Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / virt / kvm / kvm_main.c
blob4501e658e8d6fc97f39b54bceff8f8b1f36cb95a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
90 * Ordering of locks:
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 static bool largepages_enabled = true;
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 unsigned long start, unsigned long end)
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
145 if (pfn_valid(pfn))
146 return PageReserved(pfn_to_page(pfn));
148 return true;
152 * Switches to specified vcpu, until a matching vcpu_put()
154 void vcpu_load(struct kvm_vcpu *vcpu)
156 int cpu = get_cpu();
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
159 put_cpu();
161 EXPORT_SYMBOL_GPL(vcpu_load);
163 void vcpu_put(struct kvm_vcpu *vcpu)
165 preempt_disable();
166 kvm_arch_vcpu_put(vcpu);
167 preempt_notifier_unregister(&vcpu->preempt_notifier);
168 preempt_enable();
170 EXPORT_SYMBOL_GPL(vcpu_put);
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
175 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178 * We need to wait for the VCPU to reenable interrupts and get out of
179 * READING_SHADOW_PAGE_TABLES mode.
181 if (req & KVM_REQUEST_WAIT)
182 return mode != OUTSIDE_GUEST_MODE;
185 * Need to kick a running VCPU, but otherwise there is nothing to do.
187 return mode == IN_GUEST_MODE;
190 static void ack_flush(void *_completed)
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
196 if (unlikely(!cpus))
197 cpus = cpu_online_mask;
199 if (cpumask_empty(cpus))
200 return false;
202 smp_call_function_many(cpus, ack_flush, NULL, wait);
203 return true;
206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
208 int i, cpu, me;
209 cpumask_var_t cpus;
210 bool called;
211 struct kvm_vcpu *vcpu;
213 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
215 me = get_cpu();
216 kvm_for_each_vcpu(i, vcpu, kvm) {
217 kvm_make_request(req, vcpu);
218 cpu = vcpu->cpu;
220 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
221 continue;
223 if (cpus != NULL && cpu != -1 && cpu != me &&
224 kvm_request_needs_ipi(vcpu, req))
225 __cpumask_set_cpu(cpu, cpus);
227 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
228 put_cpu();
229 free_cpumask_var(cpus);
230 return called;
233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
234 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
238 * kvm_make_all_cpus_request.
240 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243 * We want to publish modifications to the page tables before reading
244 * mode. Pairs with a memory barrier in arch-specific code.
245 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
246 * and smp_mb in walk_shadow_page_lockless_begin/end.
247 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
249 * There is already an smp_mb__after_atomic() before
250 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
251 * barrier here.
253 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
254 ++kvm->stat.remote_tlb_flush;
255 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
258 #endif
260 void kvm_reload_remote_mmus(struct kvm *kvm)
262 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
267 struct page *page;
268 int r;
270 mutex_init(&vcpu->mutex);
271 vcpu->cpu = -1;
272 vcpu->kvm = kvm;
273 vcpu->vcpu_id = id;
274 vcpu->pid = NULL;
275 init_swait_queue_head(&vcpu->wq);
276 kvm_async_pf_vcpu_init(vcpu);
278 vcpu->pre_pcpu = -1;
279 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
281 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
282 if (!page) {
283 r = -ENOMEM;
284 goto fail;
286 vcpu->run = page_address(page);
288 kvm_vcpu_set_in_spin_loop(vcpu, false);
289 kvm_vcpu_set_dy_eligible(vcpu, false);
290 vcpu->preempted = false;
292 r = kvm_arch_vcpu_init(vcpu);
293 if (r < 0)
294 goto fail_free_run;
295 return 0;
297 fail_free_run:
298 free_page((unsigned long)vcpu->run);
299 fail:
300 return r;
302 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 * no need for rcu_read_lock as VCPU_RUN is the only place that
308 * will change the vcpu->pid pointer and on uninit all file
309 * descriptors are already gone.
311 put_pid(rcu_dereference_protected(vcpu->pid, 1));
312 kvm_arch_vcpu_uninit(vcpu);
313 free_page((unsigned long)vcpu->run);
315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
320 return container_of(mn, struct kvm, mmu_notifier);
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long address,
326 pte_t pte)
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int idx;
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 kvm->mmu_notifier_seq++;
334 kvm_set_spte_hva(kvm, address, pte);
335 spin_unlock(&kvm->mmu_lock);
336 srcu_read_unlock(&kvm->srcu, idx);
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340 struct mm_struct *mm,
341 unsigned long start,
342 unsigned long end)
344 struct kvm *kvm = mmu_notifier_to_kvm(mn);
345 int need_tlb_flush = 0, idx;
347 idx = srcu_read_lock(&kvm->srcu);
348 spin_lock(&kvm->mmu_lock);
350 * The count increase must become visible at unlock time as no
351 * spte can be established without taking the mmu_lock and
352 * count is also read inside the mmu_lock critical section.
354 kvm->mmu_notifier_count++;
355 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356 need_tlb_flush |= kvm->tlbs_dirty;
357 /* we've to flush the tlb before the pages can be freed */
358 if (need_tlb_flush)
359 kvm_flush_remote_tlbs(kvm);
361 spin_unlock(&kvm->mmu_lock);
363 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
365 srcu_read_unlock(&kvm->srcu, idx);
368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
369 struct mm_struct *mm,
370 unsigned long start,
371 unsigned long end)
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 spin_lock(&kvm->mmu_lock);
377 * This sequence increase will notify the kvm page fault that
378 * the page that is going to be mapped in the spte could have
379 * been freed.
381 kvm->mmu_notifier_seq++;
382 smp_wmb();
384 * The above sequence increase must be visible before the
385 * below count decrease, which is ensured by the smp_wmb above
386 * in conjunction with the smp_rmb in mmu_notifier_retry().
388 kvm->mmu_notifier_count--;
389 spin_unlock(&kvm->mmu_lock);
391 BUG_ON(kvm->mmu_notifier_count < 0);
394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
395 struct mm_struct *mm,
396 unsigned long start,
397 unsigned long end)
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 int young, idx;
402 idx = srcu_read_lock(&kvm->srcu);
403 spin_lock(&kvm->mmu_lock);
405 young = kvm_age_hva(kvm, start, end);
406 if (young)
407 kvm_flush_remote_tlbs(kvm);
409 spin_unlock(&kvm->mmu_lock);
410 srcu_read_unlock(&kvm->srcu, idx);
412 return young;
415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
416 struct mm_struct *mm,
417 unsigned long start,
418 unsigned long end)
420 struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 int young, idx;
423 idx = srcu_read_lock(&kvm->srcu);
424 spin_lock(&kvm->mmu_lock);
426 * Even though we do not flush TLB, this will still adversely
427 * affect performance on pre-Haswell Intel EPT, where there is
428 * no EPT Access Bit to clear so that we have to tear down EPT
429 * tables instead. If we find this unacceptable, we can always
430 * add a parameter to kvm_age_hva so that it effectively doesn't
431 * do anything on clear_young.
433 * Also note that currently we never issue secondary TLB flushes
434 * from clear_young, leaving this job up to the regular system
435 * cadence. If we find this inaccurate, we might come up with a
436 * more sophisticated heuristic later.
438 young = kvm_age_hva(kvm, start, end);
439 spin_unlock(&kvm->mmu_lock);
440 srcu_read_unlock(&kvm->srcu, idx);
442 return young;
445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
446 struct mm_struct *mm,
447 unsigned long address)
449 struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 int young, idx;
452 idx = srcu_read_lock(&kvm->srcu);
453 spin_lock(&kvm->mmu_lock);
454 young = kvm_test_age_hva(kvm, address);
455 spin_unlock(&kvm->mmu_lock);
456 srcu_read_unlock(&kvm->srcu, idx);
458 return young;
461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
462 struct mm_struct *mm)
464 struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 int idx;
467 idx = srcu_read_lock(&kvm->srcu);
468 kvm_arch_flush_shadow_all(kvm);
469 srcu_read_unlock(&kvm->srcu, idx);
472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
473 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK,
474 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
475 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
476 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
477 .clear_young = kvm_mmu_notifier_clear_young,
478 .test_young = kvm_mmu_notifier_test_young,
479 .change_pte = kvm_mmu_notifier_change_pte,
480 .release = kvm_mmu_notifier_release,
483 static int kvm_init_mmu_notifier(struct kvm *kvm)
485 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
486 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
491 static int kvm_init_mmu_notifier(struct kvm *kvm)
493 return 0;
496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
498 static struct kvm_memslots *kvm_alloc_memslots(void)
500 int i;
501 struct kvm_memslots *slots;
503 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
504 if (!slots)
505 return NULL;
507 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
508 slots->id_to_index[i] = slots->memslots[i].id = i;
510 return slots;
513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
515 if (!memslot->dirty_bitmap)
516 return;
518 kvfree(memslot->dirty_bitmap);
519 memslot->dirty_bitmap = NULL;
523 * Free any memory in @free but not in @dont.
525 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
526 struct kvm_memory_slot *dont)
528 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
529 kvm_destroy_dirty_bitmap(free);
531 kvm_arch_free_memslot(kvm, free, dont);
533 free->npages = 0;
536 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
538 struct kvm_memory_slot *memslot;
540 if (!slots)
541 return;
543 kvm_for_each_memslot(memslot, slots)
544 kvm_free_memslot(kvm, memslot, NULL);
546 kvfree(slots);
549 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
551 int i;
553 if (!kvm->debugfs_dentry)
554 return;
556 debugfs_remove_recursive(kvm->debugfs_dentry);
558 if (kvm->debugfs_stat_data) {
559 for (i = 0; i < kvm_debugfs_num_entries; i++)
560 kfree(kvm->debugfs_stat_data[i]);
561 kfree(kvm->debugfs_stat_data);
565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
567 char dir_name[ITOA_MAX_LEN * 2];
568 struct kvm_stat_data *stat_data;
569 struct kvm_stats_debugfs_item *p;
571 if (!debugfs_initialized())
572 return 0;
574 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
575 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
576 kvm_debugfs_dir);
577 if (!kvm->debugfs_dentry)
578 return -ENOMEM;
580 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
581 sizeof(*kvm->debugfs_stat_data),
582 GFP_KERNEL);
583 if (!kvm->debugfs_stat_data)
584 return -ENOMEM;
586 for (p = debugfs_entries; p->name; p++) {
587 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
588 if (!stat_data)
589 return -ENOMEM;
591 stat_data->kvm = kvm;
592 stat_data->offset = p->offset;
593 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
594 if (!debugfs_create_file(p->name, 0644,
595 kvm->debugfs_dentry,
596 stat_data,
597 stat_fops_per_vm[p->kind]))
598 return -ENOMEM;
600 return 0;
603 static struct kvm *kvm_create_vm(unsigned long type)
605 int r, i;
606 struct kvm *kvm = kvm_arch_alloc_vm();
608 if (!kvm)
609 return ERR_PTR(-ENOMEM);
611 spin_lock_init(&kvm->mmu_lock);
612 mmgrab(current->mm);
613 kvm->mm = current->mm;
614 kvm_eventfd_init(kvm);
615 mutex_init(&kvm->lock);
616 mutex_init(&kvm->irq_lock);
617 mutex_init(&kvm->slots_lock);
618 refcount_set(&kvm->users_count, 1);
619 INIT_LIST_HEAD(&kvm->devices);
621 r = kvm_arch_init_vm(kvm, type);
622 if (r)
623 goto out_err_no_disable;
625 r = hardware_enable_all();
626 if (r)
627 goto out_err_no_disable;
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 #endif
633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
635 r = -ENOMEM;
636 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
637 struct kvm_memslots *slots = kvm_alloc_memslots();
638 if (!slots)
639 goto out_err_no_srcu;
641 * Generations must be different for each address space.
