2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
27 #include "raid5-log.h"
30 * metadata/data stored in disk with 4k size unit (a block) regardless
31 * underneath hardware sector size. only works with PAGE_SIZE == 4096
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
39 * In write through mode, the reclaim runs every log->max_free_space.
40 * This can prevent the recovery scans for too long
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
53 * We only need 2 bios per I/O unit to make progress, but ensure we
54 * have a few more available to not get too tight.
56 #define R5L_POOL_SIZE 4
58 static char *r5c_journal_mode_str
[] = {"write-through",
61 * raid5 cache state machine
63 * With the RAID cache, each stripe works in two phases:
67 * These two phases are controlled by bit STRIPE_R5C_CACHING:
68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
71 * When there is no journal, or the journal is in write-through mode,
72 * the stripe is always in writing-out phase.
74 * For write-back journal, the stripe is sent to caching phase on write
75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76 * the write-out phase by clearing STRIPE_R5C_CACHING.
78 * Stripes in caching phase do not write the raid disks. Instead, all
79 * writes are committed from the log device. Therefore, a stripe in
80 * caching phase handles writes as:
81 * - write to log device
84 * Stripes in writing-out phase handle writes as:
86 * - write pending data and parity to journal
87 * - write data and parity to raid disks
88 * - return IO for pending writes
96 sector_t device_size
; /* log device size, round to
98 sector_t max_free_space
; /* reclaim run if free space is at
101 sector_t last_checkpoint
; /* log tail. where recovery scan
103 u64 last_cp_seq
; /* log tail sequence */
105 sector_t log_start
; /* log head. where new data appends */
106 u64 seq
; /* log head sequence */
108 sector_t next_checkpoint
;
110 struct mutex io_mutex
;
111 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
113 spinlock_t io_list_lock
;
114 struct list_head running_ios
; /* io_units which are still running,
115 * and have not yet been completely
116 * written to the log */
117 struct list_head io_end_ios
; /* io_units which have been completely
118 * written to the log but not yet written
120 struct list_head flushing_ios
; /* io_units which are waiting for log
122 struct list_head finished_ios
; /* io_units which settle down in log disk */
123 struct bio flush_bio
;
125 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
127 struct kmem_cache
*io_kc
;
130 mempool_t
*meta_pool
;
132 struct md_thread
*reclaim_thread
;
133 unsigned long reclaim_target
; /* number of space that need to be
134 * reclaimed. if it's 0, reclaim spaces
135 * used by io_units which are in
136 * IO_UNIT_STRIPE_END state (eg, reclaim
137 * dones't wait for specific io_unit
138 * switching to IO_UNIT_STRIPE_END
140 wait_queue_head_t iounit_wait
;
142 struct list_head no_space_stripes
; /* pending stripes, log has no space */
143 spinlock_t no_space_stripes_lock
;
145 bool need_cache_flush
;
148 enum r5c_journal_mode r5c_journal_mode
;
150 /* all stripes in r5cache, in the order of seq at sh->log_start */
151 struct list_head stripe_in_journal_list
;
153 spinlock_t stripe_in_journal_lock
;
154 atomic_t stripe_in_journal_count
;
156 /* to submit async io_units, to fulfill ordering of flush */
157 struct work_struct deferred_io_work
;
158 /* to disable write back during in degraded mode */
159 struct work_struct disable_writeback_work
;
161 /* to for chunk_aligned_read in writeback mode, details below */
162 spinlock_t tree_lock
;
163 struct radix_tree_root big_stripe_tree
;
167 * Enable chunk_aligned_read() with write back cache.
169 * Each chunk may contain more than one stripe (for example, a 256kB
170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172 * For each big_stripe, we count how many stripes of this big_stripe
173 * are in the write back cache. These data are tracked in a radix tree
174 * (big_stripe_tree). We use radix_tree item pointer as the counter.
175 * r5c_tree_index() is used to calculate keys for the radix tree.
177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178 * big_stripe of each chunk in the tree. If this big_stripe is in the
179 * tree, chunk_aligned_read() aborts. This look up is protected by
182 * It is necessary to remember whether a stripe is counted in
183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185 * two flags are set, the stripe is counted in big_stripe_tree. This
186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187 * r5c_try_caching_write(); and moving clear_bit of
188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189 * r5c_finish_stripe_write_out().
193 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194 * So it is necessary to left shift the counter by 2 bits before using it
195 * as data pointer of the tree.
197 #define R5C_RADIX_COUNT_SHIFT 2
200 * calculate key for big_stripe_tree
202 * sect: align_bi->bi_iter.bi_sector or sh->sector
204 static inline sector_t
r5c_tree_index(struct r5conf
*conf
,
209 offset
= sector_div(sect
, conf
->chunk_sectors
);
214 * an IO range starts from a meta data block and end at the next meta data
215 * block. The io unit's the meta data block tracks data/parity followed it. io
216 * unit is written to log disk with normal write, as we always flush log disk
217 * first and then start move data to raid disks, there is no requirement to
218 * write io unit with FLUSH/FUA
223 struct page
*meta_page
; /* store meta block */
224 int meta_offset
; /* current offset in meta_page */
226 struct bio
*current_bio
;/* current_bio accepting new data */
228 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
229 u64 seq
; /* seq number of the metablock */
230 sector_t log_start
; /* where the io_unit starts */
231 sector_t log_end
; /* where the io_unit ends */
232 struct list_head log_sibling
; /* log->running_ios */
233 struct list_head stripe_list
; /* stripes added to the io_unit */
237 struct bio
*split_bio
;
239 unsigned int has_flush
:1; /* include flush request */
240 unsigned int has_fua
:1; /* include fua request */
241 unsigned int has_null_flush
:1; /* include empty flush request */
243 * io isn't sent yet, flush/fua request can only be submitted till it's
244 * the first IO in running_ios list
246 unsigned int io_deferred
:1;
248 struct bio_list flush_barriers
; /* size == 0 flush bios */
251 /* r5l_io_unit state */
252 enum r5l_io_unit_state
{
253 IO_UNIT_RUNNING
= 0, /* accepting new IO */
254 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
255 * don't accepting new bio */
256 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
257 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
260 bool r5c_is_writeback(struct r5l_log
*log
)
262 return (log
!= NULL
&&
263 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
266 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
269 if (start
>= log
->device_size
)
270 start
= start
- log
->device_size
;
274 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
280 return end
+ log
->device_size
- start
;
283 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
287 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
290 return log
->device_size
> used_size
+ size
;
293 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
294 enum r5l_io_unit_state state
)
296 if (WARN_ON(io
->state
>= state
))
302 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
)
304 struct bio
*wbi
, *wbi2
;
308 while (wbi
&& wbi
->bi_iter
.bi_sector
<
309 dev
->sector
+ STRIPE_SECTORS
) {
310 wbi2
= r5_next_bio(wbi
, dev
->sector
);
311 md_write_end(conf
->mddev
);
317 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
318 struct stripe_head
*sh
, int disks
)
322 for (i
= sh
->disks
; i
--; ) {
323 if (sh
->dev
[i
].written
) {
324 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
325 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
]);
326 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
328 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
334 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
);
336 /* Check whether we should flush some stripes to free up stripe cache */
337 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
341 if (!r5c_is_writeback(conf
->log
))
344 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
345 atomic_read(&conf
->r5c_cached_full_stripes
);
348 * The following condition is true for either of the following:
349 * - stripe cache pressure high:
350 * total_cached > 3/4 min_nr_stripes ||
351 * empty_inactive_list_nr > 0
352 * - stripe cache pressure moderate:
353 * total_cached > 1/2 min_nr_stripes
355 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
356 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
357 r5l_wake_reclaim(conf
->log
, 0);
361 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
362 * stripes in the cache
364 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
366 if (!r5c_is_writeback(conf
->log
))
370 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
371 * or a full stripe (chunk size / 4k stripes).
373 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
374 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf
),
375 conf
->chunk_sectors
>> STRIPE_SHIFT
))
376 r5l_wake_reclaim(conf
->log
, 0);
380 * Total log space (in sectors) needed to flush all data in cache
382 * To avoid deadlock due to log space, it is necessary to reserve log
383 * space to flush critical stripes (stripes that occupying log space near
384 * last_checkpoint). This function helps check how much log space is
385 * required to flush all cached stripes.
387 * To reduce log space requirements, two mechanisms are used to give cache
388 * flush higher priorities:
389 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
390 * stripes ALREADY in journal can be flushed w/o pending writes;
391 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
392 * can be delayed (r5l_add_no_space_stripe).
394 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
395 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
396 * pages of journal space. For stripes that has not passed 1, flushing it
397 * requires (conf->raid_disks + 1) pages of journal space. There are at
398 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
399 * required to flush all cached stripes (in pages) is:
401 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
402 * (group_cnt + 1) * (raid_disks + 1)
404 * (stripe_in_journal_count) * (max_degraded + 1) +
405 * (group_cnt + 1) * (raid_disks - max_degraded)
407 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
409 struct r5l_log
*log
= conf
->log
;
411 if (!r5c_is_writeback(log
))
414 return BLOCK_SECTORS
*
415 ((conf
->max_degraded
+ 1) * atomic_read(&log
->stripe_in_journal_count
) +
416 (conf
->raid_disks
- conf
->max_degraded
) * (conf
->group_cnt
+ 1));
420 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
423 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
424 * device is less than 2x of reclaim_required_space.
