1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
29 #include <linux/iversion.h>
31 /* Radix tree tags for incore inode tree. */
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG 0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG 1
39 * The goal for walking incore inodes. These can correspond with incore inode
40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
42 enum xfs_icwalk_goal
{
43 /* Goals directly associated with tagged inodes. */
44 XFS_ICWALK_BLOCKGC
= XFS_ICI_BLOCKGC_TAG
,
45 XFS_ICWALK_RECLAIM
= XFS_ICI_RECLAIM_TAG
,
48 static int xfs_icwalk(struct xfs_mount
*mp
,
49 enum xfs_icwalk_goal goal
, struct xfs_icwalk
*icw
);
50 static int xfs_icwalk_ag(struct xfs_perag
*pag
,
51 enum xfs_icwalk_goal goal
, struct xfs_icwalk
*icw
);
54 * Private inode cache walk flags for struct xfs_icwalk. Must not
55 * coincide with XFS_ICWALK_FLAGS_VALID.
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 XFS_ICWALK_FLAG_UNION)
68 /* Marks for the perag xarray */
69 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0
70 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
72 static inline xa_mark_t
ici_tag_to_mark(unsigned int tag
)
74 if (tag
== XFS_ICI_RECLAIM_TAG
)
75 return XFS_PERAG_RECLAIM_MARK
;
76 ASSERT(tag
== XFS_ICI_BLOCKGC_TAG
);
77 return XFS_PERAG_BLOCKGC_MARK
;
81 * Allocate and initialise an xfs_inode.
91 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
92 * and return NULL here on ENOMEM.
94 ip
= alloc_inode_sb(mp
->m_super
, xfs_inode_cache
, GFP_KERNEL
| __GFP_NOFAIL
);
96 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
97 kmem_cache_free(xfs_inode_cache
, ip
);
101 /* VFS doesn't initialise i_mode! */
102 VFS_I(ip
)->i_mode
= 0;
103 mapping_set_folio_min_order(VFS_I(ip
)->i_mapping
,
104 M_IGEO(mp
)->min_folio_order
);
106 XFS_STATS_INC(mp
, vn_active
);
107 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
108 ASSERT(ip
->i_ino
== 0);
110 /* initialise the xfs inode */
113 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
115 memset(&ip
->i_af
, 0, sizeof(ip
->i_af
));
116 ip
->i_af
.if_format
= XFS_DINODE_FMT_EXTENTS
;
117 memset(&ip
->i_df
, 0, sizeof(ip
->i_df
));
119 ip
->i_delayed_blks
= 0;
120 ip
->i_diflags2
= mp
->m_ino_geo
.new_diflags2
;
125 INIT_WORK(&ip
->i_ioend_work
, xfs_end_io
);
126 INIT_LIST_HEAD(&ip
->i_ioend_list
);
127 spin_lock_init(&ip
->i_ioend_lock
);
128 ip
->i_next_unlinked
= NULLAGINO
;
129 ip
->i_prev_unlinked
= 0;
135 xfs_inode_free_callback(
136 struct rcu_head
*head
)
138 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
139 struct xfs_inode
*ip
= XFS_I(inode
);
141 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
145 xfs_idestroy_fork(&ip
->i_df
);
149 xfs_ifork_zap_attr(ip
);
152 xfs_idestroy_fork(ip
->i_cowfp
);
153 kmem_cache_free(xfs_ifork_cache
, ip
->i_cowfp
);
156 ASSERT(!test_bit(XFS_LI_IN_AIL
,
157 &ip
->i_itemp
->ili_item
.li_flags
));
158 xfs_inode_item_destroy(ip
);
162 kmem_cache_free(xfs_inode_cache
, ip
);
167 struct xfs_inode
*ip
)
169 /* asserts to verify all state is correct here */
170 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
171 ASSERT(!ip
->i_itemp
|| list_empty(&ip
->i_itemp
->ili_item
.li_bio_list
));
172 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
174 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
179 struct xfs_inode
*ip
)
181 ASSERT(!xfs_iflags_test(ip
, XFS_IFLUSHING
));
184 * Because we use RCU freeing we need to ensure the inode always
185 * appears to be reclaimed with an invalid inode number when in the
186 * free state. The ip->i_flags_lock provides the barrier against lookup
189 spin_lock(&ip
->i_flags_lock
);
190 ip
->i_flags
= XFS_IRECLAIM
;
192 spin_unlock(&ip
->i_flags_lock
);
194 __xfs_inode_free(ip
);
198 * Queue background inode reclaim work if there are reclaimable inodes and there
199 * isn't reclaim work already scheduled or in progress.
202 xfs_reclaim_work_queue(
203 struct xfs_mount
*mp
)
207 if (xa_marked(&mp
->m_perags
, XFS_PERAG_RECLAIM_MARK
)) {
208 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
209 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
215 * Background scanning to trim preallocated space. This is queued based on the
216 * 'speculative_prealloc_lifetime' tunable (5m by default).
220 struct xfs_perag
*pag
)
222 struct xfs_mount
*mp
= pag
->pag_mount
;
224 if (!xfs_is_blockgc_enabled(mp
))
228 if (radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_BLOCKGC_TAG
))
229 queue_delayed_work(pag
->pag_mount
->m_blockgc_wq
,
230 &pag
->pag_blockgc_work
,
231 msecs_to_jiffies(xfs_blockgc_secs
* 1000));
235 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
237 xfs_perag_set_inode_tag(
238 struct xfs_perag
*pag
,
242 struct xfs_mount
*mp
= pag
->pag_mount
;
245 lockdep_assert_held(&pag
->pag_ici_lock
);
247 was_tagged
= radix_tree_tagged(&pag
->pag_ici_root
, tag
);
248 radix_tree_tag_set(&pag
->pag_ici_root
, agino
, tag
);
250 if (tag
== XFS_ICI_RECLAIM_TAG
)
251 pag
->pag_ici_reclaimable
++;
256 /* propagate the tag up into the perag radix tree */
257 xa_set_mark(&mp
->m_perags
, pag
->pag_agno
, ici_tag_to_mark(tag
));
259 /* start background work */
261 case XFS_ICI_RECLAIM_TAG
:
262 xfs_reclaim_work_queue(mp
);
264 case XFS_ICI_BLOCKGC_TAG
:
265 xfs_blockgc_queue(pag
);
269 trace_xfs_perag_set_inode_tag(pag
, _RET_IP_
);
272 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
274 xfs_perag_clear_inode_tag(
275 struct xfs_perag
*pag
,
279 struct xfs_mount
*mp
= pag
->pag_mount
;
281 lockdep_assert_held(&pag
->pag_ici_lock
);
284 * Reclaim can signal (with a null agino) that it cleared its own tag
285 * by removing the inode from the radix tree.
287 if (agino
!= NULLAGINO
)
288 radix_tree_tag_clear(&pag
->pag_ici_root
, agino
, tag
);
290 ASSERT(tag
== XFS_ICI_RECLAIM_TAG
);
292 if (tag
== XFS_ICI_RECLAIM_TAG
)
293 pag
->pag_ici_reclaimable
--;
295 if (radix_tree_tagged(&pag
->pag_ici_root
, tag
))
298 /* clear the tag from the perag radix tree */
299 xa_clear_mark(&mp
->m_perags
, pag
->pag_agno
, ici_tag_to_mark(tag
));
301 trace_xfs_perag_clear_inode_tag(pag
, _RET_IP_
);
305 * Find the next AG after @pag, or the first AG if @pag is NULL.
