1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <asm/platform_early.h>
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
72 enum sh_cmt_model model
;
74 unsigned int channels_mask
;
76 unsigned long width
; /* 16 or 32 bit version of hardware block */
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control
)(void __iomem
*base
, unsigned long offs
);
82 void (*write_control
)(void __iomem
*base
, unsigned long offs
,
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count
)(void __iomem
*base
, unsigned long offs
);
87 void (*write_count
)(void __iomem
*base
, unsigned long offs
, u32 value
);
90 struct sh_cmt_channel
{
91 struct sh_cmt_device
*cmt
;
93 unsigned int index
; /* Index in the documentation */
94 unsigned int hwidx
; /* Real hardware index */
96 void __iomem
*iostart
;
99 unsigned int timer_bit
;
102 u32 next_match_value
;
105 struct clock_event_device ced
;
106 struct clocksource cs
;
111 struct sh_cmt_device
{
112 struct platform_device
*pdev
;
114 const struct sh_cmt_info
*info
;
116 void __iomem
*mapbase
;
119 unsigned int reg_delay
;
121 raw_spinlock_t lock
; /* Protect the shared start/stop register */
123 struct sh_cmt_channel
*channels
;
124 unsigned int num_channels
;
125 unsigned int hw_channels
;
128 bool has_clocksource
;
131 #define SH_CMT16_CMCSR_CMF (1 << 7)
132 #define SH_CMT16_CMCSR_CMIE (1 << 6)
133 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
134 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
135 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
136 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139 #define SH_CMT32_CMCSR_CMF (1 << 15)
140 #define SH_CMT32_CMCSR_OVF (1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
142 #define SH_CMT32_CMCSR_STTF (1 << 12)
143 #define SH_CMT32_CMCSR_STPF (1 << 11)
144 #define SH_CMT32_CMCSR_SSIE (1 << 10)
145 #define SH_CMT32_CMCSR_CMS (1 << 9)
146 #define SH_CMT32_CMCSR_CMM (1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159 static u32
sh_cmt_read16(void __iomem
*base
, unsigned long offs
)
161 return ioread16(base
+ (offs
<< 1));
164 static u32
sh_cmt_read32(void __iomem
*base
, unsigned long offs
)
166 return ioread32(base
+ (offs
<< 2));
169 static void sh_cmt_write16(void __iomem
*base
, unsigned long offs
, u32 value
)
171 iowrite16(value
, base
+ (offs
<< 1));
174 static void sh_cmt_write32(void __iomem
*base
, unsigned long offs
, u32 value
)
176 iowrite32(value
, base
+ (offs
<< 2));
179 static const struct sh_cmt_info sh_cmt_info
[] = {
181 .model
= SH_CMT_16BIT
,
183 .overflow_bit
= SH_CMT16_CMCSR_CMF
,
184 .clear_bits
= ~SH_CMT16_CMCSR_CMF
,
185 .read_control
= sh_cmt_read16
,
186 .write_control
= sh_cmt_write16
,
187 .read_count
= sh_cmt_read16
,
188 .write_count
= sh_cmt_write16
,
191 .model
= SH_CMT_32BIT
,
193 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
194 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
195 .read_control
= sh_cmt_read16
,
196 .write_control
= sh_cmt_write16
,
197 .read_count
= sh_cmt_read32
,
198 .write_count
= sh_cmt_write32
,
201 .model
= SH_CMT_48BIT
,
202 .channels_mask
= 0x3f,
204 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
205 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
206 .read_control
= sh_cmt_read32
,
207 .write_control
= sh_cmt_write32
,
208 .read_count
= sh_cmt_read32
,
209 .write_count
= sh_cmt_write32
,
211 [SH_CMT0_RCAR_GEN2
] = {
212 .model
= SH_CMT0_RCAR_GEN2
,
213 .channels_mask
= 0x60,
215 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
216 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
217 .read_control
= sh_cmt_read32
,
218 .write_control
= sh_cmt_write32
,
219 .read_count
= sh_cmt_read32
,
220 .write_count
= sh_cmt_write32
,
