drm/panthor: Don't declare a queue blocked if deferred operations are pending
[drm/drm-misc.git] / fs / xfs / xfs_icache.c
bloba680e5b82672b91264de5597cccdd8e990e9b085
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
29 #include <linux/iversion.h>
31 /* Radix tree tags for incore inode tree. */
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG 0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG 1
39 * The goal for walking incore inodes. These can correspond with incore inode
40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
42 enum xfs_icwalk_goal {
43 /* Goals directly associated with tagged inodes. */
44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
48 static int xfs_icwalk(struct xfs_mount *mp,
49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 static int xfs_icwalk_ag(struct xfs_perag *pag,
51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
54 * Private inode cache walk flags for struct xfs_icwalk. Must not
55 * coincide with XFS_ICWALK_FLAGS_VALID.
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 XFS_ICWALK_FLAG_UNION)
68 /* Marks for the perag xarray */
69 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0
70 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
72 static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
74 if (tag == XFS_ICI_RECLAIM_TAG)
75 return XFS_PERAG_RECLAIM_MARK;
76 ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
77 return XFS_PERAG_BLOCKGC_MARK;
81 * Allocate and initialise an xfs_inode.
83 struct xfs_inode *
84 xfs_inode_alloc(
85 struct xfs_mount *mp,
86 xfs_ino_t ino)
88 struct xfs_inode *ip;
91 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
92 * and return NULL here on ENOMEM.
94 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
96 if (inode_init_always(mp->m_super, VFS_I(ip))) {
97 kmem_cache_free(xfs_inode_cache, ip);
98 return NULL;
101 /* VFS doesn't initialise i_mode! */
102 VFS_I(ip)->i_mode = 0;
103 mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
104 M_IGEO(mp)->min_folio_order);
106 XFS_STATS_INC(mp, vn_active);
107 ASSERT(atomic_read(&ip->i_pincount) == 0);
108 ASSERT(ip->i_ino == 0);
110 /* initialise the xfs inode */
111 ip->i_ino = ino;
112 ip->i_mount = mp;
113 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
114 ip->i_cowfp = NULL;
115 memset(&ip->i_af, 0, sizeof(ip->i_af));
116 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
117 memset(&ip->i_df, 0, sizeof(ip->i_df));
118 ip->i_flags = 0;
119 ip->i_delayed_blks = 0;
120 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
121 ip->i_nblocks = 0;
122 ip->i_forkoff = 0;
123 ip->i_sick = 0;
124 ip->i_checked = 0;
125 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
126 INIT_LIST_HEAD(&ip->i_ioend_list);
127 spin_lock_init(&ip->i_ioend_lock);
128 ip->i_next_unlinked = NULLAGINO;
129 ip->i_prev_unlinked = 0;
131 return ip;
134 STATIC void
135 xfs_inode_free_callback(
136 struct rcu_head *head)
138 struct inode *inode = container_of(head, struct inode, i_rcu);
139 struct xfs_inode *ip = XFS_I(inode);
141 switch (VFS_I(ip)->i_mode & S_IFMT) {
142 case S_IFREG:
143 case S_IFDIR:
144 case S_IFLNK:
145 xfs_idestroy_fork(&ip->i_df);
146 break;
149 xfs_ifork_zap_attr(ip);
151 if (ip->i_cowfp) {
152 xfs_idestroy_fork(ip->i_cowfp);
153 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
155 if (ip->i_itemp) {
156 ASSERT(!test_bit(XFS_LI_IN_AIL,
157 &ip->i_itemp->ili_item.li_flags));
158 xfs_inode_item_destroy(ip);
159 ip->i_itemp = NULL;
162 kmem_cache_free(xfs_inode_cache, ip);
165 static void
166 __xfs_inode_free(
167 struct xfs_inode *ip)
169 /* asserts to verify all state is correct here */
170 ASSERT(atomic_read(&ip->i_pincount) == 0);
171 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
172 XFS_STATS_DEC(ip->i_mount, vn_active);
174 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
177 void
178 xfs_inode_free(
179 struct xfs_inode *ip)
181 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
184 * Because we use RCU freeing we need to ensure the inode always
185 * appears to be reclaimed with an invalid inode number when in the
186 * free state. The ip->i_flags_lock provides the barrier against lookup
187 * races.
189 spin_lock(&ip->i_flags_lock);
190 ip->i_flags = XFS_IRECLAIM;
191 ip->i_ino = 0;
192 spin_unlock(&ip->i_flags_lock);
194 __xfs_inode_free(ip);
198 * Queue background inode reclaim work if there are reclaimable inodes and there
199 * isn't reclaim work already scheduled or in progress.
201 static void
202 xfs_reclaim_work_queue(
203 struct xfs_mount *mp)
206 rcu_read_lock();
207 if (xa_marked(&mp->m_perags, XFS_PERAG_RECLAIM_MARK)) {
208 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
209 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
211 rcu_read_unlock();
215 * Background scanning to trim preallocated space. This is queued based on the
216 * 'speculative_prealloc_lifetime' tunable (5m by default).
218 static inline void
219 xfs_blockgc_queue(
220 struct xfs_perag *pag)
222 struct xfs_mount *mp = pag->pag_mount;
224 if (!xfs_is_blockgc_enabled(mp))
225 return;
227 rcu_read_lock();
228 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
229 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
230 &pag->pag_blockgc_work,
231 msecs_to_jiffies(xfs_blockgc_secs * 1000));
232 rcu_read_unlock();
235 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
236 static void
237 xfs_perag_set_inode_tag(
238 struct xfs_perag *pag,
239 xfs_agino_t agino,
240 unsigned int tag)
242 struct xfs_mount *mp = pag->pag_mount;
243 bool was_tagged;
245 lockdep_assert_held(&pag->pag_ici_lock);
247 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
248 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
250 if (tag == XFS_ICI_RECLAIM_TAG)
251 pag->pag_ici_reclaimable++;
253 if (was_tagged)
254 return;
256 /* propagate the tag up into the perag radix tree */
257 xa_set_mark(&mp->m_perags, pag->pag_agno, ici_tag_to_mark(tag));
259 /* start background work */
260 switch (tag) {
261 case XFS_ICI_RECLAIM_TAG:
262 xfs_reclaim_work_queue(mp);
263 break;
264 case XFS_ICI_BLOCKGC_TAG:
265 xfs_blockgc_queue(pag);
266 break;
269 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
272 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
273 static void
274 xfs_perag_clear_inode_tag(
275 struct xfs_perag *pag,
276 xfs_agino_t agino,
277 unsigned int tag)
279 struct xfs_mount *mp = pag->pag_mount;
281 lockdep_assert_held(&pag->pag_ici_lock);
284 * Reclaim can signal (with a null agino) that it cleared its own tag
285 * by removing the inode from the radix tree.
287 if (agino != NULLAGINO)
288 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
289 else
290 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
292 if (tag == XFS_ICI_RECLAIM_TAG)
293 pag->pag_ici_reclaimable--;
295 if (radix_tree_tagged(&pag->pag_ici_root, tag))
296 return;
298 /* clear the tag from the perag radix tree */
299 xa_clear_mark(&mp->m_perags, pag->pag_agno, ici_tag_to_mark(tag));
301 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
305 * Find the next AG after @pag, or the first AG if @pag is NULL.
