2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
76 module_param(halt_poll_ns
, uint
, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns
);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow
= 2;
81 module_param(halt_poll_ns_grow
, uint
, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink
;
86 module_param(halt_poll_ns_shrink
, uint
, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock
);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
99 static cpumask_var_t cpus_hardware_enabled
;
100 static int kvm_usage_count
;
101 static atomic_t hardware_enable_failed
;
103 struct kmem_cache
*kvm_vcpu_cache
;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
106 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
108 struct dentry
*kvm_debugfs_dir
;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
111 static int kvm_debugfs_num_entries
;
112 static const struct file_operations
*stat_fops_per_vm
[];
114 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
127 __visible
bool kvm_rebooting
;
128 EXPORT_SYMBOL_GPL(kvm_rebooting
);
130 static bool largepages_enabled
= true;
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
135 static unsigned long long kvm_createvm_count
;
136 static unsigned long long kvm_active_vms
;
138 __weak
void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
139 unsigned long start
, unsigned long end
)
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
146 return PageReserved(pfn_to_page(pfn
));
152 * Switches to specified vcpu, until a matching vcpu_put()
154 void vcpu_load(struct kvm_vcpu
*vcpu
)
157 preempt_notifier_register(&vcpu
->preempt_notifier
);
158 kvm_arch_vcpu_load(vcpu
, cpu
);
161 EXPORT_SYMBOL_GPL(vcpu_load
);
163 void vcpu_put(struct kvm_vcpu
*vcpu
)
166 kvm_arch_vcpu_put(vcpu
);
167 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
170 EXPORT_SYMBOL_GPL(vcpu_put
);
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
175 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
178 * We need to wait for the VCPU to reenable interrupts and get out of
179 * READING_SHADOW_PAGE_TABLES mode.
181 if (req
& KVM_REQUEST_WAIT
)
182 return mode
!= OUTSIDE_GUEST_MODE
;
185 * Need to kick a running VCPU, but otherwise there is nothing to do.
187 return mode
== IN_GUEST_MODE
;
190 static void ack_flush(void *_completed
)
194 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
197 cpus
= cpu_online_mask
;
199 if (cpumask_empty(cpus
))
202 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
206 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
211 struct kvm_vcpu
*vcpu
;
213 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
216 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
217 kvm_make_request(req
, vcpu
);
220 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
223 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
224 kvm_request_needs_ipi(vcpu
, req
))
225 __cpumask_set_cpu(cpu
, cpus
);
227 called
= kvm_kick_many_cpus(cpus
, !!(req
& KVM_REQUEST_WAIT
));
229 free_cpumask_var(cpus
);
233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
234 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
237 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
238 * kvm_make_all_cpus_request.
240 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
243 * We want to publish modifications to the page tables before reading
244 * mode. Pairs with a memory barrier in arch-specific code.
245 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
246 * and smp_mb in walk_shadow_page_lockless_begin/end.
247 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
249 * There is already an smp_mb__after_atomic() before
250 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
254 ++kvm
->stat
.remote_tlb_flush
;
255 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
260 void kvm_reload_remote_mmus(struct kvm
*kvm
)
262 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
265 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
270 mutex_init(&vcpu
->mutex
);
275 init_swait_queue_head(&vcpu
->wq
);
276 kvm_async_pf_vcpu_init(vcpu
);
279 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
281 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
286 vcpu
->run
= page_address(page
);
288 kvm_vcpu_set_in_spin_loop(vcpu
, false);
289 kvm_vcpu_set_dy_eligible(vcpu
, false);
290 vcpu
->preempted
= false;
292 r
= kvm_arch_vcpu_init(vcpu
);
298 free_page((unsigned long)vcpu
->run
);
302 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
304 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
307 * no need for rcu_read_lock as VCPU_RUN is the only place that
308 * will change the vcpu->pid pointer and on uninit all file
309 * descriptors are already gone.
311 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
312 kvm_arch_vcpu_uninit(vcpu
);
313 free_page((unsigned long)vcpu
->run
);
315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
318 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
320 return container_of(mn
, struct kvm
, mmu_notifier
);
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
324 struct mm_struct
*mm
,
325 unsigned long address
,
328 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
331 idx
= srcu_read_lock(&kvm
->srcu
);
332 spin_lock(&kvm
->mmu_lock
);
333 kvm
->mmu_notifier_seq
++;
334 kvm_set_spte_hva(kvm
, address
, pte
);
335 spin_unlock(&kvm
->mmu_lock
);
336 srcu_read_unlock(&kvm
->srcu
, idx
);
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
340 struct mm_struct
*mm
,
344 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
345 int need_tlb_flush
= 0, idx
;
347 idx
= srcu_read_lock(&kvm
->srcu
);
348 spin_lock(&kvm
->mmu_lock
);
350 * The count increase must become visible at unlock time as no
351 * spte can be established without taking the mmu_lock and
352 * count is also read inside the mmu_lock critical section.
354 kvm
->mmu_notifier_count
++;
355 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
356 need_tlb_flush
|= kvm
->tlbs_dirty
;
357 /* we've to flush the tlb before the pages can be freed */
359 kvm_flush_remote_tlbs(kvm
);
361 spin_unlock(&kvm
->mmu_lock
);
363 kvm_arch_mmu_notifier_invalidate_range(kvm
, start
, end
);
365 srcu_read_unlock(&kvm
->srcu
, idx
);
368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
369 struct mm_struct
*mm
,
373 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
375 spin_lock(&kvm
->mmu_lock
);
377 * This sequence increase will notify the kvm page fault that
378 * the page that is going to be mapped in the spte could have
381 kvm
->mmu_notifier_seq
++;
384 * The above sequence increase must be visible before the
385 * below count decrease, which is ensured by the smp_wmb above
386 * in conjunction with the smp_rmb in mmu_notifier_retry().
388 kvm
->mmu_notifier_count
--;
389 spin_unlock(&kvm
->mmu_lock
);
391 BUG_ON(kvm
->mmu_notifier_count
< 0);
394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
395 struct mm_struct
*mm
,
399 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
402 idx
= srcu_read_lock(&kvm
->srcu
);
403 spin_lock(&kvm
->mmu_lock
);
405 young
= kvm_age_hva(kvm
, start
, end
);
407 kvm_flush_remote_tlbs(kvm
);
409 spin_unlock(&kvm
->mmu_lock
);
410 srcu_read_unlock(&kvm
->srcu
, idx
);
415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
416 struct mm_struct
*mm
,
420 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
423 idx
= srcu_read_lock(&kvm
->srcu
);
424 spin_lock(&kvm
->mmu_lock
);
426 * Even though we do not flush TLB, this will still adversely
427 * affect performance on pre-Haswell Intel EPT, where there is
428 * no EPT Access Bit to clear so that we have to tear down EPT
429 * tables instead. If we find this unacceptable, we can always
430 * add a parameter to kvm_age_hva so that it effectively doesn't
431 * do anything on clear_young.
433 * Also note that currently we never issue secondary TLB flushes
434 * from clear_young, leaving this job up to the regular system
435 * cadence. If we find this inaccurate, we might come up with a
436 * more sophisticated heuristic later.
438 young
= kvm_age_hva(kvm
, start
, end
);
439 spin_unlock(&kvm
->mmu_lock
);
440 srcu_read_unlock(&kvm
->srcu
, idx
);
445 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
446 struct mm_struct
*mm
,
447 unsigned long address
)
449 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
452 idx
= srcu_read_lock(&kvm
->srcu
);
453 spin_lock(&kvm
->mmu_lock
);
454 young
= kvm_test_age_hva(kvm
, address
);
455 spin_unlock(&kvm
->mmu_lock
);
456 srcu_read_unlock(&kvm
->srcu
, idx
);
461 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
462 struct mm_struct
*mm
)
464 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
467 idx
= srcu_read_lock(&kvm
->srcu
);
468 kvm_arch_flush_shadow_all(kvm
);
469 srcu_read_unlock(&kvm
->srcu
, idx
);
472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
473 .flags
= MMU_INVALIDATE_DOES_NOT_BLOCK
,
474 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
475 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
476 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
477 .clear_young
= kvm_mmu_notifier_clear_young
,
478 .test_young
= kvm_mmu_notifier_test_young
,
479 .change_pte
= kvm_mmu_notifier_change_pte
,
480 .release
= kvm_mmu_notifier_release
,
483 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
485 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
486 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
489 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
491 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
498 static struct kvm_memslots
*kvm_alloc_memslots(void)
501 struct kvm_memslots
*slots
;
503 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
507 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
508 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
515 if (!memslot
->dirty_bitmap
)
518 kvfree(memslot
->dirty_bitmap
);
519 memslot
->dirty_bitmap
= NULL
;
523 * Free any memory in @free but not in @dont.