307 static struct xfs_perag
*
308 xfs_perag_grab_next_tag(
309 struct xfs_mount
*mp
,
310 struct xfs_perag
*pag
,
313 unsigned long index
= 0;
316 index
= pag
->pag_agno
+ 1;
321 pag
= xa_find(&mp
->m_perags
, &index
, ULONG_MAX
, ici_tag_to_mark(tag
));
323 trace_xfs_perag_grab_next_tag(pag
, _RET_IP_
);
324 if (!atomic_inc_not_zero(&pag
->pag_active_ref
))
332 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
333 * part of the structure. This is made more complex by the fact we store
334 * information about the on-disk values in the VFS inode and so we can't just
335 * overwrite the values unconditionally. Hence we save the parameters we
336 * need to retain across reinitialisation, and rewrite them into the VFS inode
337 * after reinitialisation even if it fails.
341 struct xfs_mount
*mp
,
345 uint32_t nlink
= inode
->i_nlink
;
346 uint32_t generation
= inode
->i_generation
;
347 uint64_t version
= inode_peek_iversion(inode
);
348 umode_t mode
= inode
->i_mode
;
349 dev_t dev
= inode
->i_rdev
;
350 kuid_t uid
= inode
->i_uid
;
351 kgid_t gid
= inode
->i_gid
;
352 unsigned long state
= inode
->i_state
;
354 error
= inode_init_always(mp
->m_super
, inode
);
356 set_nlink(inode
, nlink
);
357 inode
->i_generation
= generation
;
358 inode_set_iversion_queried(inode
, version
);
359 inode
->i_mode
= mode
;
363 inode
->i_state
= state
;
364 mapping_set_folio_min_order(inode
->i_mapping
,
365 M_IGEO(mp
)->min_folio_order
);
370 * Carefully nudge an inode whose VFS state has been torn down back into a
371 * usable state. Drops the i_flags_lock and the rcu read lock.
375 struct xfs_perag
*pag
,
376 struct xfs_inode
*ip
) __releases(&ip
->i_flags_lock
)
378 struct xfs_mount
*mp
= ip
->i_mount
;
379 struct inode
*inode
= VFS_I(ip
);
382 trace_xfs_iget_recycle(ip
);
384 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
388 * We need to make it look like the inode is being reclaimed to prevent
389 * the actual reclaim workers from stomping over us while we recycle
390 * the inode. We can't clear the radix tree tag yet as it requires
391 * pag_ici_lock to be held exclusive.
393 ip
->i_flags
|= XFS_IRECLAIM
;
395 spin_unlock(&ip
->i_flags_lock
);
398 ASSERT(!rwsem_is_locked(&inode
->i_rwsem
));
399 error
= xfs_reinit_inode(mp
, inode
);
400 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
403 * Re-initializing the inode failed, and we are in deep
404 * trouble. Try to re-add it to the reclaim list.
407 spin_lock(&ip
->i_flags_lock
);
408 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
409 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
410 spin_unlock(&ip
->i_flags_lock
);
413 trace_xfs_iget_recycle_fail(ip
);
417 spin_lock(&pag
->pag_ici_lock
);
418 spin_lock(&ip
->i_flags_lock
);
421 * Clear the per-lifetime state in the inode as we are now effectively
422 * a new inode and need to return to the initial state before reuse
425 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
426 ip
->i_flags
|= XFS_INEW
;
427 xfs_perag_clear_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
428 XFS_ICI_RECLAIM_TAG
);
429 inode
->i_state
= I_NEW
;
430 spin_unlock(&ip
->i_flags_lock
);
431 spin_unlock(&pag
->pag_ici_lock
);
437 * If we are allocating a new inode, then check what was returned is
438 * actually a free, empty inode. If we are not allocating an inode,
439 * then check we didn't find a free inode.
442 * 0 if the inode free state matches the lookup context
443 * -ENOENT if the inode is free and we are not allocating
444 * -EFSCORRUPTED if there is any state mismatch at all
447 xfs_iget_check_free_state(
448 struct xfs_inode
*ip
,
451 if (flags
& XFS_IGET_CREATE
) {
452 /* should be a free inode */
453 if (VFS_I(ip
)->i_mode
!= 0) {
454 xfs_warn(ip
->i_mount
,
455 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
456 ip
->i_ino
, VFS_I(ip
)->i_mode
);
457 xfs_agno_mark_sick(ip
->i_mount
,
458 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
460 return -EFSCORRUPTED
;
463 if (ip
->i_nblocks
!= 0) {
464 xfs_warn(ip
->i_mount
,
465 "Corruption detected! Free inode 0x%llx has blocks allocated!",
467 xfs_agno_mark_sick(ip
->i_mount
,
468 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
470 return -EFSCORRUPTED
;
475 /* should be an allocated inode */
476 if (VFS_I(ip
)->i_mode
== 0)
482 /* Make all pending inactivation work start immediately. */
484 xfs_inodegc_queue_all(
485 struct xfs_mount
*mp
)
487 struct xfs_inodegc
*gc
;
491 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
492 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
493 if (!llist_empty(&gc
->list
)) {
494 mod_delayed_work_on(cpu
, mp
->m_inodegc_wq
, &gc
->work
, 0);
502 /* Wait for all queued work and collect errors */
504 xfs_inodegc_wait_all(
505 struct xfs_mount
*mp
)
510 flush_workqueue(mp
->m_inodegc_wq
);
511 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
512 struct xfs_inodegc
*gc
;
514 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
515 if (gc
->error
&& !error
)
524 * Check the validity of the inode we just found it the cache
528 struct xfs_perag
*pag
,
529 struct xfs_inode
*ip
,
532 int lock_flags
) __releases(RCU
)
534 struct inode
*inode
= VFS_I(ip
);
535 struct xfs_mount
*mp
= ip
->i_mount
;
539 * check for re-use of an inode within an RCU grace period due to the
540 * radix tree nodes not being updated yet. We monitor for this by
541 * setting the inode number to zero before freeing the inode structure.
542 * If the inode has been reallocated and set up, then the inode number
543 * will not match, so check for that, too.
545 spin_lock(&ip
->i_flags_lock
);
546 if (ip
->i_ino
!= ino
)
550 * If we are racing with another cache hit that is currently
551 * instantiating this inode or currently recycling it out of
552 * reclaimable state, wait for the initialisation to complete
555 * If we're racing with the inactivation worker we also want to wait.
556 * If we're creating a new file, it's possible that the worker
557 * previously marked the inode as free on disk but hasn't finished
558 * updating the incore state yet. The AGI buffer will be dirty and
559 * locked to the icreate transaction, so a synchronous push of the
560 * inodegc workers would result in deadlock. For a regular iget, the
561 * worker is running already, so we might as well wait.
563 * XXX(hch): eventually we should do something equivalent to
564 * wait_on_inode to wait for these flags to be cleared
565 * instead of polling for it.
567 if (ip
->i_flags
& (XFS_INEW
| XFS_IRECLAIM
| XFS_INACTIVATING
))
570 if (ip
->i_flags
& XFS_NEED_INACTIVE
) {
571 /* Unlinked inodes cannot be re-grabbed. */
572 if (VFS_I(ip
)->i_nlink
== 0) {
576 goto out_inodegc_flush
;
580 * Check the inode free state is valid. This also detects lookup
581 * racing with unlinks.
583 error
= xfs_iget_check_free_state(ip
, flags
);
587 /* Skip inodes that have no vfs state. */
588 if ((flags
& XFS_IGET_INCORE
) &&
589 (ip
->i_flags
& XFS_IRECLAIMABLE
))
592 /* The inode fits the selection criteria; process it. */
593 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
594 /* Drops i_flags_lock and RCU read lock. */
595 error
= xfs_iget_recycle(pag
, ip
);
596 if (error
== -EAGAIN
)
601 /* If the VFS inode is being torn down, pause and try again. */
605 /* We've got a live one. */
606 spin_unlock(&ip
->i_flags_lock
);
608 trace_xfs_iget_hit(ip
);
612 xfs_ilock(ip
, lock_flags
);
614 if (!(flags
& XFS_IGET_INCORE
))
615 xfs_iflags_clear(ip
, XFS_ISTALE
);
616 XFS_STATS_INC(mp
, xs_ig_found
);
621 trace_xfs_iget_skip(ip
);
622 XFS_STATS_INC(mp
, xs_ig_frecycle
);
625 spin_unlock(&ip
->i_flags_lock
);
630 spin_unlock(&ip
->i_flags_lock
);
633 * Do not wait for the workers, because the caller could hold an AGI
634 * buffer lock. We're just going to sleep in a loop anyway.