307 static struct xfs_perag *
308 xfs_perag_grab_next_tag(
309 struct xfs_mount *mp,
310 struct xfs_perag *pag,
311 int tag)
313 unsigned long index = 0;
315 if (pag) {
316 index = pag->pag_agno + 1;
317 xfs_perag_rele(pag);
320 rcu_read_lock();
321 pag = xa_find(&mp->m_perags, &index, ULONG_MAX, ici_tag_to_mark(tag));
322 if (pag) {
323 trace_xfs_perag_grab_next_tag(pag, _RET_IP_);
324 if (!atomic_inc_not_zero(&pag->pag_active_ref))
325 pag = NULL;
327 rcu_read_unlock();
328 return pag;
332 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
333 * part of the structure. This is made more complex by the fact we store
334 * information about the on-disk values in the VFS inode and so we can't just
335 * overwrite the values unconditionally. Hence we save the parameters we
336 * need to retain across reinitialisation, and rewrite them into the VFS inode
337 * after reinitialisation even if it fails.
339 static int
340 xfs_reinit_inode(
341 struct xfs_mount *mp,
342 struct inode *inode)
344 int error;
345 uint32_t nlink = inode->i_nlink;
346 uint32_t generation = inode->i_generation;
347 uint64_t version = inode_peek_iversion(inode);
348 umode_t mode = inode->i_mode;
349 dev_t dev = inode->i_rdev;
350 kuid_t uid = inode->i_uid;
351 kgid_t gid = inode->i_gid;
352 unsigned long state = inode->i_state;
354 error = inode_init_always(mp->m_super, inode);
356 set_nlink(inode, nlink);
357 inode->i_generation = generation;
358 inode_set_iversion_queried(inode, version);
359 inode->i_mode = mode;
360 inode->i_rdev = dev;
361 inode->i_uid = uid;
362 inode->i_gid = gid;
363 inode->i_state = state;
364 mapping_set_folio_min_order(inode->i_mapping,
365 M_IGEO(mp)->min_folio_order);
366 return error;
370 * Carefully nudge an inode whose VFS state has been torn down back into a
371 * usable state. Drops the i_flags_lock and the rcu read lock.
373 static int
374 xfs_iget_recycle(
375 struct xfs_perag *pag,
376 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
378 struct xfs_mount *mp = ip->i_mount;
379 struct inode *inode = VFS_I(ip);
380 int error;
382 trace_xfs_iget_recycle(ip);
384 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
385 return -EAGAIN;
388 * We need to make it look like the inode is being reclaimed to prevent
389 * the actual reclaim workers from stomping over us while we recycle
390 * the inode. We can't clear the radix tree tag yet as it requires
391 * pag_ici_lock to be held exclusive.
393 ip->i_flags |= XFS_IRECLAIM;
395 spin_unlock(&ip->i_flags_lock);
396 rcu_read_unlock();
398 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
399 error = xfs_reinit_inode(mp, inode);
400 xfs_iunlock(ip, XFS_ILOCK_EXCL);
401 if (error) {
403 * Re-initializing the inode failed, and we are in deep
404 * trouble. Try to re-add it to the reclaim list.
406 rcu_read_lock();
407 spin_lock(&ip->i_flags_lock);
408 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
409 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
410 spin_unlock(&ip->i_flags_lock);
411 rcu_read_unlock();
413 trace_xfs_iget_recycle_fail(ip);
414 return error;
417 spin_lock(&pag->pag_ici_lock);
418 spin_lock(&ip->i_flags_lock);
421 * Clear the per-lifetime state in the inode as we are now effectively
422 * a new inode and need to return to the initial state before reuse
423 * occurs.
425 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
426 ip->i_flags |= XFS_INEW;
427 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
428 XFS_ICI_RECLAIM_TAG);
429 inode->i_state = I_NEW;
430 spin_unlock(&ip->i_flags_lock);
431 spin_unlock(&pag->pag_ici_lock);
433 return 0;
437 * If we are allocating a new inode, then check what was returned is
438 * actually a free, empty inode. If we are not allocating an inode,
439 * then check we didn't find a free inode.
441 * Returns:
442 * 0 if the inode free state matches the lookup context
443 * -ENOENT if the inode is free and we are not allocating
444 * -EFSCORRUPTED if there is any state mismatch at all
446 static int
447 xfs_iget_check_free_state(
448 struct xfs_inode *ip,
449 int flags)
451 if (flags & XFS_IGET_CREATE) {
452 /* should be a free inode */
453 if (VFS_I(ip)->i_mode != 0) {
454 xfs_warn(ip->i_mount,
455 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
456 ip->i_ino, VFS_I(ip)->i_mode);
457 xfs_agno_mark_sick(ip->i_mount,
458 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
459 XFS_SICK_AG_INOBT);
460 return -EFSCORRUPTED;
463 if (ip->i_nblocks != 0) {
464 xfs_warn(ip->i_mount,
465 "Corruption detected! Free inode 0x%llx has blocks allocated!",
466 ip->i_ino);
467 xfs_agno_mark_sick(ip->i_mount,
468 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
469 XFS_SICK_AG_INOBT);
470 return -EFSCORRUPTED;
472 return 0;
475 /* should be an allocated inode */
476 if (VFS_I(ip)->i_mode == 0)
477 return -ENOENT;
479 return 0;
482 /* Make all pending inactivation work start immediately. */
483 static bool
484 xfs_inodegc_queue_all(
485 struct xfs_mount *mp)
487 struct xfs_inodegc *gc;
488 int cpu;
489 bool ret = false;
491 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
492 gc = per_cpu_ptr(mp->m_inodegc, cpu);
493 if (!llist_empty(&gc->list)) {
494 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
495 ret = true;
499 return ret;
502 /* Wait for all queued work and collect errors */
503 static int
504 xfs_inodegc_wait_all(
505 struct xfs_mount *mp)
507 int cpu;
508 int error = 0;
510 flush_workqueue(mp->m_inodegc_wq);
511 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
512 struct xfs_inodegc *gc;
514 gc = per_cpu_ptr(mp->m_inodegc, cpu);
515 if (gc->error && !error)
516 error = gc->error;
517 gc->error = 0;
520 return error;
524 * Check the validity of the inode we just found it the cache
526 static int
527 xfs_iget_cache_hit(
528 struct xfs_perag *pag,
529 struct xfs_inode *ip,
530 xfs_ino_t ino,
531 int flags,
532 int lock_flags) __releases(RCU)
534 struct inode *inode = VFS_I(ip);
535 struct xfs_mount *mp = ip->i_mount;
536 int error;
539 * check for re-use of an inode within an RCU grace period due to the
540 * radix tree nodes not being updated yet. We monitor for this by
541 * setting the inode number to zero before freeing the inode structure.
542 * If the inode has been reallocated and set up, then the inode number
543 * will not match, so check for that, too.
545 spin_lock(&ip->i_flags_lock);
546 if (ip->i_ino != ino)
547 goto out_skip;
550 * If we are racing with another cache hit that is currently
551 * instantiating this inode or currently recycling it out of
552 * reclaimable state, wait for the initialisation to complete
553 * before continuing.
555 * If we're racing with the inactivation worker we also want to wait.
556 * If we're creating a new file, it's possible that the worker
557 * previously marked the inode as free on disk but hasn't finished
558 * updating the incore state yet. The AGI buffer will be dirty and
559 * locked to the icreate transaction, so a synchronous push of the
560 * inodegc workers would result in deadlock. For a regular iget, the
561 * worker is running already, so we might as well wait.
563 * XXX(hch): eventually we should do something equivalent to
564 * wait_on_inode to wait for these flags to be cleared
565 * instead of polling for it.
567 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
568 goto out_skip;
570 if (ip->i_flags & XFS_NEED_INACTIVE) {
571 /* Unlinked inodes cannot be re-grabbed. */
572 if (VFS_I(ip)->i_nlink == 0) {
573 error = -ENOENT;
574 goto out_error;
576 goto out_inodegc_flush;
580 * Check the inode free state is valid. This also detects lookup
581 * racing with unlinks.