525 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
526 struct kvm_memory_slot
*dont
)
528 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
529 kvm_destroy_dirty_bitmap(free
);
531 kvm_arch_free_memslot(kvm
, free
, dont
);
536 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
538 struct kvm_memory_slot
*memslot
;
543 kvm_for_each_memslot(memslot
, slots
)
544 kvm_free_memslot(kvm
, memslot
, NULL
);
549 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
553 if (!kvm
->debugfs_dentry
)
556 debugfs_remove_recursive(kvm
->debugfs_dentry
);
558 if (kvm
->debugfs_stat_data
) {
559 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
560 kfree(kvm
->debugfs_stat_data
[i
]);
561 kfree(kvm
->debugfs_stat_data
);
565 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
567 char dir_name
[ITOA_MAX_LEN
* 2];
568 struct kvm_stat_data
*stat_data
;
569 struct kvm_stats_debugfs_item
*p
;
571 if (!debugfs_initialized())
574 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
575 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
,
577 if (!kvm
->debugfs_dentry
)
580 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
581 sizeof(*kvm
->debugfs_stat_data
),
583 if (!kvm
->debugfs_stat_data
)
586 for (p
= debugfs_entries
; p
->name
; p
++) {
587 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
591 stat_data
->kvm
= kvm
;
592 stat_data
->offset
= p
->offset
;
593 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
594 if (!debugfs_create_file(p
->name
, 0644,
597 stat_fops_per_vm
[p
->kind
]))
603 static struct kvm
*kvm_create_vm(unsigned long type
)
606 struct kvm
*kvm
= kvm_arch_alloc_vm();
609 return ERR_PTR(-ENOMEM
);
611 spin_lock_init(&kvm
->mmu_lock
);
613 kvm
->mm
= current
->mm
;
614 kvm_eventfd_init(kvm
);
615 mutex_init(&kvm
->lock
);
616 mutex_init(&kvm
->irq_lock
);
617 mutex_init(&kvm
->slots_lock
);
618 refcount_set(&kvm
->users_count
, 1);
619 INIT_LIST_HEAD(&kvm
->devices
);
621 r
= kvm_arch_init_vm(kvm
, type
);
623 goto out_err_no_disable
;
625 r
= hardware_enable_all();
627 goto out_err_no_disable
;
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
636 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
637 struct kvm_memslots
*slots
= kvm_alloc_memslots();
639 goto out_err_no_srcu
;
641 * Generations must be different for each address space.
642 * Init kvm generation close to the maximum to easily test the
643 * code of handling generation number wrap-around.
645 slots
->generation
= i
* 2 - 150;
646 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
649 if (init_srcu_struct(&kvm
->srcu
))
650 goto out_err_no_srcu
;
651 if (init_srcu_struct(&kvm
->irq_srcu
))
652 goto out_err_no_irq_srcu
;
653 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
654 rcu_assign_pointer(kvm
->buses
[i
],
655 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
));
660 r
= kvm_init_mmu_notifier(kvm
);
664 spin_lock(&kvm_lock
);
665 list_add(&kvm
->vm_list
, &vm_list
);
666 spin_unlock(&kvm_lock
);
668 preempt_notifier_inc();
673 cleanup_srcu_struct(&kvm
->irq_srcu
);
675 cleanup_srcu_struct(&kvm
->srcu
);
677 hardware_disable_all();
679 refcount_set(&kvm
->users_count
, 0);
680 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
681 kfree(kvm_get_bus(kvm
, i
));
682 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
683 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
684 kvm_arch_free_vm(kvm
);
689 static void kvm_destroy_devices(struct kvm
*kvm
)
691 struct kvm_device
*dev
, *tmp
;
694 * We do not need to take the kvm->lock here, because nobody else
695 * has a reference to the struct kvm at this point and therefore
696 * cannot access the devices list anyhow.
698 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
699 list_del(&dev
->vm_node
);
700 dev
->ops
->destroy(dev
);
704 static void kvm_destroy_vm(struct kvm
*kvm
)
707 struct mm_struct
*mm
= kvm
->mm
;
709 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
710 kvm_destroy_vm_debugfs(kvm
);
711 kvm_arch_sync_events(kvm
);
712 spin_lock(&kvm_lock
);
713 list_del(&kvm
->vm_list
);
714 spin_unlock(&kvm_lock
);
715 kvm_free_irq_routing(kvm
);
716 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
717 struct kvm_io_bus
*bus
= kvm_get_bus(kvm
, i
);
720 kvm_io_bus_destroy(bus
);
721 kvm
->buses
[i
] = NULL
;
723 kvm_coalesced_mmio_free(kvm
);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
727 kvm_arch_flush_shadow_all(kvm
);
729 kvm_arch_destroy_vm(kvm
);
730 kvm_destroy_devices(kvm
);
731 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
732 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
733 cleanup_srcu_struct(&kvm
->irq_srcu
);
734 cleanup_srcu_struct(&kvm
->srcu
);
735 kvm_arch_free_vm(kvm
);
736 preempt_notifier_dec();
737 hardware_disable_all();
741 void kvm_get_kvm(struct kvm
*kvm
)
743 refcount_inc(&kvm
->users_count
);
745 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
747 void kvm_put_kvm(struct kvm
*kvm
)
749 if (refcount_dec_and_test(&kvm
->users_count
))
752 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
755 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
757 struct kvm
*kvm
= filp
->private_data
;
759 kvm_irqfd_release(kvm
);
766 * Allocation size is twice as large as the actual dirty bitmap size.
767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
771 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
773 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL
);
774 if (!memslot
->dirty_bitmap
)
781 * Insert memslot and re-sort memslots based on their GFN,
782 * so binary search could be used to lookup GFN.
783 * Sorting algorithm takes advantage of having initially
784 * sorted array and known changed memslot position.
786 static void update_memslots(struct kvm_memslots
*slots
,
787 struct kvm_memory_slot
*new)
790 int i
= slots
->id_to_index
[id
];
791 struct kvm_memory_slot
*mslots
= slots
->memslots
;
793 WARN_ON(mslots
[i
].id
!= id
);
795 WARN_ON(!mslots
[i
].npages
);
796 if (mslots
[i
].npages
)
799 if (!mslots
[i
].npages
)
803 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
804 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
805 if (!mslots
[i
+ 1].npages
)
807 mslots
[i
] = mslots
[i
+ 1];
808 slots
->id_to_index
[mslots
[i
].id
] = i
;
813 * The ">=" is needed when creating a slot with base_gfn == 0,
814 * so that it moves before all those with base_gfn == npages == 0.
816 * On the other hand, if new->npages is zero, the above loop has
817 * already left i pointing to the beginning of the empty part of
818 * mslots, and the ">=" would move the hole backwards in this
819 * case---which is wrong. So skip the loop when deleting a slot.
823 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
824 mslots
[i
] = mslots
[i
- 1];
825 slots
->id_to_index
[mslots
[i
].id
] = i
;
829 WARN_ON_ONCE(i
!= slots
->used_slots
);
832 slots
->id_to_index
[mslots
[i
].id
] = i
;
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
837 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
839 #ifdef __KVM_HAVE_READONLY_MEM
840 valid_flags
|= KVM_MEM_READONLY
;
843 if (mem
->flags
& ~valid_flags
)
849 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
850 int as_id
, struct kvm_memslots
*slots
)
852 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
855 * Set the low bit in the generation, which disables SPTE caching
856 * until the end of synchronize_srcu_expedited.
858 WARN_ON(old_memslots
->generation
& 1);
859 slots
->generation
= old_memslots
->generation
+ 1;
861 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
862 synchronize_srcu_expedited(&kvm
->srcu
);
865 * Increment the new memslot generation a second time. This prevents
866 * vm exits that race with memslot updates from caching a memslot
867 * generation that will (potentially) be valid forever.
869 * Generations must be unique even across address spaces. We do not need
870 * a global counter for that, instead the generation space is evenly split
871 * across address spaces. For example, with two address spaces, address
872 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
873 * use generations 2, 6, 10, 14, ...
875 slots
->generation
+= KVM_ADDRESS_SPACE_NUM
* 2 - 1;
877 kvm_arch_memslots_updated(kvm
, slots
);
883 * Allocate some memory and give it an address in the guest physical address
886 * Discontiguous memory is allowed, mostly for framebuffers.
888 * Must be called holding kvm->slots_lock for write.
