
373 struct xfs_mount *mp,
374 struct xlog_ticket *tic)
376 struct xlog *log = mp->m_log;
377 int need_bytes;
378 int error = 0;
380 if (XLOG_FORCED_SHUTDOWN(log))
381 return -EIO;
383 XFS_STATS_INC(mp, xs_try_logspace);
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
391 tic->t_tid++;
393 xlog_grant_push_ail(log, tic->t_unit_res);
395 tic->t_curr_res = tic->t_unit_res;
396 xlog_tic_reset_res(tic);
398 if (tic->t_cnt > 0)
399 return 0;
401 trace_xfs_log_regrant(log, tic);
403 error = xlog_grant_head_check(log, &log->l_write_head, tic,
404 &need_bytes);
405 if (error)
406 goto out_error;
408 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409 trace_xfs_log_regrant_exit(log, tic);
410 xlog_verify_grant_tail(log);
411 return 0;
413 out_error:
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
419 tic->t_curr_res = 0;
420 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421 return error;
425 * Reserve log space and return a ticket corresponding the reservation.
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
433 xfs_log_reserve(
434 struct xfs_mount *mp,
435 int unit_bytes,
436 int cnt,
437 struct xlog_ticket **ticp,
438 uint8_t client,
439 bool permanent)
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return -EIO;
451 XFS_STATS_INC(mp, xs_try_logspace);
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return -ENOMEM;
459 *ticp = tic;
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
464 trace_xfs_log_reserve(log, tic);
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
477 out_error:
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
490 * NOTES:
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
510 xfs_lsn_t
511 xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 bool regrant)
517 struct xlog *log = mp->m_log;
518 xfs_lsn_t lsn = 0;
520 if (XLOG_FORCED_SHUTDOWN(log) ||
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 lsn = (xfs_lsn_t) -1;
528 regrant = false;
532 if (!regrant) {
533 trace_xfs_log_done_nonperm(log, ticket);
536 * Release ticket if not permanent reservation or a specific
537 * request has been made to release a permanent reservation.
539 xlog_ungrant_log_space(log, ticket);
540 } else {
541 trace_xfs_log_done_perm(log, ticket);
543 xlog_regrant_reserve_log_space(log, ticket);
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
548 ticket->t_flags |= XLOG_TIC_INITED;
551 xfs_log_ticket_put(ticket);
552 return lsn;
556 * Attaches a new iclog I/O completion callback routine during
557 * transaction commit. If the log is in error state, a non-zero
558 * return code is handed back and the caller is responsible for
559 * executing the callback at an appropriate time.
562 xfs_log_notify(
563 struct xfs_mount *mp,
564 struct xlog_in_core *iclog,
565 xfs_log_callback_t *cb)
567 int abortflg;
569 spin_lock(&iclog->ic_callback_lock);
570 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
571 if (!abortflg) {
572 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
573 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
574 cb->cb_next = NULL;
575 *(iclog->ic_callback_tail) = cb;
576 iclog->ic_callback_tail = &(cb->cb_next);
578 spin_unlock(&iclog->ic_callback_lock);
579 return abortflg;
583 xfs_log_release_iclog(
584 struct xfs_mount *mp,
585 struct xlog_in_core *iclog)
587 if (xlog_state_release_iclog(mp->m_log, iclog)) {
588 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
589 return -EIO;
592 return 0;
596 * Mount a log filesystem
598 * mp - ubiquitous xfs mount point structure
599 * log_target - buftarg of on-disk log device
600 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
601 * num_bblocks - Number of BBSIZE blocks in on-disk log
603 * Return error or zero.
606 xfs_log_mount(
607 xfs_mount_t *mp,
608 xfs_buftarg_t *log_target,
609 xfs_daddr_t blk_offset,
610 int num_bblks)
612 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
613 int error = 0;
614 int min_logfsbs;
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 xfs_notice(mp, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp->m_sb));
619 } else {
620 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp->m_sb));
623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 if (IS_ERR(mp->m_log)) {
628 error = PTR_ERR(mp->m_log);
629 goto out;
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
646 min_logfsbs = xfs_log_calc_minimum_size(mp);
648 if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 xfs_warn(mp,
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp->m_sb.sb_logblocks, min_logfsbs);
652 error = -EINVAL;
653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 xfs_warn(mp,
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 error = -EINVAL;
658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 xfs_warn(mp,
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 XFS_MAX_LOG_BYTES);
663 error = -EINVAL;
664 } else if (mp->m_sb.sb_logsunit > 1 &&
665 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
666 xfs_warn(mp,
667 "log stripe unit %u bytes must be a multiple of block size",
668 mp->m_sb.sb_logsunit);
669 error = -EINVAL;
670 fatal = true;
672 if (error) {
674 * Log check errors are always fatal on v5; or whenever bad
675 * metadata leads to a crash.
677 if (fatal) {
678 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
679 ASSERT(0);
680 goto out_free_log;
682 xfs_crit(mp, "Log size out of supported range.");
683 xfs_crit(mp,
684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
688 * Initialize the AIL now we have a log.
690 error = xfs_trans_ail_init(mp);
691 if (error) {
692 xfs_warn(mp, "AIL initialisation failed: error %d", error);
693 goto out_free_log;
695 mp->m_log->l_ailp = mp->m_ail;
698 * skip log recovery on a norecovery mount. pretend it all
699 * just worked.
701 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
702 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
704 if (readonly)
705 mp->m_flags &= ~XFS_MOUNT_RDONLY;
707 error = xlog_recover(mp->m_log);
709 if (readonly)
710 mp->m_flags |= XFS_MOUNT_RDONLY;
711 if (error) {
712 xfs_warn(mp, "log mount/recovery failed: error %d",
713 error);
714 xlog_recover_cancel(mp->m_log);
715 goto out_destroy_ail;
719 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
720 "log");
721 if (error)
722 goto out_destroy_ail;
724 /* Normal transactions can now occur */
725 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
728 * Now the log has been fully initialised and we know were our
729 * space grant counters are, we can initialise the permanent ticket
730 * needed for delayed logging to work.
732 xlog_cil_init_post_recovery(mp->m_log);
734 return 0;
736 out_destroy_ail:
737 xfs_trans_ail_destroy(mp);
738 out_free_log:
739 xlog_dealloc_log(mp->m_log);
740 out:
741 return error;
745 * Finish the recovery of the file system. This is separate from the
746 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
748 * here.
750 * If we finish recovery successfully, start the background log work. If we are
751 * not doing recovery, then we have a RO filesystem and we don't need to start
752 * it.
755 xfs_log_mount_finish(
756 struct xfs_mount *mp)
758 int error = 0;
759 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
760 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
762 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
763 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
764 return 0;
765 } else if (readonly) {
766 /* Allow unlinked processing to proceed */
767 mp->m_flags &= ~XFS_MOUNT_RDONLY;
771 * During the second phase of log recovery, we need iget and
772 * iput to behave like they do for an active filesystem.
773 * xfs_fs_drop_inode needs to be able to prevent the deletion
774 * of inodes before we're done replaying log items on those
775 * inodes. Turn it off immediately after recovery finishes
776 * so that we don't leak the quota inodes if subsequent mount
777 * activities fail.
779 * We let all inodes involved in redo item processing end up on
780 * the LRU instead of being evicted immediately so that if we do
781 * something to an unlinked inode, the irele won't cause
782 * premature truncation and freeing of the inode, which results
783 * in log recovery failure. We have to evict the unreferenced
784 * lru inodes after clearing SB_ACTIVE because we don't
785 * otherwise clean up the lru if there's a subsequent failure in
786 * xfs_mountfs, which leads to us leaking the inodes if nothing
787 * else (e.g. quotacheck) references the inodes before the
788 * mount failure occurs.
790 mp->m_super->s_flags |= SB_ACTIVE;
791 error = xlog_recover_finish(mp->m_log);
792 if (!error)
793 xfs_log_work_queue(mp);
794 mp->m_super->s_flags &= ~SB_ACTIVE;
795 evict_inodes(mp->m_super);
798 * Drain the buffer LRU after log recovery. This is required for v4
799 * filesystems to avoid leaving around buffers with NULL verifier ops,
800 * but we do it unconditionally to make sure we're always in a clean
801 * cache state after mount.
803 * Don't push in the error case because the AIL may have pending intents
804 * that aren't removed until recovery is cancelled.
806 if (!error && recovered) {
807 xfs_log_force(mp, XFS_LOG_SYNC);
808 xfs_ail_push_all_sync(mp->m_ail);
810 xfs_wait_buftarg(mp->m_ddev_targp);
812 if (readonly)
813 mp->m_flags |= XFS_MOUNT_RDONLY;
815 return error;
819 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
820 * the log.
823 xfs_log_mount_cancel(
824 struct xfs_mount *mp)
826 int error;
828 error = xlog_recover_cancel(mp->m_log);
829 xfs_log_unmount(mp);
831 return error;
835 * Final log writes as part of unmount.
837 * Mark the filesystem clean as unmount happens. Note that during relocation
838 * this routine needs to be executed as part of source-bag while the
839 * deallocation must not be done until source-end.
843 * Unmount record used to have a string "Unmount filesystem--" in the
844 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845 * We just write the magic number now since that particular field isn't
846 * currently architecture converted and "Unmount" is a bit foo.
847 * As far as I know, there weren't any dependencies on the old behaviour.
850 static int
851 xfs_log_unmount_write(xfs_mount_t *mp)
853 struct xlog *log = mp->m_log;
854 xlog_in_core_t *iclog;
855 #ifdef DEBUG
856 xlog_in_core_t *first_iclog;
857 #endif
858 xlog_ticket_t *tic = NULL;
859 xfs_lsn_t lsn;
860 int error;
863 * Don't write out unmount record on norecovery mounts or ro devices.
864 * Or, if we are doing a forced umount (typically because of IO errors).
866 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
867 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
868 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
869 return 0;
872 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
873 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
875 #ifdef DEBUG
876 first_iclog = iclog = log->l_iclog;
877 do {
878 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
879 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
880 ASSERT(iclog->ic_offset == 0);
882 iclog = iclog->ic_next;
883 } while (iclog != first_iclog);
884 #endif
885 if (! (XLOG_FORCED_SHUTDOWN(log))) {
886 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
887 if (!error) {
888 /* the data section must be 32 bit size aligned */
889 struct {
890 uint16_t magic;
891 uint16_t pad1;
892 uint32_t pad2; /* may as well make it 64 bits */
893 } magic = {
894 .magic = XLOG_UNMOUNT_TYPE,
896 struct xfs_log_iovec reg = {
897 .i_addr = &magic,
898 .i_len = sizeof(magic),
899 .i_type = XLOG_REG_TYPE_UNMOUNT,
901 struct xfs_log_vec vec = {
902 .lv_niovecs = 1,
903 .lv_iovecp = &reg,
906 /* remove inited flag, and account for space used */
907 tic->t_flags = 0;
908 tic->t_curr_res -= sizeof(magic);
909 error = xlog_write(log, &vec, tic, &lsn,
910 NULL, XLOG_UNMOUNT_TRANS);
912 * At this point, we're umounting anyway,
913 * so there's no point in transitioning log state
914 * to IOERROR. Just continue...
918 if (error)
919 xfs_alert(mp, "%s: unmount record failed", __func__);
922 spin_lock(&log->l_icloglock);
923 iclog = log->l_iclog;
924 atomic_inc(&iclog->ic_refcnt);
925 xlog_state_want_sync(log, iclog);
926 spin_unlock(&log->l_icloglock);
927 error = xlog_state_release_iclog(log, iclog);
929 spin_lock(&log->l_icloglock);
930 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
931 iclog->ic_state == XLOG_STATE_DIRTY)) {
932 if (!XLOG_FORCED_SHUTDOWN(log)) {
933 xlog_wait(&iclog->ic_force_wait,
934 &log->l_icloglock);
935 } else {
936 spin_unlock(&log->l_icloglock);
938 } else {
939 spin_unlock(&log->l_icloglock);
941 if (tic) {
942 trace_xfs_log_umount_write(log, tic);
943 xlog_ungrant_log_space(log, tic);
944 xfs_log_ticket_put(tic);
946 } else {
948 * We're already in forced_shutdown mode, couldn't
949 * even attempt to write out the unmount transaction.
951 * Go through the motions of sync'ing and releasing
952 * the iclog, even though no I/O will actually happen,
953 * we need to wait for other log I/Os that may already
954 * be in progress. Do this as a separate section of
955 * code so we'll know if we ever get stuck here that
956 * we're in this odd situation of trying to unmount
957 * a file system that went into forced_shutdown as
958 * the result of an unmount..
960 spin_lock(&log->l_icloglock);
961 iclog = log->l_iclog;
962 atomic_inc(&iclog->ic_refcnt);
964 xlog_state_want_sync(log, iclog);
965 spin_unlock(&log->l_icloglock);
966 error = xlog_state_release_iclog(log, iclog);
968 spin_lock(&log->l_icloglock);
970 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
971 || iclog->ic_state == XLOG_STATE_DIRTY
972 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
974 xlog_wait(&iclog->ic_force_wait,
975 &log->l_icloglock);
976 } else {
977 spin_unlock(&log->l_icloglock);
981 return error;
982 } /* xfs_log_unmount_write */
985 * Empty the log for unmount/freeze.