583 error = xfs_iget_check_free_state(ip, flags);
584 if (error)
585 goto out_error;
587 /* Skip inodes that have no vfs state. */
588 if ((flags & XFS_IGET_INCORE) &&
589 (ip->i_flags & XFS_IRECLAIMABLE))
590 goto out_skip;
592 /* The inode fits the selection criteria; process it. */
593 if (ip->i_flags & XFS_IRECLAIMABLE) {
594 /* Drops i_flags_lock and RCU read lock. */
595 error = xfs_iget_recycle(pag, ip);
596 if (error == -EAGAIN)
597 goto out_skip;
598 if (error)
599 return error;
600 } else {
601 /* If the VFS inode is being torn down, pause and try again. */
602 if (!igrab(inode))
603 goto out_skip;
605 /* We've got a live one. */
606 spin_unlock(&ip->i_flags_lock);
607 rcu_read_unlock();
608 trace_xfs_iget_hit(ip);
611 if (lock_flags != 0)
612 xfs_ilock(ip, lock_flags);
614 if (!(flags & XFS_IGET_INCORE))
615 xfs_iflags_clear(ip, XFS_ISTALE);
616 XFS_STATS_INC(mp, xs_ig_found);
618 return 0;
620 out_skip:
621 trace_xfs_iget_skip(ip);
622 XFS_STATS_INC(mp, xs_ig_frecycle);
623 error = -EAGAIN;
624 out_error:
625 spin_unlock(&ip->i_flags_lock);
626 rcu_read_unlock();
627 return error;
629 out_inodegc_flush:
630 spin_unlock(&ip->i_flags_lock);
631 rcu_read_unlock();
633 * Do not wait for the workers, because the caller could hold an AGI
634 * buffer lock. We're just going to sleep in a loop anyway.
636 if (xfs_is_inodegc_enabled(mp))
637 xfs_inodegc_queue_all(mp);
638 return -EAGAIN;
641 static int
642 xfs_iget_cache_miss(
643 struct xfs_mount *mp,
644 struct xfs_perag *pag,
645 xfs_trans_t *tp,
646 xfs_ino_t ino,
647 struct xfs_inode **ipp,
648 int flags,
649 int lock_flags)
651 struct xfs_inode *ip;
652 int error;
653 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
655 ip = xfs_inode_alloc(mp, ino);
656 if (!ip)
657 return -ENOMEM;
659 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
660 if (error)
661 goto out_destroy;
664 * For version 5 superblocks, if we are initialising a new inode and we
665 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
666 * simply build the new inode core with a random generation number.
668 * For version 4 (and older) superblocks, log recovery is dependent on
669 * the i_flushiter field being initialised from the current on-disk
670 * value and hence we must also read the inode off disk even when
671 * initializing new inodes.
673 if (xfs_has_v3inodes(mp) &&
674 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
675 VFS_I(ip)->i_generation = get_random_u32();
676 } else {
677 struct xfs_buf *bp;
679 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
680 if (error)
681 goto out_destroy;
683 error = xfs_inode_from_disk(ip,
684 xfs_buf_offset(bp, ip->i_imap.im_boffset));
685 if (!error)
686 xfs_buf_set_ref(bp, XFS_INO_REF);
687 else
688 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
689 xfs_trans_brelse(tp, bp);
691 if (error)
692 goto out_destroy;
695 trace_xfs_iget_miss(ip);
698 * Check the inode free state is valid. This also detects lookup
699 * racing with unlinks.
701 error = xfs_iget_check_free_state(ip, flags);
702 if (error)
703 goto out_destroy;
706 * Preload the radix tree so we can insert safely under the
707 * write spinlock. Note that we cannot sleep inside the preload
708 * region.
710 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
711 error = -EAGAIN;
712 goto out_destroy;
716 * Because the inode hasn't been added to the radix-tree yet it can't
717 * be found by another thread, so we can do the non-sleeping lock here.
719 if (lock_flags) {
720 if (!xfs_ilock_nowait(ip, lock_flags))
721 BUG();
725 * These values must be set before inserting the inode into the radix
726 * tree as the moment it is inserted a concurrent lookup (allowed by the
727 * RCU locking mechanism) can find it and that lookup must see that this
728 * is an inode currently under construction (i.e. that XFS_INEW is set).
729 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
730 * memory barrier that ensures this detection works correctly at lookup
731 * time.
733 if (flags & XFS_IGET_DONTCACHE)
734 d_mark_dontcache(VFS_I(ip));
735 ip->i_udquot = NULL;
736 ip->i_gdquot = NULL;
737 ip->i_pdquot = NULL;
738 xfs_iflags_set(ip, XFS_INEW);
740 /* insert the new inode */
741 spin_lock(&pag->pag_ici_lock);
742 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
743 if (unlikely(error)) {
744 WARN_ON(error != -EEXIST);
745 XFS_STATS_INC(mp, xs_ig_dup);
746 error = -EAGAIN;
747 goto out_preload_end;
749 spin_unlock(&pag->pag_ici_lock);
750 radix_tree_preload_end();
752 *ipp = ip;
753 return 0;
755 out_preload_end:
756 spin_unlock(&pag->pag_ici_lock);
757 radix_tree_preload_end();
758 if (lock_flags)
759 xfs_iunlock(ip, lock_flags);
760 out_destroy:
761 __destroy_inode(VFS_I(ip));
762 xfs_inode_free(ip);
763 return error;
767 * Look up an inode by number in the given file system. The inode is looked up
768 * in the cache held in each AG. If the inode is found in the cache, initialise
769 * the vfs inode if necessary.
771 * If it is not in core, read it in from the file system's device, add it to the
772 * cache and initialise the vfs inode.
774 * The inode is locked according to the value of the lock_flags parameter.
775 * Inode lookup is only done during metadata operations and not as part of the
776 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
779 xfs_iget(
780 struct xfs_mount *mp,
781 struct xfs_trans *tp,
782 xfs_ino_t ino,
783 uint flags,
784 uint lock_flags,
785 struct xfs_inode **ipp)
787 struct xfs_inode *ip;
788 struct xfs_perag *pag;
789 xfs_agino_t agino;
790 int error;
792 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
794 /* reject inode numbers outside existing AGs */
795 if (!xfs_verify_ino(mp, ino))
796 return -EINVAL;
798 XFS_STATS_INC(mp, xs_ig_attempts);
800 /* get the perag structure and ensure that it's inode capable */
801 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
802 agino = XFS_INO_TO_AGINO(mp, ino);
804 again:
805 error = 0;
806 rcu_read_lock();
807 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
809 if (ip) {
810 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
811 if (error)
812 goto out_error_or_again;
813 } else {
814 rcu_read_unlock();
815 if (flags & XFS_IGET_INCORE) {
816 error = -ENODATA;
817 goto out_error_or_again;
819 XFS_STATS_INC(mp, xs_ig_missed);
821 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
822 flags, lock_flags);
823 if (error)
824 goto out_error_or_again;
826 xfs_perag_put(pag);
828 *ipp = ip;
831 * If we have a real type for an on-disk inode, we can setup the inode
832 * now. If it's a new inode being created, xfs_init_new_inode will
833 * handle it.
835 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
836 xfs_setup_existing_inode(ip);
837 return 0;
839 out_error_or_again:
840 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
841 error == -EAGAIN) {
842 delay(1);
843 goto again;
845 xfs_perag_put(pag);
846 return error;
850 * Grab the inode for reclaim exclusively.