642 * Init kvm generation close to the maximum to easily test the
643 * code of handling generation number wrap-around.
645 slots->generation = i * 2 - 150;
646 rcu_assign_pointer(kvm->memslots[i], slots);
649 if (init_srcu_struct(&kvm->srcu))
650 goto out_err_no_srcu;
651 if (init_srcu_struct(&kvm->irq_srcu))
652 goto out_err_no_irq_srcu;
653 for (i = 0; i < KVM_NR_BUSES; i++) {
654 rcu_assign_pointer(kvm->buses[i],
655 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
656 if (!kvm->buses[i])
657 goto out_err;
660 r = kvm_init_mmu_notifier(kvm);
661 if (r)
662 goto out_err;
664 spin_lock(&kvm_lock);
665 list_add(&kvm->vm_list, &vm_list);
666 spin_unlock(&kvm_lock);
668 preempt_notifier_inc();
670 return kvm;
672 out_err:
673 cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 hardware_disable_all();
678 out_err_no_disable:
679 refcount_set(&kvm->users_count, 0);
680 for (i = 0; i < KVM_NR_BUSES; i++)
681 kfree(kvm_get_bus(kvm, i));
682 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
683 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
684 kvm_arch_free_vm(kvm);
685 mmdrop(current->mm);
686 return ERR_PTR(r);
689 static void kvm_destroy_devices(struct kvm *kvm)
691 struct kvm_device *dev, *tmp;
694 * We do not need to take the kvm->lock here, because nobody else
695 * has a reference to the struct kvm at this point and therefore
696 * cannot access the devices list anyhow.
698 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
699 list_del(&dev->vm_node);
700 dev->ops->destroy(dev);
704 static void kvm_destroy_vm(struct kvm *kvm)
706 int i;
707 struct mm_struct *mm = kvm->mm;
709 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
710 kvm_destroy_vm_debugfs(kvm);
711 kvm_arch_sync_events(kvm);
712 spin_lock(&kvm_lock);
713 list_del(&kvm->vm_list);
714 spin_unlock(&kvm_lock);
715 kvm_free_irq_routing(kvm);
716 for (i = 0; i < KVM_NR_BUSES; i++) {
717 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
719 if (bus)
720 kvm_io_bus_destroy(bus);
721 kvm->buses[i] = NULL;
723 kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727 kvm_arch_flush_shadow_all(kvm);
728 #endif
729 kvm_arch_destroy_vm(kvm);
730 kvm_destroy_devices(kvm);
731 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
733 cleanup_srcu_struct(&kvm->irq_srcu);
734 cleanup_srcu_struct(&kvm->srcu);
735 kvm_arch_free_vm(kvm);
736 preempt_notifier_dec();
737 hardware_disable_all();
738 mmdrop(mm);
741 void kvm_get_kvm(struct kvm *kvm)
743 refcount_inc(&kvm->users_count);
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
747 void kvm_put_kvm(struct kvm *kvm)
749 if (refcount_dec_and_test(&kvm->users_count))
750 kvm_destroy_vm(kvm);
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
757 struct kvm *kvm = filp->private_data;
759 kvm_irqfd_release(kvm);
761 kvm_put_kvm(kvm);
762 return 0;
766 * Allocation size is twice as large as the actual dirty bitmap size.
767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
771 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
773 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
774 if (!memslot->dirty_bitmap)
775 return -ENOMEM;
777 return 0;
781 * Insert memslot and re-sort memslots based on their GFN,
782 * so binary search could be used to lookup GFN.
783 * Sorting algorithm takes advantage of having initially
784 * sorted array and known changed memslot position.
786 static void update_memslots(struct kvm_memslots *slots,
787 struct kvm_memory_slot *new)
789 int id = new->id;
790 int i = slots->id_to_index[id];
791 struct kvm_memory_slot *mslots = slots->memslots;
793 WARN_ON(mslots[i].id != id);
794 if (!new->npages) {
795 WARN_ON(!mslots[i].npages);
796 if (mslots[i].npages)
797 slots->used_slots--;
798 } else {
799 if (!mslots[i].npages)
800 slots->used_slots++;
803 while (i < KVM_MEM_SLOTS_NUM - 1 &&
804 new->base_gfn <= mslots[i + 1].base_gfn) {
805 if (!mslots[i + 1].npages)
806 break;
807 mslots[i] = mslots[i + 1];
808 slots->id_to_index[mslots[i].id] = i;
809 i++;
813 * The ">=" is needed when creating a slot with base_gfn == 0,
814 * so that it moves before all those with base_gfn == npages == 0.
816 * On the other hand, if new->npages is zero, the above loop has
817 * already left i pointing to the beginning of the empty part of
818 * mslots, and the ">=" would move the hole backwards in this
819 * case---which is wrong. So skip the loop when deleting a slot.
821 if (new->npages) {
822 while (i > 0 &&
823 new->base_gfn >= mslots[i - 1].base_gfn) {
824 mslots[i] = mslots[i - 1];
825 slots->id_to_index[mslots[i].id] = i;
826 i--;
828 } else
829 WARN_ON_ONCE(i != slots->used_slots);
831 mslots[i] = *new;
832 slots->id_to_index[mslots[i].id] = i;
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
837 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
839 #ifdef __KVM_HAVE_READONLY_MEM
840 valid_flags |= KVM_MEM_READONLY;
841 #endif
843 if (mem->flags & ~valid_flags)
844 return -EINVAL;
846 return 0;
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850 int as_id, struct kvm_memslots *slots)
852 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855 * Set the low bit in the generation, which disables SPTE caching
856 * until the end of synchronize_srcu_expedited.
858 WARN_ON(old_memslots->generation & 1);
859 slots->generation = old_memslots->generation + 1;
861 rcu_assign_pointer(kvm->memslots[as_id], slots);
862 synchronize_srcu_expedited(&kvm->srcu);
865 * Increment the new memslot generation a second time. This prevents
866 * vm exits that race with memslot updates from caching a memslot
867 * generation that will (potentially) be valid forever.
869 * Generations must be unique even across address spaces. We do not need
870 * a global counter for that, instead the generation space is evenly split
871 * across address spaces. For example, with two address spaces, address
872 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
873 * use generations 2, 6, 10, 14, ...
875 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
877 kvm_arch_memslots_updated(kvm, slots);
879 return old_memslots;
883 * Allocate some memory and give it an address in the guest physical address
884 * space.
886 * Discontiguous memory is allowed, mostly for framebuffers.
888 * Must be called holding kvm->slots_lock for write.
890 int __kvm_set_memory_region(struct kvm *kvm,
891 const struct kvm_userspace_memory_region *mem)
893 int r;
894 gfn_t base_gfn;
895 unsigned long npages;
896 struct kvm_memory_slot *slot;
897 struct kvm_memory_slot old, new;
898 struct kvm_memslots *slots = NULL, *old_memslots;
899 int as_id, id;
900 enum kvm_mr_change change;
902 r = check_memory_region_flags(mem);
903 if (r)
904 goto out;
906 r = -EINVAL;
907 as_id = mem->slot >> 16;
908 id = (u16)mem->slot;
910 /* General sanity checks */
911 if (mem->memory_size & (PAGE_SIZE - 1))
912 goto out;
913 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
914 goto out;
915 /* We can read the guest memory with __xxx_user() later on. */
916 if ((id < KVM_USER_MEM_SLOTS) &&
917 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
918 !access_ok(VERIFY_WRITE,
919 (void __user *)(unsigned long)mem->userspace_addr,
920 mem->memory_size)))
921 goto out;
922 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
923 goto out;
924 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
925 goto out;
927 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
928 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
929 npages = mem->memory_size >> PAGE_SHIFT;
931 if (npages > KVM_MEM_MAX_NR_PAGES)
932 goto out;
934 new = old = *slot;
936 new.id = id;
937 new.base_gfn = base_gfn;
938 new.npages = npages;
939 new.flags = mem->flags;
941 if (npages) {
942 if (!old.npages)
943 change = KVM_MR_CREATE;
944 else { /* Modify an existing slot. */
945 if ((mem->userspace_addr != old.userspace_addr) ||
946 (npages != old.npages) ||
947 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
948 goto out;
950 if (base_gfn != old.base_gfn)
951 change = KVM_MR_MOVE;
952 else if (new.flags != old.flags)
953 change = KVM_MR_FLAGS_ONLY;
954 else { /* Nothing to change. */
955 r = 0;
956 goto out;
959 } else {
960 if (!old.npages)
961 goto out;
963 change = KVM_MR_DELETE;
964 new.base_gfn = 0;
965 new.flags = 0;
968 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
969 /* Check for overlaps */
970 r = -EEXIST;
971 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
972 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
973 (slot->id == id))
974 continue;
975 if (!((base_gfn + npages <= slot->base_gfn) ||
976 (base_gfn >= slot->base_gfn + slot->npages)))
977 goto out;
981 /* Free page dirty bitmap if unneeded */
982 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
983 new.dirty_bitmap = NULL;
985 r = -ENOMEM;
986 if (change == KVM_MR_CREATE) {
987 new.userspace_addr = mem->userspace_addr;
989 if (kvm_arch_create_memslot(kvm, &new, npages))
990 goto out_free;
993 /* Allocate page dirty bitmap if needed */
994 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
995 if (kvm_create_dirty_bitmap(&new) < 0)
996 goto out_free;
999 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1000 if (!slots)
1001 goto out_free;
1002 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1004 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1005 slot = id_to_memslot(slots, id);
1006 slot->flags |= KVM_MEMSLOT_INVALID;
1008 old_memslots = install_new_memslots(kvm, as_id, slots);
1010 /* From this point no new shadow pages pointing to a deleted,
1011 * or moved, memslot will be created.
1013 * validation of sp->gfn happens in:
1014 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1015 * - kvm_is_visible_gfn (mmu_check_roots)
1017 kvm_arch_flush_shadow_memslot(kvm, slot);
1020 * We can re-use the old_memslots from above, the only difference
1021 * from the currently installed memslots is the invalid flag. This
1022 * will get overwritten by update_memslots anyway.
1024 slots = old_memslots;
1027 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1028 if (r)
1029 goto out_slots;
1031 /* actual memory is freed via old in kvm_free_memslot below */
1032 if (change == KVM_MR_DELETE) {
1033 new.dirty_bitmap = NULL;
1034 memset(&new.arch, 0, sizeof(new.arch));
1037 update_memslots(slots, &new);
1038 old_memslots = install_new_memslots(kvm, as_id, slots);
1040 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042 kvm_free_memslot(kvm, &old, &new);
1043 kvfree(old_memslots);
1044 return 0;
1046 out_slots:
1047 kvfree(slots);
1048 out_free:
1049 kvm_free_memslot(kvm, &new, &old);
1050 out:
1051 return r;
1053 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1055 int kvm_set_memory_region(struct kvm *kvm,
1056 const struct kvm_userspace_memory_region *mem)
1058 int r;
1060 mutex_lock(&kvm->slots_lock);
1061 r = __kvm_set_memory_region(kvm, mem);
1062 mutex_unlock(&kvm->slots_lock);
1063 return r;
1065 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1067 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1068 struct kvm_userspace_memory_region *mem)
1070 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1071 return -EINVAL;
1073 return kvm_set_memory_region(kvm, mem);
1076 int kvm_get_dirty_log(struct kvm *kvm,
1077 struct kvm_dirty_log *log, int *is_dirty)
1079 struct kvm_memslots *slots;
1080 struct kvm_memory_slot *memslot;
1081 int i, as_id, id;
1082 unsigned long n;
1083 unsigned long any = 0;
1085 as_id = log->slot >> 16;
1086 id = (u16)log->slot;
1087 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1088 return -EINVAL;
1090 slots = __kvm_memslots(kvm, as_id);
1091 memslot = id_to_memslot(slots, id);
1092 if (!memslot->dirty_bitmap)
1093 return -ENOENT;
1095 n = kvm_dirty_bitmap_bytes(memslot);
1097 for (i = 0; !any && i < n/sizeof(long); ++i)
1098 any = memslot->dirty_bitmap[i];
1100 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1101 return -EFAULT;
1103 if (any)
1104 *is_dirty = 1;
1105 return 0;
1107 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1109 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1111 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1112 * are dirty write protect them for next write.