987 * To do this, we first need to shut down the background log work so it is not
988 * trying to cover the log as we clean up. We then need to unpin all objects in
989 * the log so we can then flush them out. Once they have completed their IO and
990 * run the callbacks removing themselves from the AIL, we can write the unmount
991 * record.
993 void
994 xfs_log_quiesce(
995 struct xfs_mount *mp)
997 cancel_delayed_work_sync(&mp->m_log->l_work);
998 xfs_log_force(mp, XFS_LOG_SYNC);
1001 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003 * xfs_buf_iowait() cannot be used because it was pushed with the
1004 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005 * the IO to complete.
1007 xfs_ail_push_all_sync(mp->m_ail);
1008 xfs_wait_buftarg(mp->m_ddev_targp);
1009 xfs_buf_lock(mp->m_sb_bp);
1010 xfs_buf_unlock(mp->m_sb_bp);
1012 xfs_log_unmount_write(mp);
1016 * Shut down and release the AIL and Log.
1018 * During unmount, we need to ensure we flush all the dirty metadata objects
1019 * from the AIL so that the log is empty before we write the unmount record to
1020 * the log. Once this is done, we can tear down the AIL and the log.
1022 void
1023 xfs_log_unmount(
1024 struct xfs_mount *mp)
1026 xfs_log_quiesce(mp);
1028 xfs_trans_ail_destroy(mp);
1030 xfs_sysfs_del(&mp->m_log->l_kobj);
1032 xlog_dealloc_log(mp->m_log);
1035 void
1036 xfs_log_item_init(
1037 struct xfs_mount *mp,
1038 struct xfs_log_item *item,
1039 int type,
1040 const struct xfs_item_ops *ops)
1042 item->li_mountp = mp;
1043 item->li_ailp = mp->m_ail;
1044 item->li_type = type;
1045 item->li_ops = ops;
1046 item->li_lv = NULL;
1048 INIT_LIST_HEAD(&item->li_ail);
1049 INIT_LIST_HEAD(&item->li_cil);
1050 INIT_LIST_HEAD(&item->li_bio_list);
1054 * Wake up processes waiting for log space after we have moved the log tail.
1056 void
1057 xfs_log_space_wake(
1058 struct xfs_mount *mp)
1060 struct xlog *log = mp->m_log;
1061 int free_bytes;
1063 if (XLOG_FORCED_SHUTDOWN(log))
1064 return;
1066 if (!list_empty_careful(&log->l_write_head.waiters)) {
1067 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1069 spin_lock(&log->l_write_head.lock);
1070 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1071 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1072 spin_unlock(&log->l_write_head.lock);
1075 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1076 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1078 spin_lock(&log->l_reserve_head.lock);
1079 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1080 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1081 spin_unlock(&log->l_reserve_head.lock);
1086 * Determine if we have a transaction that has gone to disk that needs to be
1087 * covered. To begin the transition to the idle state firstly the log needs to
1088 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1089 * we start attempting to cover the log.
1091 * Only if we are then in a state where covering is needed, the caller is
1092 * informed that dummy transactions are required to move the log into the idle
1093 * state.
1095 * If there are any items in the AIl or CIL, then we do not want to attempt to
1096 * cover the log as we may be in a situation where there isn't log space
1097 * available to run a dummy transaction and this can lead to deadlocks when the
1098 * tail of the log is pinned by an item that is modified in the CIL. Hence
1099 * there's no point in running a dummy transaction at this point because we
1100 * can't start trying to idle the log until both the CIL and AIL are empty.
1102 static int
1103 xfs_log_need_covered(xfs_mount_t *mp)
1105 struct xlog *log = mp->m_log;
1106 int needed = 0;
1108 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1109 return 0;
1111 if (!xlog_cil_empty(log))
1112 return 0;
1114 spin_lock(&log->l_icloglock);
1115 switch (log->l_covered_state) {
1116 case XLOG_STATE_COVER_DONE:
1117 case XLOG_STATE_COVER_DONE2:
1118 case XLOG_STATE_COVER_IDLE:
1119 break;
1120 case XLOG_STATE_COVER_NEED:
1121 case XLOG_STATE_COVER_NEED2:
1122 if (xfs_ail_min_lsn(log->l_ailp))
1123 break;
1124 if (!xlog_iclogs_empty(log))
1125 break;
1127 needed = 1;
1128 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1129 log->l_covered_state = XLOG_STATE_COVER_DONE;
1130 else
1131 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1132 break;
1133 default:
1134 needed = 1;
1135 break;
1137 spin_unlock(&log->l_icloglock);
1138 return needed;
1142 * We may be holding the log iclog lock upon entering this routine.
1144 xfs_lsn_t
1145 xlog_assign_tail_lsn_locked(
1146 struct xfs_mount *mp)
1148 struct xlog *log = mp->m_log;
1149 struct xfs_log_item *lip;
1150 xfs_lsn_t tail_lsn;
1152 assert_spin_locked(&mp->m_ail->xa_lock);
1155 * To make sure we always have a valid LSN for the log tail we keep
1156 * track of the last LSN which was committed in log->l_last_sync_lsn,
1157 * and use that when the AIL was empty.
1159 lip = xfs_ail_min(mp->m_ail);
1160 if (lip)
1161 tail_lsn = lip->li_lsn;
1162 else
1163 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1164 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1165 atomic64_set(&log->l_tail_lsn, tail_lsn);
1166 return tail_lsn;
1169 xfs_lsn_t
1170 xlog_assign_tail_lsn(
1171 struct xfs_mount *mp)
1173 xfs_lsn_t tail_lsn;
1175 spin_lock(&mp->m_ail->xa_lock);
1176 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1177 spin_unlock(&mp->m_ail->xa_lock);
1179 return tail_lsn;
1183 * Return the space in the log between the tail and the head. The head
1184 * is passed in the cycle/bytes formal parms. In the special case where
1185 * the reserve head has wrapped passed the tail, this calculation is no
1186 * longer valid. In this case, just return 0 which means there is no space
1187 * in the log. This works for all places where this function is called
1188 * with the reserve head. Of course, if the write head were to ever
1189 * wrap the tail, we should blow up. Rather than catch this case here,
1190 * we depend on other ASSERTions in other parts of the code. XXXmiken
1192 * This code also handles the case where the reservation head is behind
1193 * the tail. The details of this case are described below, but the end
1194 * result is that we return the size of the log as the amount of space left.
1196 STATIC int
1197 xlog_space_left(
1198 struct xlog *log,
1199 atomic64_t *head)
1201 int free_bytes;
1202 int tail_bytes;
1203 int tail_cycle;
1204 int head_cycle;
1205 int head_bytes;
1207 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1208 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1209 tail_bytes = BBTOB(tail_bytes);
1210 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1211 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1212 else if (tail_cycle + 1 < head_cycle)
1213 return 0;
1214 else if (tail_cycle < head_cycle) {
1215 ASSERT(tail_cycle == (head_cycle - 1));
1216 free_bytes = tail_bytes - head_bytes;
1217 } else {
1219 * The reservation head is behind the tail.
1220 * In this case we just want to return the size of the
1221 * log as the amount of space left.
1223 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1224 xfs_alert(log->l_mp,
1225 " tail_cycle = %d, tail_bytes = %d",
1226 tail_cycle, tail_bytes);
1227 xfs_alert(log->l_mp,
1228 " GH cycle = %d, GH bytes = %d",
1229 head_cycle, head_bytes);
1230 ASSERT(0);
1231 free_bytes = log->l_logsize;
1233 return free_bytes;
1238 * Log function which is called when an io completes.
1240 * The log manager needs its own routine, in order to control what
1241 * happens with the buffer after the write completes.
1243 static void
1244 xlog_iodone(xfs_buf_t *bp)
1246 struct xlog_in_core *iclog = bp->b_log_item;
1247 struct xlog *l = iclog->ic_log;
1248 int aborted = 0;
1251 * Race to shutdown the filesystem if we see an error or the iclog is in
1252 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1253 * CRC errors into log recovery.
1255 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1256 iclog->ic_state & XLOG_STATE_IOABORT) {
1257 if (iclog->ic_state & XLOG_STATE_IOABORT)
1258 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1260 xfs_buf_ioerror_alert(bp, __func__);
1261 xfs_buf_stale(bp);
1262 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1264 * This flag will be propagated to the trans-committed
1265 * callback routines to let them know that the log-commit
1266 * didn't succeed.
1268 aborted = XFS_LI_ABORTED;
1269 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1270 aborted = XFS_LI_ABORTED;
1273 /* log I/O is always issued ASYNC */
1274 ASSERT(bp->b_flags & XBF_ASYNC);
1275 xlog_state_done_syncing(iclog, aborted);
1278 * drop the buffer lock now that we are done. Nothing references
1279 * the buffer after this, so an unmount waiting on this lock can now
1280 * tear it down safely. As such, it is unsafe to reference the buffer
1281 * (bp) after the unlock as we could race with it being freed.
1283 xfs_buf_unlock(bp);
1287 * Return size of each in-core log record buffer.
1289 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1291 * If the filesystem blocksize is too large, we may need to choose a
1292 * larger size since the directory code currently logs entire blocks.
1295 STATIC void
1296 xlog_get_iclog_buffer_size(
1297 struct xfs_mount *mp,
1298 struct xlog *log)
1300 int size;
1301 int xhdrs;
1303 if (mp->m_logbufs <= 0)
1304 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1305 else
1306 log->l_iclog_bufs = mp->m_logbufs;
1309 * Buffer size passed in from mount system call.
1311 if (mp->m_logbsize > 0) {
1312 size = log->l_iclog_size = mp->m_logbsize;
1313 log->l_iclog_size_log = 0;
1314 while (size != 1) {
1315 log->l_iclog_size_log++;
1316 size >>= 1;
1319 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1320 /* # headers = size / 32k
1321 * one header holds cycles from 32k of data
1324 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1325 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1326 xhdrs++;
1327 log->l_iclog_hsize = xhdrs << BBSHIFT;
1328 log->l_iclog_heads = xhdrs;
1329 } else {
1330 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1331 log->l_iclog_hsize = BBSIZE;
1332 log->l_iclog_heads = 1;
1334 goto done;
1337 /* All machines use 32kB buffers by default. */
1338 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1339 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1341 /* the default log size is 16k or 32k which is one header sector */
1342 log->l_iclog_hsize = BBSIZE;
1343 log->l_iclog_heads = 1;
1345 done:
1346 /* are we being asked to make the sizes selected above visible? */
1347 if (mp->m_logbufs == 0)
1348 mp->m_logbufs = log->l_iclog_bufs;
1349 if (mp->m_logbsize == 0)
1350 mp->m_logbsize = log->l_iclog_size;
1351 } /* xlog_get_iclog_buffer_size */
1354 void
1355 xfs_log_work_queue(
1356 struct xfs_mount *mp)
1358 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1359 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1363 * Every sync period we need to unpin all items in the AIL and push them to
1364 * disk. If there is nothing dirty, then we might need to cover the log to
1365 * indicate that the filesystem is idle.
1367 static void
1368 xfs_log_worker(
1369 struct work_struct *work)
1371 struct xlog *log = container_of(to_delayed_work(work),
1372 struct xlog, l_work);
1373 struct xfs_mount *mp = log->l_mp;
1375 /* dgc: errors ignored - not fatal and nowhere to report them */
1376 if (xfs_log_need_covered(mp)) {
1378 * Dump a transaction into the log that contains no real change.
1379 * This is needed to stamp the current tail LSN into the log
1380 * during the covering operation.
1382 * We cannot use an inode here for this - that will push dirty
1383 * state back up into the VFS and then periodic inode flushing
1384 * will prevent log covering from making progress. Hence we
1385 * synchronously log the superblock instead to ensure the
1386 * superblock is immediately unpinned and can be written back.
1388 xfs_sync_sb(mp, true);
1389 } else
1390 xfs_log_force(mp, 0);
1392 /* start pushing all the metadata that is currently dirty */
1393 xfs_ail_push_all(mp->m_ail);
1395 /* queue us up again */
1396 xfs_log_work_queue(mp);
1400 * This routine initializes some of the log structure for a given mount point.
1401 * Its primary purpose is to fill in enough, so recovery can occur. However,
1402 * some other stuff may be filled in too.