852 * We have found this inode via a lookup under RCU, so the inode may have
853 * already been freed, or it may be in the process of being recycled by
854 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
855 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
856 * will not be set. Hence we need to check for both these flag conditions to
857 * avoid inodes that are no longer reclaim candidates.
859 * Note: checking for other state flags here, under the i_flags_lock or not, is
860 * racy and should be avoided. Those races should be resolved only after we have
861 * ensured that we are able to reclaim this inode and the world can see that we
862 * are going to reclaim it.
864 * Return true if we grabbed it, false otherwise.
866 static bool
867 xfs_reclaim_igrab(
868 struct xfs_inode *ip,
869 struct xfs_icwalk *icw)
871 ASSERT(rcu_read_lock_held());
873 spin_lock(&ip->i_flags_lock);
874 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
875 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
876 /* not a reclaim candidate. */
877 spin_unlock(&ip->i_flags_lock);
878 return false;
881 /* Don't reclaim a sick inode unless the caller asked for it. */
882 if (ip->i_sick &&
883 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
884 spin_unlock(&ip->i_flags_lock);
885 return false;
888 __xfs_iflags_set(ip, XFS_IRECLAIM);
889 spin_unlock(&ip->i_flags_lock);
890 return true;
894 * Inode reclaim is non-blocking, so the default action if progress cannot be
895 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
896 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
897 * blocking anymore and hence we can wait for the inode to be able to reclaim
898 * it.
900 * We do no IO here - if callers require inodes to be cleaned they must push the
901 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
902 * done in the background in a non-blocking manner, and enables memory reclaim
903 * to make progress without blocking.
905 static void
906 xfs_reclaim_inode(
907 struct xfs_inode *ip,
908 struct xfs_perag *pag)
910 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
912 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
913 goto out;
914 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
915 goto out_iunlock;
918 * Check for log shutdown because aborting the inode can move the log
919 * tail and corrupt in memory state. This is fine if the log is shut
920 * down, but if the log is still active and only the mount is shut down
921 * then the in-memory log tail movement caused by the abort can be
922 * incorrectly propagated to disk.
924 if (xlog_is_shutdown(ip->i_mount->m_log)) {
925 xfs_iunpin_wait(ip);
926 xfs_iflush_shutdown_abort(ip);
927 goto reclaim;
929 if (xfs_ipincount(ip))
930 goto out_clear_flush;
931 if (!xfs_inode_clean(ip))
932 goto out_clear_flush;
934 xfs_iflags_clear(ip, XFS_IFLUSHING);
935 reclaim:
936 trace_xfs_inode_reclaiming(ip);
939 * Because we use RCU freeing we need to ensure the inode always appears
940 * to be reclaimed with an invalid inode number when in the free state.
941 * We do this as early as possible under the ILOCK so that
942 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
943 * detect races with us here. By doing this, we guarantee that once
944 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
945 * it will see either a valid inode that will serialise correctly, or it
946 * will see an invalid inode that it can skip.
948 spin_lock(&ip->i_flags_lock);
949 ip->i_flags = XFS_IRECLAIM;
950 ip->i_ino = 0;
951 ip->i_sick = 0;
952 ip->i_checked = 0;
953 spin_unlock(&ip->i_flags_lock);
955 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
956 xfs_iunlock(ip, XFS_ILOCK_EXCL);
958 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
960 * Remove the inode from the per-AG radix tree.
962 * Because radix_tree_delete won't complain even if the item was never
963 * added to the tree assert that it's been there before to catch
964 * problems with the inode life time early on.
966 spin_lock(&pag->pag_ici_lock);
967 if (!radix_tree_delete(&pag->pag_ici_root,
968 XFS_INO_TO_AGINO(ip->i_mount, ino)))
969 ASSERT(0);
970 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
971 spin_unlock(&pag->pag_ici_lock);
974 * Here we do an (almost) spurious inode lock in order to coordinate
975 * with inode cache radix tree lookups. This is because the lookup
976 * can reference the inodes in the cache without taking references.
978 * We make that OK here by ensuring that we wait until the inode is
979 * unlocked after the lookup before we go ahead and free it.
981 xfs_ilock(ip, XFS_ILOCK_EXCL);
982 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
983 xfs_iunlock(ip, XFS_ILOCK_EXCL);
984 ASSERT(xfs_inode_clean(ip));
986 __xfs_inode_free(ip);
987 return;
989 out_clear_flush:
990 xfs_iflags_clear(ip, XFS_IFLUSHING);
991 out_iunlock:
992 xfs_iunlock(ip, XFS_ILOCK_EXCL);
993 out:
994 xfs_iflags_clear(ip, XFS_IRECLAIM);
997 /* Reclaim sick inodes if we're unmounting or the fs went down. */
998 static inline bool
999 xfs_want_reclaim_sick(
1000 struct xfs_mount *mp)
1002 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
1003 xfs_is_shutdown(mp);
1006 void
1007 xfs_reclaim_inodes(
1008 struct xfs_mount *mp)
1010 struct xfs_icwalk icw = {
1011 .icw_flags = 0,
1014 if (xfs_want_reclaim_sick(mp))
1015 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1017 while (xa_marked(&mp->m_perags, XFS_PERAG_RECLAIM_MARK)) {
1018 xfs_ail_push_all_sync(mp->m_ail);
1019 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1024 * The shrinker infrastructure determines how many inodes we should scan for
1025 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1026 * push the AIL here. We also want to proactively free up memory if we can to
1027 * minimise the amount of work memory reclaim has to do so we kick the
1028 * background reclaim if it isn't already scheduled.
1030 long
1031 xfs_reclaim_inodes_nr(
1032 struct xfs_mount *mp,
1033 unsigned long nr_to_scan)
1035 struct xfs_icwalk icw = {
1036 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1037 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1040 if (xfs_want_reclaim_sick(mp))
1041 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1043 /* kick background reclaimer and push the AIL */
1044 xfs_reclaim_work_queue(mp);
1045 xfs_ail_push_all(mp->m_ail);
1047 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1048 return 0;
1052 * Return the number of reclaimable inodes in the filesystem for
1053 * the shrinker to determine how much to reclaim.
1055 long
1056 xfs_reclaim_inodes_count(
1057 struct xfs_mount *mp)
1059 XA_STATE (xas, &mp->m_perags, 0);
1060 long reclaimable = 0;
1061 struct xfs_perag *pag;
1063 rcu_read_lock();
1064 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
1065 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
1066 reclaimable += pag->pag_ici_reclaimable;
1068 rcu_read_unlock();
1070 return reclaimable;
1073 STATIC bool
1074 xfs_icwalk_match_id(
1075 struct xfs_inode *ip,
1076 struct xfs_icwalk *icw)
1078 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1079 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1080 return false;
1082 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1083 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1084 return false;
1086 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1087 ip->i_projid != icw->icw_prid)
1088 return false;
1090 return true;
1094 * A union-based inode filtering algorithm. Process the inode if any of the
1095 * criteria match. This is for global/internal scans only.
1097 STATIC bool
1098 xfs_icwalk_match_id_union(
1099 struct xfs_inode *ip,
1100 struct xfs_icwalk *icw)
1102 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1103 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1104 return true;
1106 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1107 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1108 return true;
1110 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1111 ip->i_projid == icw->icw_prid)
1112 return true;
1114 return false;
1118 * Is this inode @ip eligible for eof/cow block reclamation, given some
1119 * filtering parameters @icw? The inode is eligible if @icw is null or
1120 * if the predicate functions match.