1113 * @kvm: pointer to kvm instance
1114 * @log: slot id and address to which we copy the log
1115 * @is_dirty: flag set if any page is dirty
1117 * We need to keep it in mind that VCPU threads can write to the bitmap
1118 * concurrently. So, to avoid losing track of dirty pages we keep the
1119 * following order:
1121 * 1. Take a snapshot of the bit and clear it if needed.
1122 * 2. Write protect the corresponding page.
1123 * 3. Copy the snapshot to the userspace.
1124 * 4. Upon return caller flushes TLB's if needed.
1126 * Between 2 and 4, the guest may write to the page using the remaining TLB
1127 * entry. This is not a problem because the page is reported dirty using
1128 * the snapshot taken before and step 4 ensures that writes done after
1129 * exiting to userspace will be logged for the next call.
1132 int kvm_get_dirty_log_protect(struct kvm *kvm,
1133 struct kvm_dirty_log *log, bool *is_dirty)
1135 struct kvm_memslots *slots;
1136 struct kvm_memory_slot *memslot;
1137 int i, as_id, id;
1138 unsigned long n;
1139 unsigned long *dirty_bitmap;
1140 unsigned long *dirty_bitmap_buffer;
1142 as_id = log->slot >> 16;
1143 id = (u16)log->slot;
1144 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1145 return -EINVAL;
1147 slots = __kvm_memslots(kvm, as_id);
1148 memslot = id_to_memslot(slots, id);
1150 dirty_bitmap = memslot->dirty_bitmap;
1151 if (!dirty_bitmap)
1152 return -ENOENT;
1154 n = kvm_dirty_bitmap_bytes(memslot);
1156 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1157 memset(dirty_bitmap_buffer, 0, n);
1159 spin_lock(&kvm->mmu_lock);
1160 *is_dirty = false;
1161 for (i = 0; i < n / sizeof(long); i++) {
1162 unsigned long mask;
1163 gfn_t offset;
1165 if (!dirty_bitmap[i])
1166 continue;
1168 *is_dirty = true;
1170 mask = xchg(&dirty_bitmap[i], 0);
1171 dirty_bitmap_buffer[i] = mask;
1173 if (mask) {
1174 offset = i * BITS_PER_LONG;
1175 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1176 offset, mask);
1180 spin_unlock(&kvm->mmu_lock);
1181 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1182 return -EFAULT;
1183 return 0;
1185 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1186 #endif
1188 bool kvm_largepages_enabled(void)
1190 return largepages_enabled;
1193 void kvm_disable_largepages(void)
1195 largepages_enabled = false;
1197 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1199 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1201 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1203 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1205 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1207 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1210 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1212 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1214 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1215 memslot->flags & KVM_MEMSLOT_INVALID)
1216 return false;
1218 return true;
1220 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1222 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1224 struct vm_area_struct *vma;
1225 unsigned long addr, size;
1227 size = PAGE_SIZE;
1229 addr = gfn_to_hva(kvm, gfn);
1230 if (kvm_is_error_hva(addr))
1231 return PAGE_SIZE;
1233 down_read(&current->mm->mmap_sem);
1234 vma = find_vma(current->mm, addr);
1235 if (!vma)
1236 goto out;
1238 size = vma_kernel_pagesize(vma);
1240 out:
1241 up_read(&current->mm->mmap_sem);
1243 return size;
1246 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1248 return slot->flags & KVM_MEM_READONLY;
1251 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1252 gfn_t *nr_pages, bool write)
1254 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1255 return KVM_HVA_ERR_BAD;
1257 if (memslot_is_readonly(slot) && write)
1258 return KVM_HVA_ERR_RO_BAD;
1260 if (nr_pages)
1261 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1263 return __gfn_to_hva_memslot(slot, gfn);
1266 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1267 gfn_t *nr_pages)
1269 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1272 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1273 gfn_t gfn)
1275 return gfn_to_hva_many(slot, gfn, NULL);
1277 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1279 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1281 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1283 EXPORT_SYMBOL_GPL(gfn_to_hva);
1285 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1287 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1289 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1292 * If writable is set to false, the hva returned by this function is only
1293 * allowed to be read.
1295 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1296 gfn_t gfn, bool *writable)
1298 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1300 if (!kvm_is_error_hva(hva) && writable)
1301 *writable = !memslot_is_readonly(slot);
1303 return hva;
1306 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1308 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1310 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1315 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1317 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1320 static inline int check_user_page_hwpoison(unsigned long addr)
1322 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1324 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1325 return rc == -EHWPOISON;
1329 * The atomic path to get the writable pfn which will be stored in @pfn,
1330 * true indicates success, otherwise false is returned.
1332 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1333 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1335 struct page *page[1];
1336 int npages;
1338 if (!(async || atomic))
1339 return false;
1342 * Fast pin a writable pfn only if it is a write fault request
1343 * or the caller allows to map a writable pfn for a read fault
1344 * request.
1346 if (!(write_fault || writable))
1347 return false;
1349 npages = __get_user_pages_fast(addr, 1, 1, page);
1350 if (npages == 1) {
1351 *pfn = page_to_pfn(page[0]);
1353 if (writable)
1354 *writable = true;
1355 return true;
1358 return false;
1362 * The slow path to get the pfn of the specified host virtual address,
1363 * 1 indicates success, -errno is returned if error is detected.
1365 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1366 bool *writable, kvm_pfn_t *pfn)
1368 unsigned int flags = FOLL_HWPOISON;
1369 struct page *page;
1370 int npages = 0;
1372 might_sleep();
1374 if (writable)
1375 *writable = write_fault;
1377 if (write_fault)
1378 flags |= FOLL_WRITE;
1379 if (async)
1380 flags |= FOLL_NOWAIT;
1382 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1383 if (npages != 1)
1384 return npages;
1386 /* map read fault as writable if possible */
1387 if (unlikely(!write_fault) && writable) {
1388 struct page *wpage;
1390 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1391 *writable = true;
1392 put_page(page);
1393 page = wpage;
1396 *pfn = page_to_pfn(page);
1397 return npages;
1400 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1402 if (unlikely(!(vma->vm_flags & VM_READ)))
1403 return false;
1405 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1406 return false;
1408 return true;
1411 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1412 unsigned long addr, bool *async,
1413 bool write_fault, bool *writable,
1414 kvm_pfn_t *p_pfn)
1416 unsigned long pfn;
1417 int r;
1419 r = follow_pfn(vma, addr, &pfn);
1420 if (r) {
1422 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1423 * not call the fault handler, so do it here.
1425 bool unlocked = false;
1426 r = fixup_user_fault(current, current->mm, addr,
1427 (write_fault ? FAULT_FLAG_WRITE : 0),
1428 &unlocked);
1429 if (unlocked)
1430 return -EAGAIN;
1431 if (r)
1432 return r;
1434 r = follow_pfn(vma, addr, &pfn);
1435 if (r)
1436 return r;
1440 if (writable)
1441 *writable = true;
1444 * Get a reference here because callers of *hva_to_pfn* and
1445 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1446 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1447 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1448 * simply do nothing for reserved pfns.
1450 * Whoever called remap_pfn_range is also going to call e.g.
1451 * unmap_mapping_range before the underlying pages are freed,
1452 * causing a call to our MMU notifier.
1454 kvm_get_pfn(pfn);
1456 *p_pfn = pfn;
1457 return 0;
1461 * Pin guest page in memory and return its pfn.
1462 * @addr: host virtual address which maps memory to the guest
1463 * @atomic: whether this function can sleep
1464 * @async: whether this function need to wait IO complete if the
1465 * host page is not in the memory
1466 * @write_fault: whether we should get a writable host page
1467 * @writable: whether it allows to map a writable host page for !@write_fault
1469 * The function will map a writable host page for these two cases:
1470 * 1): @write_fault = true
1471 * 2): @write_fault = false && @writable, @writable will tell the caller
1472 * whether the mapping is writable.