636 if (xfs_is_inodegc_enabled(mp
))
637 xfs_inodegc_queue_all(mp
);
643 struct xfs_mount
*mp
,
644 struct xfs_perag
*pag
,
647 struct xfs_inode
**ipp
,
651 struct xfs_inode
*ip
;
653 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
655 ip
= xfs_inode_alloc(mp
, ino
);
659 error
= xfs_imap(pag
, tp
, ip
->i_ino
, &ip
->i_imap
, flags
);
664 * For version 5 superblocks, if we are initialising a new inode and we
665 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
666 * simply build the new inode core with a random generation number.
668 * For version 4 (and older) superblocks, log recovery is dependent on
669 * the i_flushiter field being initialised from the current on-disk
670 * value and hence we must also read the inode off disk even when
671 * initializing new inodes.
673 if (xfs_has_v3inodes(mp
) &&
674 (flags
& XFS_IGET_CREATE
) && !xfs_has_ikeep(mp
)) {
675 VFS_I(ip
)->i_generation
= get_random_u32();
679 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
);
683 error
= xfs_inode_from_disk(ip
,
684 xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
));
686 xfs_buf_set_ref(bp
, XFS_INO_REF
);
688 xfs_inode_mark_sick(ip
, XFS_SICK_INO_CORE
);
689 xfs_trans_brelse(tp
, bp
);
695 trace_xfs_iget_miss(ip
);
698 * Check the inode free state is valid. This also detects lookup
699 * racing with unlinks.
701 error
= xfs_iget_check_free_state(ip
, flags
);
706 * Preload the radix tree so we can insert safely under the
707 * write spinlock. Note that we cannot sleep inside the preload
710 if (radix_tree_preload(GFP_KERNEL
| __GFP_NOLOCKDEP
)) {
716 * Because the inode hasn't been added to the radix-tree yet it can't
717 * be found by another thread, so we can do the non-sleeping lock here.
720 if (!xfs_ilock_nowait(ip
, lock_flags
))
725 * These values must be set before inserting the inode into the radix
726 * tree as the moment it is inserted a concurrent lookup (allowed by the
727 * RCU locking mechanism) can find it and that lookup must see that this
728 * is an inode currently under construction (i.e. that XFS_INEW is set).
729 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
730 * memory barrier that ensures this detection works correctly at lookup
733 if (flags
& XFS_IGET_DONTCACHE
)
734 d_mark_dontcache(VFS_I(ip
));
738 xfs_iflags_set(ip
, XFS_INEW
);
740 /* insert the new inode */
741 spin_lock(&pag
->pag_ici_lock
);
742 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
743 if (unlikely(error
)) {
744 WARN_ON(error
!= -EEXIST
);
745 XFS_STATS_INC(mp
, xs_ig_dup
);
747 goto out_preload_end
;
749 spin_unlock(&pag
->pag_ici_lock
);
750 radix_tree_preload_end();
756 spin_unlock(&pag
->pag_ici_lock
);
757 radix_tree_preload_end();
759 xfs_iunlock(ip
, lock_flags
);
761 __destroy_inode(VFS_I(ip
));
767 * Look up an inode by number in the given file system. The inode is looked up
768 * in the cache held in each AG. If the inode is found in the cache, initialise
769 * the vfs inode if necessary.
771 * If it is not in core, read it in from the file system's device, add it to the
772 * cache and initialise the vfs inode.
774 * The inode is locked according to the value of the lock_flags parameter.
775 * Inode lookup is only done during metadata operations and not as part of the
776 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
780 struct xfs_mount
*mp
,
781 struct xfs_trans
*tp
,
785 struct xfs_inode
**ipp
)
787 struct xfs_inode
*ip
;
788 struct xfs_perag
*pag
;
792 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
794 /* reject inode numbers outside existing AGs */
795 if (!xfs_verify_ino(mp
, ino
))
798 XFS_STATS_INC(mp
, xs_ig_attempts
);
800 /* get the perag structure and ensure that it's inode capable */
801 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
802 agino
= XFS_INO_TO_AGINO(mp
, ino
);
807 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
810 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
812 goto out_error_or_again
;
815 if (flags
& XFS_IGET_INCORE
) {
817 goto out_error_or_again
;
819 XFS_STATS_INC(mp
, xs_ig_missed
);
821 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
824 goto out_error_or_again
;
831 * If we have a real type for an on-disk inode, we can setup the inode
832 * now. If it's a new inode being created, xfs_init_new_inode will
835 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
836 xfs_setup_existing_inode(ip
);
840 if (!(flags
& (XFS_IGET_INCORE
| XFS_IGET_NORETRY
)) &&
850 * Grab the inode for reclaim exclusively.
852 * We have found this inode via a lookup under RCU, so the inode may have
853 * already been freed, or it may be in the process of being recycled by
854 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
855 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
856 * will not be set. Hence we need to check for both these flag conditions to
857 * avoid inodes that are no longer reclaim candidates.
859 * Note: checking for other state flags here, under the i_flags_lock or not, is
860 * racy and should be avoided. Those races should be resolved only after we have
861 * ensured that we are able to reclaim this inode and the world can see that we
862 * are going to reclaim it.
864 * Return true if we grabbed it, false otherwise.
868 struct xfs_inode
*ip
,
869 struct xfs_icwalk
*icw
)
871 ASSERT(rcu_read_lock_held());
873 spin_lock(&ip
->i_flags_lock
);
874 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
875 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
876 /* not a reclaim candidate. */
877 spin_unlock(&ip
->i_flags_lock
);
881 /* Don't reclaim a sick inode unless the caller asked for it. */
883 (!icw
|| !(icw
->icw_flags
& XFS_ICWALK_FLAG_RECLAIM_SICK
))) {
884 spin_unlock(&ip
->i_flags_lock
);
888 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
889 spin_unlock(&ip
->i_flags_lock
);
894 * Inode reclaim is non-blocking, so the default action if progress cannot be
895 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
896 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
897 * blocking anymore and hence we can wait for the inode to be able to reclaim
900 * We do no IO here - if callers require inodes to be cleaned they must push the
901 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
902 * done in the background in a non-blocking manner, and enables memory reclaim
903 * to make progress without blocking.
907 struct xfs_inode
*ip
,
908 struct xfs_perag
*pag
)
910 xfs_ino_t ino
= ip
->i_ino
; /* for radix_tree_delete */
912 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
))
914 if (xfs_iflags_test_and_set(ip
, XFS_IFLUSHING
))
918 * Check for log shutdown because aborting the inode can move the log
919 * tail and corrupt in memory state. This is fine if the log is shut
920 * down, but if the log is still active and only the mount is shut down
921 * then the in-memory log tail movement caused by the abort can be
922 * incorrectly propagated to disk.
924 if (xlog_is_shutdown(ip
->i_mount
->m_log
)) {
926 xfs_iflush_shutdown_abort(ip
);
929 if (xfs_ipincount(ip
))
930 goto out_clear_flush
;
931 if (!xfs_inode_clean(ip
))
932 goto out_clear_flush
;
934 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
936 trace_xfs_inode_reclaiming(ip
);
939 * Because we use RCU freeing we need to ensure the inode always appears
940 * to be reclaimed with an invalid inode number when in the free state.