1122 static bool
1123 xfs_icwalk_match(
1124 struct xfs_inode *ip,
1125 struct xfs_icwalk *icw)
1127 bool match;
1129 if (!icw)
1130 return true;
1132 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1133 match = xfs_icwalk_match_id_union(ip, icw);
1134 else
1135 match = xfs_icwalk_match_id(ip, icw);
1136 if (!match)
1137 return false;
1139 /* skip the inode if the file size is too small */
1140 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1141 XFS_ISIZE(ip) < icw->icw_min_file_size)
1142 return false;
1144 return true;
1148 * This is a fast pass over the inode cache to try to get reclaim moving on as
1149 * many inodes as possible in a short period of time. It kicks itself every few
1150 * seconds, as well as being kicked by the inode cache shrinker when memory
1151 * goes low.
1153 void
1154 xfs_reclaim_worker(
1155 struct work_struct *work)
1157 struct xfs_mount *mp = container_of(to_delayed_work(work),
1158 struct xfs_mount, m_reclaim_work);
1160 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1161 xfs_reclaim_work_queue(mp);
1164 STATIC int
1165 xfs_inode_free_eofblocks(
1166 struct xfs_inode *ip,
1167 struct xfs_icwalk *icw,
1168 unsigned int *lockflags)
1170 bool wait;
1172 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1174 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1175 return 0;
1178 * If the mapping is dirty the operation can block and wait for some
1179 * time. Unless we are waiting, skip it.
1181 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1182 return 0;
1184 if (!xfs_icwalk_match(ip, icw))
1185 return 0;
1188 * If the caller is waiting, return -EAGAIN to keep the background
1189 * scanner moving and revisit the inode in a subsequent pass.
1191 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1192 if (wait)
1193 return -EAGAIN;
1194 return 0;
1196 *lockflags |= XFS_IOLOCK_EXCL;
1198 if (xfs_can_free_eofblocks(ip))
1199 return xfs_free_eofblocks(ip);
1201 /* inode could be preallocated */
1202 trace_xfs_inode_free_eofblocks_invalid(ip);
1203 xfs_inode_clear_eofblocks_tag(ip);
1204 return 0;
1207 static void
1208 xfs_blockgc_set_iflag(
1209 struct xfs_inode *ip,
1210 unsigned long iflag)
1212 struct xfs_mount *mp = ip->i_mount;
1213 struct xfs_perag *pag;
1215 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1218 * Don't bother locking the AG and looking up in the radix trees
1219 * if we already know that we have the tag set.
1221 if (ip->i_flags & iflag)
1222 return;
1223 spin_lock(&ip->i_flags_lock);
1224 ip->i_flags |= iflag;
1225 spin_unlock(&ip->i_flags_lock);
1227 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1228 spin_lock(&pag->pag_ici_lock);
1230 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1231 XFS_ICI_BLOCKGC_TAG);
1233 spin_unlock(&pag->pag_ici_lock);
1234 xfs_perag_put(pag);
1237 void
1238 xfs_inode_set_eofblocks_tag(
1239 xfs_inode_t *ip)
1241 trace_xfs_inode_set_eofblocks_tag(ip);
1242 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1245 static void
1246 xfs_blockgc_clear_iflag(
1247 struct xfs_inode *ip,
1248 unsigned long iflag)
1250 struct xfs_mount *mp = ip->i_mount;
1251 struct xfs_perag *pag;
1252 bool clear_tag;
1254 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1256 spin_lock(&ip->i_flags_lock);
1257 ip->i_flags &= ~iflag;
1258 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1259 spin_unlock(&ip->i_flags_lock);
1261 if (!clear_tag)
1262 return;
1264 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1265 spin_lock(&pag->pag_ici_lock);
1267 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1268 XFS_ICI_BLOCKGC_TAG);
1270 spin_unlock(&pag->pag_ici_lock);
1271 xfs_perag_put(pag);
1274 void
1275 xfs_inode_clear_eofblocks_tag(
1276 xfs_inode_t *ip)
1278 trace_xfs_inode_clear_eofblocks_tag(ip);
1279 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1283 * Set ourselves up to free CoW blocks from this file. If it's already clean
1284 * then we can bail out quickly, but otherwise we must back off if the file
1285 * is undergoing some kind of write.
1287 static bool
1288 xfs_prep_free_cowblocks(
1289 struct xfs_inode *ip)
1292 * Just clear the tag if we have an empty cow fork or none at all. It's
1293 * possible the inode was fully unshared since it was originally tagged.
1295 if (!xfs_inode_has_cow_data(ip)) {
1296 trace_xfs_inode_free_cowblocks_invalid(ip);
1297 xfs_inode_clear_cowblocks_tag(ip);
1298 return false;
1302 * If the mapping is dirty or under writeback we cannot touch the
1303 * CoW fork. Leave it alone if we're in the midst of a directio.
1305 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1306 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1307 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1308 atomic_read(&VFS_I(ip)->i_dio_count))
1309 return false;
1311 return true;
1315 * Automatic CoW Reservation Freeing
1317 * These functions automatically garbage collect leftover CoW reservations
1318 * that were made on behalf of a cowextsize hint when we start to run out
1319 * of quota or when the reservations sit around for too long. If the file
1320 * has dirty pages or is undergoing writeback, its CoW reservations will
1321 * be retained.
1323 * The actual garbage collection piggybacks off the same code that runs
1324 * the speculative EOF preallocation garbage collector.
1326 STATIC int
1327 xfs_inode_free_cowblocks(
1328 struct xfs_inode *ip,
1329 struct xfs_icwalk *icw,
1330 unsigned int *lockflags)
1332 bool wait;
1333 int ret = 0;
1335 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1337 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1338 return 0;
1340 if (!xfs_prep_free_cowblocks(ip))
1341 return 0;
1343 if (!xfs_icwalk_match(ip, icw))
1344 return 0;
1347 * If the caller is waiting, return -EAGAIN to keep the background
1348 * scanner moving and revisit the inode in a subsequent pass.
1350 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1351 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1352 if (wait)
1353 return -EAGAIN;
1354 return 0;
1356 *lockflags |= XFS_IOLOCK_EXCL;
1358 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1359 if (wait)
1360 return -EAGAIN;
1361 return 0;
1363 *lockflags |= XFS_MMAPLOCK_EXCL;
1366 * Check again, nobody else should be able to dirty blocks or change
1367 * the reflink iflag now that we have the first two locks held.
1369 if (xfs_prep_free_cowblocks(ip))
1370 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1371 return ret;
1374 void
1375 xfs_inode_set_cowblocks_tag(
1376 xfs_inode_t *ip)
1378 trace_xfs_inode_set_cowblocks_tag(ip);
1379 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1382 void
1383 xfs_inode_clear_cowblocks_tag(
1384 xfs_inode_t *ip)
1386 trace_xfs_inode_clear_cowblocks_tag(ip);
1387 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1390 /* Disable post-EOF and CoW block auto-reclamation. */
1391 void
1392 xfs_blockgc_stop(
1393 struct xfs_mount *mp)
1395 struct xfs_perag *pag;
1396 xfs_agnumber_t agno;
1398 if (!xfs_clear_blockgc_enabled(mp))
1399 return;
1401 for_each_perag(mp, agno, pag)
1402 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1403 trace_xfs_blockgc_stop(mp, __return_address);
1406 /* Enable post-EOF and CoW block auto-reclamation. */
1407 void
1408 xfs_blockgc_start(
1409 struct xfs_mount *mp)
1411 struct xfs_perag *pag = NULL;
1413 if (xfs_set_blockgc_enabled(mp))
1414 return;
1416 trace_xfs_blockgc_start(mp, __return_address);
1417 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1418 xfs_blockgc_queue(pag);
1421 /* Don't try to run block gc on an inode that's in any of these states. */
1422 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1423 XFS_NEED_INACTIVE | \
1424 XFS_INACTIVATING | \
1425 XFS_IRECLAIMABLE | \
1426 XFS_IRECLAIM)
1428 * Decide if the given @ip is eligible for garbage collection of speculative
1429 * preallocations, and grab it if so. Returns true if it's ready to go or
1430 * false if we should just ignore it.