1474 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1475 bool write_fault, bool *writable)
1477 struct vm_area_struct *vma;
1478 kvm_pfn_t pfn = 0;
1479 int npages, r;
1481 /* we can do it either atomically or asynchronously, not both */
1482 BUG_ON(atomic && async);
1484 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1485 return pfn;
1487 if (atomic)
1488 return KVM_PFN_ERR_FAULT;
1490 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1491 if (npages == 1)
1492 return pfn;
1494 down_read(&current->mm->mmap_sem);
1495 if (npages == -EHWPOISON ||
1496 (!async && check_user_page_hwpoison(addr))) {
1497 pfn = KVM_PFN_ERR_HWPOISON;
1498 goto exit;
1501 retry:
1502 vma = find_vma_intersection(current->mm, addr, addr + 1);
1504 if (vma == NULL)
1505 pfn = KVM_PFN_ERR_FAULT;
1506 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1507 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1508 if (r == -EAGAIN)
1509 goto retry;
1510 if (r < 0)
1511 pfn = KVM_PFN_ERR_FAULT;
1512 } else {
1513 if (async && vma_is_valid(vma, write_fault))
1514 *async = true;
1515 pfn = KVM_PFN_ERR_FAULT;
1517 exit:
1518 up_read(&current->mm->mmap_sem);
1519 return pfn;
1522 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1523 bool atomic, bool *async, bool write_fault,
1524 bool *writable)
1526 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1528 if (addr == KVM_HVA_ERR_RO_BAD) {
1529 if (writable)
1530 *writable = false;
1531 return KVM_PFN_ERR_RO_FAULT;
1534 if (kvm_is_error_hva(addr)) {
1535 if (writable)
1536 *writable = false;
1537 return KVM_PFN_NOSLOT;
1540 /* Do not map writable pfn in the readonly memslot. */
1541 if (writable && memslot_is_readonly(slot)) {
1542 *writable = false;
1543 writable = NULL;
1546 return hva_to_pfn(addr, atomic, async, write_fault,
1547 writable);
1549 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1551 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1552 bool *writable)
1554 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1555 write_fault, writable);
1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1559 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1561 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1563 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1565 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1567 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1569 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1571 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1573 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1575 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1577 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1579 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1581 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1583 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1585 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1589 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1595 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1596 struct page **pages, int nr_pages)
1598 unsigned long addr;
1599 gfn_t entry = 0;
1601 addr = gfn_to_hva_many(slot, gfn, &entry);
1602 if (kvm_is_error_hva(addr))
1603 return -1;
1605 if (entry < nr_pages)
1606 return 0;
1608 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1610 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1612 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1614 if (is_error_noslot_pfn(pfn))
1615 return KVM_ERR_PTR_BAD_PAGE;
1617 if (kvm_is_reserved_pfn(pfn)) {
1618 WARN_ON(1);
1619 return KVM_ERR_PTR_BAD_PAGE;
1622 return pfn_to_page(pfn);
1625 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1627 kvm_pfn_t pfn;
1629 pfn = gfn_to_pfn(kvm, gfn);
1631 return kvm_pfn_to_page(pfn);
1633 EXPORT_SYMBOL_GPL(gfn_to_page);
1635 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1637 kvm_pfn_t pfn;
1639 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1641 return kvm_pfn_to_page(pfn);
1643 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1645 void kvm_release_page_clean(struct page *page)
1647 WARN_ON(is_error_page(page));
1649 kvm_release_pfn_clean(page_to_pfn(page));
1651 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1653 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1655 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1656 put_page(pfn_to_page(pfn));
1658 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1660 void kvm_release_page_dirty(struct page *page)
1662 WARN_ON(is_error_page(page));
1664 kvm_release_pfn_dirty(page_to_pfn(page));
1666 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1668 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1670 kvm_set_pfn_dirty(pfn);
1671 kvm_release_pfn_clean(pfn);
1673 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1675 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1677 if (!kvm_is_reserved_pfn(pfn)) {
1678 struct page *page = pfn_to_page(pfn);
1680 if (!PageReserved(page))
1681 SetPageDirty(page);
1684 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1686 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1688 if (!kvm_is_reserved_pfn(pfn))
1689 mark_page_accessed(pfn_to_page(pfn));
1691 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1693 void kvm_get_pfn(kvm_pfn_t pfn)
1695 if (!kvm_is_reserved_pfn(pfn))
1696 get_page(pfn_to_page(pfn));
1698 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1700 static int next_segment(unsigned long len, int offset)
1702 if (len > PAGE_SIZE - offset)
1703 return PAGE_SIZE - offset;
1704 else
1705 return len;
1708 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1709 void *data, int offset, int len)
1711 int r;
1712 unsigned long addr;
1714 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1715 if (kvm_is_error_hva(addr))
1716 return -EFAULT;
1717 r = __copy_from_user(data, (void __user *)addr + offset, len);
1718 if (r)
1719 return -EFAULT;
1720 return 0;
1723 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1724 int len)
1726 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1728 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1730 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1732 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1733 int offset, int len)
1735 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1737 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1741 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1743 gfn_t gfn = gpa >> PAGE_SHIFT;
1744 int seg;
1745 int offset = offset_in_page(gpa);
1746 int ret;
1748 while ((seg = next_segment(len, offset)) != 0) {
1749 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1750 if (ret < 0)
1751 return ret;
1752 offset = 0;
1753 len -= seg;
1754 data += seg;
1755 ++gfn;
1757 return 0;
1759 EXPORT_SYMBOL_GPL(kvm_read_guest);
1761 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1763 gfn_t gfn = gpa >> PAGE_SHIFT;
1764 int seg;
1765 int offset = offset_in_page(gpa);
1766 int ret;
1768 while ((seg = next_segment(len, offset)) != 0) {
1769 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1770 if (ret < 0)
1771 return ret;
1772 offset = 0;
1773 len -= seg;
1774 data += seg;
1775 ++gfn;
1777 return 0;
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1781 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1782 void *data, int offset, unsigned long len)
1784 int r;
1785 unsigned long addr;
1787 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1788 if (kvm_is_error_hva(addr))
1789 return -EFAULT;
1790 pagefault_disable();
1791 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1792 pagefault_enable();
1793 if (r)
1794 return -EFAULT;
1795 return 0;
1798 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1799 unsigned long len)
1801 gfn_t gfn = gpa >> PAGE_SHIFT;
1802 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1803 int offset = offset_in_page(gpa);
1805 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1807 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1809 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1810 void *data, unsigned long len)
1812 gfn_t gfn = gpa >> PAGE_SHIFT;
1813 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1814 int offset = offset_in_page(gpa);
1816 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1820 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1821 const void *data, int offset, int len)
1823 int r;
1824 unsigned long addr;
1826 addr = gfn_to_hva_memslot(memslot, gfn);
1827 if (kvm_is_error_hva(addr))
1828 return -EFAULT;
1829 r = __copy_to_user((void __user *)addr + offset, data, len);
1830 if (r)
1831 return -EFAULT;
1832 mark_page_dirty_in_slot(memslot, gfn);
1833 return 0;
1836 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1837 const void *data, int offset, int len)
1839 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1841 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1843 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1845 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1846 const void *data, int offset, int len)
1848 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1850 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1854 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1855 unsigned long len)
1857 gfn_t gfn = gpa >> PAGE_SHIFT;
1858 int seg;
1859 int offset = offset_in_page(gpa);
1860 int ret;
1862 while ((seg = next_segment(len, offset)) != 0) {
1863 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1864 if (ret < 0)
1865 return ret;
1866 offset = 0;
1867 len -= seg;
1868 data += seg;
1869 ++gfn;
1871 return 0;
1873 EXPORT_SYMBOL_GPL(kvm_write_guest);
1875 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1876 unsigned long len)
1878 gfn_t gfn = gpa >> PAGE_SHIFT;
1879 int seg;
1880 int offset = offset_in_page(gpa);
1881 int ret;
1883 while ((seg = next_segment(len, offset)) != 0) {
1884 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1885 if (ret < 0)
1886 return ret;
1887 offset = 0;
1888 len -= seg;
1889 data += seg;
1890 ++gfn;
1892 return 0;
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1896 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1897 struct gfn_to_hva_cache *ghc,
1898 gpa_t gpa, unsigned long len)
1900 int offset = offset_in_page(gpa);
1901 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1902 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1903 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1904 gfn_t nr_pages_avail;
1906 ghc->gpa = gpa;
1907 ghc->generation = slots->generation;
1908 ghc->len = len;
1909 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1910 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1911 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1912 ghc->hva += offset;
1913 } else {
1915 * If the requested region crosses two memslots, we still
1916 * verify that the entire region is valid here.
1918 while (start_gfn <= end_gfn) {
1919 nr_pages_avail = 0;
1920 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1921 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1922 &nr_pages_avail);
1923 if (kvm_is_error_hva(ghc->hva))
1924 return -EFAULT;
1925 start_gfn += nr_pages_avail;
1927 /* Use the slow path for cross page reads and writes. */
1928 ghc->memslot = NULL;
1930 return 0;
1933 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1934 gpa_t gpa, unsigned long len)
1936 struct kvm_memslots *slots = kvm_memslots(kvm);
1937 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1939 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1941 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1942 void *data, int offset, unsigned long len)
1944 struct kvm_memslots *slots = kvm_memslots(kvm);
1945 int r;
1946 gpa_t gpa = ghc->gpa + offset;
1948 BUG_ON(len + offset > ghc->len);
1950 if (slots->generation != ghc->generation)
1951 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1953 if (unlikely(!ghc->memslot))
1954 return kvm_write_guest(kvm, gpa, data, len);
1956 if (kvm_is_error_hva(ghc->hva))
1957 return -EFAULT;
1959 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1960 if (r)
1961 return -EFAULT;
1962 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1964 return 0;
1966 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1968 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1969 void *data, unsigned long len)
1971 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1973 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1975 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1976 void *data, unsigned long len)
1978 struct kvm_memslots *slots = kvm_memslots(kvm);
1979 int r;
1981 BUG_ON(len > ghc->len);
1983 if (slots->generation != ghc->generation)
1984 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1986 if (unlikely(!ghc->memslot))
1987 return kvm_read_guest(kvm, ghc->gpa, data, len);
1989 if (kvm_is_error_hva(ghc->hva))
1990 return -EFAULT;
1992 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1993 if (r)
1994 return -EFAULT;
1996 return 0;
1998 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2000 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2002 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2004 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2006 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2008 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2010 gfn_t gfn = gpa >> PAGE_SHIFT;
2011 int seg;
2012 int offset = offset_in_page(gpa);
2013 int ret;
2015 while ((seg = next_segment(len, offset)) != 0) {
2016 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2017 if (ret < 0)
2018 return ret;
2019 offset = 0;
2020 len -= seg;
2021 ++gfn;
2023 return 0;
2025 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2027 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2028 gfn_t gfn)
2030 if (memslot && memslot->dirty_bitmap) {
2031 unsigned long rel_gfn = gfn - memslot->base_gfn;
2033 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2037 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2039 struct kvm_memory_slot *memslot;
2041 memslot = gfn_to_memslot(kvm, gfn);
2042 mark_page_dirty_in_slot(memslot, gfn);
2044 EXPORT_SYMBOL_GPL(mark_page_dirty);
2046 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2048 struct kvm_memory_slot *memslot;
2050 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2051 mark_page_dirty_in_slot(memslot, gfn);
2053 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2055 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2057 if (!vcpu->sigset_active)
2058 return;
2061 * This does a lockless modification of ->real_blocked, which is fine
2062 * because, only current can change ->real_blocked and all readers of
2063 * ->real_blocked don't care as long ->real_blocked is always a subset
2064 * of ->blocked.
2066 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2069 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2071 if (!vcpu->sigset_active)
2072 return;
2074 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2075 sigemptyset(&current->real_blocked);
2078 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2080 unsigned int old, val, grow;
2082 old = val = vcpu->halt_poll_ns;
2083 grow = READ_ONCE(halt_poll_ns_grow);
2084 /* 10us base */
2085 if (val == 0 && grow)
2086 val = 10000;
2087 else
2088 val *= grow;
2090 if (val > halt_poll_ns)
2091 val = halt_poll_ns;
2093 vcpu->halt_poll_ns = val;
2094 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2097 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2099 unsigned int old, val, shrink;
2101 old = val = vcpu->halt_poll_ns;
2102 shrink = READ_ONCE(halt_poll_ns_shrink);
2103 if (shrink == 0)
2104 val = 0;
2105 else
2106 val /= shrink;
2108 vcpu->halt_poll_ns = val;
2109 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2112 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2114 if (kvm_arch_vcpu_runnable(vcpu)) {
2115 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2116 return -EINTR;
2118 if (kvm_cpu_has_pending_timer(vcpu))
2119 return -EINTR;
2120 if (signal_pending(current))
2121 return -EINTR;
2123 return 0;
2127 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2129 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2131 ktime_t start, cur;
2132 DECLARE_SWAITQUEUE(wait);
2133 bool waited = false;
2134 u64 block_ns;
2136 start = cur = ktime_get();
2137 if (vcpu->halt_poll_ns) {
2138 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2140 ++vcpu->stat.halt_attempted_poll;
2141 do {
2143 * This sets KVM_REQ_UNHALT if an interrupt
2144 * arrives.
2146 if (kvm_vcpu_check_block(vcpu) < 0) {
2147 ++vcpu->stat.halt_successful_poll;
2148 if (!vcpu_valid_wakeup(vcpu))
2149 ++vcpu->stat.halt_poll_invalid;
2150 goto out;
2152 cur = ktime_get();
2153 } while (single_task_running() && ktime_before(cur, stop));
2156 kvm_arch_vcpu_blocking(vcpu);
2158 for (;;) {
2159 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2161 if (kvm_vcpu_check_block(vcpu) < 0)
2162 break;
2164 waited = true;
2165 schedule();
2168 finish_swait(&vcpu->wq, &wait);
2169 cur = ktime_get();
2171 kvm_arch_vcpu_unblocking(vcpu);
2172 out:
2173 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2175 if (!vcpu_valid_wakeup(vcpu))
2176 shrink_halt_poll_ns(vcpu);
2177 else if (halt_poll_ns) {
2178 if (block_ns <= vcpu->halt_poll_ns)
2180 /* we had a long block, shrink polling */
2181 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2182 shrink_halt_poll_ns(vcpu);
2183 /* we had a short halt and our poll time is too small */
2184 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2185 block_ns < halt_poll_ns)
2186 grow_halt_poll_ns(vcpu);
2187 } else
2188 vcpu->halt_poll_ns = 0;
2190 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2191 kvm_arch_vcpu_block_finish(vcpu);
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2195 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2197 struct swait_queue_head *wqp;
2199 wqp = kvm_arch_vcpu_wq(vcpu);
2200 if (swq_has_sleeper(wqp)) {
2201 swake_up(wqp);
2202 ++vcpu->stat.halt_wakeup;
2203 return true;
2206 return false;
2208 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2210 #ifndef CONFIG_S390
2212 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2214 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2216 int me;
2217 int cpu = vcpu->cpu;
2219 if (kvm_vcpu_wake_up(vcpu))
2220 return;
2222 me = get_cpu();
2223 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2224 if (kvm_arch_vcpu_should_kick(vcpu))
2225 smp_send_reschedule(cpu);
2226 put_cpu();
2228 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2229 #endif /* !CONFIG_S390 */
2231 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2233 struct pid *pid;
2234 struct task_struct *task = NULL;
2235 int ret = 0;
2237 rcu_read_lock();
2238 pid = rcu_dereference(target->pid);
2239 if (pid)
2240 task = get_pid_task(pid, PIDTYPE_PID);
2241 rcu_read_unlock();
2242 if (!task)
2243 return ret;
2244 ret = yield_to(task, 1);
2245 put_task_struct(task);
2247 return ret;
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2252 * Helper that checks whether a VCPU is eligible for directed yield.