426 static inline void r5c_update_log_state(struct r5l_log
*log
)
428 struct r5conf
*conf
= log
->rdev
->mddev
->private;
430 sector_t reclaim_space
;
431 bool wake_reclaim
= false;
433 if (!r5c_is_writeback(log
))
436 free_space
= r5l_ring_distance(log
, log
->log_start
,
437 log
->last_checkpoint
);
438 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
439 if (free_space
< 2 * reclaim_space
)
440 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
442 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
444 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
446 if (free_space
< 3 * reclaim_space
)
447 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
449 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
452 r5l_wake_reclaim(log
, 0);
456 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
457 * This function should only be called in write-back mode.
459 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
461 struct r5conf
*conf
= sh
->raid_conf
;
462 struct r5l_log
*log
= conf
->log
;
464 BUG_ON(!r5c_is_writeback(log
));
466 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
467 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
469 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
470 atomic_inc(&conf
->preread_active_stripes
);
473 static void r5c_handle_data_cached(struct stripe_head
*sh
)
477 for (i
= sh
->disks
; i
--; )
478 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
479 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
480 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
482 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
486 * this journal write must contain full parity,
487 * it may also contain some data pages
489 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
493 for (i
= sh
->disks
; i
--; )
494 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
495 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
499 * Setting proper flags after writing (or flushing) data and/or parity to the
500 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
504 struct r5l_log
*log
= sh
->raid_conf
->log
;
506 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
507 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
509 * Set R5_InJournal for parity dev[pd_idx]. This means
510 * all data AND parity in the journal. For RAID 6, it is
511 * NOT necessary to set the flag for dev[qd_idx], as the
512 * two parities are written out together.
514 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
515 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
516 r5c_handle_data_cached(sh
);
518 r5c_handle_parity_cached(sh
);
519 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
523 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
525 struct stripe_head
*sh
, *next
;
527 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
528 list_del_init(&sh
->log_list
);
530 r5c_finish_cache_stripe(sh
);
532 set_bit(STRIPE_HANDLE
, &sh
->state
);
533 raid5_release_stripe(sh
);
537 static void r5l_log_run_stripes(struct r5l_log
*log
)
539 struct r5l_io_unit
*io
, *next
;
541 assert_spin_locked(&log
->io_list_lock
);
543 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
544 /* don't change list order */
545 if (io
->state
< IO_UNIT_IO_END
)
548 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
549 r5l_io_run_stripes(io
);
553 static void r5l_move_to_end_ios(struct r5l_log
*log
)
555 struct r5l_io_unit
*io
, *next
;
557 assert_spin_locked(&log
->io_list_lock
);
559 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
560 /* don't change list order */
561 if (io
->state
< IO_UNIT_IO_END
)
563 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
567 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
568 static void r5l_log_endio(struct bio
*bio
)
570 struct r5l_io_unit
*io
= bio
->bi_private
;
571 struct r5l_io_unit
*io_deferred
;
572 struct r5l_log
*log
= io
->log
;
576 md_error(log
->rdev
->mddev
, log
->rdev
);
579 mempool_free(io
->meta_page
, log
->meta_pool
);
581 spin_lock_irqsave(&log
->io_list_lock
, flags
);
582 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
583 if (log
->need_cache_flush
&& !list_empty(&io
->stripe_list
))
584 r5l_move_to_end_ios(log
);
586 r5l_log_run_stripes(log
);
587 if (!list_empty(&log
->running_ios
)) {
589 * FLUSH/FUA io_unit is deferred because of ordering, now we
592 io_deferred
= list_first_entry(&log
->running_ios
,
593 struct r5l_io_unit
, log_sibling
);
594 if (io_deferred
->io_deferred
)
595 schedule_work(&log
->deferred_io_work
);
598 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
600 if (log
->need_cache_flush
)
601 md_wakeup_thread(log
->rdev
->mddev
->thread
);
603 if (io
->has_null_flush
) {
606 WARN_ON(bio_list_empty(&io
->flush_barriers
));
607 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
609 atomic_dec(&io
->pending_stripe
);
613 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
614 if (atomic_read(&io
->pending_stripe
) == 0)
615 __r5l_stripe_write_finished(io
);
618 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
622 spin_lock_irqsave(&log
->io_list_lock
, flags
);
623 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
624 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
627 * In case of journal device failures, submit_bio will get error
628 * and calls endio, then active stripes will continue write
629 * process. Therefore, it is not necessary to check Faulty bit
630 * of journal device here.
632 * We can't check split_bio after current_bio is submitted. If
633 * io->split_bio is null, after current_bio is submitted, current_bio
634 * might already be completed and the io_unit is freed. We submit
635 * split_bio first to avoid the issue.
639 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
641 io
->split_bio
->bi_opf
|= REQ_FUA
;
642 submit_bio(io
->split_bio
);
646 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
648 io
->current_bio
->bi_opf
|= REQ_FUA
;
649 submit_bio(io
->current_bio
);
652 /* deferred io_unit will be dispatched here */
653 static void r5l_submit_io_async(struct work_struct
*work
)
655 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
657 struct r5l_io_unit
*io
= NULL
;
660 spin_lock_irqsave(&log
->io_list_lock
, flags
);
661 if (!list_empty(&log
->running_ios
)) {
662 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
664 if (!io
->io_deferred
)
669 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
671 r5l_do_submit_io(log
, io
);
674 static void r5c_disable_writeback_async(struct work_struct
*work
)
676 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
677 disable_writeback_work
);
678 struct mddev
*mddev
= log
->rdev
->mddev
;
680 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
682 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
685 /* wait superblock change before suspend */
686 wait_event(mddev
->sb_wait
,
687 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
689 mddev_suspend(mddev
);
690 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
694 static void r5l_submit_current_io(struct r5l_log
*log
)
696 struct r5l_io_unit
*io
= log
->current_io
;
698 struct r5l_meta_block
*block
;
701 bool do_submit
= true;
706 block
= page_address(io
->meta_page
);
707 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
708 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
709 block
->checksum
= cpu_to_le32(crc
);
710 bio
= io
->current_bio
;
712 log
->current_io
= NULL
;
713 spin_lock_irqsave(&log
->io_list_lock
, flags
);
714 if (io
->has_flush
|| io
->has_fua
) {
715 if (io
!= list_first_entry(&log
->running_ios
,
716 struct r5l_io_unit
, log_sibling
)) {
721 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
723 r5l_do_submit_io(log
, io
);
726 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
728 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, log
->bs
);
730 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
731 bio
->bi_bdev
= log
->rdev
->bdev
;
732 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
737 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
739 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
741 r5c_update_log_state(log
);
743 * If we filled up the log device start from the beginning again,
744 * which will require a new bio.
746 * Note: for this to work properly the log size needs to me a multiple
749 if (log
->log_start
== 0)
750 io
->need_split_bio
= true;
752 io
->log_end
= log
->log_start
;
755 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
757 struct r5l_io_unit
*io
;
758 struct r5l_meta_block
*block
;
760 io
= mempool_alloc(log
->io_pool
, GFP_ATOMIC
);
763 memset(io
, 0, sizeof(*io
));
766 INIT_LIST_HEAD(&io
->log_sibling
);
767 INIT_LIST_HEAD(&io
->stripe_list
);
768 bio_list_init(&io
->flush_barriers
);
769 io
->state
= IO_UNIT_RUNNING
;
771 io
->meta_page
= mempool_alloc(log
->meta_pool
, GFP_NOIO
);
772 block
= page_address(io
->meta_page
);
774 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
775 block
->version
= R5LOG_VERSION
;
776 block
->seq
= cpu_to_le64(log
->seq
);
777 block
->position
= cpu_to_le64(log
->log_start
);
779 io
->log_start
= log
->log_start
;
780 io
->meta_offset
= sizeof(struct r5l_meta_block
);
781 io
->seq
= log
->seq
++;
783 io
->current_bio
= r5l_bio_alloc(log
);
784 io
->current_bio
->bi_end_io
= r5l_log_endio
;
785 io
->current_bio
->bi_private
= io
;
786 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
788 r5_reserve_log_entry(log
, io
);
790 spin_lock_irq(&log
->io_list_lock
);
791 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
792 spin_unlock_irq(&log
->io_list_lock
);
797 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
799 if (log
->current_io
&&
800 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
801 r5l_submit_current_io(log
);
803 if (!log
->current_io
) {
804 log
->current_io
= r5l_new_meta(log
);
805 if (!log
->current_io
)
812 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
814 u32 checksum1
, u32 checksum2
,
815 bool checksum2_valid
)
817 struct r5l_io_unit
*io
= log
->current_io
;
818 struct r5l_payload_data_parity
*payload
;
820 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
821 payload
->header
.type
= cpu_to_le16(type
);
822 payload
->header
.flags
= cpu_to_le16(0);
823 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
825 payload
->location
= cpu_to_le64(location
);
826 payload
->checksum
[0] = cpu_to_le32(checksum1
);
828 payload
->checksum
[1] = cpu_to_le32(checksum2
);
830 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
831 sizeof(__le32
) * (1 + !!checksum2_valid
);
834 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
836 struct r5l_io_unit
*io
= log
->current_io
;
838 if (io
->need_split_bio
) {
839 BUG_ON(io
->split_bio
);
840 io
->split_bio
= io
->current_bio
;
841 io
->current_bio
= r5l_bio_alloc(log
);
842 bio_chain(io
->current_bio
, io
->split_bio
);
843 io
->need_split_bio
= false;
846 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
849 r5_reserve_log_entry(log
, io
);
852 static void r5l_append_flush_payload(struct r5l_log
*log
, sector_t sect
)
854 struct mddev
*mddev
= log
->rdev
->mddev
;
855 struct r5conf
*conf
= mddev
->private;
856 struct r5l_io_unit
*io
;
857 struct r5l_payload_flush
*payload
;
861 * payload_flush requires extra writes to the journal.