222 [SH_CMT1_RCAR_GEN2
] = {
223 .model
= SH_CMT1_RCAR_GEN2
,
224 .channels_mask
= 0xff,
226 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
227 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
228 .read_control
= sh_cmt_read32
,
229 .write_control
= sh_cmt_write32
,
230 .read_count
= sh_cmt_read32
,
231 .write_count
= sh_cmt_write32
,
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
239 #define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
241 static inline u32
sh_cmt_read_cmstr(struct sh_cmt_channel
*ch
)
244 return ch
->cmt
->info
->read_control(ch
->iostart
, 0);
246 return ch
->cmt
->info
->read_control(ch
->cmt
->mapbase
, 0);
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel
*ch
, u32 value
)
251 u32 old_value
= sh_cmt_read_cmstr(ch
);
253 if (value
!= old_value
) {
255 ch
->cmt
->info
->write_control(ch
->iostart
, 0, value
);
256 udelay(ch
->cmt
->reg_delay
);
258 ch
->cmt
->info
->write_control(ch
->cmt
->mapbase
, 0, value
);
259 udelay(ch
->cmt
->reg_delay
);
264 static inline u32
sh_cmt_read_cmcsr(struct sh_cmt_channel
*ch
)
266 return ch
->cmt
->info
->read_control(ch
->ioctrl
, CMCSR
);
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel
*ch
, u32 value
)
271 u32 old_value
= sh_cmt_read_cmcsr(ch
);
273 if (value
!= old_value
) {
274 ch
->cmt
->info
->write_control(ch
->ioctrl
, CMCSR
, value
);
275 udelay(ch
->cmt
->reg_delay
);
279 static inline u32
sh_cmt_read_cmcnt(struct sh_cmt_channel
*ch
)
281 return ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCNT
);
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel
*ch
, u32 value
)
286 /* Tests showed that we need to wait 3 clocks here */
287 unsigned int cmcnt_delay
= DIV_ROUND_UP(3 * ch
->cmt
->reg_delay
, 2);
290 if (ch
->cmt
->info
->model
> SH_CMT_16BIT
) {
291 int ret
= read_poll_timeout_atomic(sh_cmt_read_cmcsr
, reg
,
292 !(reg
& SH_CMT32_CMCSR_WRFLG
),
293 1, cmcnt_delay
, false, ch
);
298 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCNT
, value
);
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel
*ch
, u32 value
)
305 u32 old_value
= ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCOR
);
307 if (value
!= old_value
) {
308 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCOR
, value
);
309 udelay(ch
->cmt
->reg_delay
);
313 static u32
sh_cmt_get_counter(struct sh_cmt_channel
*ch
, u32
*has_wrapped
)
318 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
320 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
323 v1
= sh_cmt_read_cmcnt(ch
);
324 v2
= sh_cmt_read_cmcnt(ch
);
325 v3
= sh_cmt_read_cmcnt(ch
);
326 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
327 } while (unlikely((o1
!= o2
) || (v1
> v2
&& v1
< v3
)
328 || (v2
> v3
&& v2
< v1
) || (v3
> v1
&& v3
< v2
)));
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel
*ch
, int start
)
339 /* start stop register shared by multiple timer channels */
340 raw_spin_lock_irqsave(&ch
->cmt
->lock
, flags
);
341 value
= sh_cmt_read_cmstr(ch
);
344 value
|= 1 << ch
->timer_bit
;
346 value
&= ~(1 << ch
->timer_bit
);
348 sh_cmt_write_cmstr(ch
, value
);
349 raw_spin_unlock_irqrestore(&ch
->cmt
->lock
, flags
);
352 static int sh_cmt_enable(struct sh_cmt_channel
*ch
)
356 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, true);
359 ret
= clk_enable(ch
->cmt
->clk
);
361 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot enable clock\n",
366 /* make sure channel is disabled */
367 sh_cmt_start_stop_ch(ch
, 0);
369 /* configure channel, periodic mode and maximum timeout */
370 if (ch
->cmt
->info
->width
== 16) {
371 sh_cmt_write_cmcsr(ch
, SH_CMT16_CMCSR_CMIE
|
372 SH_CMT16_CMCSR_CKS512
);
374 u32 cmtout
= ch
->cmt
->info
->model
<= SH_CMT_48BIT
?