2253 * Most eligible candidate to yield is decided by following heuristics:
2255 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2256 * (preempted lock holder), indicated by @in_spin_loop.
2257 * Set at the beiginning and cleared at the end of interception/PLE handler.
2259 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2260 * chance last time (mostly it has become eligible now since we have probably
2261 * yielded to lockholder in last iteration. This is done by toggling
2262 * @dy_eligible each time a VCPU checked for eligibility.)
2264 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2265 * to preempted lock-holder could result in wrong VCPU selection and CPU
2266 * burning. Giving priority for a potential lock-holder increases lock
2267 * progress.
2269 * Since algorithm is based on heuristics, accessing another VCPU data without
2270 * locking does not harm. It may result in trying to yield to same VCPU, fail
2271 * and continue with next VCPU and so on.
2273 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2275 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2276 bool eligible;
2278 eligible = !vcpu->spin_loop.in_spin_loop ||
2279 vcpu->spin_loop.dy_eligible;
2281 if (vcpu->spin_loop.in_spin_loop)
2282 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2284 return eligible;
2285 #else
2286 return true;
2287 #endif
2290 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2292 struct kvm *kvm = me->kvm;
2293 struct kvm_vcpu *vcpu;
2294 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2295 int yielded = 0;
2296 int try = 3;
2297 int pass;
2298 int i;
2300 kvm_vcpu_set_in_spin_loop(me, true);
2302 * We boost the priority of a VCPU that is runnable but not
2303 * currently running, because it got preempted by something
2304 * else and called schedule in __vcpu_run. Hopefully that
2305 * VCPU is holding the lock that we need and will release it.
2306 * We approximate round-robin by starting at the last boosted VCPU.
2308 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2309 kvm_for_each_vcpu(i, vcpu, kvm) {
2310 if (!pass && i <= last_boosted_vcpu) {
2311 i = last_boosted_vcpu;
2312 continue;
2313 } else if (pass && i > last_boosted_vcpu)
2314 break;
2315 if (!READ_ONCE(vcpu->preempted))
2316 continue;
2317 if (vcpu == me)
2318 continue;
2319 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2320 continue;
2321 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2322 continue;
2323 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2324 continue;
2326 yielded = kvm_vcpu_yield_to(vcpu);
2327 if (yielded > 0) {
2328 kvm->last_boosted_vcpu = i;
2329 break;
2330 } else if (yielded < 0) {
2331 try--;
2332 if (!try)
2333 break;
2337 kvm_vcpu_set_in_spin_loop(me, false);
2339 /* Ensure vcpu is not eligible during next spinloop */
2340 kvm_vcpu_set_dy_eligible(me, false);
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2344 static int kvm_vcpu_fault(struct vm_fault *vmf)
2346 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2347 struct page *page;
2349 if (vmf->pgoff == 0)
2350 page = virt_to_page(vcpu->run);
2351 #ifdef CONFIG_X86
2352 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2353 page = virt_to_page(vcpu->arch.pio_data);
2354 #endif
2355 #ifdef CONFIG_KVM_MMIO
2356 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2357 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2358 #endif
2359 else
2360 return kvm_arch_vcpu_fault(vcpu, vmf);
2361 get_page(page);
2362 vmf->page = page;
2363 return 0;
2366 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2367 .fault = kvm_vcpu_fault,
2370 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2372 vma->vm_ops = &kvm_vcpu_vm_ops;
2373 return 0;
2376 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2378 struct kvm_vcpu *vcpu = filp->private_data;
2380 debugfs_remove_recursive(vcpu->debugfs_dentry);
2381 kvm_put_kvm(vcpu->kvm);
2382 return 0;
2385 static struct file_operations kvm_vcpu_fops = {
2386 .release = kvm_vcpu_release,
2387 .unlocked_ioctl = kvm_vcpu_ioctl,
2388 #ifdef CONFIG_KVM_COMPAT
2389 .compat_ioctl = kvm_vcpu_compat_ioctl,
2390 #endif
2391 .mmap = kvm_vcpu_mmap,
2392 .llseek = noop_llseek,
2396 * Allocates an inode for the vcpu.
2398 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2400 char name[8 + 1 + ITOA_MAX_LEN + 1];
2402 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2403 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2408 char dir_name[ITOA_MAX_LEN * 2];
2409 int ret;
2411 if (!kvm_arch_has_vcpu_debugfs())
2412 return 0;
2414 if (!debugfs_initialized())
2415 return 0;
2417 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2418 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2419 vcpu->kvm->debugfs_dentry);
2420 if (!vcpu->debugfs_dentry)
2421 return -ENOMEM;
2423 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2424 if (ret < 0) {
2425 debugfs_remove_recursive(vcpu->debugfs_dentry);
2426 return ret;
2429 return 0;
2433 * Creates some virtual cpus. Good luck creating more than one.
2435 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2437 int r;
2438 struct kvm_vcpu *vcpu;
2440 if (id >= KVM_MAX_VCPU_ID)
2441 return -EINVAL;
2443 mutex_lock(&kvm->lock);
2444 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2445 mutex_unlock(&kvm->lock);
2446 return -EINVAL;
2449 kvm->created_vcpus++;
2450 mutex_unlock(&kvm->lock);
2452 vcpu = kvm_arch_vcpu_create(kvm, id);
2453 if (IS_ERR(vcpu)) {
2454 r = PTR_ERR(vcpu);
2455 goto vcpu_decrement;
2458 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2460 r = kvm_arch_vcpu_setup(vcpu);
2461 if (r)
2462 goto vcpu_destroy;
2464 r = kvm_create_vcpu_debugfs(vcpu);
2465 if (r)
2466 goto vcpu_destroy;
2468 mutex_lock(&kvm->lock);
2469 if (kvm_get_vcpu_by_id(kvm, id)) {
2470 r = -EEXIST;
2471 goto unlock_vcpu_destroy;
2474 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2476 /* Now it's all set up, let userspace reach it */
2477 kvm_get_kvm(kvm);
2478 r = create_vcpu_fd(vcpu);
2479 if (r < 0) {
2480 kvm_put_kvm(kvm);
2481 goto unlock_vcpu_destroy;
2484 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2487 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2488 * before kvm->online_vcpu's incremented value.
2490 smp_wmb();
2491 atomic_inc(&kvm->online_vcpus);
2493 mutex_unlock(&kvm->lock);
2494 kvm_arch_vcpu_postcreate(vcpu);
2495 return r;
2497 unlock_vcpu_destroy:
2498 mutex_unlock(&kvm->lock);
2499 debugfs_remove_recursive(vcpu->debugfs_dentry);
2500 vcpu_destroy:
2501 kvm_arch_vcpu_destroy(vcpu);
2502 vcpu_decrement:
2503 mutex_lock(&kvm->lock);
2504 kvm->created_vcpus--;
2505 mutex_unlock(&kvm->lock);
2506 return r;
2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2511 if (sigset) {
2512 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2513 vcpu->sigset_active = 1;
2514 vcpu->sigset = *sigset;
2515 } else
2516 vcpu->sigset_active = 0;
2517 return 0;
2520 static long kvm_vcpu_ioctl(struct file *filp,
2521 unsigned int ioctl, unsigned long arg)
2523 struct kvm_vcpu *vcpu = filp->private_data;
2524 void __user *argp = (void __user *)arg;
2525 int r;
2526 struct kvm_fpu *fpu = NULL;
2527 struct kvm_sregs *kvm_sregs = NULL;
2529 if (vcpu->kvm->mm != current->mm)
2530 return -EIO;
2532 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2533 return -EINVAL;
2536 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2537 * execution; mutex_lock() would break them.
2539 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2540 if (r != -ENOIOCTLCMD)
2541 return r;
2543 if (mutex_lock_killable(&vcpu->mutex))
2544 return -EINTR;
2545 switch (ioctl) {
2546 case KVM_RUN: {
2547 struct pid *oldpid;
2548 r = -EINVAL;
2549 if (arg)
2550 goto out;
2551 oldpid = rcu_access_pointer(vcpu->pid);
2552 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2553 /* The thread running this VCPU changed. */
2554 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2556 rcu_assign_pointer(vcpu->pid, newpid);
2557 if (oldpid)
2558 synchronize_rcu();
2559 put_pid(oldpid);
2561 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2562 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2563 break;
2565 case KVM_GET_REGS: {
2566 struct kvm_regs *kvm_regs;
2568 r = -ENOMEM;
2569 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2570 if (!kvm_regs)
2571 goto out;
2572 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2573 if (r)
2574 goto out_free1;
2575 r = -EFAULT;
2576 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2577 goto out_free1;
2578 r = 0;
2579 out_free1:
2580 kfree(kvm_regs);
2581 break;
2583 case KVM_SET_REGS: {
2584 struct kvm_regs *kvm_regs;
2586 r = -ENOMEM;
2587 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2588 if (IS_ERR(kvm_regs)) {
2589 r = PTR_ERR(kvm_regs);
2590 goto out;
2592 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2593 kfree(kvm_regs);
2594 break;
2596 case KVM_GET_SREGS: {
2597 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2598 r = -ENOMEM;
2599 if (!kvm_sregs)
2600 goto out;
2601 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2602 if (r)
2603 goto out;
2604 r = -EFAULT;
2605 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2606 goto out;
2607 r = 0;
2608 break;
2610 case KVM_SET_SREGS: {
2611 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2612 if (IS_ERR(kvm_sregs)) {
2613 r = PTR_ERR(kvm_sregs);
2614 kvm_sregs = NULL;
2615 goto out;
2617 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2618 break;
2620 case KVM_GET_MP_STATE: {
2621 struct kvm_mp_state mp_state;
2623 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2624 if (r)
2625 goto out;
2626 r = -EFAULT;
2627 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2628 goto out;
2629 r = 0;
2630 break;
2632 case KVM_SET_MP_STATE: {
2633 struct kvm_mp_state mp_state;
2635 r = -EFAULT;
2636 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2637 goto out;
2638 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2639 break;
2641 case KVM_TRANSLATE: {
2642 struct kvm_translation tr;
2644 r = -EFAULT;
2645 if (copy_from_user(&tr, argp, sizeof(tr)))
2646 goto out;
2647 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2648 if (r)
2649 goto out;
2650 r = -EFAULT;
2651 if (copy_to_user(argp, &tr, sizeof(tr)))
2652 goto out;
2653 r = 0;
2654 break;
2656 case KVM_SET_GUEST_DEBUG: {
2657 struct kvm_guest_debug dbg;
2659 r = -EFAULT;
2660 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2661 goto out;
2662 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2663 break;
2665 case KVM_SET_SIGNAL_MASK: {
2666 struct kvm_signal_mask __user *sigmask_arg = argp;
2667 struct kvm_signal_mask kvm_sigmask;
2668 sigset_t sigset, *p;
2670 p = NULL;
2671 if (argp) {
2672 r = -EFAULT;
2673 if (copy_from_user(&kvm_sigmask, argp,
2674 sizeof(kvm_sigmask)))
2675 goto out;
2676 r = -EINVAL;
2677 if (kvm_sigmask.len != sizeof(sigset))
2678 goto out;
2679 r = -EFAULT;
2680 if (copy_from_user(&sigset, sigmask_arg->sigset,
2681 sizeof(sigset)))
2682 goto out;
2683 p = &sigset;
2685 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2686 break;
2688 case KVM_GET_FPU: {
2689 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2690 r = -ENOMEM;
2691 if (!fpu)
2692 goto out;
2693 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2694 if (r)
2695 goto out;
2696 r = -EFAULT;
2697 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2698 goto out;
2699 r = 0;
2700 break;
2702 case KVM_SET_FPU: {
2703 fpu = memdup_user(argp, sizeof(*fpu));
2704 if (IS_ERR(fpu)) {