1404 STATIC struct xlog *
1405 xlog_alloc_log(
1406 struct xfs_mount *mp,
1407 struct xfs_buftarg *log_target,
1408 xfs_daddr_t blk_offset,
1409 int num_bblks)
1411 struct xlog *log;
1412 xlog_rec_header_t *head;
1413 xlog_in_core_t **iclogp;
1414 xlog_in_core_t *iclog, *prev_iclog=NULL;
1415 xfs_buf_t *bp;
1416 int i;
1417 int error = -ENOMEM;
1418 uint log2_size = 0;
1420 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1421 if (!log) {
1422 xfs_warn(mp, "Log allocation failed: No memory!");
1423 goto out;
1426 log->l_mp = mp;
1427 log->l_targ = log_target;
1428 log->l_logsize = BBTOB(num_bblks);
1429 log->l_logBBstart = blk_offset;
1430 log->l_logBBsize = num_bblks;
1431 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1432 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1433 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1435 log->l_prev_block = -1;
1436 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1437 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1438 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1439 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1441 xlog_grant_head_init(&log->l_reserve_head);
1442 xlog_grant_head_init(&log->l_write_head);
1444 error = -EFSCORRUPTED;
1445 if (xfs_sb_version_hassector(&mp->m_sb)) {
1446 log2_size = mp->m_sb.sb_logsectlog;
1447 if (log2_size < BBSHIFT) {
1448 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1449 log2_size, BBSHIFT);
1450 goto out_free_log;
1453 log2_size -= BBSHIFT;
1454 if (log2_size > mp->m_sectbb_log) {
1455 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1456 log2_size, mp->m_sectbb_log);
1457 goto out_free_log;
1460 /* for larger sector sizes, must have v2 or external log */
1461 if (log2_size && log->l_logBBstart > 0 &&
1462 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1463 xfs_warn(mp,
1464 "log sector size (0x%x) invalid for configuration.",
1465 log2_size);
1466 goto out_free_log;
1469 log->l_sectBBsize = 1 << log2_size;
1471 xlog_get_iclog_buffer_size(mp, log);
1474 * Use a NULL block for the extra log buffer used during splits so that
1475 * it will trigger errors if we ever try to do IO on it without first
1476 * having set it up properly.
1478 error = -ENOMEM;
1479 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1480 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1481 if (!bp)
1482 goto out_free_log;
1485 * The iclogbuf buffer locks are held over IO but we are not going to do
1486 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1487 * when appropriately.
1489 ASSERT(xfs_buf_islocked(bp));
1490 xfs_buf_unlock(bp);
1492 /* use high priority wq for log I/O completion */
1493 bp->b_ioend_wq = mp->m_log_workqueue;
1494 bp->b_iodone = xlog_iodone;
1495 log->l_xbuf = bp;
1497 spin_lock_init(&log->l_icloglock);
1498 init_waitqueue_head(&log->l_flush_wait);
1500 iclogp = &log->l_iclog;
1502 * The amount of memory to allocate for the iclog structure is
1503 * rather funky due to the way the structure is defined. It is
1504 * done this way so that we can use different sizes for machines
1505 * with different amounts of memory. See the definition of
1506 * xlog_in_core_t in xfs_log_priv.h for details.
1508 ASSERT(log->l_iclog_size >= 4096);
1509 for (i=0; i < log->l_iclog_bufs; i++) {
1510 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1511 if (!*iclogp)
1512 goto out_free_iclog;
1514 iclog = *iclogp;
1515 iclog->ic_prev = prev_iclog;
1516 prev_iclog = iclog;
1518 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1519 BTOBB(log->l_iclog_size),
1520 XBF_NO_IOACCT);
1521 if (!bp)
1522 goto out_free_iclog;
1524 ASSERT(xfs_buf_islocked(bp));
1525 xfs_buf_unlock(bp);
1527 /* use high priority wq for log I/O completion */
1528 bp->b_ioend_wq = mp->m_log_workqueue;
1529 bp->b_iodone = xlog_iodone;
1530 iclog->ic_bp = bp;
1531 iclog->ic_data = bp->b_addr;
1532 #ifdef DEBUG
1533 log->l_iclog_bak[i] = &iclog->ic_header;
1534 #endif
1535 head = &iclog->ic_header;
1536 memset(head, 0, sizeof(xlog_rec_header_t));
1537 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1538 head->h_version = cpu_to_be32(
1539 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1540 head->h_size = cpu_to_be32(log->l_iclog_size);
1541 /* new fields */
1542 head->h_fmt = cpu_to_be32(XLOG_FMT);
1543 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1545 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1546 iclog->ic_state = XLOG_STATE_ACTIVE;
1547 iclog->ic_log = log;
1548 atomic_set(&iclog->ic_refcnt, 0);
1549 spin_lock_init(&iclog->ic_callback_lock);
1550 iclog->ic_callback_tail = &(iclog->ic_callback);
1551 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1553 init_waitqueue_head(&iclog->ic_force_wait);
1554 init_waitqueue_head(&iclog->ic_write_wait);
1556 iclogp = &iclog->ic_next;
1558 *iclogp = log->l_iclog; /* complete ring */
1559 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1561 error = xlog_cil_init(log);
1562 if (error)
1563 goto out_free_iclog;
1564 return log;
1566 out_free_iclog:
1567 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1568 prev_iclog = iclog->ic_next;
1569 if (iclog->ic_bp)
1570 xfs_buf_free(iclog->ic_bp);
1571 kmem_free(iclog);
1573 spinlock_destroy(&log->l_icloglock);
1574 xfs_buf_free(log->l_xbuf);
1575 out_free_log:
1576 kmem_free(log);
1577 out:
1578 return ERR_PTR(error);
1579 } /* xlog_alloc_log */
1583 * Write out the commit record of a transaction associated with the given
1584 * ticket. Return the lsn of the commit record.
1586 STATIC int
1587 xlog_commit_record(
1588 struct xlog *log,
1589 struct xlog_ticket *ticket,
1590 struct xlog_in_core **iclog,
1591 xfs_lsn_t *commitlsnp)
1593 struct xfs_mount *mp = log->l_mp;
1594 int error;
1595 struct xfs_log_iovec reg = {
1596 .i_addr = NULL,
1597 .i_len = 0,
1598 .i_type = XLOG_REG_TYPE_COMMIT,
1600 struct xfs_log_vec vec = {
1601 .lv_niovecs = 1,
1602 .lv_iovecp = &reg,
1605 ASSERT_ALWAYS(iclog);
1606 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1607 XLOG_COMMIT_TRANS);
1608 if (error)
1609 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1610 return error;
1614 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1615 * log space. This code pushes on the lsn which would supposedly free up
1616 * the 25% which we want to leave free. We may need to adopt a policy which
1617 * pushes on an lsn which is further along in the log once we reach the high
1618 * water mark. In this manner, we would be creating a low water mark.
1620 STATIC void
1621 xlog_grant_push_ail(
1622 struct xlog *log,
1623 int need_bytes)
1625 xfs_lsn_t threshold_lsn = 0;
1626 xfs_lsn_t last_sync_lsn;
1627 int free_blocks;
1628 int free_bytes;
1629 int threshold_block;
1630 int threshold_cycle;
1631 int free_threshold;
1633 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1635 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1636 free_blocks = BTOBBT(free_bytes);
1639 * Set the threshold for the minimum number of free blocks in the
1640 * log to the maximum of what the caller needs, one quarter of the
1641 * log, and 256 blocks.
1643 free_threshold = BTOBB(need_bytes);
1644 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1645 free_threshold = MAX(free_threshold, 256);
1646 if (free_blocks >= free_threshold)
1647 return;
1649 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1650 &threshold_block);
1651 threshold_block += free_threshold;
1652 if (threshold_block >= log->l_logBBsize) {
1653 threshold_block -= log->l_logBBsize;
1654 threshold_cycle += 1;
1656 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1657 threshold_block);
1659 * Don't pass in an lsn greater than the lsn of the last
1660 * log record known to be on disk. Use a snapshot of the last sync lsn
1661 * so that it doesn't change between the compare and the set.
1663 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1664 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1665 threshold_lsn = last_sync_lsn;
1668 * Get the transaction layer to kick the dirty buffers out to
1669 * disk asynchronously. No point in trying to do this if
1670 * the filesystem is shutting down.
1672 if (!XLOG_FORCED_SHUTDOWN(log))
1673 xfs_ail_push(log->l_ailp, threshold_lsn);
1677 * Stamp cycle number in every block
1679 STATIC void
1680 xlog_pack_data(
1681 struct xlog *log,
1682 struct xlog_in_core *iclog,
1683 int roundoff)
1685 int i, j, k;
1686 int size = iclog->ic_offset + roundoff;
1687 __be32 cycle_lsn;
1688 char *dp;
1690 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1692 dp = iclog->ic_datap;
1693 for (i = 0; i < BTOBB(size); i++) {
1694 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1695 break;
1696 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1697 *(__be32 *)dp = cycle_lsn;
1698 dp += BBSIZE;
1701 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1702 xlog_in_core_2_t *xhdr = iclog->ic_data;
1704 for ( ; i < BTOBB(size); i++) {
1705 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1707 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1708 *(__be32 *)dp = cycle_lsn;
1709 dp += BBSIZE;
1712 for (i = 1; i < log->l_iclog_heads; i++)
1713 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1718 * Calculate the checksum for a log buffer.
1720 * This is a little more complicated than it should be because the various
1721 * headers and the actual data are non-contiguous.
1723 __le32
1724 xlog_cksum(
1725 struct xlog *log,
1726 struct xlog_rec_header *rhead,
1727 char *dp,
1728 int size)
1730 uint32_t crc;
1732 /* first generate the crc for the record header ... */
1733 crc = xfs_start_cksum_update((char *)rhead,
1734 sizeof(struct xlog_rec_header),
1735 offsetof(struct xlog_rec_header, h_crc));
1737 /* ... then for additional cycle data for v2 logs ... */
1738 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1739 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1740 int i;
1741 int xheads;
1743 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1744 if (size % XLOG_HEADER_CYCLE_SIZE)
1745 xheads++;
1747 for (i = 1; i < xheads; i++) {
1748 crc = crc32c(crc, &xhdr[i].hic_xheader,
1749 sizeof(struct xlog_rec_ext_header));
1753 /* ... and finally for the payload */
1754 crc = crc32c(crc, dp, size);
1756 return xfs_end_cksum(crc);
1760 * The bdstrat callback function for log bufs. This gives us a central
1761 * place to trap bufs in case we get hit by a log I/O error and need to
1762 * shutdown. Actually, in practice, even when we didn't get a log error,
1763 * we transition the iclogs to IOERROR state *after* flushing all existing
1764 * iclogs to disk. This is because we don't want anymore new transactions to be
1765 * started or completed afterwards.
1767 * We lock the iclogbufs here so that we can serialise against IO completion
1768 * during unmount. We might be processing a shutdown triggered during unmount,
1769 * and that can occur asynchronously to the unmount thread, and hence we need to
1770 * ensure that completes before tearing down the iclogbufs. Hence we need to
1771 * hold the buffer lock across the log IO to acheive that.
1773 STATIC int
1774 xlog_bdstrat(
1775 struct xfs_buf *bp)
1777 struct xlog_in_core *iclog = bp->b_log_item;
1779 xfs_buf_lock(bp);
1780 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1781 xfs_buf_ioerror(bp, -EIO);
1782 xfs_buf_stale(bp);
1783 xfs_buf_ioend(bp);
1785 * It would seem logical to return EIO here, but we rely on
1786 * the log state machine to propagate I/O errors instead of
1787 * doing it here. Similarly, IO completion will unlock the
1788 * buffer, so we don't do it here.
1790 return 0;
1793 xfs_buf_submit(bp);
1794 return 0;
1798 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1799 * fashion. Previously, we should have moved the current iclog
1800 * ptr in the log to point to the next available iclog. This allows further
1801 * write to continue while this code syncs out an iclog ready to go.
1802 * Before an in-core log can be written out, the data section must be scanned
1803 * to save away the 1st word of each BBSIZE block into the header. We replace
1804 * it with the current cycle count. Each BBSIZE block is tagged with the
1805 * cycle count because there in an implicit assumption that drives will
1806 * guarantee that entire 512 byte blocks get written at once. In other words,
1807 * we can't have part of a 512 byte block written and part not written. By
1808 * tagging each block, we will know which blocks are valid when recovering
1809 * after an unclean shutdown.
1811 * This routine is single threaded on the iclog. No other thread can be in
1812 * this routine with the same iclog. Changing contents of iclog can there-
1813 * fore be done without grabbing the state machine lock. Updating the global
1814 * log will require grabbing the lock though.
1816 * The entire log manager uses a logical block numbering scheme. Only
1817 * log_sync (and then only bwrite()) know about the fact that the log may
1818 * not start with block zero on a given device. The log block start offset
1819 * is added immediately before calling bwrite().
1822 STATIC int
1823 xlog_sync(
1824 struct xlog *log,
1825 struct xlog_in_core *iclog)
1827 xfs_buf_t *bp;
1828 int i;
1829 uint count; /* byte count of bwrite */
1830 uint count_init; /* initial count before roundup */
1831 int roundoff; /* roundoff to BB or stripe */
1832 int split = 0; /* split write into two regions */
1833 int error;
1834 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1835 int size;
1837 XFS_STATS_INC(log->l_mp, xs_log_writes);
1838 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1840 /* Add for LR header */
1841 count_init = log->l_iclog_hsize + iclog->ic_offset;
1843 /* Round out the log write size */
1844 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1845 /* we have a v2 stripe unit to use */
1846 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1847 } else {
1848 count = BBTOB(BTOBB(count_init));
1850 roundoff = count - count_init;
1851 ASSERT(roundoff >= 0);
1852 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1853 roundoff < log->l_mp->m_sb.sb_logsunit)
1855 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1856 roundoff < BBTOB(1)));
1858 /* move grant heads by roundoff in sync */
1859 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1860 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1862 /* put cycle number in every block */
1863 xlog_pack_data(log, iclog, roundoff);
1865 /* real byte length */
1866 size = iclog->ic_offset;
1867 if (v2)
1868 size += roundoff;
1869 iclog->ic_header.h_len = cpu_to_be32(size);
1871 bp = iclog->ic_bp;
1872 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1874 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1876 /* Do we need to split this write into 2 parts? */
1877 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1878 char *dptr;
1880 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1881 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1882 iclog->ic_bwritecnt = 2;
1885 * Bump the cycle numbers at the start of each block in the
1886 * part of the iclog that ends up in the buffer that gets
1887 * written to the start of the log.