890 int __kvm_set_memory_region(struct kvm
*kvm
,
891 const struct kvm_userspace_memory_region
*mem
)
895 unsigned long npages
;
896 struct kvm_memory_slot
*slot
;
897 struct kvm_memory_slot old
, new;
898 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
900 enum kvm_mr_change change
;
902 r
= check_memory_region_flags(mem
);
907 as_id
= mem
->slot
>> 16;
910 /* General sanity checks */
911 if (mem
->memory_size
& (PAGE_SIZE
- 1))
913 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
915 /* We can read the guest memory with __xxx_user() later on. */
916 if ((id
< KVM_USER_MEM_SLOTS
) &&
917 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
918 !access_ok(VERIFY_WRITE
,
919 (void __user
*)(unsigned long)mem
->userspace_addr
,
922 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
924 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
927 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
928 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
929 npages
= mem
->memory_size
>> PAGE_SHIFT
;
931 if (npages
> KVM_MEM_MAX_NR_PAGES
)
937 new.base_gfn
= base_gfn
;
939 new.flags
= mem
->flags
;
943 change
= KVM_MR_CREATE
;
944 else { /* Modify an existing slot. */
945 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
946 (npages
!= old
.npages
) ||
947 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
950 if (base_gfn
!= old
.base_gfn
)
951 change
= KVM_MR_MOVE
;
952 else if (new.flags
!= old
.flags
)
953 change
= KVM_MR_FLAGS_ONLY
;
954 else { /* Nothing to change. */
963 change
= KVM_MR_DELETE
;
968 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
969 /* Check for overlaps */
971 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
972 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
975 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
976 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
981 /* Free page dirty bitmap if unneeded */
982 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
983 new.dirty_bitmap
= NULL
;
986 if (change
== KVM_MR_CREATE
) {
987 new.userspace_addr
= mem
->userspace_addr
;
989 if (kvm_arch_create_memslot(kvm
, &new, npages
))
993 /* Allocate page dirty bitmap if needed */
994 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
995 if (kvm_create_dirty_bitmap(&new) < 0)
999 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
1002 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1004 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1005 slot
= id_to_memslot(slots
, id
);
1006 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1008 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1010 /* From this point no new shadow pages pointing to a deleted,
1011 * or moved, memslot will be created.
1013 * validation of sp->gfn happens in:
1014 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1015 * - kvm_is_visible_gfn (mmu_check_roots)
1017 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1020 * We can re-use the old_memslots from above, the only difference
1021 * from the currently installed memslots is the invalid flag. This
1022 * will get overwritten by update_memslots anyway.
1024 slots
= old_memslots
;
1027 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1031 /* actual memory is freed via old in kvm_free_memslot below */
1032 if (change
== KVM_MR_DELETE
) {
1033 new.dirty_bitmap
= NULL
;
1034 memset(&new.arch
, 0, sizeof(new.arch
));
1037 update_memslots(slots
, &new);
1038 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1040 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1042 kvm_free_memslot(kvm
, &old
, &new);
1043 kvfree(old_memslots
);
1049 kvm_free_memslot(kvm
, &new, &old
);
1053 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1055 int kvm_set_memory_region(struct kvm
*kvm
,
1056 const struct kvm_userspace_memory_region
*mem
)
1060 mutex_lock(&kvm
->slots_lock
);
1061 r
= __kvm_set_memory_region(kvm
, mem
);
1062 mutex_unlock(&kvm
->slots_lock
);
1065 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1067 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1068 struct kvm_userspace_memory_region
*mem
)
1070 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1073 return kvm_set_memory_region(kvm
, mem
);
1076 int kvm_get_dirty_log(struct kvm
*kvm
,
1077 struct kvm_dirty_log
*log
, int *is_dirty
)
1079 struct kvm_memslots
*slots
;
1080 struct kvm_memory_slot
*memslot
;
1083 unsigned long any
= 0;
1085 as_id
= log
->slot
>> 16;
1086 id
= (u16
)log
->slot
;
1087 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1090 slots
= __kvm_memslots(kvm
, as_id
);
1091 memslot
= id_to_memslot(slots
, id
);
1092 if (!memslot
->dirty_bitmap
)
1095 n
= kvm_dirty_bitmap_bytes(memslot
);
1097 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1098 any
= memslot
->dirty_bitmap
[i
];
1100 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1107 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1109 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1111 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1112 * are dirty write protect them for next write.
1113 * @kvm: pointer to kvm instance
1114 * @log: slot id and address to which we copy the log
1115 * @is_dirty: flag set if any page is dirty
1117 * We need to keep it in mind that VCPU threads can write to the bitmap
1118 * concurrently. So, to avoid losing track of dirty pages we keep the
1121 * 1. Take a snapshot of the bit and clear it if needed.
1122 * 2. Write protect the corresponding page.
1123 * 3. Copy the snapshot to the userspace.
1124 * 4. Upon return caller flushes TLB's if needed.
1126 * Between 2 and 4, the guest may write to the page using the remaining TLB
1127 * entry. This is not a problem because the page is reported dirty using
1128 * the snapshot taken before and step 4 ensures that writes done after
1129 * exiting to userspace will be logged for the next call.
1132 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1133 struct kvm_dirty_log
*log
, bool *is_dirty
)
1135 struct kvm_memslots
*slots
;
1136 struct kvm_memory_slot
*memslot
;
1139 unsigned long *dirty_bitmap
;
1140 unsigned long *dirty_bitmap_buffer
;
1142 as_id
= log
->slot
>> 16;
1143 id
= (u16
)log
->slot
;
1144 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1147 slots
= __kvm_memslots(kvm
, as_id
);
1148 memslot
= id_to_memslot(slots
, id
);
1150 dirty_bitmap
= memslot
->dirty_bitmap
;
1154 n
= kvm_dirty_bitmap_bytes(memslot
);
1156 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1157 memset(dirty_bitmap_buffer
, 0, n
);
1159 spin_lock(&kvm
->mmu_lock
);
1161 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1165 if (!dirty_bitmap
[i
])
1170 mask
= xchg(&dirty_bitmap
[i
], 0);
1171 dirty_bitmap_buffer
[i
] = mask
;
1174 offset
= i
* BITS_PER_LONG
;
1175 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1180 spin_unlock(&kvm
->mmu_lock
);
1181 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1185 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1188 bool kvm_largepages_enabled(void)
1190 return largepages_enabled
;
1193 void kvm_disable_largepages(void)
1195 largepages_enabled
= false;
1197 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1199 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1201 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1203 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1205 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1207 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1210 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1212 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1214 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1215 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1220 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1222 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1224 struct vm_area_struct
*vma
;
1225 unsigned long addr
, size
;
1229 addr
= gfn_to_hva(kvm
, gfn
);
1230 if (kvm_is_error_hva(addr
))
1233 down_read(¤t
->mm
->mmap_sem
);
1234 vma
= find_vma(current
->mm
, addr
);
1238 size
= vma_kernel_pagesize(vma
);
1241 up_read(¤t
->mm
->mmap_sem
);
1246 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1248 return slot
->flags
& KVM_MEM_READONLY
;
1251 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1252 gfn_t
*nr_pages
, bool write
)
1254 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1255 return KVM_HVA_ERR_BAD
;
1257 if (memslot_is_readonly(slot
) && write
)
1258 return KVM_HVA_ERR_RO_BAD
;
1261 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1263 return __gfn_to_hva_memslot(slot
, gfn
);
1266 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1269 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1272 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1275 return gfn_to_hva_many(slot
, gfn
, NULL
);
1277 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1279 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1281 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1283 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1285 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1287 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1289 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1292 * If writable is set to false, the hva returned by this function is only
1293 * allowed to be read.
1295 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1296 gfn_t gfn
, bool *writable
)
1298 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1300 if (!kvm_is_error_hva(hva
) && writable
)
1301 *writable
= !memslot_is_readonly(slot
);
1306 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1308 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1310 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1315 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1317 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1320 static inline int check_user_page_hwpoison(unsigned long addr
)
1322 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1324 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1325 return rc
== -EHWPOISON
;
1329 * The atomic path to get the writable pfn which will be stored in @pfn,
1330 * true indicates success, otherwise false is returned.
1332 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1333 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1335 struct page
*page
[1];
1338 if (!(async
|| atomic
))
1342 * Fast pin a writable pfn only if it is a write fault request
1343 * or the caller allows to map a writable pfn for a read fault
1346 if (!(write_fault
|| writable
))
1349 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1351 *pfn
= page_to_pfn(page
[0]);
1362 * The slow path to get the pfn of the specified host virtual address,
1363 * 1 indicates success, -errno is returned if error is detected.
1365 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1366 bool *writable
, kvm_pfn_t
*pfn
)
1368 unsigned int flags
= FOLL_HWPOISON
;
1375 *writable
= write_fault
;
1378 flags
|= FOLL_WRITE
;
1380 flags
|= FOLL_NOWAIT
;
1382 npages
= get_user_pages_unlocked(addr
, 1, &page
, flags
);
1386 /* map read fault as writable if possible */
1387 if (unlikely(!write_fault
) && writable
) {
1390 if (__get_user_pages_fast(addr
, 1, 1, &wpage
) == 1) {
1396 *pfn
= page_to_pfn(page
);
1400 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1402 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1405 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1411 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1412 unsigned long addr
, bool *async
,
1413 bool write_fault
, bool *writable
,
1419 r
= follow_pfn(vma
, addr
, &pfn
);
1422 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1423 * not call the fault handler, so do it here.
1425 bool unlocked
= false;
1426 r
= fixup_user_fault(current
, current
->mm
, addr
,
1427 (write_fault
? FAULT_FLAG_WRITE
: 0),
1434 r
= follow_pfn(vma
, addr
, &pfn
);
1444 * Get a reference here because callers of *hva_to_pfn* and
1445 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1446 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1447 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1448 * simply do nothing for reserved pfns.