862 * To avoid handling the extra IO in quiesce, just skip
868 mutex_lock(&log
->io_mutex
);
869 meta_size
= sizeof(struct r5l_payload_flush
) + sizeof(__le64
);
871 if (r5l_get_meta(log
, meta_size
)) {
872 mutex_unlock(&log
->io_mutex
);
876 /* current implementation is one stripe per flush payload */
877 io
= log
->current_io
;
878 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
879 payload
->header
.type
= cpu_to_le16(R5LOG_PAYLOAD_FLUSH
);
880 payload
->header
.flags
= cpu_to_le16(0);
881 payload
->size
= cpu_to_le32(sizeof(__le64
));
882 payload
->flush_stripes
[0] = cpu_to_le64(sect
);
883 io
->meta_offset
+= meta_size
;
884 mutex_unlock(&log
->io_mutex
);
887 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
888 int data_pages
, int parity_pages
)
893 struct r5l_io_unit
*io
;
896 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
898 sizeof(struct r5l_payload_data_parity
) +
899 sizeof(__le32
) * parity_pages
;
901 ret
= r5l_get_meta(log
, meta_size
);
905 io
= log
->current_io
;
907 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
910 for (i
= 0; i
< sh
->disks
; i
++) {
911 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
912 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
914 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
916 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
917 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
920 * we need to flush journal to make sure recovery can
921 * reach the data with fua flag
925 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
926 raid5_compute_blocknr(sh
, i
, 0),
927 sh
->dev
[i
].log_checksum
, 0, false);
928 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
931 if (parity_pages
== 2) {
932 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
933 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
934 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
935 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
936 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
937 } else if (parity_pages
== 1) {
938 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
939 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
941 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
942 } else /* Just writing data, not parity, in caching phase */
943 BUG_ON(parity_pages
!= 0);
945 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
946 atomic_inc(&io
->pending_stripe
);
949 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
952 if (sh
->log_start
== MaxSector
) {
953 BUG_ON(!list_empty(&sh
->r5c
));
954 sh
->log_start
= io
->log_start
;
955 spin_lock_irq(&log
->stripe_in_journal_lock
);
956 list_add_tail(&sh
->r5c
,
957 &log
->stripe_in_journal_list
);
958 spin_unlock_irq(&log
->stripe_in_journal_lock
);
959 atomic_inc(&log
->stripe_in_journal_count
);
964 /* add stripe to no_space_stripes, and then wake up reclaim */
965 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
966 struct stripe_head
*sh
)
968 spin_lock(&log
->no_space_stripes_lock
);
969 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
970 spin_unlock(&log
->no_space_stripes_lock
);
974 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
975 * data from log to raid disks), so we shouldn't wait for reclaim here
977 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
979 struct r5conf
*conf
= sh
->raid_conf
;
981 int data_pages
, parity_pages
;
985 bool wake_reclaim
= false;
989 /* Don't support stripe batch */
990 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
991 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
992 /* the stripe is written to log, we start writing it to raid */
993 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
997 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
999 for (i
= 0; i
< sh
->disks
; i
++) {
1002 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
1003 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1007 /* checksum is already calculated in last run */
1008 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
1010 addr
= kmap_atomic(sh
->dev
[i
].page
);
1011 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
1013 kunmap_atomic(addr
);
1015 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
1016 data_pages
= write_disks
- parity_pages
;
1018 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1020 * The stripe must enter state machine again to finish the write, so
1023 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1024 atomic_inc(&sh
->count
);
1026 mutex_lock(&log
->io_mutex
);
1028 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
1030 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1031 if (!r5l_has_free_space(log
, reserve
)) {
1032 r5l_add_no_space_stripe(log
, sh
);
1033 wake_reclaim
= true;
1035 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1037 spin_lock_irq(&log
->io_list_lock
);
1038 list_add_tail(&sh
->log_list
,
1039 &log
->no_mem_stripes
);
1040 spin_unlock_irq(&log
->io_list_lock
);
1043 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1045 * log space critical, do not process stripes that are
1046 * not in cache yet (sh->log_start == MaxSector).
1048 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
1049 sh
->log_start
== MaxSector
) {
1050 r5l_add_no_space_stripe(log
, sh
);
1051 wake_reclaim
= true;
1053 } else if (!r5l_has_free_space(log
, reserve
)) {
1054 if (sh
->log_start
== log
->last_checkpoint
)
1057 r5l_add_no_space_stripe(log
, sh
);
1059 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1061 spin_lock_irq(&log
->io_list_lock
);
1062 list_add_tail(&sh
->log_list
,
1063 &log
->no_mem_stripes
);
1064 spin_unlock_irq(&log
->io_list_lock
);
1069 mutex_unlock(&log
->io_mutex
);
1071 r5l_wake_reclaim(log
, reserve
);
1075 void r5l_write_stripe_run(struct r5l_log
*log
)
1079 mutex_lock(&log
->io_mutex
);
1080 r5l_submit_current_io(log
);
1081 mutex_unlock(&log
->io_mutex
);
1084 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
1089 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1091 * in write through (journal only)
1092 * we flush log disk cache first, then write stripe data to
1093 * raid disks. So if bio is finished, the log disk cache is
1094 * flushed already. The recovery guarantees we can recovery
1095 * the bio from log disk, so we don't need to flush again
1097 if (bio
->bi_iter
.bi_size
== 0) {
1101 bio
->bi_opf
&= ~REQ_PREFLUSH
;
1103 /* write back (with cache) */
1104 if (bio
->bi_iter
.bi_size
== 0) {
1105 mutex_lock(&log
->io_mutex
);
1106 r5l_get_meta(log
, 0);
1107 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
1108 log
->current_io
->has_flush
= 1;
1109 log
->current_io
->has_null_flush
= 1;
1110 atomic_inc(&log
->current_io
->pending_stripe
);
1111 r5l_submit_current_io(log
);
1112 mutex_unlock(&log
->io_mutex
);
1119 /* This will run after log space is reclaimed */
1120 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1122 struct stripe_head
*sh
;
1124 spin_lock(&log
->no_space_stripes_lock
);
1125 while (!list_empty(&log
->no_space_stripes
)) {
1126 sh
= list_first_entry(&log
->no_space_stripes
,
1127 struct stripe_head
, log_list
);
1128 list_del_init(&sh
->log_list
);
1129 set_bit(STRIPE_HANDLE
, &sh
->state
);
1130 raid5_release_stripe(sh
);
1132 spin_unlock(&log
->no_space_stripes_lock
);
1136 * calculate new last_checkpoint
1137 * for write through mode, returns log->next_checkpoint
1138 * for write back, returns log_start of first sh in stripe_in_journal_list
1140 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1142 struct stripe_head
*sh
;
1143 struct r5l_log
*log
= conf
->log
;
1145 unsigned long flags
;
1147 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1148 return log
->next_checkpoint
;
1150 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1151 if (list_empty(&conf
->log
->stripe_in_journal_list
)) {
1152 /* all stripes flushed */
1153 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1154 return log
->next_checkpoint
;
1156 sh
= list_first_entry(&conf
->log
->stripe_in_journal_list
,
1157 struct stripe_head
, r5c
);
1158 new_cp
= sh
->log_start
;
1159 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1163 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1165 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1167 return r5l_ring_distance(log
, log
->last_checkpoint
,
1168 r5c_calculate_new_cp(conf
));
1171 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1173 struct stripe_head
*sh
;
1175 assert_spin_locked(&log
->io_list_lock
);
1177 if (!list_empty(&log
->no_mem_stripes
)) {
1178 sh
= list_first_entry(&log
->no_mem_stripes
,
1179 struct stripe_head
, log_list
);
1180 list_del_init(&sh
->log_list
);
1181 set_bit(STRIPE_HANDLE
, &sh
->state
);
1182 raid5_release_stripe(sh
);
1186 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1188 struct r5l_io_unit
*io
, *next
;
1191 assert_spin_locked(&log
->io_list_lock
);
1193 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1194 /* don't change list order */
1195 if (io
->state
< IO_UNIT_STRIPE_END
)
1198 log
->next_checkpoint
= io
->log_start
;
1200 list_del(&io
->log_sibling
);
1201 mempool_free(io
, log
->io_pool
);
1202 r5l_run_no_mem_stripe(log
);
1210 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1212 struct r5l_log
*log
= io
->log
;
1213 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1214 unsigned long flags
;
1216 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1217 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1219 if (!r5l_complete_finished_ios(log
)) {
1220 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1224 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1225 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1226 r5l_wake_reclaim(log
, 0);
1228 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1229 wake_up(&log
->iounit_wait
);
1232 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1234 struct r5l_io_unit
*io
;
1239 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1240 __r5l_stripe_write_finished(io
);
1243 static void r5l_log_flush_endio(struct bio
*bio
)
1245 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1247 unsigned long flags
;
1248 struct r5l_io_unit
*io
;
1251 md_error(log
->rdev
->mddev
, log
->rdev
);
1253 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1254 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1255 r5l_io_run_stripes(io
);
1256 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1257 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1261 * Starting dispatch IO to raid.