1889 * Watch out for the header magic number case, though.
1891 dptr = (char *)&iclog->ic_header + count;
1892 for (i = 0; i < split; i += BBSIZE) {
1893 uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1894 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1895 cycle++;
1896 *(__be32 *)dptr = cpu_to_be32(cycle);
1898 dptr += BBSIZE;
1900 } else {
1901 iclog->ic_bwritecnt = 1;
1904 /* calculcate the checksum */
1905 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1906 iclog->ic_datap, size);
1908 * Intentionally corrupt the log record CRC based on the error injection
1909 * frequency, if defined. This facilitates testing log recovery in the
1910 * event of torn writes. Hence, set the IOABORT state to abort the log
1911 * write on I/O completion and shutdown the fs. The subsequent mount
1912 * detects the bad CRC and attempts to recover.
1914 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1915 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1916 iclog->ic_state |= XLOG_STATE_IOABORT;
1917 xfs_warn(log->l_mp,
1918 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1919 be64_to_cpu(iclog->ic_header.h_lsn));
1922 bp->b_io_length = BTOBB(count);
1923 bp->b_log_item = iclog;
1924 bp->b_flags &= ~XBF_FLUSH;
1925 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1928 * Flush the data device before flushing the log to make sure all meta
1929 * data written back from the AIL actually made it to disk before
1930 * stamping the new log tail LSN into the log buffer. For an external
1931 * log we need to issue the flush explicitly, and unfortunately
1932 * synchronously here; for an internal log we can simply use the block
1933 * layer state machine for preflushes.
1935 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1936 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1937 else
1938 bp->b_flags |= XBF_FLUSH;
1940 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1941 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1943 xlog_verify_iclog(log, iclog, count, true);
1945 /* account for log which doesn't start at block #0 */
1946 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1949 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1950 * is shutting down.
1952 error = xlog_bdstrat(bp);
1953 if (error) {
1954 xfs_buf_ioerror_alert(bp, "xlog_sync");
1955 return error;
1957 if (split) {
1958 bp = iclog->ic_log->l_xbuf;
1959 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1960 xfs_buf_associate_memory(bp,
1961 (char *)&iclog->ic_header + count, split);
1962 bp->b_log_item = iclog;
1963 bp->b_flags &= ~XBF_FLUSH;
1964 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1966 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1967 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1969 /* account for internal log which doesn't start at block #0 */
1970 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1971 error = xlog_bdstrat(bp);
1972 if (error) {
1973 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1974 return error;
1977 return 0;
1978 } /* xlog_sync */
1981 * Deallocate a log structure
1983 STATIC void
1984 xlog_dealloc_log(
1985 struct xlog *log)
1987 xlog_in_core_t *iclog, *next_iclog;
1988 int i;
1990 xlog_cil_destroy(log);
1993 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 * is done before we tear down these buffers.
1996 iclog = log->l_iclog;
1997 for (i = 0; i < log->l_iclog_bufs; i++) {
1998 xfs_buf_lock(iclog->ic_bp);
1999 xfs_buf_unlock(iclog->ic_bp);
2000 iclog = iclog->ic_next;
2004 * Always need to ensure that the extra buffer does not point to memory
2005 * owned by another log buffer before we free it. Also, cycle the lock
2006 * first to ensure we've completed IO on it.
2008 xfs_buf_lock(log->l_xbuf);
2009 xfs_buf_unlock(log->l_xbuf);
2010 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2011 xfs_buf_free(log->l_xbuf);
2013 iclog = log->l_iclog;
2014 for (i = 0; i < log->l_iclog_bufs; i++) {
2015 xfs_buf_free(iclog->ic_bp);
2016 next_iclog = iclog->ic_next;
2017 kmem_free(iclog);
2018 iclog = next_iclog;
2020 spinlock_destroy(&log->l_icloglock);
2022 log->l_mp->m_log = NULL;
2023 kmem_free(log);
2024 } /* xlog_dealloc_log */
2027 * Update counters atomically now that memcpy is done.
2029 /* ARGSUSED */
2030 static inline void
2031 xlog_state_finish_copy(
2032 struct xlog *log,
2033 struct xlog_in_core *iclog,
2034 int record_cnt,
2035 int copy_bytes)
2037 spin_lock(&log->l_icloglock);
2039 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2040 iclog->ic_offset += copy_bytes;
2042 spin_unlock(&log->l_icloglock);
2043 } /* xlog_state_finish_copy */
2049 * print out info relating to regions written which consume
2050 * the reservation
2052 void
2053 xlog_print_tic_res(
2054 struct xfs_mount *mp,
2055 struct xlog_ticket *ticket)
2057 uint i;
2058 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2060 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2061 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2062 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2063 REG_TYPE_STR(BFORMAT, "bformat"),
2064 REG_TYPE_STR(BCHUNK, "bchunk"),
2065 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2066 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2067 REG_TYPE_STR(IFORMAT, "iformat"),
2068 REG_TYPE_STR(ICORE, "icore"),
2069 REG_TYPE_STR(IEXT, "iext"),
2070 REG_TYPE_STR(IBROOT, "ibroot"),
2071 REG_TYPE_STR(ILOCAL, "ilocal"),
2072 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2073 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2074 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2075 REG_TYPE_STR(QFORMAT, "qformat"),
2076 REG_TYPE_STR(DQUOT, "dquot"),
2077 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2078 REG_TYPE_STR(LRHEADER, "LR header"),
2079 REG_TYPE_STR(UNMOUNT, "unmount"),
2080 REG_TYPE_STR(COMMIT, "commit"),
2081 REG_TYPE_STR(TRANSHDR, "trans header"),
2082 REG_TYPE_STR(ICREATE, "inode create")
2084 #undef REG_TYPE_STR
2086 xfs_warn(mp, "ticket reservation summary:");
2087 xfs_warn(mp, " unit res = %d bytes",
2088 ticket->t_unit_res);
2089 xfs_warn(mp, " current res = %d bytes",
2090 ticket->t_curr_res);
2091 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2092 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2094 ticket->t_res_num_ophdrs, ophdr_spc);
2095 xfs_warn(mp, " ophdr + reg = %u bytes",
2096 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097 xfs_warn(mp, " num regions = %u",
2098 ticket->t_res_num);
2100 for (i = 0; i < ticket->t_res_num; i++) {
2101 uint r_type = ticket->t_res_arr[i].r_type;
2102 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104 "bad-rtype" : res_type_str[r_type]),
2105 ticket->t_res_arr[i].r_len);
2110 * Print a summary of the transaction.
2112 void
2113 xlog_print_trans(
2114 struct xfs_trans *tp)
2116 struct xfs_mount *mp = tp->t_mountp;
2117 struct xfs_log_item_desc *lidp;
2119 /* dump core transaction and ticket info */
2120 xfs_warn(mp, "transaction summary:");
2121 xfs_warn(mp, " log res = %d", tp->t_log_res);
2122 xfs_warn(mp, " log count = %d", tp->t_log_count);
2123 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2125 xlog_print_tic_res(mp, tp->t_ticket);
2127 /* dump each log item */
2128 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2129 struct xfs_log_item *lip = lidp->lid_item;
2130 struct xfs_log_vec *lv = lip->li_lv;
2131 struct xfs_log_iovec *vec;
2132 int i;
2134 xfs_warn(mp, "log item: ");
2135 xfs_warn(mp, " type = 0x%x", lip->li_type);
2136 xfs_warn(mp, " flags = 0x%x", lip->li_flags);
2137 if (!lv)
2138 continue;
2139 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2140 xfs_warn(mp, " size = %d", lv->lv_size);
2141 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2142 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2144 /* dump each iovec for the log item */
2145 vec = lv->lv_iovecp;
2146 for (i = 0; i < lv->lv_niovecs; i++) {
2147 int dumplen = min(vec->i_len, 32);
2149 xfs_warn(mp, " iovec[%d]", i);
2150 xfs_warn(mp, " type = 0x%x", vec->i_type);
2151 xfs_warn(mp, " len = %d", vec->i_len);
2152 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2153 xfs_hex_dump(vec->i_addr, dumplen);
2155 vec++;
2161 * Calculate the potential space needed by the log vector. Each region gets
2162 * its own xlog_op_header_t and may need to be double word aligned.
2164 static int
2165 xlog_write_calc_vec_length(
2166 struct xlog_ticket *ticket,
2167 struct xfs_log_vec *log_vector)
2169 struct xfs_log_vec *lv;
2170 int headers = 0;
2171 int len = 0;
2172 int i;
2174 /* acct for start rec of xact */
2175 if (ticket->t_flags & XLOG_TIC_INITED)
2176 headers++;
2178 for (lv = log_vector; lv; lv = lv->lv_next) {
2179 /* we don't write ordered log vectors */
2180 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2181 continue;
2183 headers += lv->lv_niovecs;
2185 for (i = 0; i < lv->lv_niovecs; i++) {
2186 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2188 len += vecp->i_len;
2189 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2193 ticket->t_res_num_ophdrs += headers;
2194 len += headers * sizeof(struct xlog_op_header);
2196 return len;
2200 * If first write for transaction, insert start record We can't be trying to
2201 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2203 static int
2204 xlog_write_start_rec(
2205 struct xlog_op_header *ophdr,
2206 struct xlog_ticket *ticket)
2208 if (!(ticket->t_flags & XLOG_TIC_INITED))
2209 return 0;
2211 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2212 ophdr->oh_clientid = ticket->t_clientid;
2213 ophdr->oh_len = 0;
2214 ophdr->oh_flags = XLOG_START_TRANS;
2215 ophdr->oh_res2 = 0;
2217 ticket->t_flags &= ~XLOG_TIC_INITED;
2219 return sizeof(struct xlog_op_header);
2222 static xlog_op_header_t *
2223 xlog_write_setup_ophdr(
2224 struct xlog *log,
2225 struct xlog_op_header *ophdr,
2226 struct xlog_ticket *ticket,
2227 uint flags)
2229 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2230 ophdr->oh_clientid = ticket->t_clientid;
2231 ophdr->oh_res2 = 0;
2233 /* are we copying a commit or unmount record? */
2234 ophdr->oh_flags = flags;
2237 * We've seen logs corrupted with bad transaction client ids. This
2238 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2239 * and shut down the filesystem.
2241 switch (ophdr->oh_clientid) {
2242 case XFS_TRANSACTION:
2243 case XFS_VOLUME:
2244 case XFS_LOG:
2245 break;
2246 default:
2247 xfs_warn(log->l_mp,
2248 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2249 ophdr->oh_clientid, ticket);
2250 return NULL;
2253 return ophdr;
2257 * Set up the parameters of the region copy into the log. This has
2258 * to handle region write split across multiple log buffers - this
2259 * state is kept external to this function so that this code can
2260 * be written in an obvious, self documenting manner.
2262 static int
2263 xlog_write_setup_copy(
2264 struct xlog_ticket *ticket,
2265 struct xlog_op_header *ophdr,
2266 int space_available,
2267 int space_required,
2268 int *copy_off,
2269 int *copy_len,
2270 int *last_was_partial_copy,
2271 int *bytes_consumed)
2273 int still_to_copy;
2275 still_to_copy = space_required - *bytes_consumed;
2276 *copy_off = *bytes_consumed;
2278 if (still_to_copy <= space_available) {
2279 /* write of region completes here */
2280 *copy_len = still_to_copy;
2281 ophdr->oh_len = cpu_to_be32(*copy_len);
2282 if (*last_was_partial_copy)
2283 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2284 *last_was_partial_copy = 0;
2285 *bytes_consumed = 0;
2286 return 0;
2289 /* partial write of region, needs extra log op header reservation */
2290 *copy_len = space_available;
2291 ophdr->oh_len = cpu_to_be32(*copy_len);
2292 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2293 if (*last_was_partial_copy)
2294 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2295 *bytes_consumed += *copy_len;
2296 (*last_was_partial_copy)++;
2298 /* account for new log op header */
2299 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2300 ticket->t_res_num_ophdrs++;
2302 return sizeof(struct xlog_op_header);
2305 static int
2306 xlog_write_copy_finish(
2307 struct xlog *log,
2308 struct xlog_in_core *iclog,
2309 uint flags,
2310 int *record_cnt,
2311 int *data_cnt,
2312 int *partial_copy,
2313 int *partial_copy_len,
2314 int log_offset,
2315 struct xlog_in_core **commit_iclog)
2317 if (*partial_copy) {
2319 * This iclog has already been marked WANT_SYNC by
2320 * xlog_state_get_iclog_space.