1450 * Whoever called remap_pfn_range is also going to call e.g.
1451 * unmap_mapping_range before the underlying pages are freed,
1452 * causing a call to our MMU notifier.
1461 * Pin guest page in memory and return its pfn.
1462 * @addr: host virtual address which maps memory to the guest
1463 * @atomic: whether this function can sleep
1464 * @async: whether this function need to wait IO complete if the
1465 * host page is not in the memory
1466 * @write_fault: whether we should get a writable host page
1467 * @writable: whether it allows to map a writable host page for !@write_fault
1469 * The function will map a writable host page for these two cases:
1470 * 1): @write_fault = true
1471 * 2): @write_fault = false && @writable, @writable will tell the caller
1472 * whether the mapping is writable.
1474 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1475 bool write_fault
, bool *writable
)
1477 struct vm_area_struct
*vma
;
1481 /* we can do it either atomically or asynchronously, not both */
1482 BUG_ON(atomic
&& async
);
1484 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1488 return KVM_PFN_ERR_FAULT
;
1490 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1494 down_read(¤t
->mm
->mmap_sem
);
1495 if (npages
== -EHWPOISON
||
1496 (!async
&& check_user_page_hwpoison(addr
))) {
1497 pfn
= KVM_PFN_ERR_HWPOISON
;
1502 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1505 pfn
= KVM_PFN_ERR_FAULT
;
1506 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1507 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1511 pfn
= KVM_PFN_ERR_FAULT
;
1513 if (async
&& vma_is_valid(vma
, write_fault
))
1515 pfn
= KVM_PFN_ERR_FAULT
;
1518 up_read(¤t
->mm
->mmap_sem
);
1522 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1523 bool atomic
, bool *async
, bool write_fault
,
1526 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1528 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1531 return KVM_PFN_ERR_RO_FAULT
;
1534 if (kvm_is_error_hva(addr
)) {
1537 return KVM_PFN_NOSLOT
;
1540 /* Do not map writable pfn in the readonly memslot. */
1541 if (writable
&& memslot_is_readonly(slot
)) {
1546 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1549 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1551 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1554 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1555 write_fault
, writable
);
1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1559 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1561 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1563 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1565 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1567 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1569 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1571 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1573 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1575 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1577 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1579 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1581 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1583 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1585 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1589 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1591 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1595 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1596 struct page
**pages
, int nr_pages
)
1601 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1602 if (kvm_is_error_hva(addr
))
1605 if (entry
< nr_pages
)
1608 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1610 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1612 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1614 if (is_error_noslot_pfn(pfn
))
1615 return KVM_ERR_PTR_BAD_PAGE
;
1617 if (kvm_is_reserved_pfn(pfn
)) {
1619 return KVM_ERR_PTR_BAD_PAGE
;
1622 return pfn_to_page(pfn
);
1625 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1629 pfn
= gfn_to_pfn(kvm
, gfn
);
1631 return kvm_pfn_to_page(pfn
);
1633 EXPORT_SYMBOL_GPL(gfn_to_page
);
1635 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1639 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1641 return kvm_pfn_to_page(pfn
);
1643 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1645 void kvm_release_page_clean(struct page
*page
)
1647 WARN_ON(is_error_page(page
));
1649 kvm_release_pfn_clean(page_to_pfn(page
));
1651 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1653 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1655 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1656 put_page(pfn_to_page(pfn
));
1658 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1660 void kvm_release_page_dirty(struct page
*page
)
1662 WARN_ON(is_error_page(page
));
1664 kvm_release_pfn_dirty(page_to_pfn(page
));
1666 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1668 void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1670 kvm_set_pfn_dirty(pfn
);
1671 kvm_release_pfn_clean(pfn
);
1673 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1675 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1677 if (!kvm_is_reserved_pfn(pfn
)) {
1678 struct page
*page
= pfn_to_page(pfn
);
1680 if (!PageReserved(page
))
1684 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1686 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1688 if (!kvm_is_reserved_pfn(pfn
))
1689 mark_page_accessed(pfn_to_page(pfn
));
1691 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1693 void kvm_get_pfn(kvm_pfn_t pfn
)
1695 if (!kvm_is_reserved_pfn(pfn
))
1696 get_page(pfn_to_page(pfn
));
1698 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1700 static int next_segment(unsigned long len
, int offset
)
1702 if (len
> PAGE_SIZE
- offset
)
1703 return PAGE_SIZE
- offset
;
1708 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1709 void *data
, int offset
, int len
)
1714 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1715 if (kvm_is_error_hva(addr
))
1717 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1723 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1726 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1728 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1730 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1732 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1733 int offset
, int len
)
1735 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1737 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1741 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1743 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1745 int offset
= offset_in_page(gpa
);
1748 while ((seg
= next_segment(len
, offset
)) != 0) {
1749 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1759 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1761 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1763 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1765 int offset
= offset_in_page(gpa
);
1768 while ((seg
= next_segment(len
, offset
)) != 0) {
1769 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1781 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1782 void *data
, int offset
, unsigned long len
)
1787 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1788 if (kvm_is_error_hva(addr
))
1790 pagefault_disable();
1791 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1798 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1801 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1802 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1803 int offset
= offset_in_page(gpa
);
1805 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1807 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1809 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1810 void *data
, unsigned long len
)
1812 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1813 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1814 int offset
= offset_in_page(gpa
);
1816 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1820 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1821 const void *data
, int offset
, int len
)
1826 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1827 if (kvm_is_error_hva(addr
))
1829 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1832 mark_page_dirty_in_slot(memslot
, gfn
);
1836 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1837 const void *data
, int offset
, int len
)
1839 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1841 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1843 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1845 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1846 const void *data
, int offset
, int len
)
1848 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1850 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1854 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1857 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1859 int offset
= offset_in_page(gpa
);
1862 while ((seg
= next_segment(len
, offset
)) != 0) {
1863 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1873 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1875 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1878 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1880 int offset
= offset_in_page(gpa
);
1883 while ((seg
= next_segment(len
, offset
)) != 0) {
1884 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1896 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
1897 struct gfn_to_hva_cache
*ghc
,
1898 gpa_t gpa
, unsigned long len
)
1900 int offset
= offset_in_page(gpa
);
1901 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1902 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1903 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1904 gfn_t nr_pages_avail
;
1907 ghc
->generation
= slots
->generation
;
1909 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1910 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1911 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1915 * If the requested region crosses two memslots, we still
1916 * verify that the entire region is valid here.