2705 r = PTR_ERR(fpu);
2706 fpu = NULL;
2707 goto out;
2709 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2710 break;
2712 default:
2713 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2715 out:
2716 mutex_unlock(&vcpu->mutex);
2717 kfree(fpu);
2718 kfree(kvm_sregs);
2719 return r;
2722 #ifdef CONFIG_KVM_COMPAT
2723 static long kvm_vcpu_compat_ioctl(struct file *filp,
2724 unsigned int ioctl, unsigned long arg)
2726 struct kvm_vcpu *vcpu = filp->private_data;
2727 void __user *argp = compat_ptr(arg);
2728 int r;
2730 if (vcpu->kvm->mm != current->mm)
2731 return -EIO;
2733 switch (ioctl) {
2734 case KVM_SET_SIGNAL_MASK: {
2735 struct kvm_signal_mask __user *sigmask_arg = argp;
2736 struct kvm_signal_mask kvm_sigmask;
2737 sigset_t sigset;
2739 if (argp) {
2740 r = -EFAULT;
2741 if (copy_from_user(&kvm_sigmask, argp,
2742 sizeof(kvm_sigmask)))
2743 goto out;
2744 r = -EINVAL;
2745 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2746 goto out;
2747 r = -EFAULT;
2748 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2749 goto out;
2750 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2751 } else
2752 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2753 break;
2755 default:
2756 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2759 out:
2760 return r;
2762 #endif
2764 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2765 int (*accessor)(struct kvm_device *dev,
2766 struct kvm_device_attr *attr),
2767 unsigned long arg)
2769 struct kvm_device_attr attr;
2771 if (!accessor)
2772 return -EPERM;
2774 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2775 return -EFAULT;
2777 return accessor(dev, &attr);
2780 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2781 unsigned long arg)
2783 struct kvm_device *dev = filp->private_data;
2785 switch (ioctl) {
2786 case KVM_SET_DEVICE_ATTR:
2787 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2788 case KVM_GET_DEVICE_ATTR:
2789 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2790 case KVM_HAS_DEVICE_ATTR:
2791 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2792 default:
2793 if (dev->ops->ioctl)
2794 return dev->ops->ioctl(dev, ioctl, arg);
2796 return -ENOTTY;
2800 static int kvm_device_release(struct inode *inode, struct file *filp)
2802 struct kvm_device *dev = filp->private_data;
2803 struct kvm *kvm = dev->kvm;
2805 kvm_put_kvm(kvm);
2806 return 0;
2809 static const struct file_operations kvm_device_fops = {
2810 .unlocked_ioctl = kvm_device_ioctl,
2811 #ifdef CONFIG_KVM_COMPAT
2812 .compat_ioctl = kvm_device_ioctl,
2813 #endif
2814 .release = kvm_device_release,
2817 struct kvm_device *kvm_device_from_filp(struct file *filp)
2819 if (filp->f_op != &kvm_device_fops)
2820 return NULL;
2822 return filp->private_data;
2825 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2826 #ifdef CONFIG_KVM_MPIC
2827 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2828 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2829 #endif
2832 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2834 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2835 return -ENOSPC;
2837 if (kvm_device_ops_table[type] != NULL)
2838 return -EEXIST;
2840 kvm_device_ops_table[type] = ops;
2841 return 0;
2844 void kvm_unregister_device_ops(u32 type)
2846 if (kvm_device_ops_table[type] != NULL)
2847 kvm_device_ops_table[type] = NULL;
2850 static int kvm_ioctl_create_device(struct kvm *kvm,
2851 struct kvm_create_device *cd)
2853 struct kvm_device_ops *ops = NULL;
2854 struct kvm_device *dev;
2855 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2856 int ret;
2858 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2859 return -ENODEV;
2861 ops = kvm_device_ops_table[cd->type];
2862 if (ops == NULL)
2863 return -ENODEV;
2865 if (test)
2866 return 0;
2868 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2869 if (!dev)
2870 return -ENOMEM;
2872 dev->ops = ops;
2873 dev->kvm = kvm;
2875 mutex_lock(&kvm->lock);
2876 ret = ops->create(dev, cd->type);
2877 if (ret < 0) {
2878 mutex_unlock(&kvm->lock);
2879 kfree(dev);
2880 return ret;
2882 list_add(&dev->vm_node, &kvm->devices);
2883 mutex_unlock(&kvm->lock);
2885 if (ops->init)
2886 ops->init(dev);
2888 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2889 if (ret < 0) {
2890 mutex_lock(&kvm->lock);
2891 list_del(&dev->vm_node);
2892 mutex_unlock(&kvm->lock);
2893 ops->destroy(dev);
2894 return ret;
2897 kvm_get_kvm(kvm);
2898 cd->fd = ret;
2899 return 0;
2902 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2904 switch (arg) {
2905 case KVM_CAP_USER_MEMORY:
2906 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2907 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2908 case KVM_CAP_INTERNAL_ERROR_DATA:
2909 #ifdef CONFIG_HAVE_KVM_MSI
2910 case KVM_CAP_SIGNAL_MSI:
2911 #endif
2912 #ifdef CONFIG_HAVE_KVM_IRQFD
2913 case KVM_CAP_IRQFD:
2914 case KVM_CAP_IRQFD_RESAMPLE:
2915 #endif
2916 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2917 case KVM_CAP_CHECK_EXTENSION_VM:
2918 return 1;
2919 #ifdef CONFIG_KVM_MMIO
2920 case KVM_CAP_COALESCED_MMIO:
2921 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2922 #endif
2923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2924 case KVM_CAP_IRQ_ROUTING:
2925 return KVM_MAX_IRQ_ROUTES;
2926 #endif
2927 #if KVM_ADDRESS_SPACE_NUM > 1
2928 case KVM_CAP_MULTI_ADDRESS_SPACE:
2929 return KVM_ADDRESS_SPACE_NUM;
2930 #endif
2931 case KVM_CAP_MAX_VCPU_ID:
2932 return KVM_MAX_VCPU_ID;
2933 default:
2934 break;
2936 return kvm_vm_ioctl_check_extension(kvm, arg);
2939 static long kvm_vm_ioctl(struct file *filp,
2940 unsigned int ioctl, unsigned long arg)
2942 struct kvm *kvm = filp->private_data;
2943 void __user *argp = (void __user *)arg;
2944 int r;
2946 if (kvm->mm != current->mm)
2947 return -EIO;
2948 switch (ioctl) {
2949 case KVM_CREATE_VCPU:
2950 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2951 break;
2952 case KVM_SET_USER_MEMORY_REGION: {
2953 struct kvm_userspace_memory_region kvm_userspace_mem;
2955 r = -EFAULT;
2956 if (copy_from_user(&kvm_userspace_mem, argp,
2957 sizeof(kvm_userspace_mem)))
2958 goto out;
2960 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2961 break;
2963 case KVM_GET_DIRTY_LOG: {
2964 struct kvm_dirty_log log;
2966 r = -EFAULT;
2967 if (copy_from_user(&log, argp, sizeof(log)))
2968 goto out;
2969 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2970 break;
2972 #ifdef CONFIG_KVM_MMIO
2973 case KVM_REGISTER_COALESCED_MMIO: {
2974 struct kvm_coalesced_mmio_zone zone;
2976 r = -EFAULT;
2977 if (copy_from_user(&zone, argp, sizeof(zone)))
2978 goto out;
2979 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2980 break;
2982 case KVM_UNREGISTER_COALESCED_MMIO: {
2983 struct kvm_coalesced_mmio_zone zone;
2985 r = -EFAULT;
2986 if (copy_from_user(&zone, argp, sizeof(zone)))
2987 goto out;
2988 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2989 break;
2991 #endif
2992 case KVM_IRQFD: {
2993 struct kvm_irqfd data;
2995 r = -EFAULT;
2996 if (copy_from_user(&data, argp, sizeof(data)))
2997 goto out;
2998 r = kvm_irqfd(kvm, &data);
2999 break;
3001 case KVM_IOEVENTFD: {
3002 struct kvm_ioeventfd data;
3004 r = -EFAULT;
3005 if (copy_from_user(&data, argp, sizeof(data)))
3006 goto out;
3007 r = kvm_ioeventfd(kvm, &data);
3008 break;
3010 #ifdef CONFIG_HAVE_KVM_MSI
3011 case KVM_SIGNAL_MSI: {
3012 struct kvm_msi msi;
3014 r = -EFAULT;
3015 if (copy_from_user(&msi, argp, sizeof(msi)))
3016 goto out;
3017 r = kvm_send_userspace_msi(kvm, &msi);
3018 break;
3020 #endif
3021 #ifdef __KVM_HAVE_IRQ_LINE
3022 case KVM_IRQ_LINE_STATUS:
3023 case KVM_IRQ_LINE: {
3024 struct kvm_irq_level irq_event;
3026 r = -EFAULT;
3027 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3028 goto out;
3030 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3031 ioctl == KVM_IRQ_LINE_STATUS);
3032 if (r)
3033 goto out;
3035 r = -EFAULT;
3036 if (ioctl == KVM_IRQ_LINE_STATUS) {
3037 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3038 goto out;
3041 r = 0;
3042 break;
3044 #endif
3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3046 case KVM_SET_GSI_ROUTING: {
3047 struct kvm_irq_routing routing;
3048 struct kvm_irq_routing __user *urouting;
3049 struct kvm_irq_routing_entry *entries = NULL;
3051 r = -EFAULT;
3052 if (copy_from_user(&routing, argp, sizeof(routing)))
3053 goto out;
3054 r = -EINVAL;
3055 if (!kvm_arch_can_set_irq_routing(kvm))
3056 goto out;
3057 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3058 goto out;
3059 if (routing.flags)
3060 goto out;
3061 if (routing.nr) {
3062 r = -ENOMEM;
3063 entries = vmalloc(routing.nr * sizeof(*entries));
3064 if (!entries)
3065 goto out;
3066 r = -EFAULT;
3067 urouting = argp;
3068 if (copy_from_user(entries, urouting->entries,
3069 routing.nr * sizeof(*entries)))
3070 goto out_free_irq_routing;
3072 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3073 routing.flags);
3074 out_free_irq_routing:
3075 vfree(entries);
3076 break;
3078 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3079 case KVM_CREATE_DEVICE: {
3080 struct kvm_create_device cd;
3082 r = -EFAULT;
3083 if (copy_from_user(&cd, argp, sizeof(cd)))
3084 goto out;
3086 r = kvm_ioctl_create_device(kvm, &cd);
3087 if (r)
3088 goto out;
3090 r = -EFAULT;
3091 if (copy_to_user(argp, &cd, sizeof(cd)))
3092 goto out;
3094 r = 0;
3095 break;
3097 case KVM_CHECK_EXTENSION:
3098 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3099 break;
3100 default:
3101 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3103 out:
3104 return r;
3107 #ifdef CONFIG_KVM_COMPAT
3108 struct compat_kvm_dirty_log {
3109 __u32 slot;
3110 __u32 padding1;
3111 union {
3112 compat_uptr_t dirty_bitmap; /* one bit per page */
3113 __u64 padding2;
3117 static long kvm_vm_compat_ioctl(struct file *filp,
3118 unsigned int ioctl, unsigned long arg)
3120 struct kvm *kvm = filp->private_data;
3121 int r;
3123 if (kvm->mm != current->mm)
3124 return -EIO;
3125 switch (ioctl) {
3126 case KVM_GET_DIRTY_LOG: {
3127 struct compat_kvm_dirty_log compat_log;
3128 struct kvm_dirty_log log;
3130 if (copy_from_user(&compat_log, (void __user *)arg,
3131 sizeof(compat_log)))
3132 return -EFAULT;
3133 log.slot = compat_log.slot;
3134 log.padding1 = compat_log.padding1;
3135 log.padding2 = compat_log.padding2;
3136 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3138 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3139 break;
3141 default:
3142 r = kvm_vm_ioctl(filp, ioctl, arg);
3144 return r;
3146 #endif
3148 static struct file_operations kvm_vm_fops = {
3149 .release = kvm_vm_release,
3150 .unlocked_ioctl = kvm_vm_ioctl,
3151 #ifdef CONFIG_KVM_COMPAT
3152 .compat_ioctl = kvm_vm_compat_ioctl,
3153 #endif
3154 .llseek = noop_llseek,
3157 static int kvm_dev_ioctl_create_vm(unsigned long type)
3159 int r;
3160 struct kvm *kvm;
3161 struct file *file;
3163 kvm = kvm_create_vm(type);
3164 if (IS_ERR(kvm))
3165 return PTR_ERR(kvm);
3166 #ifdef CONFIG_KVM_MMIO
3167 r = kvm_coalesced_mmio_init(kvm);
3168 if (r < 0)
3169 goto put_kvm;
3170 #endif
3171 r = get_unused_fd_flags(O_CLOEXEC);
3172 if (r < 0)
3173 goto put_kvm;
3175 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3176 if (IS_ERR(file)) {
3177 put_unused_fd(r);
3178 r = PTR_ERR(file);
3179 goto put_kvm;
3183 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3184 * already set, with ->release() being kvm_vm_release(). In error
3185 * cases it will be called by the final fput(file) and will take
3186 * care of doing kvm_put_kvm(kvm).