2322 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2323 *record_cnt = 0;
2324 *data_cnt = 0;
2325 return xlog_state_release_iclog(log, iclog);
2328 *partial_copy = 0;
2329 *partial_copy_len = 0;
2331 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2332 /* no more space in this iclog - push it. */
2333 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2334 *record_cnt = 0;
2335 *data_cnt = 0;
2337 spin_lock(&log->l_icloglock);
2338 xlog_state_want_sync(log, iclog);
2339 spin_unlock(&log->l_icloglock);
2341 if (!commit_iclog)
2342 return xlog_state_release_iclog(log, iclog);
2343 ASSERT(flags & XLOG_COMMIT_TRANS);
2344 *commit_iclog = iclog;
2347 return 0;
2351 * Write some region out to in-core log
2353 * This will be called when writing externally provided regions or when
2354 * writing out a commit record for a given transaction.
2356 * General algorithm:
2357 * 1. Find total length of this write. This may include adding to the
2358 * lengths passed in.
2359 * 2. Check whether we violate the tickets reservation.
2360 * 3. While writing to this iclog
2361 * A. Reserve as much space in this iclog as can get
2362 * B. If this is first write, save away start lsn
2363 * C. While writing this region:
2364 * 1. If first write of transaction, write start record
2365 * 2. Write log operation header (header per region)
2366 * 3. Find out if we can fit entire region into this iclog
2367 * 4. Potentially, verify destination memcpy ptr
2368 * 5. Memcpy (partial) region
2369 * 6. If partial copy, release iclog; otherwise, continue
2370 * copying more regions into current iclog
2371 * 4. Mark want sync bit (in simulation mode)
2372 * 5. Release iclog for potential flush to on-disk log.
2374 * ERRORS:
2375 * 1. Panic if reservation is overrun. This should never happen since
2376 * reservation amounts are generated internal to the filesystem.
2377 * NOTES:
2378 * 1. Tickets are single threaded data structures.
2379 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2380 * syncing routine. When a single log_write region needs to span
2381 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2382 * on all log operation writes which don't contain the end of the
2383 * region. The XLOG_END_TRANS bit is used for the in-core log
2384 * operation which contains the end of the continued log_write region.
2385 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2386 * we don't really know exactly how much space will be used. As a result,
2387 * we don't update ic_offset until the end when we know exactly how many
2388 * bytes have been written out.
2391 xlog_write(
2392 struct xlog *log,
2393 struct xfs_log_vec *log_vector,
2394 struct xlog_ticket *ticket,
2395 xfs_lsn_t *start_lsn,
2396 struct xlog_in_core **commit_iclog,
2397 uint flags)
2399 struct xlog_in_core *iclog = NULL;
2400 struct xfs_log_iovec *vecp;
2401 struct xfs_log_vec *lv;
2402 int len;
2403 int index;
2404 int partial_copy = 0;
2405 int partial_copy_len = 0;
2406 int contwr = 0;
2407 int record_cnt = 0;
2408 int data_cnt = 0;
2409 int error;
2411 *start_lsn = 0;
2413 len = xlog_write_calc_vec_length(ticket, log_vector);
2416 * Region headers and bytes are already accounted for.
2417 * We only need to take into account start records and
2418 * split regions in this function.
2420 if (ticket->t_flags & XLOG_TIC_INITED)
2421 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2424 * Commit record headers need to be accounted for. These
2425 * come in as separate writes so are easy to detect.
2427 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2428 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2430 if (ticket->t_curr_res < 0) {
2431 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2432 "ctx ticket reservation ran out. Need to up reservation");
2433 xlog_print_tic_res(log->l_mp, ticket);
2434 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2437 index = 0;
2438 lv = log_vector;
2439 vecp = lv->lv_iovecp;
2440 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2441 void *ptr;
2442 int log_offset;
2444 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2445 &contwr, &log_offset);
2446 if (error)
2447 return error;
2449 ASSERT(log_offset <= iclog->ic_size - 1);
2450 ptr = iclog->ic_datap + log_offset;
2452 /* start_lsn is the first lsn written to. That's all we need. */
2453 if (!*start_lsn)
2454 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2457 * This loop writes out as many regions as can fit in the amount
2458 * of space which was allocated by xlog_state_get_iclog_space().
2460 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2461 struct xfs_log_iovec *reg;
2462 struct xlog_op_header *ophdr;
2463 int start_rec_copy;
2464 int copy_len;
2465 int copy_off;
2466 bool ordered = false;
2468 /* ordered log vectors have no regions to write */
2469 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2470 ASSERT(lv->lv_niovecs == 0);
2471 ordered = true;
2472 goto next_lv;
2475 reg = &vecp[index];
2476 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2477 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2479 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2480 if (start_rec_copy) {
2481 record_cnt++;
2482 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2483 start_rec_copy);
2486 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2487 if (!ophdr)
2488 return -EIO;
2490 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2491 sizeof(struct xlog_op_header));
2493 len += xlog_write_setup_copy(ticket, ophdr,
2494 iclog->ic_size-log_offset,
2495 reg->i_len,
2496 &copy_off, &copy_len,
2497 &partial_copy,
2498 &partial_copy_len);
2499 xlog_verify_dest_ptr(log, ptr);
2502 * Copy region.
2504 * Unmount records just log an opheader, so can have
2505 * empty payloads with no data region to copy. Hence we
2506 * only copy the payload if the vector says it has data
2507 * to copy.
2509 ASSERT(copy_len >= 0);
2510 if (copy_len > 0) {
2511 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2512 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2513 copy_len);
2515 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2516 record_cnt++;
2517 data_cnt += contwr ? copy_len : 0;
2519 error = xlog_write_copy_finish(log, iclog, flags,
2520 &record_cnt, &data_cnt,
2521 &partial_copy,
2522 &partial_copy_len,
2523 log_offset,
2524 commit_iclog);
2525 if (error)
2526 return error;
2529 * if we had a partial copy, we need to get more iclog
2530 * space but we don't want to increment the region
2531 * index because there is still more is this region to
2532 * write.
2534 * If we completed writing this region, and we flushed
2535 * the iclog (indicated by resetting of the record
2536 * count), then we also need to get more log space. If
2537 * this was the last record, though, we are done and
2538 * can just return.
2540 if (partial_copy)
2541 break;
2543 if (++index == lv->lv_niovecs) {
2544 next_lv:
2545 lv = lv->lv_next;
2546 index = 0;
2547 if (lv)
2548 vecp = lv->lv_iovecp;
2550 if (record_cnt == 0 && !ordered) {
2551 if (!lv)
2552 return 0;
2553 break;
2558 ASSERT(len == 0);
2560 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2561 if (!commit_iclog)
2562 return xlog_state_release_iclog(log, iclog);
2564 ASSERT(flags & XLOG_COMMIT_TRANS);
2565 *commit_iclog = iclog;
2566 return 0;
2570 /*****************************************************************************
2572 * State Machine functions
2574 *****************************************************************************
2577 /* Clean iclogs starting from the head. This ordering must be
2578 * maintained, so an iclog doesn't become ACTIVE beyond one that
2579 * is SYNCING. This is also required to maintain the notion that we use
2580 * a ordered wait queue to hold off would be writers to the log when every
2581 * iclog is trying to sync to disk.
2583 * State Change: DIRTY -> ACTIVE
2585 STATIC void
2586 xlog_state_clean_log(
2587 struct xlog *log)
2589 xlog_in_core_t *iclog;
2590 int changed = 0;
2592 iclog = log->l_iclog;
2593 do {
2594 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2595 iclog->ic_state = XLOG_STATE_ACTIVE;
2596 iclog->ic_offset = 0;
2597 ASSERT(iclog->ic_callback == NULL);
2599 * If the number of ops in this iclog indicate it just
2600 * contains the dummy transaction, we can
2601 * change state into IDLE (the second time around).
2602 * Otherwise we should change the state into
2603 * NEED a dummy.
2604 * We don't need to cover the dummy.
2606 if (!changed &&
2607 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2608 XLOG_COVER_OPS)) {
2609 changed = 1;
2610 } else {
2612 * We have two dirty iclogs so start over
2613 * This could also be num of ops indicates
2614 * this is not the dummy going out.
2616 changed = 2;
2618 iclog->ic_header.h_num_logops = 0;
2619 memset(iclog->ic_header.h_cycle_data, 0,
2620 sizeof(iclog->ic_header.h_cycle_data));
2621 iclog->ic_header.h_lsn = 0;
2622 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2623 /* do nothing */;
2624 else
2625 break; /* stop cleaning */
2626 iclog = iclog->ic_next;
2627 } while (iclog != log->l_iclog);
2629 /* log is locked when we are called */
2631 * Change state for the dummy log recording.
2632 * We usually go to NEED. But we go to NEED2 if the changed indicates
2633 * we are done writing the dummy record.
2634 * If we are done with the second dummy recored (DONE2), then
2635 * we go to IDLE.
2637 if (changed) {
2638 switch (log->l_covered_state) {
2639 case XLOG_STATE_COVER_IDLE:
2640 case XLOG_STATE_COVER_NEED:
2641 case XLOG_STATE_COVER_NEED2:
2642 log->l_covered_state = XLOG_STATE_COVER_NEED;
2643 break;
2645 case XLOG_STATE_COVER_DONE:
2646 if (changed == 1)
2647 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2648 else
2649 log->l_covered_state = XLOG_STATE_COVER_NEED;
2650 break;
2652 case XLOG_STATE_COVER_DONE2:
2653 if (changed == 1)
2654 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2655 else
2656 log->l_covered_state = XLOG_STATE_COVER_NEED;
2657 break;
2659 default:
2660 ASSERT(0);
2663 } /* xlog_state_clean_log */
2665 STATIC xfs_lsn_t
2666 xlog_get_lowest_lsn(
2667 struct xlog *log)
2669 xlog_in_core_t *lsn_log;
2670 xfs_lsn_t lowest_lsn, lsn;
2672 lsn_log = log->l_iclog;
2673 lowest_lsn = 0;
2674 do {
2675 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2676 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2677 if ((lsn && !lowest_lsn) ||
2678 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2679 lowest_lsn = lsn;
2682 lsn_log = lsn_log->ic_next;
2683 } while (lsn_log != log->l_iclog);
2684 return lowest_lsn;
2688 STATIC void
2689 xlog_state_do_callback(
2690 struct xlog *log,
2691 int aborted,
2692 struct xlog_in_core *ciclog)
2694 xlog_in_core_t *iclog;
2695 xlog_in_core_t *first_iclog; /* used to know when we've
2696 * processed all iclogs once */
2697 xfs_log_callback_t *cb, *cb_next;
2698 int flushcnt = 0;
2699 xfs_lsn_t lowest_lsn;
2700 int ioerrors; /* counter: iclogs with errors */
2701 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2702 int funcdidcallbacks; /* flag: function did callbacks */
2703 int repeats; /* for issuing console warnings if
2704 * looping too many times */
2705 int wake = 0;
2707 spin_lock(&log->l_icloglock);
2708 first_iclog = iclog = log->l_iclog;
2709 ioerrors = 0;
2710 funcdidcallbacks = 0;
2711 repeats = 0;
2713 do {
2715 * Scan all iclogs starting with the one pointed to by the
2716 * log. Reset this starting point each time the log is
2717 * unlocked (during callbacks).
2719 * Keep looping through iclogs until one full pass is made
2720 * without running any callbacks.
2722 first_iclog = log->l_iclog;
2723 iclog = log->l_iclog;
2724 loopdidcallbacks = 0;
2725 repeats++;
2727 do {
2729 /* skip all iclogs in the ACTIVE & DIRTY states */
2730 if (iclog->ic_state &
2731 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2732 iclog = iclog->ic_next;
2733 continue;
2737 * Between marking a filesystem SHUTDOWN and stopping
2738 * the log, we do flush all iclogs to disk (if there
2739 * wasn't a log I/O error). So, we do want things to
2740 * go smoothly in case of just a SHUTDOWN w/o a
2741 * LOG_IO_ERROR.
2743 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2745 * Can only perform callbacks in order. Since
2746 * this iclog is not in the DONE_SYNC/
2747 * DO_CALLBACK state, we skip the rest and
2748 * just try to clean up. If we set our iclog
2749 * to DO_CALLBACK, we will not process it when
2750 * we retry since a previous iclog is in the
2751 * CALLBACK and the state cannot change since
2752 * we are holding the l_icloglock.
2754 if (!(iclog->ic_state &
2755 (XLOG_STATE_DONE_SYNC |
2756 XLOG_STATE_DO_CALLBACK))) {
2757 if (ciclog && (ciclog->ic_state ==
2758 XLOG_STATE_DONE_SYNC)) {
2759 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2761 break;
2764 * We now have an iclog that is in either the
2765 * DO_CALLBACK or DONE_SYNC states. The other
2766 * states (WANT_SYNC, SYNCING, or CALLBACK were
2767 * caught by the above if and are going to
2768 * clean (i.e. we aren't doing their callbacks)
2769 * see the above if.
2773 * We will do one more check here to see if we
2774 * have chased our tail around.