375 SH_CMT32_CMCSR_CMTOUT_IE
: 0;
376 sh_cmt_write_cmcsr(ch
, cmtout
| SH_CMT32_CMCSR_CMM
|
377 SH_CMT32_CMCSR_CMR_IRQ
|
378 SH_CMT32_CMCSR_CKS_RCLK8
);
381 sh_cmt_write_cmcor(ch
, 0xffffffff);
382 ret
= sh_cmt_write_cmcnt(ch
, 0);
384 if (ret
|| sh_cmt_read_cmcnt(ch
)) {
385 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot clear CMCNT\n",
392 sh_cmt_start_stop_ch(ch
, 1);
396 clk_disable(ch
->cmt
->clk
);
402 static void sh_cmt_disable(struct sh_cmt_channel
*ch
)
404 /* disable channel */
405 sh_cmt_start_stop_ch(ch
, 0);
407 /* disable interrupts in CMT block */
408 sh_cmt_write_cmcsr(ch
, 0);
411 clk_disable(ch
->cmt
->clk
);
413 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, false);
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel
*ch
,
426 u32 value
= ch
->next_match_value
;
432 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
433 ch
->flags
|= FLAG_REPROGRAM
; /* force reprogram */
436 /* we're competing with the interrupt handler.
437 * -> let the interrupt handler reprogram the timer.
438 * -> interrupt number two handles the event.
440 ch
->flags
|= FLAG_SKIPEVENT
;
448 /* reprogram the timer hardware,
449 * but don't save the new match value yet.
451 new_match
= now
+ value
+ delay
;
452 if (new_match
> ch
->max_match_value
)
453 new_match
= ch
->max_match_value
;
455 sh_cmt_write_cmcor(ch
, new_match
);
457 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
458 if (has_wrapped
&& (new_match
> ch
->match_value
)) {
459 /* we are changing to a greater match value,
460 * so this wrap must be caused by the counter
461 * matching the old value.
462 * -> first interrupt reprograms the timer.
463 * -> interrupt number two handles the event.
465 ch
->flags
|= FLAG_SKIPEVENT
;
470 /* we are changing to a smaller match value,
471 * so the wrap must be caused by the counter
472 * matching the new value.
473 * -> save programmed match value.
474 * -> let isr handle the event.
476 ch
->match_value
= new_match
;
480 /* be safe: verify hardware settings */
481 if (now
< new_match
) {
482 /* timer value is below match value, all good.
483 * this makes sure we won't miss any match events.
484 * -> save programmed match value.
485 * -> let isr handle the event.
487 ch
->match_value
= new_match
;
491 /* the counter has reached a value greater
492 * than our new match value. and since the
493 * has_wrapped flag isn't set we must have
494 * programmed a too close event.
495 * -> increase delay and retry.
503 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: too long delay\n",
509 static void __sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
511 if (delta
> ch
->max_match_value
)
512 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: delta out of range\n",
515 ch
->next_match_value
= delta
;
516 sh_cmt_clock_event_program_verify(ch
, 0);
519 static void sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
523 raw_spin_lock_irqsave(&ch
->lock
, flags
);
524 __sh_cmt_set_next(ch
, delta
);
525 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
528 static irqreturn_t
sh_cmt_interrupt(int irq
, void *dev_id
)
530 struct sh_cmt_channel
*ch
= dev_id
;
534 sh_cmt_write_cmcsr(ch
, sh_cmt_read_cmcsr(ch
) &
535 ch
->cmt
->info
->clear_bits
);
537 /* update clock source counter to begin with if enabled
538 * the wrap flag should be cleared by the timer specific
539 * isr before we end up here.