1918 while (start_gfn
<= end_gfn
) {
1920 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1921 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1923 if (kvm_is_error_hva(ghc
->hva
))
1925 start_gfn
+= nr_pages_avail
;
1927 /* Use the slow path for cross page reads and writes. */
1928 ghc
->memslot
= NULL
;
1933 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1934 gpa_t gpa
, unsigned long len
)
1936 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1937 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
1939 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1941 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1942 void *data
, int offset
, unsigned long len
)
1944 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1946 gpa_t gpa
= ghc
->gpa
+ offset
;
1948 BUG_ON(len
+ offset
> ghc
->len
);
1950 if (slots
->generation
!= ghc
->generation
)
1951 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
1953 if (unlikely(!ghc
->memslot
))
1954 return kvm_write_guest(kvm
, gpa
, data
, len
);
1956 if (kvm_is_error_hva(ghc
->hva
))
1959 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
1962 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
1966 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
1968 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1969 void *data
, unsigned long len
)
1971 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
1973 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1975 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1976 void *data
, unsigned long len
)
1978 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1981 BUG_ON(len
> ghc
->len
);
1983 if (slots
->generation
!= ghc
->generation
)
1984 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
1986 if (unlikely(!ghc
->memslot
))
1987 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1989 if (kvm_is_error_hva(ghc
->hva
))
1992 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1998 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2000 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2002 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2004 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2006 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2008 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2010 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2012 int offset
= offset_in_page(gpa
);
2015 while ((seg
= next_segment(len
, offset
)) != 0) {
2016 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2025 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2027 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2030 if (memslot
&& memslot
->dirty_bitmap
) {
2031 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2033 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2037 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2039 struct kvm_memory_slot
*memslot
;
2041 memslot
= gfn_to_memslot(kvm
, gfn
);
2042 mark_page_dirty_in_slot(memslot
, gfn
);
2044 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2046 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2048 struct kvm_memory_slot
*memslot
;
2050 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2051 mark_page_dirty_in_slot(memslot
, gfn
);
2053 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2055 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
)
2057 if (!vcpu
->sigset_active
)
2061 * This does a lockless modification of ->real_blocked, which is fine
2062 * because, only current can change ->real_blocked and all readers of
2063 * ->real_blocked don't care as long ->real_blocked is always a subset
2066 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, ¤t
->real_blocked
);
2069 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
)
2071 if (!vcpu
->sigset_active
)
2074 sigprocmask(SIG_SETMASK
, ¤t
->real_blocked
, NULL
);
2075 sigemptyset(¤t
->real_blocked
);
2078 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2080 unsigned int old
, val
, grow
;
2082 old
= val
= vcpu
->halt_poll_ns
;
2083 grow
= READ_ONCE(halt_poll_ns_grow
);
2085 if (val
== 0 && grow
)
2090 if (val
> halt_poll_ns
)
2093 vcpu
->halt_poll_ns
= val
;
2094 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2097 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2099 unsigned int old
, val
, shrink
;
2101 old
= val
= vcpu
->halt_poll_ns
;
2102 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2108 vcpu
->halt_poll_ns
= val
;
2109 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2112 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2114 if (kvm_arch_vcpu_runnable(vcpu
)) {
2115 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2118 if (kvm_cpu_has_pending_timer(vcpu
))
2120 if (signal_pending(current
))
2127 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2129 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2132 DECLARE_SWAITQUEUE(wait
);
2133 bool waited
= false;
2136 start
= cur
= ktime_get();
2137 if (vcpu
->halt_poll_ns
) {
2138 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2140 ++vcpu
->stat
.halt_attempted_poll
;
2143 * This sets KVM_REQ_UNHALT if an interrupt
2146 if (kvm_vcpu_check_block(vcpu
) < 0) {
2147 ++vcpu
->stat
.halt_successful_poll
;
2148 if (!vcpu_valid_wakeup(vcpu
))
2149 ++vcpu
->stat
.halt_poll_invalid
;
2153 } while (single_task_running() && ktime_before(cur
, stop
));
2156 kvm_arch_vcpu_blocking(vcpu
);
2159 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2161 if (kvm_vcpu_check_block(vcpu
) < 0)
2168 finish_swait(&vcpu
->wq
, &wait
);
2171 kvm_arch_vcpu_unblocking(vcpu
);
2173 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2175 if (!vcpu_valid_wakeup(vcpu
))
2176 shrink_halt_poll_ns(vcpu
);
2177 else if (halt_poll_ns
) {
2178 if (block_ns
<= vcpu
->halt_poll_ns
)
2180 /* we had a long block, shrink polling */
2181 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2182 shrink_halt_poll_ns(vcpu
);
2183 /* we had a short halt and our poll time is too small */
2184 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2185 block_ns
< halt_poll_ns
)
2186 grow_halt_poll_ns(vcpu
);
2188 vcpu
->halt_poll_ns
= 0;
2190 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2191 kvm_arch_vcpu_block_finish(vcpu
);
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2195 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2197 struct swait_queue_head
*wqp
;
2199 wqp
= kvm_arch_vcpu_wq(vcpu
);
2200 if (swq_has_sleeper(wqp
)) {
2202 ++vcpu
->stat
.halt_wakeup
;
2208 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2212 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2214 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2217 int cpu
= vcpu
->cpu
;
2219 if (kvm_vcpu_wake_up(vcpu
))
2223 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2224 if (kvm_arch_vcpu_should_kick(vcpu
))
2225 smp_send_reschedule(cpu
);
2228 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2229 #endif /* !CONFIG_S390 */
2231 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2234 struct task_struct
*task
= NULL
;
2238 pid
= rcu_dereference(target
->pid
);
2240 task
= get_pid_task(pid
, PIDTYPE_PID
);
2244 ret
= yield_to(task
, 1);
2245 put_task_struct(task
);
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2252 * Helper that checks whether a VCPU is eligible for directed yield.
2253 * Most eligible candidate to yield is decided by following heuristics:
2255 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2256 * (preempted lock holder), indicated by @in_spin_loop.
2257 * Set at the beiginning and cleared at the end of interception/PLE handler.
2259 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2260 * chance last time (mostly it has become eligible now since we have probably
2261 * yielded to lockholder in last iteration. This is done by toggling
2262 * @dy_eligible each time a VCPU checked for eligibility.)
2264 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2265 * to preempted lock-holder could result in wrong VCPU selection and CPU
2266 * burning. Giving priority for a potential lock-holder increases lock
2269 * Since algorithm is based on heuristics, accessing another VCPU data without
2270 * locking does not harm. It may result in trying to yield to same VCPU, fail
2271 * and continue with next VCPU and so on.
2273 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2275 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2278 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2279 vcpu
->spin_loop
.dy_eligible
;
2281 if (vcpu
->spin_loop
.in_spin_loop
)
2282 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2290 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
, bool yield_to_kernel_mode
)
2292 struct kvm
*kvm
= me
->kvm
;
2293 struct kvm_vcpu
*vcpu
;
2294 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2300 kvm_vcpu_set_in_spin_loop(me
, true);
2302 * We boost the priority of a VCPU that is runnable but not
2303 * currently running, because it got preempted by something
2304 * else and called schedule in __vcpu_run. Hopefully that
2305 * VCPU is holding the lock that we need and will release it.
2306 * We approximate round-robin by starting at the last boosted VCPU.
2308 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2309 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2310 if (!pass
&& i
<= last_boosted_vcpu
) {
2311 i
= last_boosted_vcpu
;
2313 } else if (pass
&& i
> last_boosted_vcpu
)
2315 if (!READ_ONCE(vcpu
->preempted
))
2319 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2321 if (yield_to_kernel_mode
&& !kvm_arch_vcpu_in_kernel(vcpu
))
2323 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2326 yielded
= kvm_vcpu_yield_to(vcpu
);
2328 kvm
->last_boosted_vcpu
= i
;
2330 } else if (yielded
< 0) {
2337 kvm_vcpu_set_in_spin_loop(me
, false);
2339 /* Ensure vcpu is not eligible during next spinloop */
2340 kvm_vcpu_set_dy_eligible(me
, false);
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2344 static int kvm_vcpu_fault(struct vm_fault
*vmf
)
2346 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2349 if (vmf
->pgoff
== 0)
2350 page
= virt_to_page(vcpu
->run
);
2352 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2353 page
= virt_to_page(vcpu
->arch
.pio_data
);
2355 #ifdef CONFIG_KVM_MMIO
2356 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2357 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2360 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2366 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2367 .fault
= kvm_vcpu_fault
,
2370 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2372 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2376 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2378 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2380 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2381 kvm_put_kvm(vcpu
->kvm
);
2385 static struct file_operations kvm_vcpu_fops
= {
2386 .release
= kvm_vcpu_release
,
2387 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2388 #ifdef CONFIG_KVM_COMPAT
2389 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2391 .mmap
= kvm_vcpu_mmap
,
2392 .llseek
= noop_llseek
,
2396 * Allocates an inode for the vcpu.
2398 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2400 char name
[8 + 1 + ITOA_MAX_LEN
+ 1];
2402 snprintf(name
, sizeof(name
), "kvm-vcpu:%d", vcpu
->vcpu_id
);
2403 return anon_inode_getfd(name
, &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2408 char dir_name
[ITOA_MAX_LEN
* 2];
2411 if (!kvm_arch_has_vcpu_debugfs())
2414 if (!debugfs_initialized())
2417 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2418 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2419 vcpu
->kvm
->debugfs_dentry
);
2420 if (!vcpu
->debugfs_dentry
)
2423 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2425 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2433 * Creates some virtual cpus. Good luck creating more than one.
2435 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2438 struct kvm_vcpu
*vcpu
;
2440 if (id
>= KVM_MAX_VCPU_ID
)
2443 mutex_lock(&kvm
->lock
);
2444 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2445 mutex_unlock(&kvm
->lock
);
2449 kvm
->created_vcpus
++;
2450 mutex_unlock(&kvm
->lock
);
2452 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2455 goto vcpu_decrement
;
2458 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2460 r
= kvm_arch_vcpu_setup(vcpu
);
2464 r
= kvm_create_vcpu_debugfs(vcpu
);
2468 mutex_lock(&kvm
->lock
);
2469 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2471 goto unlock_vcpu_destroy
;
2474 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2476 /* Now it's all set up, let userspace reach it */
2478 r
= create_vcpu_fd(vcpu
);
2481 goto unlock_vcpu_destroy
;
2484 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2487 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2488 * before kvm->online_vcpu's incremented value.
2491 atomic_inc(&kvm
->online_vcpus
);
2493 mutex_unlock(&kvm
->lock
);
2494 kvm_arch_vcpu_postcreate(vcpu
);
2497 unlock_vcpu_destroy
:
2498 mutex_unlock(&kvm
->lock
);
2499 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2501 kvm_arch_vcpu_destroy(vcpu
);
2503 mutex_lock(&kvm
->lock
);
2504 kvm
->created_vcpus
--;
2505 mutex_unlock(&kvm
->lock
);
2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2512 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2513 vcpu
->sigset_active
= 1;
2514 vcpu
->sigset
= *sigset
;
2516 vcpu
->sigset_active
= 0;
2520 static long kvm_vcpu_ioctl(struct file
*filp
,
2521 unsigned int ioctl
, unsigned long arg
)
2523 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2524 void __user
*argp
= (void __user
*)arg
;
2526 struct kvm_fpu
*fpu
= NULL
;
2527 struct kvm_sregs
*kvm_sregs
= NULL
;
2529 if (vcpu
->kvm
->mm
!= current
->mm
)
2532 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2536 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2537 * execution; mutex_lock() would break them.