2777 lowest_lsn = xlog_get_lowest_lsn(log);
2778 if (lowest_lsn &&
2779 XFS_LSN_CMP(lowest_lsn,
2780 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2781 iclog = iclog->ic_next;
2782 continue; /* Leave this iclog for
2783 * another thread */
2786 iclog->ic_state = XLOG_STATE_CALLBACK;
2790 * Completion of a iclog IO does not imply that
2791 * a transaction has completed, as transactions
2792 * can be large enough to span many iclogs. We
2793 * cannot change the tail of the log half way
2794 * through a transaction as this may be the only
2795 * transaction in the log and moving th etail to
2796 * point to the middle of it will prevent
2797 * recovery from finding the start of the
2798 * transaction. Hence we should only update the
2799 * last_sync_lsn if this iclog contains
2800 * transaction completion callbacks on it.
2802 * We have to do this before we drop the
2803 * icloglock to ensure we are the only one that
2804 * can update it.
2806 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2807 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2808 if (iclog->ic_callback)
2809 atomic64_set(&log->l_last_sync_lsn,
2810 be64_to_cpu(iclog->ic_header.h_lsn));
2812 } else
2813 ioerrors++;
2815 spin_unlock(&log->l_icloglock);
2818 * Keep processing entries in the callback list until
2819 * we come around and it is empty. We need to
2820 * atomically see that the list is empty and change the
2821 * state to DIRTY so that we don't miss any more
2822 * callbacks being added.
2824 spin_lock(&iclog->ic_callback_lock);
2825 cb = iclog->ic_callback;
2826 while (cb) {
2827 iclog->ic_callback_tail = &(iclog->ic_callback);
2828 iclog->ic_callback = NULL;
2829 spin_unlock(&iclog->ic_callback_lock);
2831 /* perform callbacks in the order given */
2832 for (; cb; cb = cb_next) {
2833 cb_next = cb->cb_next;
2834 cb->cb_func(cb->cb_arg, aborted);
2836 spin_lock(&iclog->ic_callback_lock);
2837 cb = iclog->ic_callback;
2840 loopdidcallbacks++;
2841 funcdidcallbacks++;
2843 spin_lock(&log->l_icloglock);
2844 ASSERT(iclog->ic_callback == NULL);
2845 spin_unlock(&iclog->ic_callback_lock);
2846 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2847 iclog->ic_state = XLOG_STATE_DIRTY;
2850 * Transition from DIRTY to ACTIVE if applicable.
2851 * NOP if STATE_IOERROR.
2853 xlog_state_clean_log(log);
2855 /* wake up threads waiting in xfs_log_force() */
2856 wake_up_all(&iclog->ic_force_wait);
2858 iclog = iclog->ic_next;
2859 } while (first_iclog != iclog);
2861 if (repeats > 5000) {
2862 flushcnt += repeats;
2863 repeats = 0;
2864 xfs_warn(log->l_mp,
2865 "%s: possible infinite loop (%d iterations)",
2866 __func__, flushcnt);
2868 } while (!ioerrors && loopdidcallbacks);
2870 #ifdef DEBUG
2872 * Make one last gasp attempt to see if iclogs are being left in limbo.
2873 * If the above loop finds an iclog earlier than the current iclog and
2874 * in one of the syncing states, the current iclog is put into
2875 * DO_CALLBACK and the callbacks are deferred to the completion of the
2876 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2877 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2878 * states.
2880 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2881 * for ic_state == SYNCING.
2883 if (funcdidcallbacks) {
2884 first_iclog = iclog = log->l_iclog;
2885 do {
2886 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2888 * Terminate the loop if iclogs are found in states
2889 * which will cause other threads to clean up iclogs.
2891 * SYNCING - i/o completion will go through logs
2892 * DONE_SYNC - interrupt thread should be waiting for
2893 * l_icloglock
2894 * IOERROR - give up hope all ye who enter here
2896 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2897 iclog->ic_state & XLOG_STATE_SYNCING ||
2898 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2899 iclog->ic_state == XLOG_STATE_IOERROR )
2900 break;
2901 iclog = iclog->ic_next;
2902 } while (first_iclog != iclog);
2904 #endif
2906 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2907 wake = 1;
2908 spin_unlock(&log->l_icloglock);
2910 if (wake)
2911 wake_up_all(&log->l_flush_wait);
2916 * Finish transitioning this iclog to the dirty state.
2918 * Make sure that we completely execute this routine only when this is
2919 * the last call to the iclog. There is a good chance that iclog flushes,
2920 * when we reach the end of the physical log, get turned into 2 separate
2921 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2922 * routine. By using the reference count bwritecnt, we guarantee that only
2923 * the second completion goes through.
2925 * Callbacks could take time, so they are done outside the scope of the
2926 * global state machine log lock.
2928 STATIC void
2929 xlog_state_done_syncing(
2930 xlog_in_core_t *iclog,
2931 int aborted)
2933 struct xlog *log = iclog->ic_log;
2935 spin_lock(&log->l_icloglock);
2937 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2938 iclog->ic_state == XLOG_STATE_IOERROR);
2939 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2940 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2944 * If we got an error, either on the first buffer, or in the case of
2945 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2946 * and none should ever be attempted to be written to disk
2947 * again.
2949 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2950 if (--iclog->ic_bwritecnt == 1) {
2951 spin_unlock(&log->l_icloglock);
2952 return;
2954 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2958 * Someone could be sleeping prior to writing out the next
2959 * iclog buffer, we wake them all, one will get to do the
2960 * I/O, the others get to wait for the result.
2962 wake_up_all(&iclog->ic_write_wait);
2963 spin_unlock(&log->l_icloglock);
2964 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2965 } /* xlog_state_done_syncing */
2969 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2970 * sleep. We wait on the flush queue on the head iclog as that should be
2971 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2972 * we will wait here and all new writes will sleep until a sync completes.
2974 * The in-core logs are used in a circular fashion. They are not used
2975 * out-of-order even when an iclog past the head is free.
2977 * return:
2978 * * log_offset where xlog_write() can start writing into the in-core
2979 * log's data space.
2980 * * in-core log pointer to which xlog_write() should write.
2981 * * boolean indicating this is a continued write to an in-core log.
2982 * If this is the last write, then the in-core log's offset field
2983 * needs to be incremented, depending on the amount of data which
2984 * is copied.
2986 STATIC int
2987 xlog_state_get_iclog_space(
2988 struct xlog *log,
2989 int len,
2990 struct xlog_in_core **iclogp,
2991 struct xlog_ticket *ticket,
2992 int *continued_write,
2993 int *logoffsetp)
2995 int log_offset;
2996 xlog_rec_header_t *head;
2997 xlog_in_core_t *iclog;
2998 int error;
3000 restart:
3001 spin_lock(&log->l_icloglock);
3002 if (XLOG_FORCED_SHUTDOWN(log)) {
3003 spin_unlock(&log->l_icloglock);
3004 return -EIO;
3007 iclog = log->l_iclog;
3008 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3009 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3011 /* Wait for log writes to have flushed */
3012 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3013 goto restart;
3016 head = &iclog->ic_header;
3018 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3019 log_offset = iclog->ic_offset;
3021 /* On the 1st write to an iclog, figure out lsn. This works
3022 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3023 * committing to. If the offset is set, that's how many blocks
3024 * must be written.
3026 if (log_offset == 0) {
3027 ticket->t_curr_res -= log->l_iclog_hsize;
3028 xlog_tic_add_region(ticket,
3029 log->l_iclog_hsize,
3030 XLOG_REG_TYPE_LRHEADER);
3031 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3032 head->h_lsn = cpu_to_be64(
3033 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3034 ASSERT(log->l_curr_block >= 0);
3037 /* If there is enough room to write everything, then do it. Otherwise,
3038 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3039 * bit is on, so this will get flushed out. Don't update ic_offset
3040 * until you know exactly how many bytes get copied. Therefore, wait
3041 * until later to update ic_offset.
3043 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3044 * can fit into remaining data section.
3046 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3047 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3050 * If I'm the only one writing to this iclog, sync it to disk.
3051 * We need to do an atomic compare and decrement here to avoid
3052 * racing with concurrent atomic_dec_and_lock() calls in
3053 * xlog_state_release_iclog() when there is more than one
3054 * reference to the iclog.
3056 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3057 /* we are the only one */
3058 spin_unlock(&log->l_icloglock);
3059 error = xlog_state_release_iclog(log, iclog);
3060 if (error)
3061 return error;
3062 } else {
3063 spin_unlock(&log->l_icloglock);
3065 goto restart;
3068 /* Do we have enough room to write the full amount in the remainder
3069 * of this iclog? Or must we continue a write on the next iclog and
3070 * mark this iclog as completely taken? In the case where we switch
3071 * iclogs (to mark it taken), this particular iclog will release/sync
3072 * to disk in xlog_write().
3074 if (len <= iclog->ic_size - iclog->ic_offset) {
3075 *continued_write = 0;
3076 iclog->ic_offset += len;
3077 } else {
3078 *continued_write = 1;
3079 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3081 *iclogp = iclog;
3083 ASSERT(iclog->ic_offset <= iclog->ic_size);
3084 spin_unlock(&log->l_icloglock);
3086 *logoffsetp = log_offset;
3087 return 0;
3088 } /* xlog_state_get_iclog_space */
3090 /* The first cnt-1 times through here we don't need to
3091 * move the grant write head because the permanent
3092 * reservation has reserved cnt times the unit amount.
3093 * Release part of current permanent unit reservation and
3094 * reset current reservation to be one units worth. Also
3095 * move grant reservation head forward.
3097 STATIC void
3098 xlog_regrant_reserve_log_space(
3099 struct xlog *log,
3100 struct xlog_ticket *ticket)
3102 trace_xfs_log_regrant_reserve_enter(log, ticket);
3104 if (ticket->t_cnt > 0)
3105 ticket->t_cnt--;
3107 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3108 ticket->t_curr_res);
3109 xlog_grant_sub_space(log, &log->l_write_head.grant,
3110 ticket->t_curr_res);
3111 ticket->t_curr_res = ticket->t_unit_res;
3112 xlog_tic_reset_res(ticket);
3114 trace_xfs_log_regrant_reserve_sub(log, ticket);
3116 /* just return if we still have some of the pre-reserved space */
3117 if (ticket->t_cnt > 0)
3118 return;
3120 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3121 ticket->t_unit_res);
3123 trace_xfs_log_regrant_reserve_exit(log, ticket);
3125 ticket->t_curr_res = ticket->t_unit_res;
3126 xlog_tic_reset_res(ticket);
3127 } /* xlog_regrant_reserve_log_space */
3131 * Give back the space left from a reservation.
3133 * All the information we need to make a correct determination of space left
3134 * is present. For non-permanent reservations, things are quite easy. The
3135 * count should have been decremented to zero. We only need to deal with the
3136 * space remaining in the current reservation part of the ticket. If the
3137 * ticket contains a permanent reservation, there may be left over space which
3138 * needs to be released. A count of N means that N-1 refills of the current
3139 * reservation can be done before we need to ask for more space. The first
3140 * one goes to fill up the first current reservation. Once we run out of
3141 * space, the count will stay at zero and the only space remaining will be
3142 * in the current reservation field.
3144 STATIC void
3145 xlog_ungrant_log_space(
3146 struct xlog *log,
3147 struct xlog_ticket *ticket)
3149 int bytes;
3151 if (ticket->t_cnt > 0)
3152 ticket->t_cnt--;
3154 trace_xfs_log_ungrant_enter(log, ticket);
3155 trace_xfs_log_ungrant_sub(log, ticket);
3158 * If this is a permanent reservation ticket, we may be able to free
3159 * up more space based on the remaining count.
3161 bytes = ticket->t_curr_res;
3162 if (ticket->t_cnt > 0) {
3163 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3164 bytes += ticket->t_unit_res*ticket->t_cnt;
3167 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3168 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3170 trace_xfs_log_ungrant_exit(log, ticket);
3172 xfs_log_space_wake(log->l_mp);
3176 * Flush iclog to disk if this is the last reference to the given iclog and
3177 * the WANT_SYNC bit is set.
3179 * When this function is entered, the iclog is not necessarily in the
3180 * WANT_SYNC state. It may be sitting around waiting to get filled.
3184 STATIC int
3185 xlog_state_release_iclog(
3186 struct xlog *log,
3187 struct xlog_in_core *iclog)
3189 int sync = 0; /* do we sync? */
3191 if (iclog->ic_state & XLOG_STATE_IOERROR)
3192 return -EIO;
3194 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3195 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3196 return 0;
3198 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3199 spin_unlock(&log->l_icloglock);
3200 return -EIO;
3202 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3203 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3205 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3206 /* update tail before writing to iclog */
3207 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3208 sync++;
3209 iclog->ic_state = XLOG_STATE_SYNCING;
3210 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3211 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3212 /* cycle incremented when incrementing curr_block */
3214 spin_unlock(&log->l_icloglock);
3217 * We let the log lock go, so it's possible that we hit a log I/O
3218 * error or some other SHUTDOWN condition that marks the iclog
3219 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3220 * this iclog has consistent data, so we ignore IOERROR
3221 * flags after this point.
3223 if (sync)
3224 return xlog_sync(log, iclog);
3225 return 0;
3226 } /* xlog_state_release_iclog */
3230 * This routine will mark the current iclog in the ring as WANT_SYNC
3231 * and move the current iclog pointer to the next iclog in the ring.