541 if (ch
->flags
& FLAG_CLOCKSOURCE
)
542 ch
->total_cycles
+= ch
->match_value
+ 1;
544 if (!(ch
->flags
& FLAG_REPROGRAM
))
545 ch
->next_match_value
= ch
->max_match_value
;
547 ch
->flags
|= FLAG_IRQCONTEXT
;
549 if (ch
->flags
& FLAG_CLOCKEVENT
) {
550 if (!(ch
->flags
& FLAG_SKIPEVENT
)) {
551 if (clockevent_state_oneshot(&ch
->ced
)) {
552 ch
->next_match_value
= ch
->max_match_value
;
553 ch
->flags
|= FLAG_REPROGRAM
;
556 ch
->ced
.event_handler(&ch
->ced
);
560 ch
->flags
&= ~FLAG_SKIPEVENT
;
562 raw_spin_lock_irqsave(&ch
->lock
, flags
);
564 if (ch
->flags
& FLAG_REPROGRAM
) {
565 ch
->flags
&= ~FLAG_REPROGRAM
;
566 sh_cmt_clock_event_program_verify(ch
, 1);
568 if (ch
->flags
& FLAG_CLOCKEVENT
)
569 if ((clockevent_state_shutdown(&ch
->ced
))
570 || (ch
->match_value
== ch
->next_match_value
))
571 ch
->flags
&= ~FLAG_REPROGRAM
;
574 ch
->flags
&= ~FLAG_IRQCONTEXT
;
576 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
581 static int sh_cmt_start(struct sh_cmt_channel
*ch
, unsigned long flag
)
586 if (flag
& FLAG_CLOCKSOURCE
)
587 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
589 raw_spin_lock_irqsave(&ch
->lock
, flags
);
591 if (!(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
))) {
592 if (flag
& FLAG_CLOCKEVENT
)
593 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
594 ret
= sh_cmt_enable(ch
);
601 /* setup timeout if no clockevent */
602 if (ch
->cmt
->num_channels
== 1 &&
603 flag
== FLAG_CLOCKSOURCE
&& (!(ch
->flags
& FLAG_CLOCKEVENT
)))
604 __sh_cmt_set_next(ch
, ch
->max_match_value
);
606 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
611 static void sh_cmt_stop(struct sh_cmt_channel
*ch
, unsigned long flag
)
616 raw_spin_lock_irqsave(&ch
->lock
, flags
);
618 f
= ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
);
621 if (f
&& !(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
))) {
623 if (flag
& FLAG_CLOCKEVENT
)
624 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
627 /* adjust the timeout to maximum if only clocksource left */
628 if ((flag
== FLAG_CLOCKEVENT
) && (ch
->flags
& FLAG_CLOCKSOURCE
))
629 __sh_cmt_set_next(ch
, ch
->max_match_value
);
631 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
633 if (flag
& FLAG_CLOCKSOURCE
)
634 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
637 static struct sh_cmt_channel
*cs_to_sh_cmt(struct clocksource
*cs
)
639 return container_of(cs
, struct sh_cmt_channel
, cs
);
642 static u64
sh_cmt_clocksource_read(struct clocksource
*cs
)
644 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
647 if (ch
->cmt
->num_channels
== 1) {
652 raw_spin_lock_irqsave(&ch
->lock
, flags
);
653 value
= ch
->total_cycles
;
654 raw
= sh_cmt_get_counter(ch
, &has_wrapped
);
656 if (unlikely(has_wrapped
))
657 raw
+= ch
->match_value
+ 1;
658 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
663 return sh_cmt_get_counter(ch
, &has_wrapped
);
666 static int sh_cmt_clocksource_enable(struct clocksource
*cs
)
669 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
671 WARN_ON(ch
->cs_enabled
);
673 ch
->total_cycles
= 0;
675 ret
= sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
677 ch
->cs_enabled
= true;
682 static void sh_cmt_clocksource_disable(struct clocksource
*cs
)
684 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
686 WARN_ON(!ch
->cs_enabled
);
688 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
689 ch
->cs_enabled
= false;
692 static void sh_cmt_clocksource_suspend(struct clocksource
*cs
)
694 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
699 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
700 dev_pm_genpd_suspend(&ch
->cmt
->pdev
->dev
);
703 static void sh_cmt_clocksource_resume(struct clocksource
*cs
)
705 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
