1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Freescale MPC85xx, MPC83xx DMA Engine support
5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
8 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
12 * DMA engine driver for Freescale MPC8540 DMA controller, which is
13 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14 * The support for MPC8349 DMA controller is also added.
16 * This driver instructs the DMA controller to issue the PCI Read Multiple
17 * command for PCI read operations, instead of using the default PCI Read Line
18 * command. Please be aware that this setting may result in read pre-fetching
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/dmaengine.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/fsldma.h>
36 #include "dmaengine.h"
39 #define chan_dbg(chan, fmt, arg...) \
40 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
41 #define chan_err(chan, fmt, arg...) \
42 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
44 static const char msg_ld_oom
[] = "No free memory for link descriptor";
50 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
52 FSL_DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
55 static u32
get_sr(struct fsldma_chan
*chan
)
57 return FSL_DMA_IN(chan
, &chan
->regs
->sr
, 32);
60 static void set_mr(struct fsldma_chan
*chan
, u32 val
)
62 FSL_DMA_OUT(chan
, &chan
->regs
->mr
, val
, 32);
65 static u32
get_mr(struct fsldma_chan
*chan
)
67 return FSL_DMA_IN(chan
, &chan
->regs
->mr
, 32);
70 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
72 FSL_DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
75 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
77 return FSL_DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
80 static void set_bcr(struct fsldma_chan
*chan
, u32 val
)
82 FSL_DMA_OUT(chan
, &chan
->regs
->bcr
, val
, 32);
85 static u32
get_bcr(struct fsldma_chan
*chan
)
87 return FSL_DMA_IN(chan
, &chan
->regs
->bcr
, 32);
94 static void set_desc_cnt(struct fsldma_chan
*chan
,
95 struct fsl_dma_ld_hw
*hw
, u32 count
)
97 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
100 static void set_desc_src(struct fsldma_chan
*chan
,
101 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
105 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
106 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
107 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
110 static void set_desc_dst(struct fsldma_chan
*chan
,
111 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
115 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
116 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
117 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
120 static void set_desc_next(struct fsldma_chan
*chan
,
121 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
125 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
127 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
130 static void set_ld_eol(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
134 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
137 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
138 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
143 * DMA Engine Hardware Control Helpers
146 static void dma_init(struct fsldma_chan
*chan
)
148 /* Reset the channel */
151 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
152 case FSL_DMA_IP_85XX
:
153 /* Set the channel to below modes:
154 * EIE - Error interrupt enable
155 * EOLNIE - End of links interrupt enable
156 * BWC - Bandwidth sharing among channels
158 set_mr(chan
, FSL_DMA_MR_BWC
| FSL_DMA_MR_EIE
159 | FSL_DMA_MR_EOLNIE
);
161 case FSL_DMA_IP_83XX
:
162 /* Set the channel to below modes:
163 * EOTIE - End-of-transfer interrupt enable
164 * PRC_RM - PCI read multiple
166 set_mr(chan
, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM
);
171 static int dma_is_idle(struct fsldma_chan
*chan
)
173 u32 sr
= get_sr(chan
);
174 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
178 * Start the DMA controller
181 * - the CDAR register must point to the start descriptor
182 * - the MRn[CS] bit must be cleared
184 static void dma_start(struct fsldma_chan
*chan
)
190 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
192 mode
|= FSL_DMA_MR_EMP_EN
;
194 mode
&= ~FSL_DMA_MR_EMP_EN
;
197 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
) {
198 mode
|= FSL_DMA_MR_EMS_EN
;
200 mode
&= ~FSL_DMA_MR_EMS_EN
;
201 mode
|= FSL_DMA_MR_CS
;
207 static void dma_halt(struct fsldma_chan
*chan
)
212 /* read the mode register */
216 * The 85xx controller supports channel abort, which will stop
217 * the current transfer. On 83xx, this bit is the transfer error
218 * mask bit, which should not be changed.
220 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
221 mode
|= FSL_DMA_MR_CA
;
224 mode
&= ~FSL_DMA_MR_CA
;
227 /* stop the DMA controller */
228 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
);
231 /* wait for the DMA controller to become idle */
232 for (i
= 0; i
< 100; i
++) {
233 if (dma_is_idle(chan
))
239 if (!dma_is_idle(chan
))
240 chan_err(chan
, "DMA halt timeout!\n");
244 * fsl_chan_set_src_loop_size - Set source address hold transfer size
245 * @chan : Freescale DMA channel
246 * @size : Address loop size, 0 for disable loop
248 * The set source address hold transfer size. The source
249 * address hold or loop transfer size is when the DMA transfer
250 * data from source address (SA), if the loop size is 4, the DMA will
251 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
252 * SA + 1 ... and so on.