1262 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1263 * broken meta in the middle of a log causes recovery can't find meta at the
1264 * head of log. If operations require meta at the head persistent in log, we
1265 * must make sure meta before it persistent in log too. A case is:
1267 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1268 * data/parity must be persistent in log before we do the write to raid disks.
1270 * The solution is we restrictly maintain io_unit list order. In this case, we
1271 * only write stripes of an io_unit to raid disks till the io_unit is the first
1272 * one whose data/parity is in log.
1274 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1278 if (!log
|| !log
->need_cache_flush
)
1281 spin_lock_irq(&log
->io_list_lock
);
1282 /* flush bio is running */
1283 if (!list_empty(&log
->flushing_ios
)) {
1284 spin_unlock_irq(&log
->io_list_lock
);
1287 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1288 do_flush
= !list_empty(&log
->flushing_ios
);
1289 spin_unlock_irq(&log
->io_list_lock
);
1293 bio_reset(&log
->flush_bio
);
1294 log
->flush_bio
.bi_bdev
= log
->rdev
->bdev
;
1295 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1296 log
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1297 submit_bio(&log
->flush_bio
);
1300 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1301 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1304 struct block_device
*bdev
= log
->rdev
->bdev
;
1305 struct mddev
*mddev
;
1307 r5l_write_super(log
, end
);
1309 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1312 mddev
= log
->rdev
->mddev
;
1314 * Discard could zero data, so before discard we must make sure
1315 * superblock is updated to new log tail. Updating superblock (either
1316 * directly call md_update_sb() or depend on md thread) must hold
1317 * reconfig mutex. On the other hand, raid5_quiesce is called with
1318 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1319 * for all IO finish, hence waitting for reclaim thread, while reclaim
1320 * thread is calling this function and waitting for reconfig mutex. So
1321 * there is a deadlock. We workaround this issue with a trylock.
1322 * FIXME: we could miss discard if we can't take reconfig mutex
1324 set_mask_bits(&mddev
->sb_flags
, 0,
1325 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1326 if (!mddev_trylock(mddev
))
1328 md_update_sb(mddev
, 1);
1329 mddev_unlock(mddev
);
1331 /* discard IO error really doesn't matter, ignore it */
1332 if (log
->last_checkpoint
< end
) {
1333 blkdev_issue_discard(bdev
,
1334 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1335 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
1337 blkdev_issue_discard(bdev
,
1338 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1339 log
->device_size
- log
->last_checkpoint
,
1341 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1347 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1348 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1350 * must hold conf->device_lock
1352 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1354 BUG_ON(list_empty(&sh
->lru
));
1355 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1356 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1359 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1360 * raid5_release_stripe() while holding conf->device_lock
1362 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1363 assert_spin_locked(&conf
->device_lock
);
1365 list_del_init(&sh
->lru
);
1366 atomic_inc(&sh
->count
);
1368 set_bit(STRIPE_HANDLE
, &sh
->state
);
1369 atomic_inc(&conf
->active_stripes
);
1370 r5c_make_stripe_write_out(sh
);
1372 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
1373 atomic_inc(&conf
->r5c_flushing_partial_stripes
);
1375 atomic_inc(&conf
->r5c_flushing_full_stripes
);
1376 raid5_release_stripe(sh
);
1380 * if num == 0, flush all full stripes
1381 * if num > 0, flush all full stripes. If less than num full stripes are
1382 * flushed, flush some partial stripes until totally num stripes are
1383 * flushed or there is no more cached stripes.
1385 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1388 struct stripe_head
*sh
, *next
;
1390 assert_spin_locked(&conf
->device_lock
);
1395 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1396 r5c_flush_stripe(conf
, sh
);
1402 list_for_each_entry_safe(sh
, next
,
1403 &conf
->r5c_partial_stripe_list
, lru
) {
1404 r5c_flush_stripe(conf
, sh
);
1410 static void r5c_do_reclaim(struct r5conf
*conf
)
1412 struct r5l_log
*log
= conf
->log
;
1413 struct stripe_head
*sh
;
1415 unsigned long flags
;
1417 int stripes_to_flush
;
1418 int flushing_partial
, flushing_full
;
1420 if (!r5c_is_writeback(log
))
1423 flushing_partial
= atomic_read(&conf
->r5c_flushing_partial_stripes
);
1424 flushing_full
= atomic_read(&conf
->r5c_flushing_full_stripes
);
1425 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1426 atomic_read(&conf
->r5c_cached_full_stripes
) -
1427 flushing_full
- flushing_partial
;
1429 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1430 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1432 * if stripe cache pressure high, flush all full stripes and
1433 * some partial stripes
1435 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1436 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1437 atomic_read(&conf
->r5c_cached_full_stripes
) - flushing_full
>
1438 R5C_FULL_STRIPE_FLUSH_BATCH(conf
))
1440 * if stripe cache pressure moderate, or if there is many full
1441 * stripes,flush all full stripes
1443 stripes_to_flush
= 0;
1445 /* no need to flush */
1446 stripes_to_flush
= -1;
1448 if (stripes_to_flush
>= 0) {
1449 spin_lock_irqsave(&conf
->device_lock
, flags
);
1450 r5c_flush_cache(conf
, stripes_to_flush
);
1451 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1454 /* if log space is tight, flush stripes on stripe_in_journal_list */
1455 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1456 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1457 spin_lock(&conf
->device_lock
);
1458 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1460 * stripes on stripe_in_journal_list could be in any
1461 * state of the stripe_cache state machine. In this
1462 * case, we only want to flush stripe on
1463 * r5c_cached_full/partial_stripes. The following
1464 * condition makes sure the stripe is on one of the
1467 if (!list_empty(&sh
->lru
) &&
1468 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1469 atomic_read(&sh
->count
) == 0) {
1470 r5c_flush_stripe(conf
, sh
);
1471 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1475 spin_unlock(&conf
->device_lock
);
1476 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1479 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1480 r5l_run_no_space_stripes(log
);
1482 md_wakeup_thread(conf
->mddev
->thread
);
1485 static void r5l_do_reclaim(struct r5l_log
*log
)
1487 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1488 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1489 sector_t reclaimable
;
1490 sector_t next_checkpoint
;
1493 spin_lock_irq(&log
->io_list_lock
);
1494 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1495 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1497 * move proper io_unit to reclaim list. We should not change the order.
1498 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1499 * shouldn't reuse space of an unreclaimable io_unit
1502 reclaimable
= r5l_reclaimable_space(log
);
1503 if (reclaimable
>= reclaim_target
||
1504 (list_empty(&log
->running_ios
) &&
1505 list_empty(&log
->io_end_ios
) &&
1506 list_empty(&log
->flushing_ios
) &&
1507 list_empty(&log
->finished_ios
)))
1510 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1511 wait_event_lock_irq(log
->iounit_wait
,
1512 r5l_reclaimable_space(log
) > reclaimable
,
1516 next_checkpoint
= r5c_calculate_new_cp(conf
);
1517 spin_unlock_irq(&log
->io_list_lock
);
1519 if (reclaimable
== 0 || !write_super
)
1523 * write_super will flush cache of each raid disk. We must write super
1524 * here, because the log area might be reused soon and we don't want to
1527 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1529 mutex_lock(&log
->io_mutex
);
1530 log
->last_checkpoint
= next_checkpoint
;
1531 r5c_update_log_state(log
);
1532 mutex_unlock(&log
->io_mutex
);
1534 r5l_run_no_space_stripes(log
);
1537 static void r5l_reclaim_thread(struct md_thread
*thread
)
1539 struct mddev
*mddev
= thread
->mddev
;
1540 struct r5conf
*conf
= mddev
->private;
1541 struct r5l_log
*log
= conf
->log
;
1545 r5c_do_reclaim(conf
);
1546 r5l_do_reclaim(log
);
1549 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1551 unsigned long target
;
1552 unsigned long new = (unsigned long)space
; /* overflow in theory */
1557 target
= log
->reclaim_target
;
1560 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
1561 md_wakeup_thread(log
->reclaim_thread
);
1564 void r5l_quiesce(struct r5l_log
*log
, int state
)
1566 struct mddev
*mddev
;
1567 if (!log
|| state
== 2)
1570 kthread_unpark(log
->reclaim_thread
->tsk
);
1571 else if (state
== 1) {
1572 /* make sure r5l_write_super_and_discard_space exits */
1573 mddev
= log
->rdev
->mddev
;
1574 wake_up(&mddev
->sb_wait
);
1575 kthread_park(log
->reclaim_thread
->tsk
);
1576 r5l_wake_reclaim(log
, MaxSector
);
1577 r5l_do_reclaim(log
);
1581 bool r5l_log_disk_error(struct r5conf
*conf
)
1583 struct r5l_log
*log
;
1585 /* don't allow write if journal disk is missing */
1587 log
= rcu_dereference(conf
->log
);
1590 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1592 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
1597 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1599 struct r5l_recovery_ctx
{
1600 struct page
*meta_page
; /* current meta */
1601 sector_t meta_total_blocks
; /* total size of current meta and data */
1602 sector_t pos
; /* recovery position */
1603 u64 seq
; /* recovery position seq */
1604 int data_parity_stripes
; /* number of data_parity stripes */
1605 int data_only_stripes
; /* number of data_only stripes */
1606 struct list_head cached_list
;
1609 * read ahead page pool (ra_pool)
1610 * in recovery, log is read sequentially. It is not efficient to
1611 * read every page with sync_page_io(). The read ahead page pool
1612 * reads multiple pages with one IO, so further log read can
1613 * just copy data from the pool.