710 dev_pm_genpd_resume(&ch
->cmt
->pdev
->dev
);
711 sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
714 static int sh_cmt_register_clocksource(struct sh_cmt_channel
*ch
,
717 struct clocksource
*cs
= &ch
->cs
;
721 cs
->read
= sh_cmt_clocksource_read
;
722 cs
->enable
= sh_cmt_clocksource_enable
;
723 cs
->disable
= sh_cmt_clocksource_disable
;
724 cs
->suspend
= sh_cmt_clocksource_suspend
;
725 cs
->resume
= sh_cmt_clocksource_resume
;
726 cs
->mask
= CLOCKSOURCE_MASK(ch
->cmt
->info
->width
);
727 cs
->flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
729 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used as clock source\n",
732 clocksource_register_hz(cs
, ch
->cmt
->rate
);
736 static struct sh_cmt_channel
*ced_to_sh_cmt(struct clock_event_device
*ced
)
738 return container_of(ced
, struct sh_cmt_channel
, ced
);
741 static void sh_cmt_clock_event_start(struct sh_cmt_channel
*ch
, int periodic
)
743 sh_cmt_start(ch
, FLAG_CLOCKEVENT
);
746 sh_cmt_set_next(ch
, ((ch
->cmt
->rate
+ HZ
/2) / HZ
) - 1);
748 sh_cmt_set_next(ch
, ch
->max_match_value
);
751 static int sh_cmt_clock_event_shutdown(struct clock_event_device
*ced
)
753 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
755 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
759 static int sh_cmt_clock_event_set_state(struct clock_event_device
*ced
,
762 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
764 /* deal with old setting first */
765 if (clockevent_state_oneshot(ced
) || clockevent_state_periodic(ced
))
766 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
768 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for %s clock events\n",
769 ch
->index
, periodic
? "periodic" : "oneshot");
770 sh_cmt_clock_event_start(ch
, periodic
);
774 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device
*ced
)
776 return sh_cmt_clock_event_set_state(ced
, 0);
779 static int sh_cmt_clock_event_set_periodic(struct clock_event_device
*ced
)
781 return sh_cmt_clock_event_set_state(ced
, 1);
784 static int sh_cmt_clock_event_next(unsigned long delta
,
785 struct clock_event_device
*ced
)
787 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
790 BUG_ON(!clockevent_state_oneshot(ced
));
792 raw_spin_lock_irqsave(&ch
->lock
, flags
);
794 if (likely(ch
->flags
& FLAG_IRQCONTEXT
))
795 ch
->next_match_value
= delta
- 1;
797 __sh_cmt_set_next(ch
, delta
- 1);
799 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
804 static void sh_cmt_clock_event_suspend(struct clock_event_device
*ced
)
806 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
808 dev_pm_genpd_suspend(&ch
->cmt
->pdev
->dev
);
809 clk_unprepare(ch
->cmt
->clk
);
812 static void sh_cmt_clock_event_resume(struct clock_event_device
*ced
)
814 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
816 clk_prepare(ch
->cmt
->clk
);
817 dev_pm_genpd_resume(&ch
->cmt
->pdev
->dev
);
820 static int sh_cmt_register_clockevent(struct sh_cmt_channel
*ch
,
823 struct clock_event_device
*ced
= &ch
->ced
;
827 irq
= platform_get_irq(ch
->cmt
->pdev
, ch
->index
);
831 ret
= request_irq(irq
, sh_cmt_interrupt
,
832 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
833 dev_name(&ch
->cmt
->pdev
->dev
), ch
);
835 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to request irq %d\n",
841 ced
->features
= CLOCK_EVT_FEAT_PERIODIC
;
842 ced
->features
|= CLOCK_EVT_FEAT_ONESHOT
;
844 ced
->cpumask
= cpu_possible_mask
;
845 ced
->set_next_event
= sh_cmt_clock_event_next
;
846 ced
->set_state_shutdown
= sh_cmt_clock_event_shutdown
;
847 ced
->set_state_periodic
= sh_cmt_clock_event_set_periodic
;
848 ced
->set_state_oneshot
= sh_cmt_clock_event_set_oneshot
;
849 ced
->suspend
= sh_cmt_clock_event_suspend
;
850 ced
->resume
= sh_cmt_clock_event_resume