3232 * When this routine is called from xlog_state_get_iclog_space(), the
3233 * exact size of the iclog has not yet been determined. All we know is
3234 * that every data block. We have run out of space in this log record.
3236 STATIC void
3237 xlog_state_switch_iclogs(
3238 struct xlog *log,
3239 struct xlog_in_core *iclog,
3240 int eventual_size)
3242 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3243 if (!eventual_size)
3244 eventual_size = iclog->ic_offset;
3245 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3246 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3247 log->l_prev_block = log->l_curr_block;
3248 log->l_prev_cycle = log->l_curr_cycle;
3250 /* roll log?: ic_offset changed later */
3251 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3253 /* Round up to next log-sunit */
3254 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3255 log->l_mp->m_sb.sb_logsunit > 1) {
3256 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3257 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3260 if (log->l_curr_block >= log->l_logBBsize) {
3262 * Rewind the current block before the cycle is bumped to make
3263 * sure that the combined LSN never transiently moves forward
3264 * when the log wraps to the next cycle. This is to support the
3265 * unlocked sample of these fields from xlog_valid_lsn(). Most
3266 * other cases should acquire l_icloglock.
3268 log->l_curr_block -= log->l_logBBsize;
3269 ASSERT(log->l_curr_block >= 0);
3270 smp_wmb();
3271 log->l_curr_cycle++;
3272 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3273 log->l_curr_cycle++;
3275 ASSERT(iclog == log->l_iclog);
3276 log->l_iclog = iclog->ic_next;
3277 } /* xlog_state_switch_iclogs */
3280 * Write out all data in the in-core log as of this exact moment in time.
3282 * Data may be written to the in-core log during this call. However,
3283 * we don't guarantee this data will be written out. A change from past
3284 * implementation means this routine will *not* write out zero length LRs.
3286 * Basically, we try and perform an intelligent scan of the in-core logs.
3287 * If we determine there is no flushable data, we just return. There is no
3288 * flushable data if:
3290 * 1. the current iclog is active and has no data; the previous iclog
3291 * is in the active or dirty state.
3292 * 2. the current iclog is drity, and the previous iclog is in the
3293 * active or dirty state.
3295 * We may sleep if:
3297 * 1. the current iclog is not in the active nor dirty state.
3298 * 2. the current iclog dirty, and the previous iclog is not in the
3299 * active nor dirty state.
3300 * 3. the current iclog is active, and there is another thread writing
3301 * to this particular iclog.
3302 * 4. a) the current iclog is active and has no other writers
3303 * b) when we return from flushing out this iclog, it is still
3304 * not in the active nor dirty state.
3307 _xfs_log_force(
3308 struct xfs_mount *mp,
3309 uint flags,
3310 int *log_flushed)
3312 struct xlog *log = mp->m_log;
3313 struct xlog_in_core *iclog;
3314 xfs_lsn_t lsn;
3316 XFS_STATS_INC(mp, xs_log_force);
3318 xlog_cil_force(log);
3320 spin_lock(&log->l_icloglock);
3322 iclog = log->l_iclog;
3323 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3324 spin_unlock(&log->l_icloglock);
3325 return -EIO;
3328 /* If the head iclog is not active nor dirty, we just attach
3329 * ourselves to the head and go to sleep.
3331 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3332 iclog->ic_state == XLOG_STATE_DIRTY) {
3334 * If the head is dirty or (active and empty), then
3335 * we need to look at the previous iclog. If the previous
3336 * iclog is active or dirty we are done. There is nothing
3337 * to sync out. Otherwise, we attach ourselves to the
3338 * previous iclog and go to sleep.
3340 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3341 (atomic_read(&iclog->ic_refcnt) == 0
3342 && iclog->ic_offset == 0)) {
3343 iclog = iclog->ic_prev;
3344 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3345 iclog->ic_state == XLOG_STATE_DIRTY)
3346 goto no_sleep;
3347 else
3348 goto maybe_sleep;
3349 } else {
3350 if (atomic_read(&iclog->ic_refcnt) == 0) {
3351 /* We are the only one with access to this
3352 * iclog. Flush it out now. There should
3353 * be a roundoff of zero to show that someone
3354 * has already taken care of the roundoff from
3355 * the previous sync.
3357 atomic_inc(&iclog->ic_refcnt);
3358 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3359 xlog_state_switch_iclogs(log, iclog, 0);
3360 spin_unlock(&log->l_icloglock);
3362 if (xlog_state_release_iclog(log, iclog))
3363 return -EIO;
3365 if (log_flushed)
3366 *log_flushed = 1;
3367 spin_lock(&log->l_icloglock);
3368 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3369 iclog->ic_state != XLOG_STATE_DIRTY)
3370 goto maybe_sleep;
3371 else
3372 goto no_sleep;
3373 } else {
3374 /* Someone else is writing to this iclog.
3375 * Use its call to flush out the data. However,
3376 * the other thread may not force out this LR,
3377 * so we mark it WANT_SYNC.
3379 xlog_state_switch_iclogs(log, iclog, 0);
3380 goto maybe_sleep;
3385 /* By the time we come around again, the iclog could've been filled
3386 * which would give it another lsn. If we have a new lsn, just
3387 * return because the relevant data has been flushed.
3389 maybe_sleep:
3390 if (flags & XFS_LOG_SYNC) {
3392 * We must check if we're shutting down here, before
3393 * we wait, while we're holding the l_icloglock.
3394 * Then we check again after waking up, in case our
3395 * sleep was disturbed by a bad news.
3397 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3398 spin_unlock(&log->l_icloglock);
3399 return -EIO;
3401 XFS_STATS_INC(mp, xs_log_force_sleep);
3402 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3404 * No need to grab the log lock here since we're
3405 * only deciding whether or not to return EIO
3406 * and the memory read should be atomic.
3408 if (iclog->ic_state & XLOG_STATE_IOERROR)
3409 return -EIO;
3410 } else {
3412 no_sleep:
3413 spin_unlock(&log->l_icloglock);
3415 return 0;
3419 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3420 * about errors or whether the log was flushed or not. This is the normal
3421 * interface to use when trying to unpin items or move the log forward.
3423 void
3424 xfs_log_force(
3425 xfs_mount_t *mp,
3426 uint flags)
3428 trace_xfs_log_force(mp, 0, _RET_IP_);
3429 _xfs_log_force(mp, flags, NULL);
3433 * Force the in-core log to disk for a specific LSN.
3435 * Find in-core log with lsn.
3436 * If it is in the DIRTY state, just return.
3437 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3438 * state and go to sleep or return.
3439 * If it is in any other state, go to sleep or return.
3441 * Synchronous forces are implemented with a signal variable. All callers
3442 * to force a given lsn to disk will wait on a the sv attached to the
3443 * specific in-core log. When given in-core log finally completes its
3444 * write to disk, that thread will wake up all threads waiting on the
3445 * sv.
3448 _xfs_log_force_lsn(
3449 struct xfs_mount *mp,
3450 xfs_lsn_t lsn,
3451 uint flags,
3452 int *log_flushed)
3454 struct xlog *log = mp->m_log;
3455 struct xlog_in_core *iclog;
3456 int already_slept = 0;
3458 ASSERT(lsn != 0);
3460 XFS_STATS_INC(mp, xs_log_force);
3462 lsn = xlog_cil_force_lsn(log, lsn);
3463 if (lsn == NULLCOMMITLSN)
3464 return 0;
3466 try_again:
3467 spin_lock(&log->l_icloglock);
3468 iclog = log->l_iclog;
3469 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3470 spin_unlock(&log->l_icloglock);
3471 return -EIO;
3474 do {
3475 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3476 iclog = iclog->ic_next;
3477 continue;
3480 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3481 spin_unlock(&log->l_icloglock);
3482 return 0;
3485 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3487 * We sleep here if we haven't already slept (e.g.
3488 * this is the first time we've looked at the correct
3489 * iclog buf) and the buffer before us is going to
3490 * be sync'ed. The reason for this is that if we
3491 * are doing sync transactions here, by waiting for
3492 * the previous I/O to complete, we can allow a few
3493 * more transactions into this iclog before we close
3494 * it down.
3496 * Otherwise, we mark the buffer WANT_SYNC, and bump
3497 * up the refcnt so we can release the log (which
3498 * drops the ref count). The state switch keeps new
3499 * transaction commits from using this buffer. When
3500 * the current commits finish writing into the buffer,
3501 * the refcount will drop to zero and the buffer will
3502 * go out then.
3504 if (!already_slept &&
3505 (iclog->ic_prev->ic_state &
3506 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3507 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3509 XFS_STATS_INC(mp, xs_log_force_sleep);
3511 xlog_wait(&iclog->ic_prev->ic_write_wait,
3512 &log->l_icloglock);
3513 already_slept = 1;
3514 goto try_again;
3516 atomic_inc(&iclog->ic_refcnt);
3517 xlog_state_switch_iclogs(log, iclog, 0);
3518 spin_unlock(&log->l_icloglock);
3519 if (xlog_state_release_iclog(log, iclog))
3520 return -EIO;
3521 if (log_flushed)
3522 *log_flushed = 1;
3523 spin_lock(&log->l_icloglock);
3526 if ((flags & XFS_LOG_SYNC) && /* sleep */
3527 !(iclog->ic_state &
3528 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3530 * Don't wait on completion if we know that we've
3531 * gotten a log write error.
3533 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3534 spin_unlock(&log->l_icloglock);
3535 return -EIO;
3537 XFS_STATS_INC(mp, xs_log_force_sleep);
3538 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3540 * No need to grab the log lock here since we're
3541 * only deciding whether or not to return EIO
3542 * and the memory read should be atomic.
3544 if (iclog->ic_state & XLOG_STATE_IOERROR)
3545 return -EIO;
3546 } else { /* just return */
3547 spin_unlock(&log->l_icloglock);
3550 return 0;
3551 } while (iclog != log->l_iclog);
3553 spin_unlock(&log->l_icloglock);
3554 return 0;
3558 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3559 * about errors or whether the log was flushed or not. This is the normal
3560 * interface to use when trying to unpin items or move the log forward.
3562 void
3563 xfs_log_force_lsn(
3564 xfs_mount_t *mp,
3565 xfs_lsn_t lsn,
3566 uint flags)
3568 trace_xfs_log_force(mp, lsn, _RET_IP_);
3569 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3573 * Called when we want to mark the current iclog as being ready to sync to
3574 * disk.
3576 STATIC void
3577 xlog_state_want_sync(
3578 struct xlog *log,
3579 struct xlog_in_core *iclog)
3581 assert_spin_locked(&log->l_icloglock);
3583 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3584 xlog_state_switch_iclogs(log, iclog, 0);
3585 } else {
3586 ASSERT(iclog->ic_state &
3587 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3592 /*****************************************************************************
3594 * TICKET functions
3596 *****************************************************************************
3600 * Free a used ticket when its refcount falls to zero.
3602 void
3603 xfs_log_ticket_put(
3604 xlog_ticket_t *ticket)
3606 ASSERT(atomic_read(&ticket->t_ref) > 0);
3607 if (atomic_dec_and_test(&ticket->t_ref))
3608 kmem_zone_free(xfs_log_ticket_zone, ticket);
3611 xlog_ticket_t *
3612 xfs_log_ticket_get(
3613 xlog_ticket_t *ticket)
3615 ASSERT(atomic_read(&ticket->t_ref) > 0);
3616 atomic_inc(&ticket->t_ref);
3617 return ticket;
3621 * Figure out the total log space unit (in bytes) that would be
3622 * required for a log ticket.
3625 xfs_log_calc_unit_res(
3626 struct xfs_mount *mp,
3627 int unit_bytes)
3629 struct xlog *log = mp->m_log;
3630 int iclog_space;
3631 uint num_headers;
3634 * Permanent reservations have up to 'cnt'-1 active log operations
3635 * in the log. A unit in this case is the amount of space for one
3636 * of these log operations. Normal reservations have a cnt of 1
3637 * and their unit amount is the total amount of space required.
3639 * The following lines of code account for non-transaction data
3640 * which occupy space in the on-disk log.
3642 * Normal form of a transaction is:
3643 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3644 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3646 * We need to account for all the leadup data and trailer data
3647 * around the transaction data.
3648 * And then we need to account for the worst case in terms of using
3649 * more space.
3650 * The worst case will happen if:
3651 * - the placement of the transaction happens to be such that the
3652 * roundoff is at its maximum
3653 * - the transaction data is synced before the commit record is synced
3654 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3655 * Therefore the commit record is in its own Log Record.
3656 * This can happen as the commit record is called with its
3657 * own region to xlog_write().
3658 * This then means that in the worst case, roundoff can happen for
3659 * the commit-rec as well.
3660 * The commit-rec is smaller than padding in this scenario and so it is
3661 * not added separately.
3664 /* for trans header */
3665 unit_bytes += sizeof(xlog_op_header_t);
3666 unit_bytes += sizeof(xfs_trans_header_t);
3668 /* for start-rec */
3669 unit_bytes += sizeof(xlog_op_header_t);
3672 * for LR headers - the space for data in an iclog is the size minus
3673 * the space used for the headers. If we use the iclog size, then we
3674 * undercalculate the number of headers required.