1615 struct page
*ra_pool
[R5L_RECOVERY_PAGE_POOL_SIZE
];
1616 sector_t pool_offset
; /* offset of first page in the pool */
1617 int total_pages
; /* total allocated pages */
1618 int valid_pages
; /* pages with valid data */
1619 struct bio
*ra_bio
; /* bio to do the read ahead */
1622 static int r5l_recovery_allocate_ra_pool(struct r5l_log
*log
,
1623 struct r5l_recovery_ctx
*ctx
)
1627 ctx
->ra_bio
= bio_alloc_bioset(GFP_KERNEL
, BIO_MAX_PAGES
, log
->bs
);
1631 ctx
->valid_pages
= 0;
1632 ctx
->total_pages
= 0;
1633 while (ctx
->total_pages
< R5L_RECOVERY_PAGE_POOL_SIZE
) {
1634 page
= alloc_page(GFP_KERNEL
);
1638 ctx
->ra_pool
[ctx
->total_pages
] = page
;
1639 ctx
->total_pages
+= 1;
1642 if (ctx
->total_pages
== 0) {
1643 bio_put(ctx
->ra_bio
);
1647 ctx
->pool_offset
= 0;
1651 static void r5l_recovery_free_ra_pool(struct r5l_log
*log
,
1652 struct r5l_recovery_ctx
*ctx
)
1656 for (i
= 0; i
< ctx
->total_pages
; ++i
)
1657 put_page(ctx
->ra_pool
[i
]);
1658 bio_put(ctx
->ra_bio
);
1662 * fetch ctx->valid_pages pages from offset
1663 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1664 * However, if the offset is close to the end of the journal device,
1665 * ctx->valid_pages could be smaller than ctx->total_pages
1667 static int r5l_recovery_fetch_ra_pool(struct r5l_log
*log
,
1668 struct r5l_recovery_ctx
*ctx
,
1671 bio_reset(ctx
->ra_bio
);
1672 ctx
->ra_bio
->bi_bdev
= log
->rdev
->bdev
;
1673 bio_set_op_attrs(ctx
->ra_bio
, REQ_OP_READ
, 0);
1674 ctx
->ra_bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ offset
;
1676 ctx
->valid_pages
= 0;
1677 ctx
->pool_offset
= offset
;
1679 while (ctx
->valid_pages
< ctx
->total_pages
) {
1680 bio_add_page(ctx
->ra_bio
,
1681 ctx
->ra_pool
[ctx
->valid_pages
], PAGE_SIZE
, 0);
1682 ctx
->valid_pages
+= 1;
1684 offset
= r5l_ring_add(log
, offset
, BLOCK_SECTORS
);
1686 if (offset
== 0) /* reached end of the device */
1690 return submit_bio_wait(ctx
->ra_bio
);
1694 * try read a page from the read ahead page pool, if the page is not in the
1695 * pool, call r5l_recovery_fetch_ra_pool
1697 static int r5l_recovery_read_page(struct r5l_log
*log
,
1698 struct r5l_recovery_ctx
*ctx
,
1704 if (offset
< ctx
->pool_offset
||
1705 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
) {
1706 ret
= r5l_recovery_fetch_ra_pool(log
, ctx
, offset
);
1711 BUG_ON(offset
< ctx
->pool_offset
||
1712 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
);
1714 memcpy(page_address(page
),
1715 page_address(ctx
->ra_pool
[(offset
- ctx
->pool_offset
) >>
1716 BLOCK_SECTOR_SHIFT
]),
1721 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1722 struct r5l_recovery_ctx
*ctx
)
1724 struct page
*page
= ctx
->meta_page
;
1725 struct r5l_meta_block
*mb
;
1726 u32 crc
, stored_crc
;
1729 ret
= r5l_recovery_read_page(log
, ctx
, page
, ctx
->pos
);
1733 mb
= page_address(page
);
1734 stored_crc
= le32_to_cpu(mb
->checksum
);
1737 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1738 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1739 mb
->version
!= R5LOG_VERSION
||
1740 le64_to_cpu(mb
->position
) != ctx
->pos
)
1743 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1744 if (stored_crc
!= crc
)
1747 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1750 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1756 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1758 sector_t pos
, u64 seq
)
1760 struct r5l_meta_block
*mb
;
1762 mb
= page_address(page
);
1764 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1765 mb
->version
= R5LOG_VERSION
;
1766 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1767 mb
->seq
= cpu_to_le64(seq
);
1768 mb
->position
= cpu_to_le64(pos
);
1771 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1775 struct r5l_meta_block
*mb
;
1777 page
= alloc_page(GFP_KERNEL
);
1780 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1781 mb
= page_address(page
);
1782 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1784 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1785 REQ_SYNC
| REQ_FUA
, false)) {
1794 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1795 * to mark valid (potentially not flushed) data in the journal.
1797 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1798 * so there should not be any mismatch here.
1800 static void r5l_recovery_load_data(struct r5l_log
*log
,
1801 struct stripe_head
*sh
,
1802 struct r5l_recovery_ctx
*ctx
,
1803 struct r5l_payload_data_parity
*payload
,
1804 sector_t log_offset
)
1806 struct mddev
*mddev
= log
->rdev
->mddev
;
1807 struct r5conf
*conf
= mddev
->private;
1810 raid5_compute_sector(conf
,
1811 le64_to_cpu(payload
->location
), 0,
1813 r5l_recovery_read_page(log
, ctx
, sh
->dev
[dd_idx
].page
, log_offset
);
1814 sh
->dev
[dd_idx
].log_checksum
=
1815 le32_to_cpu(payload
->checksum
[0]);
1816 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1818 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1819 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1822 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1823 struct stripe_head
*sh
,
1824 struct r5l_recovery_ctx
*ctx
,
1825 struct r5l_payload_data_parity
*payload
,
1826 sector_t log_offset
)
1828 struct mddev
*mddev
= log
->rdev
->mddev
;
1829 struct r5conf
*conf
= mddev
->private;
1831 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1832 r5l_recovery_read_page(log
, ctx
, sh
->dev
[sh
->pd_idx
].page
, log_offset
);
1833 sh
->dev
[sh
->pd_idx
].log_checksum
=
1834 le32_to_cpu(payload
->checksum
[0]);
1835 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1837 if (sh
->qd_idx
>= 0) {
1838 r5l_recovery_read_page(
1839 log
, ctx
, sh
->dev
[sh
->qd_idx
].page
,
1840 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
));
1841 sh
->dev
[sh
->qd_idx
].log_checksum
=
1842 le32_to_cpu(payload
->checksum
[1]);
1843 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1845 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1848 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1853 sh
->log_start
= MaxSector
;
1854 for (i
= sh
->disks
; i
--; )
1855 sh
->dev
[i
].flags
= 0;
1859 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1860 struct stripe_head
*sh
,
1861 struct r5l_recovery_ctx
*ctx
)
1863 struct md_rdev
*rdev
, *rrdev
;
1867 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1868 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1870 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1876 * stripes that only have parity must have been flushed
1877 * before the crash that we are now recovering from, so
1878 * there is nothing more to recovery.