1432 static bool
1433 xfs_blockgc_igrab(
1434 struct xfs_inode *ip)
1436 struct inode *inode = VFS_I(ip);
1438 ASSERT(rcu_read_lock_held());
1440 /* Check for stale RCU freed inode */
1441 spin_lock(&ip->i_flags_lock);
1442 if (!ip->i_ino)
1443 goto out_unlock_noent;
1445 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1446 goto out_unlock_noent;
1447 spin_unlock(&ip->i_flags_lock);
1449 /* nothing to sync during shutdown */
1450 if (xfs_is_shutdown(ip->i_mount))
1451 return false;
1453 /* If we can't grab the inode, it must on it's way to reclaim. */
1454 if (!igrab(inode))
1455 return false;
1457 /* inode is valid */
1458 return true;
1460 out_unlock_noent:
1461 spin_unlock(&ip->i_flags_lock);
1462 return false;
1465 /* Scan one incore inode for block preallocations that we can remove. */
1466 static int
1467 xfs_blockgc_scan_inode(
1468 struct xfs_inode *ip,
1469 struct xfs_icwalk *icw)
1471 unsigned int lockflags = 0;
1472 int error;
1474 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1475 if (error)
1476 goto unlock;
1478 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1479 unlock:
1480 if (lockflags)
1481 xfs_iunlock(ip, lockflags);
1482 xfs_irele(ip);
1483 return error;
1486 /* Background worker that trims preallocated space. */
1487 void
1488 xfs_blockgc_worker(
1489 struct work_struct *work)
1491 struct xfs_perag *pag = container_of(to_delayed_work(work),
1492 struct xfs_perag, pag_blockgc_work);
1493 struct xfs_mount *mp = pag->pag_mount;
1494 int error;
1496 trace_xfs_blockgc_worker(mp, __return_address);
1498 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1499 if (error)
1500 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1501 pag->pag_agno, error);
1502 xfs_blockgc_queue(pag);
1506 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1507 * and cowblocks.
1510 xfs_blockgc_free_space(
1511 struct xfs_mount *mp,
1512 struct xfs_icwalk *icw)
1514 int error;
1516 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1518 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1519 if (error)
1520 return error;
1522 return xfs_inodegc_flush(mp);
1526 * Reclaim all the free space that we can by scheduling the background blockgc
1527 * and inodegc workers immediately and waiting for them all to clear.
1530 xfs_blockgc_flush_all(
1531 struct xfs_mount *mp)
1533 struct xfs_perag *pag = NULL;
1535 trace_xfs_blockgc_flush_all(mp, __return_address);
1538 * For each blockgc worker, move its queue time up to now. If it wasn't
1539 * queued, it will not be requeued. Then flush whatever is left.
1541 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1542 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1543 &pag->pag_blockgc_work, 0);
1545 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1546 flush_delayed_work(&pag->pag_blockgc_work);
1548 return xfs_inodegc_flush(mp);
1552 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1553 * quota caused an allocation failure, so we make a best effort by including
1554 * each quota under low free space conditions (less than 1% free space) in the
1555 * scan.
1557 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1558 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1559 * MMAPLOCK.
1562 xfs_blockgc_free_dquots(
1563 struct xfs_mount *mp,
1564 struct xfs_dquot *udqp,
1565 struct xfs_dquot *gdqp,
1566 struct xfs_dquot *pdqp,
1567 unsigned int iwalk_flags)
1569 struct xfs_icwalk icw = {0};
1570 bool do_work = false;
1572 if (!udqp && !gdqp && !pdqp)
1573 return 0;
1576 * Run a scan to free blocks using the union filter to cover all
1577 * applicable quotas in a single scan.
1579 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1581 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1582 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1583 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1584 do_work = true;
1587 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1588 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1589 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1590 do_work = true;
1593 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1594 icw.icw_prid = pdqp->q_id;
1595 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1596 do_work = true;
1599 if (!do_work)
1600 return 0;
1602 return xfs_blockgc_free_space(mp, &icw);
1605 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1607 xfs_blockgc_free_quota(
1608 struct xfs_inode *ip,
1609 unsigned int iwalk_flags)
1611 return xfs_blockgc_free_dquots(ip->i_mount,
1612 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1613 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1614 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1617 /* XFS Inode Cache Walking Code */
1620 * The inode lookup is done in batches to keep the amount of lock traffic and
1621 * radix tree lookups to a minimum. The batch size is a trade off between
1622 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1623 * be too greedy.
1625 #define XFS_LOOKUP_BATCH 32
1629 * Decide if we want to grab this inode in anticipation of doing work towards
1630 * the goal.
1632 static inline bool
1633 xfs_icwalk_igrab(
1634 enum xfs_icwalk_goal goal,
1635 struct xfs_inode *ip,
1636 struct xfs_icwalk *icw)
1638 switch (goal) {
1639 case XFS_ICWALK_BLOCKGC:
1640 return xfs_blockgc_igrab(ip);
1641 case XFS_ICWALK_RECLAIM:
1642 return xfs_reclaim_igrab(ip, icw);
1643 default:
1644 return false;
1649 * Process an inode. Each processing function must handle any state changes
1650 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1652 static inline int
1653 xfs_icwalk_process_inode(
1654 enum xfs_icwalk_goal goal,
1655 struct xfs_inode *ip,
1656 struct xfs_perag *pag,
1657 struct xfs_icwalk *icw)
1659 int error = 0;
1661 switch (goal) {
1662 case XFS_ICWALK_BLOCKGC:
1663 error = xfs_blockgc_scan_inode(ip, icw);
1664 break;
1665 case XFS_ICWALK_RECLAIM:
1666 xfs_reclaim_inode(ip, pag);
1667 break;
1669 return error;
1673 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1674 * process them in some manner.
1676 static int
1677 xfs_icwalk_ag(
1678 struct xfs_perag *pag,
1679 enum xfs_icwalk_goal goal,
1680 struct xfs_icwalk *icw)
1682 struct xfs_mount *mp = pag->pag_mount;
1683 uint32_t first_index;
1684 int last_error = 0;
1685 int skipped;
1686 bool done;
1687 int nr_found;
1689 restart:
1690 done = false;
1691 skipped = 0;
1692 if (goal == XFS_ICWALK_RECLAIM)
1693 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1694 else
1695 first_index = 0;
1696 nr_found = 0;
1697 do {
1698 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1699 int error = 0;
1700 int i;
1702 rcu_read_lock();
1704 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1705 (void **) batch, first_index,
1706 XFS_LOOKUP_BATCH, goal);
1707 if (!nr_found) {
1708 done = true;
1709 rcu_read_unlock();
1710 break;
1714 * Grab the inodes before we drop the lock. if we found
1715 * nothing, nr == 0 and the loop will be skipped.
1717 for (i = 0; i < nr_found; i++) {
1718 struct xfs_inode *ip = batch[i];
1720 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1721 batch[i] = NULL;
1724 * Update the index for the next lookup. Catch
1725 * overflows into the next AG range which can occur if
1726 * we have inodes in the last block of the AG and we
1727 * are currently pointing to the last inode.