941 * We do this as early as possible under the ILOCK so that
942 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
943 * detect races with us here. By doing this, we guarantee that once
944 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
945 * it will see either a valid inode that will serialise correctly, or it
946 * will see an invalid inode that it can skip.
948 spin_lock(&ip
->i_flags_lock
);
949 ip
->i_flags
= XFS_IRECLAIM
;
953 spin_unlock(&ip
->i_flags_lock
);
955 ASSERT(!ip
->i_itemp
|| ip
->i_itemp
->ili_item
.li_buf
== NULL
);
956 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
958 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
960 * Remove the inode from the per-AG radix tree.
962 * Because radix_tree_delete won't complain even if the item was never
963 * added to the tree assert that it's been there before to catch
964 * problems with the inode life time early on.
966 spin_lock(&pag
->pag_ici_lock
);
967 if (!radix_tree_delete(&pag
->pag_ici_root
,
968 XFS_INO_TO_AGINO(ip
->i_mount
, ino
)))
970 xfs_perag_clear_inode_tag(pag
, NULLAGINO
, XFS_ICI_RECLAIM_TAG
);
971 spin_unlock(&pag
->pag_ici_lock
);
974 * Here we do an (almost) spurious inode lock in order to coordinate
975 * with inode cache radix tree lookups. This is because the lookup
976 * can reference the inodes in the cache without taking references.
978 * We make that OK here by ensuring that we wait until the inode is
979 * unlocked after the lookup before we go ahead and free it.
981 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
982 ASSERT(!ip
->i_udquot
&& !ip
->i_gdquot
&& !ip
->i_pdquot
);
983 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
984 ASSERT(xfs_inode_clean(ip
));
986 __xfs_inode_free(ip
);
990 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
992 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
994 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
997 /* Reclaim sick inodes if we're unmounting or the fs went down. */
999 xfs_want_reclaim_sick(
1000 struct xfs_mount
*mp
)
1002 return xfs_is_unmounting(mp
) || xfs_has_norecovery(mp
) ||
1003 xfs_is_shutdown(mp
);
1008 struct xfs_mount
*mp
)
1010 struct xfs_icwalk icw
= {
1014 if (xfs_want_reclaim_sick(mp
))
1015 icw
.icw_flags
|= XFS_ICWALK_FLAG_RECLAIM_SICK
;
1017 while (xa_marked(&mp
->m_perags
, XFS_PERAG_RECLAIM_MARK
)) {
1018 xfs_ail_push_all_sync(mp
->m_ail
);
1019 xfs_icwalk(mp
, XFS_ICWALK_RECLAIM
, &icw
);
1024 * The shrinker infrastructure determines how many inodes we should scan for
1025 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1026 * push the AIL here. We also want to proactively free up memory if we can to
1027 * minimise the amount of work memory reclaim has to do so we kick the
1028 * background reclaim if it isn't already scheduled.
1031 xfs_reclaim_inodes_nr(
1032 struct xfs_mount
*mp
,
1033 unsigned long nr_to_scan
)
1035 struct xfs_icwalk icw
= {
1036 .icw_flags
= XFS_ICWALK_FLAG_SCAN_LIMIT
,
1037 .icw_scan_limit
= min_t(unsigned long, LONG_MAX
, nr_to_scan
),
1040 if (xfs_want_reclaim_sick(mp
))
1041 icw
.icw_flags
|= XFS_ICWALK_FLAG_RECLAIM_SICK
;
1043 /* kick background reclaimer and push the AIL */
1044 xfs_reclaim_work_queue(mp
);
1045 xfs_ail_push_all(mp
->m_ail
);
1047 xfs_icwalk(mp
, XFS_ICWALK_RECLAIM
, &icw
);
1052 * Return the number of reclaimable inodes in the filesystem for
1053 * the shrinker to determine how much to reclaim.
1056 xfs_reclaim_inodes_count(
1057 struct xfs_mount
*mp
)
1059 XA_STATE (xas
, &mp
->m_perags
, 0);
1060 long reclaimable
= 0;
1061 struct xfs_perag
*pag
;
1064 xas_for_each_marked(&xas
, pag
, ULONG_MAX
, XFS_PERAG_RECLAIM_MARK
) {
1065 trace_xfs_reclaim_inodes_count(pag
, _THIS_IP_
);
1066 reclaimable
+= pag
->pag_ici_reclaimable
;
1074 xfs_icwalk_match_id(
1075 struct xfs_inode
*ip
,
1076 struct xfs_icwalk
*icw
)
1078 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_UID
) &&
1079 !uid_eq(VFS_I(ip
)->i_uid
, icw
->icw_uid
))
1082 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_GID
) &&
1083 !gid_eq(VFS_I(ip
)->i_gid
, icw
->icw_gid
))
1086 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_PRID
) &&
1087 ip
->i_projid
!= icw
->icw_prid
)
1094 * A union-based inode filtering algorithm. Process the inode if any of the
1095 * criteria match. This is for global/internal scans only.
1098 xfs_icwalk_match_id_union(
1099 struct xfs_inode
*ip
,
1100 struct xfs_icwalk
*icw
)
1102 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_UID
) &&
1103 uid_eq(VFS_I(ip
)->i_uid
, icw
->icw_uid
))
1106 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_GID
) &&
1107 gid_eq(VFS_I(ip
)->i_gid
, icw
->icw_gid
))
1110 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_PRID
) &&
1111 ip
->i_projid
== icw
->icw_prid
)
1118 * Is this inode @ip eligible for eof/cow block reclamation, given some
1119 * filtering parameters @icw? The inode is eligible if @icw is null or
1120 * if the predicate functions match.
1124 struct xfs_inode
*ip
,
1125 struct xfs_icwalk
*icw
)
1132 if (icw
->icw_flags
& XFS_ICWALK_FLAG_UNION
)
1133 match
= xfs_icwalk_match_id_union(ip
, icw
);
1135 match
= xfs_icwalk_match_id(ip
, icw
);
1139 /* skip the inode if the file size is too small */
1140 if ((icw
->icw_flags
& XFS_ICWALK_FLAG_MINFILESIZE
) &&
1141 XFS_ISIZE(ip
) < icw
->icw_min_file_size
)
1148 * This is a fast pass over the inode cache to try to get reclaim moving on as
1149 * many inodes as possible in a short period of time. It kicks itself every few
1150 * seconds, as well as being kicked by the inode cache shrinker when memory
1155 struct work_struct
*work
)
1157 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
1158 struct xfs_mount
, m_reclaim_work
);
1160 xfs_icwalk(mp
, XFS_ICWALK_RECLAIM
, NULL
);
1161 xfs_reclaim_work_queue(mp
);
1165 xfs_inode_free_eofblocks(
1166 struct xfs_inode
*ip
,
1167 struct xfs_icwalk
*icw
,
1168 unsigned int *lockflags
)
1172 wait
= icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SYNC
);
1174 if (!xfs_iflags_test(ip
, XFS_IEOFBLOCKS
))
1178 * If the mapping is dirty the operation can block and wait for some
1179 * time. Unless we are waiting, skip it.
1181 if (!wait
&& mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1184 if (!xfs_icwalk_match(ip
, icw
))
1188 * If the caller is waiting, return -EAGAIN to keep the background
1189 * scanner moving and revisit the inode in a subsequent pass.
1191 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1196 *lockflags
|= XFS_IOLOCK_EXCL
;
1198 if (xfs_can_free_eofblocks(ip
))
1199 return xfs_free_eofblocks(ip
);
1201 /* inode could be preallocated */
1202 trace_xfs_inode_free_eofblocks_invalid(ip
);
1203 xfs_inode_clear_eofblocks_tag(ip
);
1208 xfs_blockgc_set_iflag(
1209 struct xfs_inode
*ip
,
1210 unsigned long iflag
)
1212 struct xfs_mount
*mp
= ip
->i_mount
;
1213 struct xfs_perag
*pag
;
1215 ASSERT((iflag
& ~(XFS_IEOFBLOCKS
| XFS_ICOWBLOCKS
)) == 0);
1218 * Don't bother locking the AG and looking up in the radix trees
1219 * if we already know that we have the tag set.