2539 r
= kvm_arch_vcpu_async_ioctl(filp
, ioctl
, arg
);
2540 if (r
!= -ENOIOCTLCMD
)
2543 if (mutex_lock_killable(&vcpu
->mutex
))
2551 oldpid
= rcu_access_pointer(vcpu
->pid
);
2552 if (unlikely(oldpid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2553 /* The thread running this VCPU changed. */
2554 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2556 rcu_assign_pointer(vcpu
->pid
, newpid
);
2561 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2562 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2565 case KVM_GET_REGS
: {
2566 struct kvm_regs
*kvm_regs
;
2569 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2572 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2576 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2583 case KVM_SET_REGS
: {
2584 struct kvm_regs
*kvm_regs
;
2587 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2588 if (IS_ERR(kvm_regs
)) {
2589 r
= PTR_ERR(kvm_regs
);
2592 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2596 case KVM_GET_SREGS
: {
2597 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2601 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2605 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2610 case KVM_SET_SREGS
: {
2611 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2612 if (IS_ERR(kvm_sregs
)) {
2613 r
= PTR_ERR(kvm_sregs
);
2617 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2620 case KVM_GET_MP_STATE
: {
2621 struct kvm_mp_state mp_state
;
2623 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2627 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2632 case KVM_SET_MP_STATE
: {
2633 struct kvm_mp_state mp_state
;
2636 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2638 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2641 case KVM_TRANSLATE
: {
2642 struct kvm_translation tr
;
2645 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2647 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2651 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2656 case KVM_SET_GUEST_DEBUG
: {
2657 struct kvm_guest_debug dbg
;
2660 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2662 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2665 case KVM_SET_SIGNAL_MASK
: {
2666 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2667 struct kvm_signal_mask kvm_sigmask
;
2668 sigset_t sigset
, *p
;
2673 if (copy_from_user(&kvm_sigmask
, argp
,
2674 sizeof(kvm_sigmask
)))
2677 if (kvm_sigmask
.len
!= sizeof(sigset
))
2680 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2685 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2689 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2693 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2697 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2703 fpu
= memdup_user(argp
, sizeof(*fpu
));
2709 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2713 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2716 mutex_unlock(&vcpu
->mutex
);
2722 #ifdef CONFIG_KVM_COMPAT
2723 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2724 unsigned int ioctl
, unsigned long arg
)
2726 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2727 void __user
*argp
= compat_ptr(arg
);
2730 if (vcpu
->kvm
->mm
!= current
->mm
)
2734 case KVM_SET_SIGNAL_MASK
: {
2735 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2736 struct kvm_signal_mask kvm_sigmask
;
2741 if (copy_from_user(&kvm_sigmask
, argp
,
2742 sizeof(kvm_sigmask
)))
2745 if (kvm_sigmask
.len
!= sizeof(compat_sigset_t
))
2748 if (get_compat_sigset(&sigset
, (void *)sigmask_arg
->sigset
))
2750 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2752 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2756 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2764 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2765 int (*accessor
)(struct kvm_device
*dev
,
2766 struct kvm_device_attr
*attr
),
2769 struct kvm_device_attr attr
;
2774 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2777 return accessor(dev
, &attr
);
2780 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2783 struct kvm_device
*dev
= filp
->private_data
;
2786 case KVM_SET_DEVICE_ATTR
:
2787 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2788 case KVM_GET_DEVICE_ATTR
:
2789 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2790 case KVM_HAS_DEVICE_ATTR
:
2791 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2793 if (dev
->ops
->ioctl
)
2794 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2800 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2802 struct kvm_device
*dev
= filp
->private_data
;
2803 struct kvm
*kvm
= dev
->kvm
;
2809 static const struct file_operations kvm_device_fops
= {
2810 .unlocked_ioctl
= kvm_device_ioctl
,
2811 #ifdef CONFIG_KVM_COMPAT
2812 .compat_ioctl
= kvm_device_ioctl
,
2814 .release
= kvm_device_release
,
2817 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2819 if (filp
->f_op
!= &kvm_device_fops
)
2822 return filp
->private_data
;
2825 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2826 #ifdef CONFIG_KVM_MPIC
2827 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2828 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2832 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2834 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2837 if (kvm_device_ops_table
[type
] != NULL
)
2840 kvm_device_ops_table
[type
] = ops
;
2844 void kvm_unregister_device_ops(u32 type
)
2846 if (kvm_device_ops_table
[type
] != NULL
)
2847 kvm_device_ops_table
[type
] = NULL
;
2850 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2851 struct kvm_create_device
*cd
)
2853 struct kvm_device_ops
*ops
= NULL
;
2854 struct kvm_device
*dev
;
2855 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2858 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2861 ops
= kvm_device_ops_table
[cd
->type
];
2868 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2875 mutex_lock(&kvm
->lock
);
2876 ret
= ops
->create(dev
, cd
->type
);
2878 mutex_unlock(&kvm
->lock
);
2882 list_add(&dev
->vm_node
, &kvm
->devices
);
2883 mutex_unlock(&kvm
->lock
);
2888 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2890 mutex_lock(&kvm
->lock
);
2891 list_del(&dev
->vm_node
);
2892 mutex_unlock(&kvm
->lock
);
2902 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2905 case KVM_CAP_USER_MEMORY
:
2906 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2907 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2908 case KVM_CAP_INTERNAL_ERROR_DATA
:
2909 #ifdef CONFIG_HAVE_KVM_MSI
2910 case KVM_CAP_SIGNAL_MSI
:
2912 #ifdef CONFIG_HAVE_KVM_IRQFD
2914 case KVM_CAP_IRQFD_RESAMPLE
:
2916 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2917 case KVM_CAP_CHECK_EXTENSION_VM
:
2919 #ifdef CONFIG_KVM_MMIO
2920 case KVM_CAP_COALESCED_MMIO
:
2921 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
2923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2924 case KVM_CAP_IRQ_ROUTING
:
2925 return KVM_MAX_IRQ_ROUTES
;
2927 #if KVM_ADDRESS_SPACE_NUM > 1
2928 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2929 return KVM_ADDRESS_SPACE_NUM
;
2931 case KVM_CAP_MAX_VCPU_ID
:
2932 return KVM_MAX_VCPU_ID
;
2936 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2939 static long kvm_vm_ioctl(struct file
*filp
,
2940 unsigned int ioctl
, unsigned long arg
)
2942 struct kvm
*kvm
= filp
->private_data
;
2943 void __user
*argp
= (void __user
*)arg
;
2946 if (kvm
->mm
!= current
->mm
)
2949 case KVM_CREATE_VCPU
:
2950 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2952 case KVM_SET_USER_MEMORY_REGION
: {
2953 struct kvm_userspace_memory_region kvm_userspace_mem
;
2956 if (copy_from_user(&kvm_userspace_mem
, argp
,
2957 sizeof(kvm_userspace_mem
)))
2960 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2963 case KVM_GET_DIRTY_LOG
: {
2964 struct kvm_dirty_log log
;
2967 if (copy_from_user(&log
, argp
, sizeof(log
)))
2969 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2972 #ifdef CONFIG_KVM_MMIO
2973 case KVM_REGISTER_COALESCED_MMIO
: {
2974 struct kvm_coalesced_mmio_zone zone
;
2977 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2979 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2982 case KVM_UNREGISTER_COALESCED_MMIO
: {
2983 struct kvm_coalesced_mmio_zone zone
;
2986 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2988 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2993 struct kvm_irqfd data
;
2996 if (copy_from_user(&data
, argp
, sizeof(data
)))
2998 r
= kvm_irqfd(kvm
, &data
);
3001 case KVM_IOEVENTFD
: {
3002 struct kvm_ioeventfd data
;
3005 if (copy_from_user(&data
, argp
, sizeof(data
)))
3007 r
= kvm_ioeventfd(kvm
, &data
);
3010 #ifdef CONFIG_HAVE_KVM_MSI
3011 case KVM_SIGNAL_MSI
: {
3015 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3017 r
= kvm_send_userspace_msi(kvm
, &msi
);
3021 #ifdef __KVM_HAVE_IRQ_LINE
3022 case KVM_IRQ_LINE_STATUS
:
3023 case KVM_IRQ_LINE
: {
3024 struct kvm_irq_level irq_event
;
3027 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3030 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3031 ioctl
== KVM_IRQ_LINE_STATUS
);
3036 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3037 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3046 case KVM_SET_GSI_ROUTING
: {
3047 struct kvm_irq_routing routing
;
3048 struct kvm_irq_routing __user
*urouting
;
3049 struct kvm_irq_routing_entry
*entries
= NULL
;
3052 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3055 if (!kvm_arch_can_set_irq_routing(kvm
))
3057 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3063 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
3068 if (copy_from_user(entries
, urouting
->entries
,
3069 routing
.nr
* sizeof(*entries
)))
3070 goto out_free_irq_routing
;
3072 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3074 out_free_irq_routing
:
3078 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3079 case KVM_CREATE_DEVICE
: {
3080 struct kvm_create_device cd
;
3083 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3086 r
= kvm_ioctl_create_device(kvm
, &cd
);
3091 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3097 case KVM_CHECK_EXTENSION
:
3098 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3101 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3107 #ifdef CONFIG_KVM_COMPAT
3108 struct compat_kvm_dirty_log
{
3112 compat_uptr_t dirty_bitmap
; /* one bit per page */
3117 static long kvm_vm_compat_ioctl(struct file
*filp
,
3118 unsigned int ioctl
, unsigned long arg
)
3120 struct kvm
*kvm
= filp
->private_data
;
3123 if (kvm
->mm
!= current
->mm
)
3126 case KVM_GET_DIRTY_LOG
: {
3127 struct compat_kvm_dirty_log compat_log
;
3128 struct kvm_dirty_log log
;
3130 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3131 sizeof(compat_log
)))
3133 log
.slot
= compat_log
.slot
;
3134 log
.padding1
= compat_log
.padding1
;
3135 log
.padding2
= compat_log
.padding2
;
3136 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3138 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3142 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3148 static struct file_operations kvm_vm_fops
= {
3149 .release
= kvm_vm_release
,
3150 .unlocked_ioctl
= kvm_vm_ioctl
,
3151 #ifdef CONFIG_KVM_COMPAT
3152 .compat_ioctl
= kvm_vm_compat_ioctl
,
3154 .llseek
= noop_llseek
,
3157 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3163 kvm
= kvm_create_vm(type
);
3165 return PTR_ERR(kvm
);
3166 #ifdef CONFIG_KVM_MMIO
3167 r
= kvm_coalesced_mmio_init(kvm
);
3171 r
= get_unused_fd_flags(O_CLOEXEC
);
3175 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3183 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3184 * already set, with ->release() being kvm_vm_release(). In error
3185 * cases it will be called by the final fput(file) and will take
3186 * care of doing kvm_put_kvm(kvm).