;
852 /* TODO: calculate good shift from rate and counter bit width */
854 ced
->mult
= div_sc(ch
->cmt
->rate
, NSEC_PER_SEC
, ced
->shift
);
855 ced
->max_delta_ns
= clockevent_delta2ns(ch
->max_match_value
, ced
);
856 ced
->max_delta_ticks
= ch
->max_match_value
;
857 ced
->min_delta_ns
= clockevent_delta2ns(0x1f, ced
);
858 ced
->min_delta_ticks
= 0x1f;
860 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for clock events\n",
862 clockevents_register_device(ced
);
867 static int sh_cmt_register(struct sh_cmt_channel
*ch
, const char *name
,
868 bool clockevent
, bool clocksource
)
873 ch
->cmt
->has_clockevent
= true;
874 ret
= sh_cmt_register_clockevent(ch
, name
);
880 ch
->cmt
->has_clocksource
= true;
881 sh_cmt_register_clocksource(ch
, name
);
887 static int sh_cmt_setup_channel(struct sh_cmt_channel
*ch
, unsigned int index
,
888 unsigned int hwidx
, bool clockevent
,
889 bool clocksource
, struct sh_cmt_device
*cmt
)
894 /* Skip unused channels. */
895 if (!clockevent
&& !clocksource
)
901 ch
->timer_bit
= hwidx
;
904 * Compute the address of the channel control register block. For the
905 * timers with a per-channel start/stop register, compute its address
908 switch (cmt
->info
->model
) {
910 ch
->ioctrl
= cmt
->mapbase
+ 2 + ch
->hwidx
* 6;
914 ch
->ioctrl
= cmt
->mapbase
+ 0x10 + ch
->hwidx
* 0x10;
916 case SH_CMT0_RCAR_GEN2
:
917 case SH_CMT1_RCAR_GEN2
:
918 ch
->iostart
= cmt
->mapbase
+ ch
->hwidx
* 0x100;
919 ch
->ioctrl
= ch
->iostart
+ 0x10;
922 /* Enable the clock supply to the channel */
923 value
= ioread32(cmt
->mapbase
+ CMCLKE
);
925 iowrite32(value
, cmt
->mapbase
+ CMCLKE
);
929 if (cmt
->info
->width
== (sizeof(ch
->max_match_value
) * 8))
930 ch
->max_match_value
= ~0;
932 ch
->max_match_value
= (1 << cmt
->info
->width
) - 1;
934 ch
->match_value
= ch
->max_match_value
;
935 raw_spin_lock_init(&ch
->lock
);
937 ret
= sh_cmt_register(ch
, dev_name(&cmt
->pdev
->dev
),
938 clockevent
, clocksource
);
940 dev_err(&cmt
->pdev
->dev
, "ch%u: registration failed\n",
944 ch
->cs_enabled
= false;
949 static int sh_cmt_map_memory(struct sh_cmt_device
*cmt
)
951 struct resource
*mem
;
953 mem
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
955 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
959 cmt
->mapbase
= ioremap(mem
->start
, resource_size(mem
));
960 if (cmt
->mapbase
== NULL
) {
961 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
968 static const struct platform_device_id sh_cmt_id_table
[] = {
969 { "sh-cmt-16", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_16BIT
] },
970 { "sh-cmt-32", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT
] },
973 MODULE_DEVICE_TABLE(platform
, sh_cmt_id_table
);
975 static const struct of_device_id sh_cmt_of_table
[] __maybe_unused
= {
977 /* deprecated, preserved for backward compatibility */
978 .compatible
= "renesas,cmt-48",
979 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
982 /* deprecated, preserved for backward compatibility */
983 .compatible
= "renesas,cmt-48-gen2",
984 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
987 .compatible
= "renesas,r8a7740-cmt1",
988 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
991 .compatible
= "renesas,sh73a0-cmt1",
992 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
995 .compatible
= "renesas,rcar-gen2-cmt0",
996 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
999 .compatible
= "renesas,rcar-gen2-cmt1",
1000 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
1003 .compatible
= "renesas,rcar-gen3-cmt0",
1004 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
1007 .compatible
= "renesas,rcar-gen3-cmt1",
1008 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
1011 .compatible
= "renesas,rcar-gen4-cmt0",