1729 * Because we may see inodes that are from the wrong AG
1730 * due to RCU freeing and reallocation, only update the
1731 * index if it lies in this AG. It was a race that lead
1732 * us to see this inode, so another lookup from the
1733 * same index will not find it again.
1735 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1736 continue;
1737 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1738 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1739 done = true;
1742 /* unlock now we've grabbed the inodes. */
1743 rcu_read_unlock();
1745 for (i = 0; i < nr_found; i++) {
1746 if (!batch[i])
1747 continue;
1748 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1749 icw);
1750 if (error == -EAGAIN) {
1751 skipped++;
1752 continue;
1754 if (error && last_error != -EFSCORRUPTED)
1755 last_error = error;
1758 /* bail out if the filesystem is corrupted. */
1759 if (error == -EFSCORRUPTED)
1760 break;
1762 cond_resched();
1764 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1765 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1766 if (icw->icw_scan_limit <= 0)
1767 break;
1769 } while (nr_found && !done);
1771 if (goal == XFS_ICWALK_RECLAIM) {
1772 if (done)
1773 first_index = 0;
1774 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1777 if (skipped) {
1778 delay(1);
1779 goto restart;
1781 return last_error;
1784 /* Walk all incore inodes to achieve a given goal. */
1785 static int
1786 xfs_icwalk(
1787 struct xfs_mount *mp,
1788 enum xfs_icwalk_goal goal,
1789 struct xfs_icwalk *icw)
1791 struct xfs_perag *pag = NULL;
1792 int error = 0;
1793 int last_error = 0;
1795 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
1796 error = xfs_icwalk_ag(pag, goal, icw);
1797 if (error) {
1798 last_error = error;
1799 if (error == -EFSCORRUPTED) {
1800 xfs_perag_rele(pag);
1801 break;
1805 return last_error;
1806 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1809 #ifdef DEBUG
1810 static void
1811 xfs_check_delalloc(
1812 struct xfs_inode *ip,
1813 int whichfork)
1815 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1816 struct xfs_bmbt_irec got;
1817 struct xfs_iext_cursor icur;
1819 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1820 return;
1821 do {
1822 if (isnullstartblock(got.br_startblock)) {
1823 xfs_warn(ip->i_mount,
1824 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1825 ip->i_ino,
1826 whichfork == XFS_DATA_FORK ? "data" : "cow",
1827 got.br_startoff, got.br_blockcount);
1829 } while (xfs_iext_next_extent(ifp, &icur, &got));
1831 #else
1832 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1833 #endif
1835 /* Schedule the inode for reclaim. */
1836 static void
1837 xfs_inodegc_set_reclaimable(
1838 struct xfs_inode *ip)
1840 struct xfs_mount *mp = ip->i_mount;
1841 struct xfs_perag *pag;
1843 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1844 xfs_check_delalloc(ip, XFS_DATA_FORK);
1845 xfs_check_delalloc(ip, XFS_COW_FORK);
1846 ASSERT(0);
1849 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1850 spin_lock(&pag->pag_ici_lock);
1851 spin_lock(&ip->i_flags_lock);
1853 trace_xfs_inode_set_reclaimable(ip);
1854 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1855 ip->i_flags |= XFS_IRECLAIMABLE;
1856 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1857 XFS_ICI_RECLAIM_TAG);
1859 spin_unlock(&ip->i_flags_lock);
1860 spin_unlock(&pag->pag_ici_lock);
1861 xfs_perag_put(pag);
1865 * Free all speculative preallocations and possibly even the inode itself.
1866 * This is the last chance to make changes to an otherwise unreferenced file
1867 * before incore reclamation happens.
1869 static int
1870 xfs_inodegc_inactivate(
1871 struct xfs_inode *ip)
1873 int error;
1875 trace_xfs_inode_inactivating(ip);
1876 error = xfs_inactive(ip);
1877 xfs_inodegc_set_reclaimable(ip);
1878 return error;
1882 void
1883 xfs_inodegc_worker(
1884 struct work_struct *work)
1886 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1887 struct xfs_inodegc, work);
1888 struct llist_node *node = llist_del_all(&gc->list);
1889 struct xfs_inode *ip, *n;
1890 struct xfs_mount *mp = gc->mp;
1891 unsigned int nofs_flag;
1894 * Clear the cpu mask bit and ensure that we have seen the latest
1895 * update of the gc structure associated with this CPU. This matches
1896 * with the release semantics used when setting the cpumask bit in
1897 * xfs_inodegc_queue.
1899 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1900 smp_mb__after_atomic();
1902 WRITE_ONCE(gc->items, 0);
1904 if (!node)
1905 return;
1908 * We can allocate memory here while doing writeback on behalf of
1909 * memory reclaim. To avoid memory allocation deadlocks set the
1910 * task-wide nofs context for the following operations.
1912 nofs_flag = memalloc_nofs_save();
1914 ip = llist_entry(node, struct xfs_inode, i_gclist);
1915 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1917 WRITE_ONCE(gc->shrinker_hits, 0);
1918 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1919 int error;
1921 xfs_iflags_set(ip, XFS_INACTIVATING);
1922 error = xfs_inodegc_inactivate(ip);
1923 if (error && !gc->error)
1924 gc->error = error;
1927 memalloc_nofs_restore(nofs_flag);
1931 * Expedite all pending inodegc work to run immediately. This does not wait for
1932 * completion of the work.
1934 void
1935 xfs_inodegc_push(
1936 struct xfs_mount *mp)
1938 if (!xfs_is_inodegc_enabled(mp))
1939 return;
1940 trace_xfs_inodegc_push(mp, __return_address);
1941 xfs_inodegc_queue_all(mp);
1945 * Force all currently queued inode inactivation work to run immediately and
1946 * wait for the work to finish.
1949 xfs_inodegc_flush(
1950 struct xfs_mount *mp)
1952 xfs_inodegc_push(mp);
1953 trace_xfs_inodegc_flush(mp, __return_address);
1954 return xfs_inodegc_wait_all(mp);
1958 * Flush all the pending work and then disable the inode inactivation background
1959 * workers and wait for them to stop. Caller must hold sb->s_umount to
1960 * coordinate changes in the inodegc_enabled state.
1962 void
1963 xfs_inodegc_stop(
1964 struct xfs_mount *mp)
1966 bool rerun;
1968 if (!xfs_clear_inodegc_enabled(mp))
1969 return;
1972 * Drain all pending inodegc work, including inodes that could be
1973 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1974 * threads that sample the inodegc state just prior to us clearing it.
1975 * The inodegc flag state prevents new threads from queuing more
1976 * inodes, so we queue pending work items and flush the workqueue until
1977 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1978 * here because it does not allow other unserialized mechanisms to
1979 * reschedule inodegc work while this draining is in progress.
1981 xfs_inodegc_queue_all(mp);
1982 do {
1983 flush_workqueue(mp->m_inodegc_wq);
1984 rerun = xfs_inodegc_queue_all(mp);
1985 } while (rerun);
1987 trace_xfs_inodegc_stop(mp, __return_address);
1991 * Enable the inode inactivation background workers and schedule deferred inode
1992 * inactivation work if there is any. Caller must hold sb->s_umount to
1993 * coordinate changes in the inodegc_enabled state.