1221 if (ip
->i_flags
& iflag
)
1223 spin_lock(&ip
->i_flags_lock
);
1224 ip
->i_flags
|= iflag
;
1225 spin_unlock(&ip
->i_flags_lock
);
1227 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1228 spin_lock(&pag
->pag_ici_lock
);
1230 xfs_perag_set_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
1231 XFS_ICI_BLOCKGC_TAG
);
1233 spin_unlock(&pag
->pag_ici_lock
);
1238 xfs_inode_set_eofblocks_tag(
1241 trace_xfs_inode_set_eofblocks_tag(ip
);
1242 return xfs_blockgc_set_iflag(ip
, XFS_IEOFBLOCKS
);
1246 xfs_blockgc_clear_iflag(
1247 struct xfs_inode
*ip
,
1248 unsigned long iflag
)
1250 struct xfs_mount
*mp
= ip
->i_mount
;
1251 struct xfs_perag
*pag
;
1254 ASSERT((iflag
& ~(XFS_IEOFBLOCKS
| XFS_ICOWBLOCKS
)) == 0);
1256 spin_lock(&ip
->i_flags_lock
);
1257 ip
->i_flags
&= ~iflag
;
1258 clear_tag
= (ip
->i_flags
& (XFS_IEOFBLOCKS
| XFS_ICOWBLOCKS
)) == 0;
1259 spin_unlock(&ip
->i_flags_lock
);
1264 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1265 spin_lock(&pag
->pag_ici_lock
);
1267 xfs_perag_clear_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
1268 XFS_ICI_BLOCKGC_TAG
);
1270 spin_unlock(&pag
->pag_ici_lock
);
1275 xfs_inode_clear_eofblocks_tag(
1278 trace_xfs_inode_clear_eofblocks_tag(ip
);
1279 return xfs_blockgc_clear_iflag(ip
, XFS_IEOFBLOCKS
);
1283 * Set ourselves up to free CoW blocks from this file. If it's already clean
1284 * then we can bail out quickly, but otherwise we must back off if the file
1285 * is undergoing some kind of write.
1288 xfs_prep_free_cowblocks(
1289 struct xfs_inode
*ip
)
1292 * Just clear the tag if we have an empty cow fork or none at all. It's
1293 * possible the inode was fully unshared since it was originally tagged.
1295 if (!xfs_inode_has_cow_data(ip
)) {
1296 trace_xfs_inode_free_cowblocks_invalid(ip
);
1297 xfs_inode_clear_cowblocks_tag(ip
);
1302 * If the mapping is dirty or under writeback we cannot touch the
1303 * CoW fork. Leave it alone if we're in the midst of a directio.
1305 if ((VFS_I(ip
)->i_state
& I_DIRTY_PAGES
) ||
1306 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
) ||
1307 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_WRITEBACK
) ||
1308 atomic_read(&VFS_I(ip
)->i_dio_count
))
1315 * Automatic CoW Reservation Freeing
1317 * These functions automatically garbage collect leftover CoW reservations
1318 * that were made on behalf of a cowextsize hint when we start to run out
1319 * of quota or when the reservations sit around for too long. If the file
1320 * has dirty pages or is undergoing writeback, its CoW reservations will
1323 * The actual garbage collection piggybacks off the same code that runs
1324 * the speculative EOF preallocation garbage collector.
1327 xfs_inode_free_cowblocks(
1328 struct xfs_inode
*ip
,
1329 struct xfs_icwalk
*icw
,
1330 unsigned int *lockflags
)
1335 wait
= icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SYNC
);
1337 if (!xfs_iflags_test(ip
, XFS_ICOWBLOCKS
))
1340 if (!xfs_prep_free_cowblocks(ip
))
1343 if (!xfs_icwalk_match(ip
, icw
))
1347 * If the caller is waiting, return -EAGAIN to keep the background
1348 * scanner moving and revisit the inode in a subsequent pass.
1350 if (!(*lockflags
& XFS_IOLOCK_EXCL
) &&
1351 !xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1356 *lockflags
|= XFS_IOLOCK_EXCL
;
1358 if (!xfs_ilock_nowait(ip
, XFS_MMAPLOCK_EXCL
)) {
1363 *lockflags
|= XFS_MMAPLOCK_EXCL
;
1366 * Check again, nobody else should be able to dirty blocks or change
1367 * the reflink iflag now that we have the first two locks held.
1369 if (xfs_prep_free_cowblocks(ip
))
1370 ret
= xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
, false);
1375 xfs_inode_set_cowblocks_tag(
1378 trace_xfs_inode_set_cowblocks_tag(ip
);
1379 return xfs_blockgc_set_iflag(ip
, XFS_ICOWBLOCKS
);
1383 xfs_inode_clear_cowblocks_tag(
1386 trace_xfs_inode_clear_cowblocks_tag(ip
);
1387 return xfs_blockgc_clear_iflag(ip
, XFS_ICOWBLOCKS
);
1390 /* Disable post-EOF and CoW block auto-reclamation. */
1393 struct xfs_mount
*mp
)
1395 struct xfs_perag
*pag
;
1396 xfs_agnumber_t agno
;
1398 if (!xfs_clear_blockgc_enabled(mp
))
1401 for_each_perag(mp
, agno
, pag
)
1402 cancel_delayed_work_sync(&pag
->pag_blockgc_work
);
1403 trace_xfs_blockgc_stop(mp
, __return_address
);
1406 /* Enable post-EOF and CoW block auto-reclamation. */
1409 struct xfs_mount
*mp
)
1411 struct xfs_perag
*pag
= NULL
;
1413 if (xfs_set_blockgc_enabled(mp
))
1416 trace_xfs_blockgc_start(mp
, __return_address
);
1417 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, XFS_ICI_BLOCKGC_TAG
)))
1418 xfs_blockgc_queue(pag
);
1421 /* Don't try to run block gc on an inode that's in any of these states. */
1422 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1423 XFS_NEED_INACTIVE | \
1424 XFS_INACTIVATING | \
1425 XFS_IRECLAIMABLE | \
1428 * Decide if the given @ip is eligible for garbage collection of speculative
1429 * preallocations, and grab it if so. Returns true if it's ready to go or
1430 * false if we should just ignore it.
1434 struct xfs_inode
*ip
)
1436 struct inode
*inode
= VFS_I(ip
);
1438 ASSERT(rcu_read_lock_held());
1440 /* Check for stale RCU freed inode */
1441 spin_lock(&ip
->i_flags_lock
);
1443 goto out_unlock_noent
;
1445 if (ip
->i_flags
& XFS_BLOCKGC_NOGRAB_IFLAGS
)
1446 goto out_unlock_noent
;
1447 spin_unlock(&ip
->i_flags_lock
);
1449 /* nothing to sync during shutdown */
1450 if (xfs_is_shutdown(ip
->i_mount
))
1453 /* If we can't grab the inode, it must on it's way to reclaim. */
1457 /* inode is valid */
1461 spin_unlock(&ip
->i_flags_lock
);
1465 /* Scan one incore inode for block preallocations that we can remove. */
1467 xfs_blockgc_scan_inode(
1468 struct xfs_inode
*ip
,
1469 struct xfs_icwalk
*icw
)
1471 unsigned int lockflags
= 0;
1474 error
= xfs_inode_free_eofblocks(ip
, icw
, &lockflags
);
1478 error
= xfs_inode_free_cowblocks(ip
, icw
, &lockflags
);
1481 xfs_iunlock(ip
, lockflags
);
1486 /* Background worker that trims preallocated space. */
1489 struct work_struct
*work
)
1491 struct xfs_perag
*pag
= container_of(to_delayed_work(work
),
1492 struct xfs_perag
, pag_blockgc_work
);
1493 struct xfs_mount
*mp
= pag
->pag_mount
;
1496 trace_xfs_blockgc_worker(mp
, __return_address
);
1498 error
= xfs_icwalk_ag(pag
, XFS_ICWALK_BLOCKGC
, NULL
);
1500 xfs_info(mp
, "AG %u preallocation gc worker failed, err=%d",
1501 pag
->pag_agno
, error
);
1502 xfs_blockgc_queue(pag
);
1506 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1510 xfs_blockgc_free_space(
1511 struct xfs_mount
*mp
,
1512 struct xfs_icwalk
*icw
)
1516 trace_xfs_blockgc_free_space(mp
, icw
, _RET_IP_
);
1518 error
= xfs_icwalk(mp
, XFS_ICWALK_BLOCKGC
, icw
);
1522 return xfs_inodegc_flush(mp
);
1526 * Reclaim all the free space that we can by scheduling the background blockgc
1527 * and inodegc workers immediately and waiting for them all to clear.