3188 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3189 put_unused_fd(r);
3190 fput(file);
3191 return -ENOMEM;
3193 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3195 fd_install(r, file);
3196 return r;
3198 put_kvm:
3199 kvm_put_kvm(kvm);
3200 return r;
3203 static long kvm_dev_ioctl(struct file *filp,
3204 unsigned int ioctl, unsigned long arg)
3206 long r = -EINVAL;
3208 switch (ioctl) {
3209 case KVM_GET_API_VERSION:
3210 if (arg)
3211 goto out;
3212 r = KVM_API_VERSION;
3213 break;
3214 case KVM_CREATE_VM:
3215 r = kvm_dev_ioctl_create_vm(arg);
3216 break;
3217 case KVM_CHECK_EXTENSION:
3218 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3219 break;
3220 case KVM_GET_VCPU_MMAP_SIZE:
3221 if (arg)
3222 goto out;
3223 r = PAGE_SIZE; /* struct kvm_run */
3224 #ifdef CONFIG_X86
3225 r += PAGE_SIZE; /* pio data page */
3226 #endif
3227 #ifdef CONFIG_KVM_MMIO
3228 r += PAGE_SIZE; /* coalesced mmio ring page */
3229 #endif
3230 break;
3231 case KVM_TRACE_ENABLE:
3232 case KVM_TRACE_PAUSE:
3233 case KVM_TRACE_DISABLE:
3234 r = -EOPNOTSUPP;
3235 break;
3236 default:
3237 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239 out:
3240 return r;
3243 static struct file_operations kvm_chardev_ops = {
3244 .unlocked_ioctl = kvm_dev_ioctl,
3245 .compat_ioctl = kvm_dev_ioctl,
3246 .llseek = noop_llseek,
3249 static struct miscdevice kvm_dev = {
3250 KVM_MINOR,
3251 "kvm",
3252 &kvm_chardev_ops,
3255 static void hardware_enable_nolock(void *junk)
3257 int cpu = raw_smp_processor_id();
3258 int r;
3260 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3261 return;
3263 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265 r = kvm_arch_hardware_enable();
3267 if (r) {
3268 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3269 atomic_inc(&hardware_enable_failed);
3270 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3274 static int kvm_starting_cpu(unsigned int cpu)
3276 raw_spin_lock(&kvm_count_lock);
3277 if (kvm_usage_count)
3278 hardware_enable_nolock(NULL);
3279 raw_spin_unlock(&kvm_count_lock);
3280 return 0;
3283 static void hardware_disable_nolock(void *junk)
3285 int cpu = raw_smp_processor_id();
3287 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3288 return;
3289 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3290 kvm_arch_hardware_disable();
3293 static int kvm_dying_cpu(unsigned int cpu)
3295 raw_spin_lock(&kvm_count_lock);
3296 if (kvm_usage_count)
3297 hardware_disable_nolock(NULL);
3298 raw_spin_unlock(&kvm_count_lock);
3299 return 0;
3302 static void hardware_disable_all_nolock(void)
3304 BUG_ON(!kvm_usage_count);
3306 kvm_usage_count--;
3307 if (!kvm_usage_count)
3308 on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 static void hardware_disable_all(void)
3313 raw_spin_lock(&kvm_count_lock);
3314 hardware_disable_all_nolock();
3315 raw_spin_unlock(&kvm_count_lock);
3318 static int hardware_enable_all(void)
3320 int r = 0;
3322 raw_spin_lock(&kvm_count_lock);
3324 kvm_usage_count++;
3325 if (kvm_usage_count == 1) {
3326 atomic_set(&hardware_enable_failed, 0);
3327 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329 if (atomic_read(&hardware_enable_failed)) {
3330 hardware_disable_all_nolock();
3331 r = -EBUSY;
3335 raw_spin_unlock(&kvm_count_lock);
3337 return r;
3340 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3341 void *v)
3344 * Some (well, at least mine) BIOSes hang on reboot if
3345 * in vmx root mode.
3347 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 pr_info("kvm: exiting hardware virtualization\n");
3350 kvm_rebooting = true;
3351 on_each_cpu(hardware_disable_nolock, NULL, 1);
3352 return NOTIFY_OK;
3355 static struct notifier_block kvm_reboot_notifier = {
3356 .notifier_call = kvm_reboot,
3357 .priority = 0,
3360 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 int i;
3364 for (i = 0; i < bus->dev_count; i++) {
3365 struct kvm_io_device *pos = bus->range[i].dev;
3367 kvm_iodevice_destructor(pos);
3369 kfree(bus);
3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3373 const struct kvm_io_range *r2)
3375 gpa_t addr1 = r1->addr;
3376 gpa_t addr2 = r2->addr;
3378 if (addr1 < addr2)
3379 return -1;
3381 /* If r2->len == 0, match the exact address. If r2->len != 0,
3382 * accept any overlapping write. Any order is acceptable for
3383 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3384 * we process all of them.
3386 if (r2->len) {
3387 addr1 += r1->len;
3388 addr2 += r2->len;
3391 if (addr1 > addr2)
3392 return 1;
3394 return 0;
3397 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 return kvm_io_bus_cmp(p1, p2);
3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3403 gpa_t addr, int len)
3405 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3406 .addr = addr,
3407 .len = len,
3408 .dev = dev,
3411 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3412 kvm_io_bus_sort_cmp, NULL);
3414 return 0;
3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3418 gpa_t addr, int len)
3420 struct kvm_io_range *range, key;
3421 int off;
3423 key = (struct kvm_io_range) {
3424 .addr = addr,
3425 .len = len,
3428 range = bsearch(&key, bus->range, bus->dev_count,
3429 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3430 if (range == NULL)
3431 return -ENOENT;
3433 off = range - bus->range;
3435 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3436 off--;
3438 return off;
3441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3442 struct kvm_io_range *range, const void *val)
3444 int idx;
3446 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3447 if (idx < 0)
3448 return -EOPNOTSUPP;
3450 while (idx < bus->dev_count &&
3451 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3452 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3453 range->len, val))
3454 return idx;
3455 idx++;
3458 return -EOPNOTSUPP;
3461 /* kvm_io_bus_write - called under kvm->slots_lock */
3462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3463 int len, const void *val)
3465 struct kvm_io_bus *bus;
3466 struct kvm_io_range range;
3467 int r;
3469 range = (struct kvm_io_range) {
3470 .addr = addr,
3471 .len = len,
3474 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3475 if (!bus)
3476 return -ENOMEM;
3477 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478 return r < 0 ? r : 0;
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483 gpa_t addr, int len, const void *val, long cookie)
3485 struct kvm_io_bus *bus;
3486 struct kvm_io_range range;
3488 range = (struct kvm_io_range) {
3489 .addr = addr,
3490 .len = len,
3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494 if (!bus)
3495 return -ENOMEM;
3497 /* First try the device referenced by cookie. */
3498 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3499 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3500 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3501 val))
3502 return cookie;
3505 * cookie contained garbage; fall back to search and return the
3506 * correct cookie value.
3508 return __kvm_io_bus_write(vcpu, bus, &range, val);
3511 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3512 struct kvm_io_range *range, void *val)
3514 int idx;
3516 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3517 if (idx < 0)
3518 return -EOPNOTSUPP;
3520 while (idx < bus->dev_count &&
3521 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3522 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3523 range->len, val))
3524 return idx;
3525 idx++;
3528 return -EOPNOTSUPP;
3530 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532 /* kvm_io_bus_read - called under kvm->slots_lock */
3533 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3534 int len, void *val)
3536 struct kvm_io_bus *bus;
3537 struct kvm_io_range range;
3538 int r;
3540 range = (struct kvm_io_range) {
3541 .addr = addr,
3542 .len = len,
3545 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3546 if (!bus)
3547 return -ENOMEM;
3548 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3549 return r < 0 ? r : 0;
3553 /* Caller must hold slots_lock. */
3554 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3555 int len, struct kvm_io_device *dev)
3557 struct kvm_io_bus *new_bus, *bus;
3559 bus = kvm_get_bus(kvm, bus_idx);
3560 if (!bus)
3561 return -ENOMEM;
3563 /* exclude ioeventfd which is limited by maximum fd */
3564 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3565 return -ENOSPC;
3567 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3568 sizeof(struct kvm_io_range)), GFP_KERNEL);
3569 if (!new_bus)
3570 return -ENOMEM;
3571 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3572 sizeof(struct kvm_io_range)));
3573 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3574 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3575 synchronize_srcu_expedited(&kvm->srcu);
3576 kfree(bus);
3578 return 0;
3581 /* Caller must hold slots_lock. */
3582 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3583 struct kvm_io_device *dev)
3585 int i;
3586 struct kvm_io_bus *new_bus, *bus;
3588 bus = kvm_get_bus(kvm, bus_idx);
3589 if (!bus)
3590 return;
3592 for (i = 0; i < bus->dev_count; i++)
3593 if (bus->range[i].dev == dev) {
3594 break;
3597 if (i == bus->dev_count)
3598 return;
3600 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3601 sizeof(struct kvm_io_range)), GFP_KERNEL);
3602 if (!new_bus) {
3603 pr_err("kvm: failed to shrink bus, removing it completely\n");
3604 goto broken;
3607 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3608 new_bus->dev_count--;
3609 memcpy(new_bus->range + i, bus->range + i + 1,
3610 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3612 broken:
3613 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3614 synchronize_srcu_expedited(&kvm->srcu);
3615 kfree(bus);
3616 return;
3619 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3620 gpa_t addr)
3622 struct kvm_io_bus *bus;
3623 int dev_idx, srcu_idx;
3624 struct kvm_io_device *iodev = NULL;
3626 srcu_idx = srcu_read_lock(&kvm->srcu);
3628 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3629 if (!bus)
3630 goto out_unlock;
3632 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3633 if (dev_idx < 0)
3634 goto out_unlock;
3636 iodev = bus->range[dev_idx].dev;
3638 out_unlock:
3639 srcu_read_unlock(&kvm->srcu, srcu_idx);
3641 return iodev;
3643 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3645 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3646 int (*get)(void *, u64 *), int (*set)(void *, u64),
3647 const char *fmt)
3649 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3650 inode->i_private;
3652 /* The debugfs files are a reference to the kvm struct which
3653 * is still valid when kvm_destroy_vm is called.