1880 if (data_count
== 0)
1883 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1884 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1887 /* in case device is broken */
1889 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
1891 atomic_inc(&rdev
->nr_pending
);
1893 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1894 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1896 rdev_dec_pending(rdev
, rdev
->mddev
);
1899 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
1901 atomic_inc(&rrdev
->nr_pending
);
1903 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1904 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1906 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1911 ctx
->data_parity_stripes
++;
1913 r5l_recovery_reset_stripe(sh
);
1916 static struct stripe_head
*
1917 r5c_recovery_alloc_stripe(struct r5conf
*conf
,
1918 sector_t stripe_sect
)
1920 struct stripe_head
*sh
;
1922 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, 1, 0);
1924 return NULL
; /* no more stripe available */
1926 r5l_recovery_reset_stripe(sh
);
1931 static struct stripe_head
*
1932 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1934 struct stripe_head
*sh
;
1936 list_for_each_entry(sh
, list
, lru
)
1937 if (sh
->sector
== sect
)
1943 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1944 struct r5l_recovery_ctx
*ctx
)
1946 struct stripe_head
*sh
, *next
;
1948 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1949 r5l_recovery_reset_stripe(sh
);
1950 list_del_init(&sh
->lru
);
1951 raid5_release_stripe(sh
);
1956 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1957 struct r5l_recovery_ctx
*ctx
)
1959 struct stripe_head
*sh
, *next
;
1961 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1962 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1963 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1964 list_del_init(&sh
->lru
);
1965 raid5_release_stripe(sh
);
1969 /* if matches return 0; otherwise return -EINVAL */
1971 r5l_recovery_verify_data_checksum(struct r5l_log
*log
,
1972 struct r5l_recovery_ctx
*ctx
,
1974 sector_t log_offset
, __le32 log_checksum
)
1979 r5l_recovery_read_page(log
, ctx
, page
, log_offset
);
1980 addr
= kmap_atomic(page
);
1981 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
1982 kunmap_atomic(addr
);
1983 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
1987 * before loading data to stripe cache, we need verify checksum for all data,
1988 * if there is mismatch for any data page, we drop all data in the mata block
1991 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
1992 struct r5l_recovery_ctx
*ctx
)
1994 struct mddev
*mddev
= log
->rdev
->mddev
;
1995 struct r5conf
*conf
= mddev
->private;
1996 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
1997 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
1998 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2000 struct r5l_payload_data_parity
*payload
;
2001 struct r5l_payload_flush
*payload_flush
;
2003 page
= alloc_page(GFP_KERNEL
);
2007 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2008 payload
= (void *)mb
+ mb_offset
;
2009 payload_flush
= (void *)mb
+ mb_offset
;
2011 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2012 if (r5l_recovery_verify_data_checksum(
2013 log
, ctx
, page
, log_offset
,
2014 payload
->checksum
[0]) < 0)
2016 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
) {
2017 if (r5l_recovery_verify_data_checksum(
2018 log
, ctx
, page
, log_offset
,
2019 payload
->checksum
[0]) < 0)
2021 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
2022 r5l_recovery_verify_data_checksum(
2024 r5l_ring_add(log
, log_offset
,
2026 payload
->checksum
[1]) < 0)
2028 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2029 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2030 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2033 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2034 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2035 le32_to_cpu(payload_flush
->size
);
2037 /* DATA or PARITY payload */
2038 log_offset
= r5l_ring_add(log
, log_offset
,
2039 le32_to_cpu(payload
->size
));
2040 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2042 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2056 * Analyze all data/parity pages in one meta block
2059 * -EINVAL for unknown playload type
2060 * -EAGAIN for checksum mismatch of data page
2061 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2064 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
2065 struct r5l_recovery_ctx
*ctx
,
2066 struct list_head
*cached_stripe_list
)
2068 struct mddev
*mddev
= log
->rdev
->mddev
;
2069 struct r5conf
*conf
= mddev
->private;
2070 struct r5l_meta_block
*mb
;
2071 struct r5l_payload_data_parity
*payload
;
2072 struct r5l_payload_flush
*payload_flush
;
2074 sector_t log_offset
;
2075 sector_t stripe_sect
;
2076 struct stripe_head
*sh
;
2080 * for mismatch in data blocks, we will drop all data in this mb, but
2081 * we will still read next mb for other data with FLUSH flag, as
2082 * io_unit could finish out of order.
2084 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
2088 return ret
; /* -ENOMEM duo to alloc_page() failed */
2090 mb
= page_address(ctx
->meta_page
);
2091 mb_offset
= sizeof(struct r5l_meta_block
);
2092 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2094 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2097 payload
= (void *)mb
+ mb_offset
;
2098 payload_flush
= (void *)mb
+ mb_offset
;
2100 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2103 count
= le32_to_cpu(payload_flush
->size
) / sizeof(__le64
);
2104 for (i
= 0; i
< count
; ++i
) {
2105 stripe_sect
= le64_to_cpu(payload_flush
->flush_stripes
[i
]);
2106 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2109 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2110 r5l_recovery_reset_stripe(sh
);
2111 list_del_init(&sh
->lru
);
2112 raid5_release_stripe(sh
);
2116 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2117 le32_to_cpu(payload_flush
->size
);
2121 /* DATA or PARITY payload */
2122 stripe_sect
= (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) ?
2123 raid5_compute_sector(
2124 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
2126 : le64_to_cpu(payload
->location
);
2128 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2132 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
);
2134 * cannot get stripe from raid5_get_active_stripe
2135 * try replay some stripes
2138 r5c_recovery_replay_stripes(
2139 cached_stripe_list
, ctx
);
2140 sh
= r5c_recovery_alloc_stripe(
2144 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2146 conf
->min_nr_stripes
* 2);
2147 raid5_set_cache_size(mddev
,
2148 conf
->min_nr_stripes
* 2);
2149 sh
= r5c_recovery_alloc_stripe(conf
,
2153 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2157 list_add_tail(&sh
->lru
, cached_stripe_list
);
2160 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2161 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
2162 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
2163 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
2164 list_move_tail(&sh
->lru
, cached_stripe_list
);
2166 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
2168 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
)
2169 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
2174 log_offset
= r5l_ring_add(log
, log_offset
,
2175 le32_to_cpu(payload
->size
));
2177 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2179 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2186 * Load the stripe into cache. The stripe will be written out later by
2187 * the stripe cache state machine.
2189 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
2190 struct stripe_head
*sh
)
2195 for (i
= sh
->disks
; i
--; ) {
2197 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
2198 set_bit(R5_InJournal
, &dev
->flags
);
2199 set_bit(R5_UPTODATE
, &dev
->flags
);
2205 * Scan through the log for all to-be-flushed data
2207 * For stripes with data and parity, namely Data-Parity stripe
2208 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2210 * For stripes with only data, namely Data-Only stripe
2211 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2213 * For a stripe, if we see data after parity, we should discard all previous
2214 * data and parity for this stripe, as these data are already flushed to
2217 * At the end of the scan, we return the new journal_tail, which points to
2218 * first data-only stripe on the journal device, or next invalid meta block.
2220 static int r5c_recovery_flush_log(struct r5l_log
*log
,
2221 struct r5l_recovery_ctx
*ctx
)
2223 struct stripe_head
*sh
;
2226 /* scan through the log */
2228 if (r5l_recovery_read_meta_block(log
, ctx
))
2231 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
2234 * -EAGAIN means mismatch in data block, in this case, we still
2235 * try scan the next metablock
2237 if (ret
&& ret
!= -EAGAIN
)
2238 break; /* ret == -EINVAL or -ENOMEM */
2240 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
2243 if (ret
== -ENOMEM
) {
2244 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
2248 /* replay data-parity stripes */
2249 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
2251 /* load data-only stripes to stripe cache */
2252 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2253 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2254 r5c_recovery_load_one_stripe(log
, sh
);
2255 ctx
->data_only_stripes
++;
2262 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2263 * log will start here. but we can't let superblock point to last valid
2264 * meta block. The log might looks like:
2265 * | meta 1| meta 2| meta 3|
2266 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2267 * superblock points to meta 1, we write a new valid meta 2n. if crash
2268 * happens again, new recovery will start from meta 1. Since meta 2n is
2269 * valid now, recovery will think meta 3 is valid, which is wrong.
2270 * The solution is we create a new meta in meta2 with its seq == meta
2271 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2272 * will not think meta 3 is a valid meta, because its seq doesn't match
2276 * Before recovery, the log looks like the following
2278 * ---------------------------------------------
2279 * | valid log | invalid log |
2280 * ---------------------------------------------
2282 * |- log->last_checkpoint
2283 * |- log->last_cp_seq
2285 * Now we scan through the log until we see invalid entry
2287 * ---------------------------------------------
2288 * | valid log | invalid log |
2289 * ---------------------------------------------
2291 * |- log->last_checkpoint |- ctx->pos
2292 * |- log->last_cp_seq |- ctx->seq
2294 * From this point, we need to increase seq number by 10 to avoid
2295 * confusing next recovery.
2297 * ---------------------------------------------
2298 * | valid log | invalid log |
2299 * ---------------------------------------------
2301 * |- log->last_checkpoint |- ctx->pos+1
2302 * |- log->last_cp_seq |- ctx->seq+10001
2304 * However, it is not safe to start the state machine yet, because data only
2305 * parities are not yet secured in RAID. To save these data only parities, we
2306 * rewrite them from seq+11.
2308 * -----------------------------------------------------------------
2309 * | valid log | data only stripes | invalid log |
2310 * -----------------------------------------------------------------
2312 * |- log->last_checkpoint |- ctx->pos+n
2313 * |- log->last_cp_seq |- ctx->seq+10000+n
2315 * If failure happens again during this process, the recovery can safe start
2316 * again from log->last_checkpoint.
2318 * Once data only stripes are rewritten to journal, we move log_tail
2320 * -----------------------------------------------------------------
2321 * | old log | data only stripes | invalid log |
2322 * -----------------------------------------------------------------
2324 * |- log->last_checkpoint |- ctx->pos+n
2325 * |- log->last_cp_seq |- ctx->seq+10000+n
2327 * Then we can safely start the state machine. If failure happens from this
2328 * point on, the recovery will start from new log->last_checkpoint.