1012 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
1015 .compatible
= "renesas,rcar-gen4-cmt1",
1016 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
1020 MODULE_DEVICE_TABLE(of
, sh_cmt_of_table
);
1022 static int sh_cmt_setup(struct sh_cmt_device
*cmt
, struct platform_device
*pdev
)
1024 unsigned int mask
, i
;
1029 raw_spin_lock_init(&cmt
->lock
);
1031 if (IS_ENABLED(CONFIG_OF
) && pdev
->dev
.of_node
) {
1032 cmt
->info
= of_device_get_match_data(&pdev
->dev
);
1033 cmt
->hw_channels
= cmt
->info
->channels_mask
;
1034 } else if (pdev
->dev
.platform_data
) {
1035 struct sh_timer_config
*cfg
= pdev
->dev
.platform_data
;
1036 const struct platform_device_id
*id
= pdev
->id_entry
;
1038 cmt
->info
= (const struct sh_cmt_info
*)id
->driver_data
;
1039 cmt
->hw_channels
= cfg
->channels_mask
;
1041 dev_err(&cmt
->pdev
->dev
, "missing platform data\n");
1045 /* Get hold of clock. */
1046 cmt
->clk
= clk_get(&cmt
->pdev
->dev
, "fck");
1047 if (IS_ERR(cmt
->clk
)) {
1048 dev_err(&cmt
->pdev
->dev
, "cannot get clock\n");
1049 return PTR_ERR(cmt
->clk
);
1052 ret
= clk_prepare(cmt
->clk
);
1056 /* Determine clock rate. */
1057 ret
= clk_enable(cmt
->clk
);
1059 goto err_clk_unprepare
;
1061 rate
= clk_get_rate(cmt
->clk
);
1064 goto err_clk_disable
;
1067 /* We shall wait 2 input clks after register writes */
1068 if (cmt
->info
->model
>= SH_CMT_48BIT
)
1069 cmt
->reg_delay
= DIV_ROUND_UP(2UL * USEC_PER_SEC
, rate
);
1070 cmt
->rate
= rate
/ (cmt
->info
->width
== 16 ? 512 : 8);
1072 /* Map the memory resource(s). */
1073 ret
= sh_cmt_map_memory(cmt
);
1075 goto err_clk_disable
;
1077 /* Allocate and setup the channels. */
1078 cmt
->num_channels
= hweight8(cmt
->hw_channels
);
1079 cmt
->channels
= kcalloc(cmt
->num_channels
, sizeof(*cmt
->channels
),
1081 if (cmt
->channels
== NULL
) {
1087 * Use the first channel as a clock event device and the second channel
1088 * as a clock source. If only one channel is available use it for both.
1090 for (i
= 0, mask
= cmt
->hw_channels
; i
< cmt
->num_channels
; ++i
) {
1091 unsigned int hwidx
= ffs(mask
) - 1;
1092 bool clocksource
= i
== 1 || cmt
->num_channels
== 1;
1093 bool clockevent
= i
== 0;
1095 ret
= sh_cmt_setup_channel(&cmt
->channels
[i
], i
, hwidx
,
1096 clockevent
, clocksource
, cmt
);
1100 mask
&= ~(1 << hwidx
);
1103 clk_disable(cmt
->clk
);
1105 platform_set_drvdata(pdev
, cmt
);
1110 kfree(cmt
->channels
);
1111 iounmap(cmt
->mapbase
);
1113 clk_disable(cmt
->clk
);
1115 clk_unprepare(cmt
->clk
);
1121 static int sh_cmt_probe(struct platform_device
*pdev
)
1123 struct sh_cmt_device
*cmt
= platform_get_drvdata(pdev
);
1126 if (!is_sh_early_platform_device(pdev
)) {
1127 pm_runtime_set_active(&pdev
->dev
);
1128 pm_runtime_enable(&pdev
->dev
);
1132 dev_info(&pdev
->dev
, "kept as earlytimer\n");
1136 cmt
= kzalloc(sizeof(*cmt
), GFP_KERNEL
);
1140 ret
= sh_cmt_setup(cmt
, pdev
);
1143 pm_runtime_idle(&pdev
->dev
);
1146 if (is_sh_early_platform_device(pdev
))
1150 if (cmt
->has_clockevent
|| cmt
->has_clocksource
)
1151 pm_runtime_irq_safe(&pdev
->dev
);
1153 pm_runtime_idle(&pdev
->dev
);
1158 static struct platform_driver sh_cmt_device_driver
= {
1159 .probe
= sh_cmt_probe
,
1162 .of_match_table
= of_match_ptr(sh_cmt_of_table
),
1163 .suppress_bind_attrs
= true,
1165 .id_table
= sh_cmt_id_table
,
1168 static int __init
sh_cmt_init(void)
1170 return platform_driver_register(&sh_cmt_device_driver
);
1173 static void __exit
sh_cmt_exit(void)
1175 platform_driver_unregister(&sh_cmt_device_driver
);
1178 #ifdef CONFIG_SUPERH
1179 sh_early_platform_init("earlytimer", &sh_cmt_device_driver
);
1182 subsys_initcall(sh_cmt_init
);
1183 module_exit(sh_cmt_exit
);
1185 MODULE_AUTHOR("Magnus Damm");
1186 MODULE_DESCRIPTION("SuperH CMT Timer Driver");