1530 xfs_blockgc_flush_all(
1531 struct xfs_mount
*mp
)
1533 struct xfs_perag
*pag
= NULL
;
1535 trace_xfs_blockgc_flush_all(mp
, __return_address
);
1538 * For each blockgc worker, move its queue time up to now. If it wasn't
1539 * queued, it will not be requeued. Then flush whatever is left.
1541 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, XFS_ICI_BLOCKGC_TAG
)))
1542 mod_delayed_work(pag
->pag_mount
->m_blockgc_wq
,
1543 &pag
->pag_blockgc_work
, 0);
1545 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, XFS_ICI_BLOCKGC_TAG
)))
1546 flush_delayed_work(&pag
->pag_blockgc_work
);
1548 return xfs_inodegc_flush(mp
);
1552 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1553 * quota caused an allocation failure, so we make a best effort by including
1554 * each quota under low free space conditions (less than 1% free space) in the
1557 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1558 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1562 xfs_blockgc_free_dquots(
1563 struct xfs_mount
*mp
,
1564 struct xfs_dquot
*udqp
,
1565 struct xfs_dquot
*gdqp
,
1566 struct xfs_dquot
*pdqp
,
1567 unsigned int iwalk_flags
)
1569 struct xfs_icwalk icw
= {0};
1570 bool do_work
= false;
1572 if (!udqp
&& !gdqp
&& !pdqp
)
1576 * Run a scan to free blocks using the union filter to cover all
1577 * applicable quotas in a single scan.
1579 icw
.icw_flags
= XFS_ICWALK_FLAG_UNION
| iwalk_flags
;
1581 if (XFS_IS_UQUOTA_ENFORCED(mp
) && udqp
&& xfs_dquot_lowsp(udqp
)) {
1582 icw
.icw_uid
= make_kuid(mp
->m_super
->s_user_ns
, udqp
->q_id
);
1583 icw
.icw_flags
|= XFS_ICWALK_FLAG_UID
;
1587 if (XFS_IS_UQUOTA_ENFORCED(mp
) && gdqp
&& xfs_dquot_lowsp(gdqp
)) {
1588 icw
.icw_gid
= make_kgid(mp
->m_super
->s_user_ns
, gdqp
->q_id
);
1589 icw
.icw_flags
|= XFS_ICWALK_FLAG_GID
;
1593 if (XFS_IS_PQUOTA_ENFORCED(mp
) && pdqp
&& xfs_dquot_lowsp(pdqp
)) {
1594 icw
.icw_prid
= pdqp
->q_id
;
1595 icw
.icw_flags
|= XFS_ICWALK_FLAG_PRID
;
1602 return xfs_blockgc_free_space(mp
, &icw
);
1605 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1607 xfs_blockgc_free_quota(
1608 struct xfs_inode
*ip
,
1609 unsigned int iwalk_flags
)
1611 return xfs_blockgc_free_dquots(ip
->i_mount
,
1612 xfs_inode_dquot(ip
, XFS_DQTYPE_USER
),
1613 xfs_inode_dquot(ip
, XFS_DQTYPE_GROUP
),
1614 xfs_inode_dquot(ip
, XFS_DQTYPE_PROJ
), iwalk_flags
);
1617 /* XFS Inode Cache Walking Code */
1620 * The inode lookup is done in batches to keep the amount of lock traffic and
1621 * radix tree lookups to a minimum. The batch size is a trade off between
1622 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1625 #define XFS_LOOKUP_BATCH 32
1629 * Decide if we want to grab this inode in anticipation of doing work towards
1634 enum xfs_icwalk_goal goal
,
1635 struct xfs_inode
*ip
,
1636 struct xfs_icwalk
*icw
)
1639 case XFS_ICWALK_BLOCKGC
:
1640 return xfs_blockgc_igrab(ip
);
1641 case XFS_ICWALK_RECLAIM
:
1642 return xfs_reclaim_igrab(ip
, icw
);
1649 * Process an inode. Each processing function must handle any state changes
1650 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1653 xfs_icwalk_process_inode(
1654 enum xfs_icwalk_goal goal
,
1655 struct xfs_inode
*ip
,
1656 struct xfs_perag
*pag
,
1657 struct xfs_icwalk
*icw
)
1662 case XFS_ICWALK_BLOCKGC
:
1663 error
= xfs_blockgc_scan_inode(ip
, icw
);
1665 case XFS_ICWALK_RECLAIM
:
1666 xfs_reclaim_inode(ip
, pag
);
1673 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1674 * process them in some manner.
1678 struct xfs_perag
*pag
,
1679 enum xfs_icwalk_goal goal
,
1680 struct xfs_icwalk
*icw
)
1682 struct xfs_mount
*mp
= pag
->pag_mount
;
1683 uint32_t first_index
;
1692 if (goal
== XFS_ICWALK_RECLAIM
)
1693 first_index
= READ_ONCE(pag
->pag_ici_reclaim_cursor
);
1698 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1704 nr_found
= radix_tree_gang_lookup_tag(&pag
->pag_ici_root
,
1705 (void **) batch
, first_index
,
1706 XFS_LOOKUP_BATCH
, goal
);
1714 * Grab the inodes before we drop the lock. if we found
1715 * nothing, nr == 0 and the loop will be skipped.
1717 for (i
= 0; i
< nr_found
; i
++) {
1718 struct xfs_inode
*ip
= batch
[i
];
1720 if (done
|| !xfs_icwalk_igrab(goal
, ip
, icw
))
1724 * Update the index for the next lookup. Catch
1725 * overflows into the next AG range which can occur if
1726 * we have inodes in the last block of the AG and we
1727 * are currently pointing to the last inode.
1729 * Because we may see inodes that are from the wrong AG
1730 * due to RCU freeing and reallocation, only update the
1731 * index if it lies in this AG. It was a race that lead
1732 * us to see this inode, so another lookup from the
1733 * same index will not find it again.