2331 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2332 struct r5l_recovery_ctx
*ctx
)
2334 struct stripe_head
*sh
;
2335 struct mddev
*mddev
= log
->rdev
->mddev
;
2337 sector_t next_checkpoint
= MaxSector
;
2339 page
= alloc_page(GFP_KERNEL
);
2341 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2346 WARN_ON(list_empty(&ctx
->cached_list
));
2348 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2349 struct r5l_meta_block
*mb
;
2354 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2355 r5l_recovery_create_empty_meta_block(log
, page
,
2356 ctx
->pos
, ctx
->seq
);
2357 mb
= page_address(page
);
2358 offset
= le32_to_cpu(mb
->meta_size
);
2359 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2361 for (i
= sh
->disks
; i
--; ) {
2362 struct r5dev
*dev
= &sh
->dev
[i
];
2363 struct r5l_payload_data_parity
*payload
;
2366 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2367 payload
= (void *)mb
+ offset
;
2368 payload
->header
.type
= cpu_to_le16(
2369 R5LOG_PAYLOAD_DATA
);
2370 payload
->size
= cpu_to_le32(BLOCK_SECTORS
);
2371 payload
->location
= cpu_to_le64(
2372 raid5_compute_blocknr(sh
, i
, 0));
2373 addr
= kmap_atomic(dev
->page
);
2374 payload
->checksum
[0] = cpu_to_le32(
2375 crc32c_le(log
->uuid_checksum
, addr
,
2377 kunmap_atomic(addr
);
2378 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2379 dev
->page
, REQ_OP_WRITE
, 0, false);
2380 write_pos
= r5l_ring_add(log
, write_pos
,
2382 offset
+= sizeof(__le32
) +
2383 sizeof(struct r5l_payload_data_parity
);
2387 mb
->meta_size
= cpu_to_le32(offset
);
2388 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2390 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2391 REQ_OP_WRITE
, REQ_SYNC
| REQ_FUA
, false);
2392 sh
->log_start
= ctx
->pos
;
2393 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
2394 atomic_inc(&log
->stripe_in_journal_count
);
2395 ctx
->pos
= write_pos
;
2397 next_checkpoint
= sh
->log_start
;
2399 log
->next_checkpoint
= next_checkpoint
;
2404 static void r5c_recovery_flush_data_only_stripes(struct r5l_log
*log
,
2405 struct r5l_recovery_ctx
*ctx
)
2407 struct mddev
*mddev
= log
->rdev
->mddev
;
2408 struct r5conf
*conf
= mddev
->private;
2409 struct stripe_head
*sh
, *next
;
2411 if (ctx
->data_only_stripes
== 0)
2414 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_BACK
;
2416 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2417 r5c_make_stripe_write_out(sh
);
2418 set_bit(STRIPE_HANDLE
, &sh
->state
);
2419 list_del_init(&sh
->lru
);
2420 raid5_release_stripe(sh
);
2423 md_wakeup_thread(conf
->mddev
->thread
);
2424 /* reuse conf->wait_for_quiescent in recovery */
2425 wait_event(conf
->wait_for_quiescent
,
2426 atomic_read(&conf
->active_stripes
) == 0);
2428 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2431 static int r5l_recovery_log(struct r5l_log
*log
)
2433 struct mddev
*mddev
= log
->rdev
->mddev
;
2434 struct r5l_recovery_ctx
*ctx
;
2438 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2442 ctx
->pos
= log
->last_checkpoint
;
2443 ctx
->seq
= log
->last_cp_seq
;
2444 INIT_LIST_HEAD(&ctx
->cached_list
);
2445 ctx
->meta_page
= alloc_page(GFP_KERNEL
);
2447 if (!ctx
->meta_page
) {
2452 if (r5l_recovery_allocate_ra_pool(log
, ctx
) != 0) {
2457 ret
= r5c_recovery_flush_log(log
, ctx
);
2465 if ((ctx
->data_only_stripes
== 0) && (ctx
->data_parity_stripes
== 0))
2466 pr_debug("md/raid:%s: starting from clean shutdown\n",
2469 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2470 mdname(mddev
), ctx
->data_only_stripes
,
2471 ctx
->data_parity_stripes
);
2473 if (ctx
->data_only_stripes
== 0) {
2474 log
->next_checkpoint
= ctx
->pos
;
2475 r5l_log_write_empty_meta_block(log
, ctx
->pos
, ctx
->seq
++);
2476 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2477 } else if (r5c_recovery_rewrite_data_only_stripes(log
, ctx
)) {
2478 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2484 log
->log_start
= ctx
->pos
;
2485 log
->seq
= ctx
->seq
;
2486 log
->last_checkpoint
= pos
;
2487 r5l_write_super(log
, pos
);
2489 r5c_recovery_flush_data_only_stripes(log
, ctx
);
2492 r5l_recovery_free_ra_pool(log
, ctx
);
2494 __free_page(ctx
->meta_page
);
2500 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2502 struct mddev
*mddev
= log
->rdev
->mddev
;
2504 log
->rdev
->journal_tail
= cp
;
2505 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2508 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2510 struct r5conf
*conf
= mddev
->private;
2516 switch (conf
->log
->r5c_journal_mode
) {
2517 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2519 page
, PAGE_SIZE
, "[%s] %s\n",
2520 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2521 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2523 case R5C_JOURNAL_MODE_WRITE_BACK
:
2525 page
, PAGE_SIZE
, "%s [%s]\n",
2526 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2527 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2536 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2538 * @mode as defined in 'enum r5c_journal_mode'.
2541 int r5c_journal_mode_set(struct mddev
*mddev
, int mode
)
2543 struct r5conf
*conf
= mddev
->private;
2544 struct r5l_log
*log
= conf
->log
;
2549 if (mode
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2550 mode
> R5C_JOURNAL_MODE_WRITE_BACK
)
2553 if (raid5_calc_degraded(conf
) > 0 &&
2554 mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
2557 mddev_suspend(mddev
);
2558 conf
->log
->r5c_journal_mode
= mode
;
2559 mddev_resume(mddev
);
2561 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2562 mdname(mddev
), mode
, r5c_journal_mode_str
[mode
]);
2565 EXPORT_SYMBOL(r5c_journal_mode_set
);
2567 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2568 const char *page
, size_t length
)
2570 int mode
= ARRAY_SIZE(r5c_journal_mode_str
);
2571 size_t len
= length
;
2576 if (page
[len
- 1] == '\n')
2580 if (strlen(r5c_journal_mode_str
[mode
]) == len
&&
2581 !strncmp(page
, r5c_journal_mode_str
[mode
], len
))
2584 return r5c_journal_mode_set(mddev
, mode
) ?: length
;
2587 struct md_sysfs_entry
2588 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2589 r5c_journal_mode_show
, r5c_journal_mode_store
);
2592 * Try handle write operation in caching phase. This function should only
2593 * be called in write-back mode.
2595 * If all outstanding writes can be handled in caching phase, returns 0
2596 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2597 * and returns -EAGAIN
2599 int r5c_try_caching_write(struct r5conf
*conf
,
2600 struct stripe_head
*sh
,
2601 struct stripe_head_state
*s
,
2604 struct r5l_log
*log
= conf
->log
;
2609 sector_t tree_index
;
2613 BUG_ON(!r5c_is_writeback(log
));
2615 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2617 * There are two different scenarios here:
2618 * 1. The stripe has some data cached, and it is sent to
2619 * write-out phase for reclaim
2620 * 2. The stripe is clean, and this is the first write
2622 * For 1, return -EAGAIN, so we continue with
2623 * handle_stripe_dirtying().
2625 * For 2, set STRIPE_R5C_CACHING and continue with caching
2629 /* case 1: anything injournal or anything in written */
2630 if (s
->injournal
> 0 || s
->written
> 0)
2633 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2637 * When run in degraded mode, array is set to write-through mode.
2638 * This check helps drain pending write safely in the transition to
2639 * write-through mode.
2641 * When a stripe is syncing, the write is also handled in write
2644 if (s
->failed
|| test_bit(STRIPE_SYNCING
, &sh
->state
)) {
2645 r5c_make_stripe_write_out(sh
);
2649 for (i
= disks
; i
--; ) {
2651 /* if non-overwrite, use writing-out phase */
2652 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2653 !test_bit(R5_InJournal
, &dev
->flags
)) {
2654 r5c_make_stripe_write_out(sh
);
2659 /* if the stripe is not counted in big_stripe_tree, add it now */
2660 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
2661 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2662 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2663 spin_lock(&log
->tree_lock
);
2664 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2667 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2668 pslot
, &log
->tree_lock
) >>
2669 R5C_RADIX_COUNT_SHIFT
;
2670 radix_tree_replace_slot(
2671 &log
->big_stripe_tree
, pslot
,
2672 (void *)((refcount
+ 1) << R5C_RADIX_COUNT_SHIFT
));
2675 * this radix_tree_insert can fail safely, so no
2676 * need to call radix_tree_preload()
2678 ret
= radix_tree_insert(
2679 &log
->big_stripe_tree
, tree_index
,
2680 (void *)(1 << R5C_RADIX_COUNT_SHIFT
));
2682 spin_unlock(&log
->tree_lock
);
2683 r5c_make_stripe_write_out(sh
);
2687 spin_unlock(&log
->tree_lock
);
2690 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2691 * counted in the radix tree
2693 set_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
);
2694 atomic_inc(&conf
->r5c_cached_partial_stripes
);
2697 for (i
= disks
; i
--; ) {
2700 set_bit(R5_Wantwrite
, &dev
->flags
);
2701 set_bit(R5_Wantdrain
, &dev
->flags
);
2702 set_bit(R5_LOCKED
, &dev
->flags
);
2708 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2710 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2711 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2712 * r5c_handle_data_cached()
2714 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2721 * free extra pages (orig_page) we allocated for prexor
2723 void r5c_release_extra_page(struct stripe_head
*sh
)
2725 struct r5conf
*conf
= sh
->raid_conf
;
2727 bool using_disk_info_extra_page
;
2729 using_disk_info_extra_page
=
2730 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2732 for (i
= sh
->disks
; i
--; )
2733 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2734 struct page
*p
= sh
->dev
[i
].orig_page
;
2736 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2737 clear_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2739 if (!using_disk_info_extra_page
)
2743 if (using_disk_info_extra_page
) {
2744 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2745 md_wakeup_thread(conf
->mddev
->thread
);
2749 void r5c_use_extra_page(struct stripe_head
*sh
)
2751 struct r5conf
*conf
= sh
->raid_conf
;
2755 for (i
= sh
->disks
; i
--; ) {
2757 if (dev
->orig_page
!= dev
->page
)
2758 put_page(dev
->orig_page
);
2759 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2764 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2765 * stripe is committed to RAID disks.