3654 * To avoid the race between open and the removal of the debugfs
3655 * directory we test against the users count.
3657 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3658 return -ENOENT;
3660 if (simple_attr_open(inode, file, get, set, fmt)) {
3661 kvm_put_kvm(stat_data->kvm);
3662 return -ENOMEM;
3665 return 0;
3668 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3670 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3671 inode->i_private;
3673 simple_attr_release(inode, file);
3674 kvm_put_kvm(stat_data->kvm);
3676 return 0;
3679 static int vm_stat_get_per_vm(void *data, u64 *val)
3681 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3685 return 0;
3688 static int vm_stat_clear_per_vm(void *data, u64 val)
3690 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3692 if (val)
3693 return -EINVAL;
3695 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3697 return 0;
3700 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3702 __simple_attr_check_format("%llu\n", 0ull);
3703 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3704 vm_stat_clear_per_vm, "%llu\n");
3707 static const struct file_operations vm_stat_get_per_vm_fops = {
3708 .owner = THIS_MODULE,
3709 .open = vm_stat_get_per_vm_open,
3710 .release = kvm_debugfs_release,
3711 .read = simple_attr_read,
3712 .write = simple_attr_write,
3713 .llseek = no_llseek,
3716 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3718 int i;
3719 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720 struct kvm_vcpu *vcpu;
3722 *val = 0;
3724 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3725 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3727 return 0;
3730 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3732 int i;
3733 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3734 struct kvm_vcpu *vcpu;
3736 if (val)
3737 return -EINVAL;
3739 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3740 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3742 return 0;
3745 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3747 __simple_attr_check_format("%llu\n", 0ull);
3748 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3749 vcpu_stat_clear_per_vm, "%llu\n");
3752 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3753 .owner = THIS_MODULE,
3754 .open = vcpu_stat_get_per_vm_open,
3755 .release = kvm_debugfs_release,
3756 .read = simple_attr_read,
3757 .write = simple_attr_write,
3758 .llseek = no_llseek,
3761 static const struct file_operations *stat_fops_per_vm[] = {
3762 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3763 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3766 static int vm_stat_get(void *_offset, u64 *val)
3768 unsigned offset = (long)_offset;
3769 struct kvm *kvm;
3770 struct kvm_stat_data stat_tmp = {.offset = offset};
3771 u64 tmp_val;
3773 *val = 0;
3774 spin_lock(&kvm_lock);
3775 list_for_each_entry(kvm, &vm_list, vm_list) {
3776 stat_tmp.kvm = kvm;
3777 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3778 *val += tmp_val;
3780 spin_unlock(&kvm_lock);
3781 return 0;
3784 static int vm_stat_clear(void *_offset, u64 val)
3786 unsigned offset = (long)_offset;
3787 struct kvm *kvm;
3788 struct kvm_stat_data stat_tmp = {.offset = offset};
3790 if (val)
3791 return -EINVAL;
3793 spin_lock(&kvm_lock);
3794 list_for_each_entry(kvm, &vm_list, vm_list) {
3795 stat_tmp.kvm = kvm;
3796 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3798 spin_unlock(&kvm_lock);
3800 return 0;
3803 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3805 static int vcpu_stat_get(void *_offset, u64 *val)
3807 unsigned offset = (long)_offset;
3808 struct kvm *kvm;
3809 struct kvm_stat_data stat_tmp = {.offset = offset};
3810 u64 tmp_val;
3812 *val = 0;
3813 spin_lock(&kvm_lock);
3814 list_for_each_entry(kvm, &vm_list, vm_list) {
3815 stat_tmp.kvm = kvm;
3816 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3817 *val += tmp_val;
3819 spin_unlock(&kvm_lock);
3820 return 0;
3823 static int vcpu_stat_clear(void *_offset, u64 val)
3825 unsigned offset = (long)_offset;
3826 struct kvm *kvm;
3827 struct kvm_stat_data stat_tmp = {.offset = offset};
3829 if (val)
3830 return -EINVAL;
3832 spin_lock(&kvm_lock);
3833 list_for_each_entry(kvm, &vm_list, vm_list) {
3834 stat_tmp.kvm = kvm;
3835 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3837 spin_unlock(&kvm_lock);
3839 return 0;
3842 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3843 "%llu\n");
3845 static const struct file_operations *stat_fops[] = {
3846 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3847 [KVM_STAT_VM] = &vm_stat_fops,
3850 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3852 struct kobj_uevent_env *env;
3853 unsigned long long created, active;
3855 if (!kvm_dev.this_device || !kvm)
3856 return;
3858 spin_lock(&kvm_lock);
3859 if (type == KVM_EVENT_CREATE_VM) {
3860 kvm_createvm_count++;
3861 kvm_active_vms++;
3862 } else if (type == KVM_EVENT_DESTROY_VM) {
3863 kvm_active_vms--;
3865 created = kvm_createvm_count;
3866 active = kvm_active_vms;
3867 spin_unlock(&kvm_lock);
3869 env = kzalloc(sizeof(*env), GFP_KERNEL);
3870 if (!env)
3871 return;
3873 add_uevent_var(env, "CREATED=%llu", created);
3874 add_uevent_var(env, "COUNT=%llu", active);
3876 if (type == KVM_EVENT_CREATE_VM) {
3877 add_uevent_var(env, "EVENT=create");
3878 kvm->userspace_pid = task_pid_nr(current);
3879 } else if (type == KVM_EVENT_DESTROY_VM) {
3880 add_uevent_var(env, "EVENT=destroy");
3882 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3884 if (kvm->debugfs_dentry) {
3885 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3887 if (p) {
3888 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3889 if (!IS_ERR(tmp))
3890 add_uevent_var(env, "STATS_PATH=%s", tmp);
3891 kfree(p);
3894 /* no need for checks, since we are adding at most only 5 keys */
3895 env->envp[env->envp_idx++] = NULL;
3896 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3897 kfree(env);
3900 static int kvm_init_debug(void)
3902 int r = -EEXIST;
3903 struct kvm_stats_debugfs_item *p;
3905 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3906 if (kvm_debugfs_dir == NULL)
3907 goto out;
3909 kvm_debugfs_num_entries = 0;
3910 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3911 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3912 (void *)(long)p->offset,
3913 stat_fops[p->kind]))
3914 goto out_dir;
3917 return 0;
3919 out_dir:
3920 debugfs_remove_recursive(kvm_debugfs_dir);
3921 out:
3922 return r;
3925 static int kvm_suspend(void)
3927 if (kvm_usage_count)
3928 hardware_disable_nolock(NULL);
3929 return 0;
3932 static void kvm_resume(void)
3934 if (kvm_usage_count) {
3935 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3936 hardware_enable_nolock(NULL);
3940 static struct syscore_ops kvm_syscore_ops = {
3941 .suspend = kvm_suspend,
3942 .resume = kvm_resume,
3945 static inline
3946 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3948 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3951 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3953 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3955 if (vcpu->preempted)
3956 vcpu->preempted = false;
3958 kvm_arch_sched_in(vcpu, cpu);
3960 kvm_arch_vcpu_load(vcpu, cpu);
3963 static void kvm_sched_out(struct preempt_notifier *pn,
3964 struct task_struct *next)
3966 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3968 if (current->state == TASK_RUNNING)
3969 vcpu->preempted = true;
3970 kvm_arch_vcpu_put(vcpu);
3973 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3974 struct module *module)
3976 int r;
3977 int cpu;
3979 r = kvm_arch_init(opaque);
3980 if (r)
3981 goto out_fail;
3984 * kvm_arch_init makes sure there's at most one caller
3985 * for architectures that support multiple implementations,
3986 * like intel and amd on x86.
3987 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3988 * conflicts in case kvm is already setup for another implementation.
3990 r = kvm_irqfd_init();
3991 if (r)
3992 goto out_irqfd;
3994 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3995 r = -ENOMEM;
3996 goto out_free_0;
3999 r = kvm_arch_hardware_setup();
4000 if (r < 0)
4001 goto out_free_0a;
4003 for_each_online_cpu(cpu) {
4004 smp_call_function_single(cpu,
4005 kvm_arch_check_processor_compat,
4006 &r, 1);
4007 if (r < 0)
4008 goto out_free_1;
4011 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4012 kvm_starting_cpu, kvm_dying_cpu);
4013 if (r)
4014 goto out_free_2;
4015 register_reboot_notifier(&kvm_reboot_notifier);
4017 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4018 if (!vcpu_align)
4019 vcpu_align = __alignof__(struct kvm_vcpu);
4020 kvm_vcpu_cache =
4021 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4022 SLAB_ACCOUNT,
4023 offsetof(struct kvm_vcpu, arch),
4024 sizeof_field(struct kvm_vcpu, arch),
4025 NULL);
4026 if (!kvm_vcpu_cache) {
4027 r = -ENOMEM;
4028 goto out_free_3;
4031 r = kvm_async_pf_init();
4032 if (r)
4033 goto out_free;
4035 kvm_chardev_ops.owner = module;
4036 kvm_vm_fops.owner = module;
4037 kvm_vcpu_fops.owner = module;
4039 r = misc_register(&kvm_dev);
4040 if (r) {
4041 pr_err("kvm: misc device register failed\n");
4042 goto out_unreg;
4045 register_syscore_ops(&kvm_syscore_ops);
4047 kvm_preempt_ops.sched_in = kvm_sched_in;
4048 kvm_preempt_ops.sched_out = kvm_sched_out;
4050 r = kvm_init_debug();
4051 if (r) {
4052 pr_err("kvm: create debugfs files failed\n");
4053 goto out_undebugfs;
4056 r = kvm_vfio_ops_init();
4057 WARN_ON(r);
4059 return 0;
4061 out_undebugfs:
4062 unregister_syscore_ops(&kvm_syscore_ops);
4063 misc_deregister(&kvm_dev);
4064 out_unreg:
4065 kvm_async_pf_deinit();
4066 out_free:
4067 kmem_cache_destroy(kvm_vcpu_cache);
4068 out_free_3:
4069 unregister_reboot_notifier(&kvm_reboot_notifier);
4070 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4071 out_free_2:
4072 out_free_1:
4073 kvm_arch_hardware_unsetup();
4074 out_free_0a:
4075 free_cpumask_var(cpus_hardware_enabled);
4076 out_free_0:
4077 kvm_irqfd_exit();
4078 out_irqfd:
4079 kvm_arch_exit();
4080 out_fail:
4081 return r;
4083 EXPORT_SYMBOL_GPL(kvm_init);
4085 void kvm_exit(void)
4087 debugfs_remove_recursive(kvm_debugfs_dir);
4088 misc_deregister(&kvm_dev);
4089 kmem_cache_destroy(kvm_vcpu_cache);
4090 kvm_async_pf_deinit();
4091 unregister_syscore_ops(&kvm_syscore_ops);
4092 unregister_reboot_notifier(&kvm_reboot_notifier);
4093 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4094 on_each_cpu(hardware_disable_nolock, NULL, 1);
4095 kvm_arch_hardware_unsetup();
4096 kvm_arch_exit();
4097 kvm_irqfd_exit();
4098 free_cpumask_var(cpus_hardware_enabled);
4099 kvm_vfio_ops_exit();
4101 EXPORT_SYMBOL_GPL(kvm_exit);