1735 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
1737 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1738 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1742 /* unlock now we've grabbed the inodes. */
1745 for (i
= 0; i
< nr_found
; i
++) {
1748 error
= xfs_icwalk_process_inode(goal
, batch
[i
], pag
,
1750 if (error
== -EAGAIN
) {
1754 if (error
&& last_error
!= -EFSCORRUPTED
)
1758 /* bail out if the filesystem is corrupted. */
1759 if (error
== -EFSCORRUPTED
)
1764 if (icw
&& (icw
->icw_flags
& XFS_ICWALK_FLAG_SCAN_LIMIT
)) {
1765 icw
->icw_scan_limit
-= XFS_LOOKUP_BATCH
;
1766 if (icw
->icw_scan_limit
<= 0)
1769 } while (nr_found
&& !done
);
1771 if (goal
== XFS_ICWALK_RECLAIM
) {
1774 WRITE_ONCE(pag
->pag_ici_reclaim_cursor
, first_index
);
1784 /* Walk all incore inodes to achieve a given goal. */
1787 struct xfs_mount
*mp
,
1788 enum xfs_icwalk_goal goal
,
1789 struct xfs_icwalk
*icw
)
1791 struct xfs_perag
*pag
= NULL
;
1795 while ((pag
= xfs_perag_grab_next_tag(mp
, pag
, goal
))) {
1796 error
= xfs_icwalk_ag(pag
, goal
, icw
);
1799 if (error
== -EFSCORRUPTED
) {
1800 xfs_perag_rele(pag
);
1806 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS
& XFS_ICWALK_FLAGS_VALID
);
1812 struct xfs_inode
*ip
,
1815 struct xfs_ifork
*ifp
= xfs_ifork_ptr(ip
, whichfork
);
1816 struct xfs_bmbt_irec got
;
1817 struct xfs_iext_cursor icur
;
1819 if (!ifp
|| !xfs_iext_lookup_extent(ip
, ifp
, 0, &icur
, &got
))
1822 if (isnullstartblock(got
.br_startblock
)) {
1823 xfs_warn(ip
->i_mount
,
1824 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1826 whichfork
== XFS_DATA_FORK
? "data" : "cow",
1827 got
.br_startoff
, got
.br_blockcount
);
1829 } while (xfs_iext_next_extent(ifp
, &icur
, &got
));
1832 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1835 /* Schedule the inode for reclaim. */
1837 xfs_inodegc_set_reclaimable(
1838 struct xfs_inode
*ip
)
1840 struct xfs_mount
*mp
= ip
->i_mount
;
1841 struct xfs_perag
*pag
;
1843 if (!xfs_is_shutdown(mp
) && ip
->i_delayed_blks
) {
1844 xfs_check_delalloc(ip
, XFS_DATA_FORK
);
1845 xfs_check_delalloc(ip
, XFS_COW_FORK
);
1849 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1850 spin_lock(&pag
->pag_ici_lock
);
1851 spin_lock(&ip
->i_flags_lock
);
1853 trace_xfs_inode_set_reclaimable(ip
);
1854 ip
->i_flags
&= ~(XFS_NEED_INACTIVE
| XFS_INACTIVATING
);
1855 ip
->i_flags
|= XFS_IRECLAIMABLE
;
1856 xfs_perag_set_inode_tag(pag
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
1857 XFS_ICI_RECLAIM_TAG
);
1859 spin_unlock(&ip
->i_flags_lock
);
1860 spin_unlock(&pag
->pag_ici_lock
);
1865 * Free all speculative preallocations and possibly even the inode itself.
1866 * This is the last chance to make changes to an otherwise unreferenced file
1867 * before incore reclamation happens.
1870 xfs_inodegc_inactivate(
1871 struct xfs_inode
*ip
)
1875 trace_xfs_inode_inactivating(ip
);
1876 error
= xfs_inactive(ip
);
1877 xfs_inodegc_set_reclaimable(ip
);
1884 struct work_struct
*work
)
1886 struct xfs_inodegc
*gc
= container_of(to_delayed_work(work
),
1887 struct xfs_inodegc
, work
);
1888 struct llist_node
*node
= llist_del_all(&gc
->list
);
1889 struct xfs_inode
*ip
, *n
;
1890 struct xfs_mount
*mp
= gc
->mp
;
1891 unsigned int nofs_flag
;
1894 * Clear the cpu mask bit and ensure that we have seen the latest
1895 * update of the gc structure associated with this CPU. This matches
1896 * with the release semantics used when setting the cpumask bit in
1897 * xfs_inodegc_queue.
1899 cpumask_clear_cpu(gc
->cpu
, &mp
->m_inodegc_cpumask
);
1900 smp_mb__after_atomic();
1902 WRITE_ONCE(gc
->items
, 0);
1908 * We can allocate memory here while doing writeback on behalf of
1909 * memory reclaim. To avoid memory allocation deadlocks set the
1910 * task-wide nofs context for the following operations.
1912 nofs_flag
= memalloc_nofs_save();
1914 ip
= llist_entry(node
, struct xfs_inode
, i_gclist
);
1915 trace_xfs_inodegc_worker(mp
, READ_ONCE(gc
->shrinker_hits
));
1917 WRITE_ONCE(gc
->shrinker_hits
, 0);
1918 llist_for_each_entry_safe(ip
, n
, node
, i_gclist
) {
1921 xfs_iflags_set(ip
, XFS_INACTIVATING
);
1922 error
= xfs_inodegc_inactivate(ip
);
1923 if (error
&& !gc
->error
)
1927 memalloc_nofs_restore(nofs_flag
);
1931 * Expedite all pending inodegc work to run immediately. This does not wait for
1932 * completion of the work.
1936 struct xfs_mount
*mp
)
1938 if (!xfs_is_inodegc_enabled(mp
))
1940 trace_xfs_inodegc_push(mp
, __return_address
);
1941 xfs_inodegc_queue_all(mp
);
1945 * Force all currently queued inode inactivation work to run immediately and
1946 * wait for the work to finish.
1950 struct xfs_mount
*mp
)
1952 xfs_inodegc_push(mp
);
1953 trace_xfs_inodegc_flush(mp
, __return_address
);
1954 return xfs_inodegc_wait_all(mp
);
1958 * Flush all the pending work and then disable the inode inactivation background
1959 * workers and wait for them to stop. Caller must hold sb->s_umount to
1960 * coordinate changes in the inodegc_enabled state.
1964 struct xfs_mount
*mp
)
1968 if (!xfs_clear_inodegc_enabled(mp
))
1972 * Drain all pending inodegc work, including inodes that could be
1973 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1974 * threads that sample the inodegc state just prior to us clearing it.
1975 * The inodegc flag state prevents new threads from queuing more
1976 * inodes, so we queue pending work items and flush the workqueue until
1977 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1978 * here because it does not allow other unserialized mechanisms to
1979 * reschedule inodegc work while this draining is in progress.
1981 xfs_inodegc_queue_all(mp
);
1983 flush_workqueue(mp
->m_inodegc_wq
);
1984 rerun
= xfs_inodegc_queue_all(mp
);
1987 trace_xfs_inodegc_stop(mp
, __return_address
);
1991 * Enable the inode inactivation background workers and schedule deferred inode
1992 * inactivation work if there is any. Caller must hold sb->s_umount to
1993 * coordinate changes in the inodegc_enabled state.
1997 struct xfs_mount
*mp
)
1999 if (xfs_set_inodegc_enabled(mp
))
2002 trace_xfs_inodegc_start(mp
, __return_address
);
2003 xfs_inodegc_queue_all(mp
);
2006 #ifdef CONFIG_XFS_RT
2008 xfs_inodegc_want_queue_rt_file(
2009 struct xfs_inode
*ip
)
2011 struct xfs_mount
*mp
= ip
->i_mount
;
2013 if (!XFS_IS_REALTIME_INODE(ip
))
2016 if (__percpu_counter_compare(&mp
->m_frextents
,
2017 mp
->m_low_rtexts
[XFS_LOWSP_5_PCNT
],
2018 XFS_FDBLOCKS_BATCH
) < 0)
2024 # define xfs_inodegc_want_queue_rt_file(ip) (false)
2025 #endif /* CONFIG_XFS_RT */
2028 * Schedule the inactivation worker when:
2030 * - We've accumulated more than one inode cluster buffer's worth of inodes.
2031 * - There is less than 5% free space left.
2032 * - Any of the quotas for this inode are near an enforcement limit.