2767 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2768 struct stripe_head
*sh
,
2769 struct stripe_head_state
*s
)
2771 struct r5l_log
*log
= conf
->log
;
2774 sector_t tree_index
;
2778 if (!log
|| !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2781 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2782 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2784 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2787 for (i
= sh
->disks
; i
--; ) {
2788 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2789 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2794 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2795 * We updated R5_InJournal, so we also update s->injournal.
2799 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2800 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2801 md_wakeup_thread(conf
->mddev
->thread
);
2804 wake_up(&conf
->wait_for_overlap
);
2806 spin_lock_irq(&log
->stripe_in_journal_lock
);
2807 list_del_init(&sh
->r5c
);
2808 spin_unlock_irq(&log
->stripe_in_journal_lock
);
2809 sh
->log_start
= MaxSector
;
2811 atomic_dec(&log
->stripe_in_journal_count
);
2812 r5c_update_log_state(log
);
2814 /* stop counting this stripe in big_stripe_tree */
2815 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) ||
2816 test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2817 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2818 spin_lock(&log
->tree_lock
);
2819 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2821 BUG_ON(pslot
== NULL
);
2822 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2823 pslot
, &log
->tree_lock
) >>
2824 R5C_RADIX_COUNT_SHIFT
;
2826 radix_tree_delete(&log
->big_stripe_tree
, tree_index
);
2828 radix_tree_replace_slot(
2829 &log
->big_stripe_tree
, pslot
,
2830 (void *)((refcount
- 1) << R5C_RADIX_COUNT_SHIFT
));
2831 spin_unlock(&log
->tree_lock
);
2834 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
2835 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
2836 atomic_dec(&conf
->r5c_flushing_partial_stripes
);
2837 atomic_dec(&conf
->r5c_cached_partial_stripes
);
2840 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2841 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
2842 atomic_dec(&conf
->r5c_flushing_full_stripes
);
2843 atomic_dec(&conf
->r5c_cached_full_stripes
);
2846 r5l_append_flush_payload(log
, sh
->sector
);
2847 /* stripe is flused to raid disks, we can do resync now */
2848 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
2849 set_bit(STRIPE_HANDLE
, &sh
->state
);
2852 int r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
)
2854 struct r5conf
*conf
= sh
->raid_conf
;
2862 for (i
= 0; i
< sh
->disks
; i
++) {
2865 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2867 addr
= kmap_atomic(sh
->dev
[i
].page
);
2868 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2870 kunmap_atomic(addr
);
2873 WARN_ON(pages
== 0);
2876 * The stripe must enter state machine again to call endio, so
2879 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2880 atomic_inc(&sh
->count
);
2882 mutex_lock(&log
->io_mutex
);
2884 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2886 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2887 sh
->log_start
== MaxSector
)
2888 r5l_add_no_space_stripe(log
, sh
);
2889 else if (!r5l_has_free_space(log
, reserve
)) {
2890 if (sh
->log_start
== log
->last_checkpoint
)
2893 r5l_add_no_space_stripe(log
, sh
);
2895 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2897 spin_lock_irq(&log
->io_list_lock
);
2898 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2899 spin_unlock_irq(&log
->io_list_lock
);
2903 mutex_unlock(&log
->io_mutex
);
2907 /* check whether this big stripe is in write back cache. */
2908 bool r5c_big_stripe_cached(struct r5conf
*conf
, sector_t sect
)
2910 struct r5l_log
*log
= conf
->log
;
2911 sector_t tree_index
;
2917 WARN_ON_ONCE(!rcu_read_lock_held());
2918 tree_index
= r5c_tree_index(conf
, sect
);
2919 slot
= radix_tree_lookup(&log
->big_stripe_tree
, tree_index
);
2920 return slot
!= NULL
;
2923 static int r5l_load_log(struct r5l_log
*log
)
2925 struct md_rdev
*rdev
= log
->rdev
;
2927 struct r5l_meta_block
*mb
;
2928 sector_t cp
= log
->rdev
->journal_tail
;
2929 u32 stored_crc
, expected_crc
;
2930 bool create_super
= false;
2933 /* Make sure it's valid */
2934 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2936 page
= alloc_page(GFP_KERNEL
);
2940 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
2944 mb
= page_address(page
);
2946 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2947 mb
->version
!= R5LOG_VERSION
) {
2948 create_super
= true;
2951 stored_crc
= le32_to_cpu(mb
->checksum
);
2953 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2954 if (stored_crc
!= expected_crc
) {
2955 create_super
= true;
2958 if (le64_to_cpu(mb
->position
) != cp
) {
2959 create_super
= true;
2964 log
->last_cp_seq
= prandom_u32();
2966 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
2968 * Make sure super points to correct address. Log might have
2969 * data very soon. If super hasn't correct log tail address,
2970 * recovery can't find the log
2972 r5l_write_super(log
, cp
);
2974 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
2976 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
2977 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
2978 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
2979 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
2980 log
->last_checkpoint
= cp
;
2985 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
2986 log
->seq
= log
->last_cp_seq
+ 1;
2987 log
->next_checkpoint
= cp
;
2989 ret
= r5l_recovery_log(log
);
2991 r5c_update_log_state(log
);
2998 void r5c_update_on_rdev_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
3000 struct r5conf
*conf
= mddev
->private;
3001 struct r5l_log
*log
= conf
->log
;
3006 if ((raid5_calc_degraded(conf
) > 0 ||
3007 test_bit(Journal
, &rdev
->flags
)) &&
3008 conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
3009 schedule_work(&log
->disable_writeback_work
);
3012 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
3014 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
3015 struct r5l_log
*log
;
3016 char b
[BDEVNAME_SIZE
];
3018 pr_debug("md/raid:%s: using device %s as journal\n",
3019 mdname(conf
->mddev
), bdevname(rdev
->bdev
, b
));
3021 if (PAGE_SIZE
!= 4096)
3025 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3026 * raid_disks r5l_payload_data_parity.
3028 * Write journal and cache does not work for very big array
3029 * (raid_disks > 203)
3031 if (sizeof(struct r5l_meta_block
) +
3032 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
3033 conf
->raid_disks
) > PAGE_SIZE
) {
3034 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3035 mdname(conf
->mddev
), conf
->raid_disks
);
3039 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
3044 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
3046 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
3047 sizeof(rdev
->mddev
->uuid
));
3049 mutex_init(&log
->io_mutex
);
3051 spin_lock_init(&log
->io_list_lock
);
3052 INIT_LIST_HEAD(&log
->running_ios
);
3053 INIT_LIST_HEAD(&log
->io_end_ios
);
3054 INIT_LIST_HEAD(&log
->flushing_ios
);
3055 INIT_LIST_HEAD(&log
->finished_ios
);
3056 bio_init(&log
->flush_bio
, NULL
, 0);
3058 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
3062 log
->io_pool
= mempool_create_slab_pool(R5L_POOL_SIZE
, log
->io_kc
);
3066 log
->bs
= bioset_create(R5L_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
3070 log
->meta_pool
= mempool_create_page_pool(R5L_POOL_SIZE
, 0);
3071 if (!log
->meta_pool
)
3074 spin_lock_init(&log
->tree_lock
);
3075 INIT_RADIX_TREE(&log
->big_stripe_tree
, GFP_NOWAIT
| __GFP_NOWARN
);
3077 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
3078 log
->rdev
->mddev
, "reclaim");
3079 if (!log
->reclaim_thread
)
3080 goto reclaim_thread
;
3081 log
->reclaim_thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
3083 init_waitqueue_head(&log
->iounit_wait
);
3085 INIT_LIST_HEAD(&log
->no_mem_stripes
);
3087 INIT_LIST_HEAD(&log
->no_space_stripes
);
3088 spin_lock_init(&log
->no_space_stripes_lock
);
3090 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
3091 INIT_WORK(&log
->disable_writeback_work
, r5c_disable_writeback_async
);
3093 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
3094 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
3095 spin_lock_init(&log
->stripe_in_journal_lock
);
3096 atomic_set(&log
->stripe_in_journal_count
, 0);
3098 rcu_assign_pointer(conf
->log
, log
);
3100 if (r5l_load_log(log
))
3103 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
3107 rcu_assign_pointer(conf
->log
, NULL
);
3108 md_unregister_thread(&log
->reclaim_thread
);
3110 mempool_destroy(log
->meta_pool
);
3112 bioset_free(log
->bs
);
3114 mempool_destroy(log
->io_pool
);
3116 kmem_cache_destroy(log
->io_kc
);
3122 void r5l_exit_log(struct r5conf
*conf
)
3124 struct r5l_log
*log
= conf
->log
;
3129 flush_work(&log
->disable_writeback_work
);
3130 md_unregister_thread(&log
->reclaim_thread
);
3131 mempool_destroy(log
->meta_pool
);
3132 bioset_free(log
->bs
);
3133 mempool_destroy(log
->io_pool
);
3134 kmem_cache_destroy(log
->io_kc
);