3676 * Furthermore - the addition of op headers for split-recs might
3677 * increase the space required enough to require more log and op
3678 * headers, so take that into account too.
3680 * IMPORTANT: This reservation makes the assumption that if this
3681 * transaction is the first in an iclog and hence has the LR headers
3682 * accounted to it, then the remaining space in the iclog is
3683 * exclusively for this transaction. i.e. if the transaction is larger
3684 * than the iclog, it will be the only thing in that iclog.
3685 * Fundamentally, this means we must pass the entire log vector to
3686 * xlog_write to guarantee this.
3688 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3689 num_headers = howmany(unit_bytes, iclog_space);
3691 /* for split-recs - ophdrs added when data split over LRs */
3692 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3694 /* add extra header reservations if we overrun */
3695 while (!num_headers ||
3696 howmany(unit_bytes, iclog_space) > num_headers) {
3697 unit_bytes += sizeof(xlog_op_header_t);
3698 num_headers++;
3700 unit_bytes += log->l_iclog_hsize * num_headers;
3702 /* for commit-rec LR header - note: padding will subsume the ophdr */
3703 unit_bytes += log->l_iclog_hsize;
3705 /* for roundoff padding for transaction data and one for commit record */
3706 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3707 /* log su roundoff */
3708 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3709 } else {
3710 /* BB roundoff */
3711 unit_bytes += 2 * BBSIZE;
3714 return unit_bytes;
3718 * Allocate and initialise a new log ticket.
3720 struct xlog_ticket *
3721 xlog_ticket_alloc(
3722 struct xlog *log,
3723 int unit_bytes,
3724 int cnt,
3725 char client,
3726 bool permanent,
3727 xfs_km_flags_t alloc_flags)
3729 struct xlog_ticket *tic;
3730 int unit_res;
3732 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3733 if (!tic)
3734 return NULL;
3736 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3738 atomic_set(&tic->t_ref, 1);
3739 tic->t_task = current;
3740 INIT_LIST_HEAD(&tic->t_queue);
3741 tic->t_unit_res = unit_res;
3742 tic->t_curr_res = unit_res;
3743 tic->t_cnt = cnt;
3744 tic->t_ocnt = cnt;
3745 tic->t_tid = prandom_u32();
3746 tic->t_clientid = client;
3747 tic->t_flags = XLOG_TIC_INITED;
3748 if (permanent)
3749 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3751 xlog_tic_reset_res(tic);
3753 return tic;
3757 /******************************************************************************
3759 * Log debug routines
3761 ******************************************************************************
3763 #if defined(DEBUG)
3765 * Make sure that the destination ptr is within the valid data region of
3766 * one of the iclogs. This uses backup pointers stored in a different
3767 * part of the log in case we trash the log structure.
3769 STATIC void
3770 xlog_verify_dest_ptr(
3771 struct xlog *log,
3772 void *ptr)
3774 int i;
3775 int good_ptr = 0;
3777 for (i = 0; i < log->l_iclog_bufs; i++) {
3778 if (ptr >= log->l_iclog_bak[i] &&
3779 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3780 good_ptr++;
3783 if (!good_ptr)
3784 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3788 * Check to make sure the grant write head didn't just over lap the tail. If
3789 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3790 * the cycles differ by exactly one and check the byte count.
3792 * This check is run unlocked, so can give false positives. Rather than assert
3793 * on failures, use a warn-once flag and a panic tag to allow the admin to
3794 * determine if they want to panic the machine when such an error occurs. For
3795 * debug kernels this will have the same effect as using an assert but, unlinke
3796 * an assert, it can be turned off at runtime.
3798 STATIC void
3799 xlog_verify_grant_tail(
3800 struct xlog *log)
3802 int tail_cycle, tail_blocks;
3803 int cycle, space;
3805 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3806 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3807 if (tail_cycle != cycle) {
3808 if (cycle - 1 != tail_cycle &&
3809 !(log->l_flags & XLOG_TAIL_WARN)) {
3810 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3811 "%s: cycle - 1 != tail_cycle", __func__);
3812 log->l_flags |= XLOG_TAIL_WARN;
3815 if (space > BBTOB(tail_blocks) &&
3816 !(log->l_flags & XLOG_TAIL_WARN)) {
3817 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3818 "%s: space > BBTOB(tail_blocks)", __func__);
3819 log->l_flags |= XLOG_TAIL_WARN;
3824 /* check if it will fit */
3825 STATIC void
3826 xlog_verify_tail_lsn(
3827 struct xlog *log,
3828 struct xlog_in_core *iclog,
3829 xfs_lsn_t tail_lsn)
3831 int blocks;
3833 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3834 blocks =
3835 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3836 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3837 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3838 } else {
3839 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3841 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3842 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3844 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3845 if (blocks < BTOBB(iclog->ic_offset) + 1)
3846 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3848 } /* xlog_verify_tail_lsn */
3851 * Perform a number of checks on the iclog before writing to disk.
3853 * 1. Make sure the iclogs are still circular
3854 * 2. Make sure we have a good magic number
3855 * 3. Make sure we don't have magic numbers in the data
3856 * 4. Check fields of each log operation header for:
3857 * A. Valid client identifier
3858 * B. tid ptr value falls in valid ptr space (user space code)
3859 * C. Length in log record header is correct according to the
3860 * individual operation headers within record.
3861 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3862 * log, check the preceding blocks of the physical log to make sure all
3863 * the cycle numbers agree with the current cycle number.
3865 STATIC void
3866 xlog_verify_iclog(
3867 struct xlog *log,
3868 struct xlog_in_core *iclog,
3869 int count,
3870 bool syncing)
3872 xlog_op_header_t *ophead;
3873 xlog_in_core_t *icptr;
3874 xlog_in_core_2_t *xhdr;
3875 void *base_ptr, *ptr, *p;
3876 ptrdiff_t field_offset;
3877 uint8_t clientid;
3878 int len, i, j, k, op_len;
3879 int idx;
3881 /* check validity of iclog pointers */
3882 spin_lock(&log->l_icloglock);
3883 icptr = log->l_iclog;
3884 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3885 ASSERT(icptr);
3887 if (icptr != log->l_iclog)
3888 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3889 spin_unlock(&log->l_icloglock);
3891 /* check log magic numbers */
3892 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3893 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3895 base_ptr = ptr = &iclog->ic_header;
3896 p = &iclog->ic_header;
3897 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3898 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3899 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3900 __func__);
3903 /* check fields */
3904 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3905 base_ptr = ptr = iclog->ic_datap;
3906 ophead = ptr;
3907 xhdr = iclog->ic_data;
3908 for (i = 0; i < len; i++) {
3909 ophead = ptr;
3911 /* clientid is only 1 byte */
3912 p = &ophead->oh_clientid;
3913 field_offset = p - base_ptr;
3914 if (!syncing || (field_offset & 0x1ff)) {
3915 clientid = ophead->oh_clientid;
3916 } else {
3917 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3918 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3919 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3920 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3921 clientid = xlog_get_client_id(
3922 xhdr[j].hic_xheader.xh_cycle_data[k]);
3923 } else {
3924 clientid = xlog_get_client_id(
3925 iclog->ic_header.h_cycle_data[idx]);
3928 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3929 xfs_warn(log->l_mp,
3930 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3931 __func__, clientid, ophead,
3932 (unsigned long)field_offset);
3934 /* check length */
3935 p = &ophead->oh_len;
3936 field_offset = p - base_ptr;
3937 if (!syncing || (field_offset & 0x1ff)) {
3938 op_len = be32_to_cpu(ophead->oh_len);
3939 } else {
3940 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3941 (uintptr_t)iclog->ic_datap);
3942 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3943 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3944 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3945 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3946 } else {
3947 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3950 ptr += sizeof(xlog_op_header_t) + op_len;
3952 } /* xlog_verify_iclog */
3953 #endif
3956 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3958 STATIC int
3959 xlog_state_ioerror(
3960 struct xlog *log)
3962 xlog_in_core_t *iclog, *ic;
3964 iclog = log->l_iclog;
3965 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3967 * Mark all the incore logs IOERROR.
3968 * From now on, no log flushes will result.
3970 ic = iclog;
3971 do {
3972 ic->ic_state = XLOG_STATE_IOERROR;
3973 ic = ic->ic_next;
3974 } while (ic != iclog);
3975 return 0;
3978 * Return non-zero, if state transition has already happened.
3980 return 1;
3984 * This is called from xfs_force_shutdown, when we're forcibly
3985 * shutting down the filesystem, typically because of an IO error.
3986 * Our main objectives here are to make sure that:
3987 * a. if !logerror, flush the logs to disk. Anything modified
3988 * after this is ignored.
3989 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3990 * parties to find out, 'atomically'.
3991 * c. those who're sleeping on log reservations, pinned objects and
3992 * other resources get woken up, and be told the bad news.
3993 * d. nothing new gets queued up after (b) and (c) are done.
3995 * Note: for the !logerror case we need to flush the regions held in memory out
3996 * to disk first. This needs to be done before the log is marked as shutdown,
3997 * otherwise the iclog writes will fail.
4000 xfs_log_force_umount(
4001 struct xfs_mount *mp,
4002 int logerror)
4004 struct xlog *log;
4005 int retval;
4007 log = mp->m_log;
4010 * If this happens during log recovery, don't worry about
4011 * locking; the log isn't open for business yet.
4013 if (!log ||
4014 log->l_flags & XLOG_ACTIVE_RECOVERY) {
4015 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4016 if (mp->m_sb_bp)
4017 mp->m_sb_bp->b_flags |= XBF_DONE;
4018 return 0;
4022 * Somebody could've already done the hard work for us.
4023 * No need to get locks for this.
4025 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
4026 ASSERT(XLOG_FORCED_SHUTDOWN(log));
4027 return 1;
4031 * Flush all the completed transactions to disk before marking the log
4032 * being shut down. We need to do it in this order to ensure that
4033 * completed operations are safely on disk before we shut down, and that
4034 * we don't have to issue any buffer IO after the shutdown flags are set
4035 * to guarantee this.
4037 if (!logerror)
4038 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4041 * mark the filesystem and the as in a shutdown state and wake
4042 * everybody up to tell them the bad news.
4044 spin_lock(&log->l_icloglock);
4045 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4046 if (mp->m_sb_bp)
4047 mp->m_sb_bp->b_flags |= XBF_DONE;
4050 * Mark the log and the iclogs with IO error flags to prevent any
4051 * further log IO from being issued or completed.
4053 log->l_flags |= XLOG_IO_ERROR;
4054 retval = xlog_state_ioerror(log);
4055 spin_unlock(&log->l_icloglock);
4058 * We don't want anybody waiting for log reservations after this. That
4059 * means we have to wake up everybody queued up on reserveq as well as
4060 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4061 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4062 * action is protected by the grant locks.
4064 xlog_grant_head_wake_all(&log->l_reserve_head);
4065 xlog_grant_head_wake_all(&log->l_write_head);
4068 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4069 * as if the log writes were completed. The abort handling in the log
4070 * item committed callback functions will do this again under lock to
4071 * avoid races.
4073 wake_up_all(&log->l_cilp->xc_commit_wait);
4074 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4076 #ifdef XFSERRORDEBUG
4078 xlog_in_core_t *iclog;
4080 spin_lock(&log->l_icloglock);
4081 iclog = log->l_iclog;
4082 do {
4083 ASSERT(iclog->ic_callback == 0);
4084 iclog = iclog->ic_next;
4085 } while (iclog != log->l_iclog);
4086 spin_unlock(&log->l_icloglock);
4088 #endif
4089 /* return non-zero if log IOERROR transition had already happened */
4090 return retval;
4093 STATIC int
4094 xlog_iclogs_empty(
4095 struct xlog *log)
4097 xlog_in_core_t *iclog;
4099 iclog = log->l_iclog;
4100 do {
4101 /* endianness does not matter here, zero is zero in
4102 * any language.
4104 if (iclog->ic_header.h_num_logops)
4105 return 0;
4106 iclog = iclog->ic_next;
4107 } while (iclog != log->l_iclog);
4108 return 1;
4112 * Verify that an LSN stamped into a piece of metadata is valid. This is
4113 * intended for use in read verifiers on v5 superblocks.
4115 bool
4116 xfs_log_check_lsn(
4117 struct xfs_mount *mp,
4118 xfs_lsn_t lsn)
4120 struct xlog *log = mp->m_log;
4121 bool valid;
4124 * norecovery mode skips mount-time log processing and unconditionally
4125 * resets the in-core LSN. We can't validate in this mode, but
4126 * modifications are not allowed anyways so just return true.
4128 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4129 return true;
4132 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4133 * handled by recovery and thus safe to ignore here.
4135 if (lsn == NULLCOMMITLSN)
4136 return true;
4138 valid = xlog_valid_lsn(mp->m_log, lsn);
4140 /* warn the user about what's gone wrong before verifier failure */
4141 if (!valid) {
4142 spin_lock(&log->l_icloglock);
4143 xfs_warn(mp,
4144 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4145 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4146 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4147 log->l_curr_cycle, log->l_curr_block);
4148 spin_unlock(&log->l_icloglock);
4151 return valid;