1995 void
1996 xfs_inodegc_start(
1997 struct xfs_mount *mp)
1999 if (xfs_set_inodegc_enabled(mp))
2000 return;
2002 trace_xfs_inodegc_start(mp, __return_address);
2003 xfs_inodegc_queue_all(mp);
2006 #ifdef CONFIG_XFS_RT
2007 static inline bool
2008 xfs_inodegc_want_queue_rt_file(
2009 struct xfs_inode *ip)
2011 struct xfs_mount *mp = ip->i_mount;
2013 if (!XFS_IS_REALTIME_INODE(ip))
2014 return false;
2016 if (__percpu_counter_compare(&mp->m_frextents,
2017 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
2018 XFS_FDBLOCKS_BATCH) < 0)
2019 return true;
2021 return false;
2023 #else
2024 # define xfs_inodegc_want_queue_rt_file(ip) (false)
2025 #endif /* CONFIG_XFS_RT */
2028 * Schedule the inactivation worker when:
2030 * - We've accumulated more than one inode cluster buffer's worth of inodes.
2031 * - There is less than 5% free space left.
2032 * - Any of the quotas for this inode are near an enforcement limit.
2034 static inline bool
2035 xfs_inodegc_want_queue_work(
2036 struct xfs_inode *ip,
2037 unsigned int items)
2039 struct xfs_mount *mp = ip->i_mount;
2041 if (items > mp->m_ino_geo.inodes_per_cluster)
2042 return true;
2044 if (__percpu_counter_compare(&mp->m_fdblocks,
2045 mp->m_low_space[XFS_LOWSP_5_PCNT],
2046 XFS_FDBLOCKS_BATCH) < 0)
2047 return true;
2049 if (xfs_inodegc_want_queue_rt_file(ip))
2050 return true;
2052 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2053 return true;
2055 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2056 return true;
2058 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2059 return true;
2061 return false;
2065 * Upper bound on the number of inodes in each AG that can be queued for
2066 * inactivation at any given time, to avoid monopolizing the workqueue.
2068 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2071 * Make the frontend wait for inactivations when:
2073 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2074 * - The queue depth exceeds the maximum allowable percpu backlog.
2076 * Note: If we are in a NOFS context here (e.g. current thread is running a
2077 * transaction) the we don't want to block here as inodegc progress may require
2078 * filesystem resources we hold to make progress and that could result in a
2079 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2081 static inline bool
2082 xfs_inodegc_want_flush_work(
2083 struct xfs_inode *ip,
2084 unsigned int items,
2085 unsigned int shrinker_hits)
2087 if (current->flags & PF_MEMALLOC_NOFS)
2088 return false;
2090 if (shrinker_hits > 0)
2091 return true;
2093 if (items > XFS_INODEGC_MAX_BACKLOG)
2094 return true;
2096 return false;
2100 * Queue a background inactivation worker if there are inodes that need to be
2101 * inactivated and higher level xfs code hasn't disabled the background
2102 * workers.
2104 static void
2105 xfs_inodegc_queue(
2106 struct xfs_inode *ip)
2108 struct xfs_mount *mp = ip->i_mount;
2109 struct xfs_inodegc *gc;
2110 int items;
2111 unsigned int shrinker_hits;
2112 unsigned int cpu_nr;
2113 unsigned long queue_delay = 1;
2115 trace_xfs_inode_set_need_inactive(ip);
2116 spin_lock(&ip->i_flags_lock);
2117 ip->i_flags |= XFS_NEED_INACTIVE;
2118 spin_unlock(&ip->i_flags_lock);
2120 cpu_nr = get_cpu();
2121 gc = this_cpu_ptr(mp->m_inodegc);
2122 llist_add(&ip->i_gclist, &gc->list);
2123 items = READ_ONCE(gc->items);
2124 WRITE_ONCE(gc->items, items + 1);
2125 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2128 * Ensure the list add is always seen by anyone who finds the cpumask
2129 * bit set. This effectively gives the cpumask bit set operation
2130 * release ordering semantics.
2132 smp_mb__before_atomic();
2133 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2134 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2137 * We queue the work while holding the current CPU so that the work
2138 * is scheduled to run on this CPU.
2140 if (!xfs_is_inodegc_enabled(mp)) {
2141 put_cpu();
2142 return;
2145 if (xfs_inodegc_want_queue_work(ip, items))
2146 queue_delay = 0;
2148 trace_xfs_inodegc_queue(mp, __return_address);
2149 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2150 queue_delay);
2151 put_cpu();
2153 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2154 trace_xfs_inodegc_throttle(mp, __return_address);
2155 flush_delayed_work(&gc->work);
2160 * We set the inode flag atomically with the radix tree tag. Once we get tag
2161 * lookups on the radix tree, this inode flag can go away.
2163 * We always use background reclaim here because even if the inode is clean, it
2164 * still may be under IO and hence we have wait for IO completion to occur
2165 * before we can reclaim the inode. The background reclaim path handles this
2166 * more efficiently than we can here, so simply let background reclaim tear down
2167 * all inodes.
2169 void
2170 xfs_inode_mark_reclaimable(
2171 struct xfs_inode *ip)
2173 struct xfs_mount *mp = ip->i_mount;
2174 bool need_inactive;
2176 XFS_STATS_INC(mp, vn_reclaim);
2179 * We should never get here with any of the reclaim flags already set.
2181 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2183 need_inactive = xfs_inode_needs_inactive(ip);
2184 if (need_inactive) {
2185 xfs_inodegc_queue(ip);
2186 return;
2189 /* Going straight to reclaim, so drop the dquots. */
2190 xfs_qm_dqdetach(ip);
2191 xfs_inodegc_set_reclaimable(ip);
2195 * Register a phony shrinker so that we can run background inodegc sooner when
2196 * there's memory pressure. Inactivation does not itself free any memory but
2197 * it does make inodes reclaimable, which eventually frees memory.
2199 * The count function, seek value, and batch value are crafted to trigger the
2200 * scan function during the second round of scanning. Hopefully this means
2201 * that we reclaimed enough memory that initiating metadata transactions won't
2202 * make things worse.
2204 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2205 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2207 static unsigned long
2208 xfs_inodegc_shrinker_count(
2209 struct shrinker *shrink,
2210 struct shrink_control *sc)
2212 struct xfs_mount *mp = shrink->private_data;
2213 struct xfs_inodegc *gc;
2214 int cpu;
2216 if (!xfs_is_inodegc_enabled(mp))
2217 return 0;
2219 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2220 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2221 if (!llist_empty(&gc->list))
2222 return XFS_INODEGC_SHRINKER_COUNT;
2225 return 0;
2228 static unsigned long
2229 xfs_inodegc_shrinker_scan(
2230 struct shrinker *shrink,
2231 struct shrink_control *sc)
2233 struct xfs_mount *mp = shrink->private_data;
2234 struct xfs_inodegc *gc;
2235 int cpu;
2236 bool no_items = true;
2238 if (!xfs_is_inodegc_enabled(mp))
2239 return SHRINK_STOP;
2241 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2243 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2244 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2245 if (!llist_empty(&gc->list)) {
2246 unsigned int h = READ_ONCE(gc->shrinker_hits);
2248 WRITE_ONCE(gc->shrinker_hits, h + 1);
2249 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2250 no_items = false;
2255 * If there are no inodes to inactivate, we don't want the shrinker
2256 * to think there's deferred work to call us back about.
2258 if (no_items)
2259 return LONG_MAX;
2261 return SHRINK_STOP;
2264 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2266 xfs_inodegc_register_shrinker(
2267 struct xfs_mount *mp)
2269 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2270 "xfs-inodegc:%s",
2271 mp->m_super->s_id);
2272 if (!mp->m_inodegc_shrinker)
2273 return -ENOMEM;
2275 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2276 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2277 mp->m_inodegc_shrinker->seeks = 0;
2278 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2279 mp->m_inodegc_shrinker->private_data = mp;
2281 shrinker_register(mp->m_inodegc_shrinker);
2283 return 0;