2035 xfs_inodegc_want_queue_work(
2036 struct xfs_inode
*ip
,
2039 struct xfs_mount
*mp
= ip
->i_mount
;
2041 if (items
> mp
->m_ino_geo
.inodes_per_cluster
)
2044 if (__percpu_counter_compare(&mp
->m_fdblocks
,
2045 mp
->m_low_space
[XFS_LOWSP_5_PCNT
],
2046 XFS_FDBLOCKS_BATCH
) < 0)
2049 if (xfs_inodegc_want_queue_rt_file(ip
))
2052 if (xfs_inode_near_dquot_enforcement(ip
, XFS_DQTYPE_USER
))
2055 if (xfs_inode_near_dquot_enforcement(ip
, XFS_DQTYPE_GROUP
))
2058 if (xfs_inode_near_dquot_enforcement(ip
, XFS_DQTYPE_PROJ
))
2065 * Upper bound on the number of inodes in each AG that can be queued for
2066 * inactivation at any given time, to avoid monopolizing the workqueue.
2068 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2071 * Make the frontend wait for inactivations when:
2073 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2074 * - The queue depth exceeds the maximum allowable percpu backlog.
2076 * Note: If we are in a NOFS context here (e.g. current thread is running a
2077 * transaction) the we don't want to block here as inodegc progress may require
2078 * filesystem resources we hold to make progress and that could result in a
2079 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2082 xfs_inodegc_want_flush_work(
2083 struct xfs_inode
*ip
,
2085 unsigned int shrinker_hits
)
2087 if (current
->flags
& PF_MEMALLOC_NOFS
)
2090 if (shrinker_hits
> 0)
2093 if (items
> XFS_INODEGC_MAX_BACKLOG
)
2100 * Queue a background inactivation worker if there are inodes that need to be
2101 * inactivated and higher level xfs code hasn't disabled the background
2106 struct xfs_inode
*ip
)
2108 struct xfs_mount
*mp
= ip
->i_mount
;
2109 struct xfs_inodegc
*gc
;
2111 unsigned int shrinker_hits
;
2112 unsigned int cpu_nr
;
2113 unsigned long queue_delay
= 1;
2115 trace_xfs_inode_set_need_inactive(ip
);
2116 spin_lock(&ip
->i_flags_lock
);
2117 ip
->i_flags
|= XFS_NEED_INACTIVE
;
2118 spin_unlock(&ip
->i_flags_lock
);
2121 gc
= this_cpu_ptr(mp
->m_inodegc
);
2122 llist_add(&ip
->i_gclist
, &gc
->list
);
2123 items
= READ_ONCE(gc
->items
);
2124 WRITE_ONCE(gc
->items
, items
+ 1);
2125 shrinker_hits
= READ_ONCE(gc
->shrinker_hits
);
2128 * Ensure the list add is always seen by anyone who finds the cpumask
2129 * bit set. This effectively gives the cpumask bit set operation
2130 * release ordering semantics.
2132 smp_mb__before_atomic();
2133 if (!cpumask_test_cpu(cpu_nr
, &mp
->m_inodegc_cpumask
))
2134 cpumask_test_and_set_cpu(cpu_nr
, &mp
->m_inodegc_cpumask
);
2137 * We queue the work while holding the current CPU so that the work
2138 * is scheduled to run on this CPU.
2140 if (!xfs_is_inodegc_enabled(mp
)) {
2145 if (xfs_inodegc_want_queue_work(ip
, items
))
2148 trace_xfs_inodegc_queue(mp
, __return_address
);
2149 mod_delayed_work_on(current_cpu(), mp
->m_inodegc_wq
, &gc
->work
,
2153 if (xfs_inodegc_want_flush_work(ip
, items
, shrinker_hits
)) {
2154 trace_xfs_inodegc_throttle(mp
, __return_address
);
2155 flush_delayed_work(&gc
->work
);
2160 * We set the inode flag atomically with the radix tree tag. Once we get tag
2161 * lookups on the radix tree, this inode flag can go away.
2163 * We always use background reclaim here because even if the inode is clean, it
2164 * still may be under IO and hence we have wait for IO completion to occur
2165 * before we can reclaim the inode. The background reclaim path handles this
2166 * more efficiently than we can here, so simply let background reclaim tear down
2170 xfs_inode_mark_reclaimable(
2171 struct xfs_inode
*ip
)
2173 struct xfs_mount
*mp
= ip
->i_mount
;
2176 XFS_STATS_INC(mp
, vn_reclaim
);
2179 * We should never get here with any of the reclaim flags already set.
2181 ASSERT_ALWAYS(!xfs_iflags_test(ip
, XFS_ALL_IRECLAIM_FLAGS
));
2183 need_inactive
= xfs_inode_needs_inactive(ip
);
2184 if (need_inactive
) {
2185 xfs_inodegc_queue(ip
);
2189 /* Going straight to reclaim, so drop the dquots. */
2190 xfs_qm_dqdetach(ip
);
2191 xfs_inodegc_set_reclaimable(ip
);
2195 * Register a phony shrinker so that we can run background inodegc sooner when
2196 * there's memory pressure. Inactivation does not itself free any memory but
2197 * it does make inodes reclaimable, which eventually frees memory.
2199 * The count function, seek value, and batch value are crafted to trigger the
2200 * scan function during the second round of scanning. Hopefully this means
2201 * that we reclaimed enough memory that initiating metadata transactions won't
2202 * make things worse.
2204 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2205 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2207 static unsigned long
2208 xfs_inodegc_shrinker_count(
2209 struct shrinker
*shrink
,
2210 struct shrink_control
*sc
)
2212 struct xfs_mount
*mp
= shrink
->private_data
;
2213 struct xfs_inodegc
*gc
;
2216 if (!xfs_is_inodegc_enabled(mp
))
2219 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
2220 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
2221 if (!llist_empty(&gc
->list
))
2222 return XFS_INODEGC_SHRINKER_COUNT
;
2228 static unsigned long
2229 xfs_inodegc_shrinker_scan(
2230 struct shrinker
*shrink
,
2231 struct shrink_control
*sc
)
2233 struct xfs_mount
*mp
= shrink
->private_data
;
2234 struct xfs_inodegc
*gc
;
2236 bool no_items
= true;
2238 if (!xfs_is_inodegc_enabled(mp
))
2241 trace_xfs_inodegc_shrinker_scan(mp
, sc
, __return_address
);
2243 for_each_cpu(cpu
, &mp
->m_inodegc_cpumask
) {
2244 gc
= per_cpu_ptr(mp
->m_inodegc
, cpu
);
2245 if (!llist_empty(&gc
->list
)) {
2246 unsigned int h
= READ_ONCE(gc
->shrinker_hits
);
2248 WRITE_ONCE(gc
->shrinker_hits
, h
+ 1);
2249 mod_delayed_work_on(cpu
, mp
->m_inodegc_wq
, &gc
->work
, 0);
2255 * If there are no inodes to inactivate, we don't want the shrinker
2256 * to think there's deferred work to call us back about.
2264 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2266 xfs_inodegc_register_shrinker(
2267 struct xfs_mount
*mp
)
2269 mp
->m_inodegc_shrinker
= shrinker_alloc(SHRINKER_NONSLAB
,
2272 if (!mp
->m_inodegc_shrinker
)
2275 mp
->m_inodegc_shrinker
->count_objects
= xfs_inodegc_shrinker_count
;
2276 mp
->m_inodegc_shrinker
->scan_objects
= xfs_inodegc_shrinker_scan
;
2277 mp
->m_inodegc_shrinker
->seeks
= 0;
2278 mp
->m_inodegc_shrinker
->batch
= XFS_INODEGC_SHRINKER_BATCH
;
2279 mp
->m_inodegc_shrinker
->private_data
= mp
;
2281 shrinker_register(mp
->m_inodegc_shrinker
);