3188 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3193 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3195 fd_install(r
, file
);
3203 static long kvm_dev_ioctl(struct file
*filp
,
3204 unsigned int ioctl
, unsigned long arg
)
3209 case KVM_GET_API_VERSION
:
3212 r
= KVM_API_VERSION
;
3215 r
= kvm_dev_ioctl_create_vm(arg
);
3217 case KVM_CHECK_EXTENSION
:
3218 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3220 case KVM_GET_VCPU_MMAP_SIZE
:
3223 r
= PAGE_SIZE
; /* struct kvm_run */
3225 r
+= PAGE_SIZE
; /* pio data page */
3227 #ifdef CONFIG_KVM_MMIO
3228 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3231 case KVM_TRACE_ENABLE
:
3232 case KVM_TRACE_PAUSE
:
3233 case KVM_TRACE_DISABLE
:
3237 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3243 static struct file_operations kvm_chardev_ops
= {
3244 .unlocked_ioctl
= kvm_dev_ioctl
,
3245 .compat_ioctl
= kvm_dev_ioctl
,
3246 .llseek
= noop_llseek
,
3249 static struct miscdevice kvm_dev
= {
3255 static void hardware_enable_nolock(void *junk
)
3257 int cpu
= raw_smp_processor_id();
3260 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3263 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3265 r
= kvm_arch_hardware_enable();
3268 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3269 atomic_inc(&hardware_enable_failed
);
3270 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3274 static int kvm_starting_cpu(unsigned int cpu
)
3276 raw_spin_lock(&kvm_count_lock
);
3277 if (kvm_usage_count
)
3278 hardware_enable_nolock(NULL
);
3279 raw_spin_unlock(&kvm_count_lock
);
3283 static void hardware_disable_nolock(void *junk
)
3285 int cpu
= raw_smp_processor_id();
3287 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3289 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3290 kvm_arch_hardware_disable();
3293 static int kvm_dying_cpu(unsigned int cpu
)
3295 raw_spin_lock(&kvm_count_lock
);
3296 if (kvm_usage_count
)
3297 hardware_disable_nolock(NULL
);
3298 raw_spin_unlock(&kvm_count_lock
);
3302 static void hardware_disable_all_nolock(void)
3304 BUG_ON(!kvm_usage_count
);
3307 if (!kvm_usage_count
)
3308 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3311 static void hardware_disable_all(void)
3313 raw_spin_lock(&kvm_count_lock
);
3314 hardware_disable_all_nolock();
3315 raw_spin_unlock(&kvm_count_lock
);
3318 static int hardware_enable_all(void)
3322 raw_spin_lock(&kvm_count_lock
);
3325 if (kvm_usage_count
== 1) {
3326 atomic_set(&hardware_enable_failed
, 0);
3327 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3329 if (atomic_read(&hardware_enable_failed
)) {
3330 hardware_disable_all_nolock();
3335 raw_spin_unlock(&kvm_count_lock
);
3340 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3344 * Some (well, at least mine) BIOSes hang on reboot if
3347 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 pr_info("kvm: exiting hardware virtualization\n");
3350 kvm_rebooting
= true;
3351 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3355 static struct notifier_block kvm_reboot_notifier
= {
3356 .notifier_call
= kvm_reboot
,
3360 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3364 for (i
= 0; i
< bus
->dev_count
; i
++) {
3365 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3367 kvm_iodevice_destructor(pos
);
3372 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3373 const struct kvm_io_range
*r2
)
3375 gpa_t addr1
= r1
->addr
;
3376 gpa_t addr2
= r2
->addr
;
3381 /* If r2->len == 0, match the exact address. If r2->len != 0,
3382 * accept any overlapping write. Any order is acceptable for
3383 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3384 * we process all of them.
3397 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3399 return kvm_io_bus_cmp(p1
, p2
);
3402 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3403 gpa_t addr
, int len
)
3405 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3411 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3412 kvm_io_bus_sort_cmp
, NULL
);
3417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3418 gpa_t addr
, int len
)
3420 struct kvm_io_range
*range
, key
;
3423 key
= (struct kvm_io_range
) {
3428 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3429 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3433 off
= range
- bus
->range
;
3435 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3441 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3442 struct kvm_io_range
*range
, const void *val
)
3446 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3450 while (idx
< bus
->dev_count
&&
3451 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3452 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3461 /* kvm_io_bus_write - called under kvm->slots_lock */
3462 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3463 int len
, const void *val
)
3465 struct kvm_io_bus
*bus
;
3466 struct kvm_io_range range
;
3469 range
= (struct kvm_io_range
) {
3474 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3477 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3478 return r
< 0 ? r
: 0;
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3483 gpa_t addr
, int len
, const void *val
, long cookie
)
3485 struct kvm_io_bus
*bus
;
3486 struct kvm_io_range range
;
3488 range
= (struct kvm_io_range
) {
3493 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3497 /* First try the device referenced by cookie. */
3498 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3499 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3500 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3505 * cookie contained garbage; fall back to search and return the
3506 * correct cookie value.
3508 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3511 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3512 struct kvm_io_range
*range
, void *val
)
3516 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3520 while (idx
< bus
->dev_count
&&
3521 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3522 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3530 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3532 /* kvm_io_bus_read - called under kvm->slots_lock */
3533 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3536 struct kvm_io_bus
*bus
;
3537 struct kvm_io_range range
;
3540 range
= (struct kvm_io_range
) {
3545 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3548 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3549 return r
< 0 ? r
: 0;
3553 /* Caller must hold slots_lock. */
3554 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3555 int len
, struct kvm_io_device
*dev
)
3557 struct kvm_io_bus
*new_bus
, *bus
;
3559 bus
= kvm_get_bus(kvm
, bus_idx
);
3563 /* exclude ioeventfd which is limited by maximum fd */
3564 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3567 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3568 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3571 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3572 sizeof(struct kvm_io_range
)));
3573 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3574 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3575 synchronize_srcu_expedited(&kvm
->srcu
);
3581 /* Caller must hold slots_lock. */
3582 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3583 struct kvm_io_device
*dev
)
3586 struct kvm_io_bus
*new_bus
, *bus
;
3588 bus
= kvm_get_bus(kvm
, bus_idx
);
3592 for (i
= 0; i
< bus
->dev_count
; i
++)
3593 if (bus
->range
[i
].dev
== dev
) {
3597 if (i
== bus
->dev_count
)
3600 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3601 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3603 pr_err("kvm: failed to shrink bus, removing it completely\n");
3607 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3608 new_bus
->dev_count
--;
3609 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3610 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3613 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3614 synchronize_srcu_expedited(&kvm
->srcu
);
3619 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3622 struct kvm_io_bus
*bus
;
3623 int dev_idx
, srcu_idx
;
3624 struct kvm_io_device
*iodev
= NULL
;
3626 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3628 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3632 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3636 iodev
= bus
->range
[dev_idx
].dev
;
3639 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3643 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3645 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3646 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3649 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3652 /* The debugfs files are a reference to the kvm struct which
3653 * is still valid when kvm_destroy_vm is called.
3654 * To avoid the race between open and the removal of the debugfs
3655 * directory we test against the users count.
3657 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
3660 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3661 kvm_put_kvm(stat_data
->kvm
);
3668 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3670 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3673 simple_attr_release(inode
, file
);
3674 kvm_put_kvm(stat_data
->kvm
);
3679 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3681 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3683 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3688 static int vm_stat_clear_per_vm(void *data
, u64 val
)
3690 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3695 *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
) = 0;
3700 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3702 __simple_attr_check_format("%llu\n", 0ull);
3703 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3704 vm_stat_clear_per_vm
, "%llu\n");
3707 static const struct file_operations vm_stat_get_per_vm_fops
= {
3708 .owner
= THIS_MODULE
,
3709 .open
= vm_stat_get_per_vm_open
,
3710 .release
= kvm_debugfs_release
,
3711 .read
= simple_attr_read
,
3712 .write
= simple_attr_write
,
3713 .llseek
= no_llseek
,
3716 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3719 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3720 struct kvm_vcpu
*vcpu
;
3724 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3725 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3730 static int vcpu_stat_clear_per_vm(void *data
, u64 val
)
3733 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3734 struct kvm_vcpu
*vcpu
;
3739 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3740 *(u64
*)((void *)vcpu
+ stat_data
->offset
) = 0;
3745 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3747 __simple_attr_check_format("%llu\n", 0ull);
3748 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3749 vcpu_stat_clear_per_vm
, "%llu\n");
3752 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3753 .owner
= THIS_MODULE
,
3754 .open
= vcpu_stat_get_per_vm_open
,
3755 .release
= kvm_debugfs_release
,
3756 .read
= simple_attr_read
,
3757 .write
= simple_attr_write
,
3758 .llseek
= no_llseek
,
3761 static const struct file_operations
*stat_fops_per_vm
[] = {
3762 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3763 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3766 static int vm_stat_get(void *_offset
, u64
*val
)
3768 unsigned offset
= (long)_offset
;
3770 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3774 spin_lock(&kvm_lock
);
3775 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3777 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3780 spin_unlock(&kvm_lock
);
3784 static int vm_stat_clear(void *_offset
, u64 val
)
3786 unsigned offset
= (long)_offset
;
3788 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3793 spin_lock(&kvm_lock
);
3794 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3796 vm_stat_clear_per_vm((void *)&stat_tmp
, 0);
3798 spin_unlock(&kvm_lock
);
3803 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
3805 static int vcpu_stat_get(void *_offset
, u64
*val
)
3807 unsigned offset
= (long)_offset
;
3809 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3813 spin_lock(&kvm_lock
);
3814 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3816 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3819 spin_unlock(&kvm_lock
);
3823 static int vcpu_stat_clear(void *_offset
, u64 val
)
3825 unsigned offset
= (long)_offset
;
3827 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3832 spin_lock(&kvm_lock
);
3833 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3835 vcpu_stat_clear_per_vm((void *)&stat_tmp
, 0);
3837 spin_unlock(&kvm_lock
);
3842 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
3845 static const struct file_operations
*stat_fops
[] = {
3846 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3847 [KVM_STAT_VM
] = &vm_stat_fops
,
3850 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
3852 struct kobj_uevent_env
*env
;
3853 unsigned long long created
, active
;
3855 if (!kvm_dev
.this_device
|| !kvm
)
3858 spin_lock(&kvm_lock
);
3859 if (type
== KVM_EVENT_CREATE_VM
) {
3860 kvm_createvm_count
++;
3862 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3865 created
= kvm_createvm_count
;
3866 active
= kvm_active_vms
;
3867 spin_unlock(&kvm_lock
);
3869 env
= kzalloc(sizeof(*env
), GFP_KERNEL
);
3873 add_uevent_var(env
, "CREATED=%llu", created
);
3874 add_uevent_var(env
, "COUNT=%llu", active
);
3876 if (type
== KVM_EVENT_CREATE_VM
) {
3877 add_uevent_var(env
, "EVENT=create");
3878 kvm
->userspace_pid
= task_pid_nr(current
);
3879 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3880 add_uevent_var(env
, "EVENT=destroy");
3882 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
3884 if (kvm
->debugfs_dentry
) {
3885 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3888 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
3890 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
3894 /* no need for checks, since we are adding at most only 5 keys */
3895 env
->envp
[env
->envp_idx
++] = NULL
;
3896 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
3900 static int kvm_init_debug(void)
3903 struct kvm_stats_debugfs_item
*p
;
3905 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3906 if (kvm_debugfs_dir
== NULL
)
3909 kvm_debugfs_num_entries
= 0;
3910 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3911 if (!debugfs_create_file(p
->name
, 0644, kvm_debugfs_dir
,
3912 (void *)(long)p
->offset
,
3913 stat_fops
[p
->kind
]))
3920 debugfs_remove_recursive(kvm_debugfs_dir
);
3925 static int kvm_suspend(void)
3927 if (kvm_usage_count
)
3928 hardware_disable_nolock(NULL
);
3932 static void kvm_resume(void)
3934 if (kvm_usage_count
) {
3935 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3936 hardware_enable_nolock(NULL
);
3940 static struct syscore_ops kvm_syscore_ops
= {
3941 .suspend
= kvm_suspend
,
3942 .resume
= kvm_resume
,
3946 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3948 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3951 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3953 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3955 if (vcpu
->preempted
)
3956 vcpu
->preempted
= false;
3958 kvm_arch_sched_in(vcpu
, cpu
);
3960 kvm_arch_vcpu_load(vcpu
, cpu
);
3963 static void kvm_sched_out(struct preempt_notifier
*pn
,
3964 struct task_struct
*next
)
3966 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3968 if (current
->state
== TASK_RUNNING
)
3969 vcpu
->preempted
= true;
3970 kvm_arch_vcpu_put(vcpu
);
3973 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3974 struct module
*module
)
3979 r
= kvm_arch_init(opaque
);
3984 * kvm_arch_init makes sure there's at most one caller
3985 * for architectures that support multiple implementations,
3986 * like intel and amd on x86.
3987 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3988 * conflicts in case kvm is already setup for another implementation.
3990 r
= kvm_irqfd_init();
3994 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3999 r
= kvm_arch_hardware_setup();
4003 for_each_online_cpu(cpu
) {
4004 smp_call_function_single(cpu
,
4005 kvm_arch_check_processor_compat
,
4011 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4012 kvm_starting_cpu
, kvm_dying_cpu
);
4015 register_reboot_notifier(&kvm_reboot_notifier
);
4017 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4019 vcpu_align
= __alignof__(struct kvm_vcpu
);
4021 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size
, vcpu_align
,
4023 offsetof(struct kvm_vcpu
, arch
),
4024 sizeof_field(struct kvm_vcpu
, arch
),
4026 if (!kvm_vcpu_cache
) {
4031 r
= kvm_async_pf_init();
4035 kvm_chardev_ops
.owner
= module
;
4036 kvm_vm_fops
.owner
= module
;
4037 kvm_vcpu_fops
.owner
= module
;
4039 r
= misc_register(&kvm_dev
);
4041 pr_err("kvm: misc device register failed\n");
4045 register_syscore_ops(&kvm_syscore_ops
);
4047 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4048 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4050 r
= kvm_init_debug();
4052 pr_err("kvm: create debugfs files failed\n");
4056 r
= kvm_vfio_ops_init();
4062 unregister_syscore_ops(&kvm_syscore_ops
);
4063 misc_deregister(&kvm_dev
);
4065 kvm_async_pf_deinit();
4067 kmem_cache_destroy(kvm_vcpu_cache
);
4069 unregister_reboot_notifier(&kvm_reboot_notifier
);
4070 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4073 kvm_arch_hardware_unsetup();
4075 free_cpumask_var(cpus_hardware_enabled
);
4083 EXPORT_SYMBOL_GPL(kvm_init
);
4087 debugfs_remove_recursive(kvm_debugfs_dir
);
4088 misc_deregister(&kvm_dev
);
4089 kmem_cache_destroy(kvm_vcpu_cache
);
4090 kvm_async_pf_deinit();
4091 unregister_syscore_ops(&kvm_syscore_ops
);
4092 unregister_reboot_notifier(&kvm_reboot_notifier
);
4093 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4094 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4095 kvm_arch_hardware_unsetup();
4098 free_cpumask_var(cpus_hardware_enabled
);
4099 kvm_vfio_ops_exit();
4101 EXPORT_SYMBOL_GPL(kvm_exit
);