254 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
262 mode
&= ~FSL_DMA_MR_SAHE
;
268 mode
&= ~FSL_DMA_MR_SAHTS_MASK
;
269 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
277 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
278 * @chan : Freescale DMA channel
279 * @size : Address loop size, 0 for disable loop
281 * The set destination address hold transfer size. The destination
282 * address hold or loop transfer size is when the DMA transfer
283 * data to destination address (TA), if the loop size is 4, the DMA will
284 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
285 * TA + 1 ... and so on.
287 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
295 mode
&= ~FSL_DMA_MR_DAHE
;
301 mode
&= ~FSL_DMA_MR_DAHTS_MASK
;
302 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
310 * fsl_chan_set_request_count - Set DMA Request Count for external control
311 * @chan : Freescale DMA channel
312 * @size : Number of bytes to transfer in a single request
314 * The Freescale DMA channel can be controlled by the external signal DREQ#.
315 * The DMA request count is how many bytes are allowed to transfer before
316 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * A size of 0 disables external pause control. The maximum size is 1024.
321 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
328 mode
&= ~FSL_DMA_MR_BWC_MASK
;
329 mode
|= (__ilog2(size
) << 24) & FSL_DMA_MR_BWC_MASK
;
335 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
336 * @chan : Freescale DMA channel
337 * @enable : 0 is disabled, 1 is enabled.
339 * The Freescale DMA channel can be controlled by the external signal DREQ#.
340 * The DMA Request Count feature should be used in addition to this feature
341 * to set the number of bytes to transfer before pausing the channel.
343 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
346 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
348 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
352 * fsl_chan_toggle_ext_start - Toggle channel external start status
353 * @chan : Freescale DMA channel
354 * @enable : 0 is disabled, 1 is enabled.
356 * If enable the external start, the channel can be started by an
357 * external DMA start pin. So the dma_start() does not start the
358 * transfer immediately. The DMA channel will wait for the
359 * control pin asserted.
361 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
364 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
366 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
369 int fsl_dma_external_start(struct dma_chan
*dchan
, int enable
)
371 struct fsldma_chan
*chan
;
376 chan
= to_fsl_chan(dchan
);
378 fsl_chan_toggle_ext_start(chan
, enable
);
381 EXPORT_SYMBOL_GPL(fsl_dma_external_start
);
383 static void append_ld_queue(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
385 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
387 if (list_empty(&chan
->ld_pending
))
391 * Add the hardware descriptor to the chain of hardware descriptors
392 * that already exists in memory.
394 * This will un-set the EOL bit of the existing transaction, and the
395 * last link in this transaction will become the EOL descriptor.
397 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
400 * Add the software descriptor and all children to the list
401 * of pending transactions
404 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
407 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
409 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
410 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
411 struct fsl_desc_sw
*child
;
412 dma_cookie_t cookie
= -EINVAL
;
414 spin_lock_bh(&chan
->desc_lock
);
417 if (unlikely(chan
->pm_state
!= RUNNING
)) {
418 chan_dbg(chan
, "cannot submit due to suspend\n");
419 spin_unlock_bh(&chan
->desc_lock
);
425 * assign cookies to all of the software descriptors
426 * that make up this transaction
428 list_for_each_entry(child
, &desc
->tx_list
, node
) {
429 cookie
= dma_cookie_assign(&child
->async_tx
);
432 /* put this transaction onto the tail of the pending queue */
433 append_ld_queue(chan
, desc
);
435 spin_unlock_bh(&chan
->desc_lock
);
441 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
442 * @chan : Freescale DMA channel
443 * @desc: descriptor to be freed
445 static void fsl_dma_free_descriptor(struct fsldma_chan
*chan
,
446 struct fsl_desc_sw
*desc
)
448 list_del(&desc
->node
);
449 chan_dbg(chan
, "LD %p free\n", desc
);
450 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
454 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
455 * @chan : Freescale DMA channel
457 * Return - The descriptor allocated. NULL for failed.
459 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(struct fsldma_chan
*chan
)
461 struct fsl_desc_sw
*desc
;
464 desc
= dma_pool_zalloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
466 chan_dbg(chan
, "out of memory for link descriptor\n");
470 INIT_LIST_HEAD(&desc
->tx_list
);
471 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
472 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
473 desc
->async_tx
.phys
= pdesc
;
475 chan_dbg(chan
, "LD %p allocated\n", desc
);
481 * fsldma_clean_completed_descriptor - free all descriptors which
482 * has been completed and acked
483 * @chan: Freescale DMA channel
485 * This function is used on all completed and acked descriptors.
486 * All descriptors should only be freed in this function.
488 static void fsldma_clean_completed_descriptor(struct fsldma_chan
*chan
)
490 struct fsl_desc_sw
*desc
, *_desc
;
492 /* Run the callback for each descriptor, in order */
493 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_completed
, node
)
494 if (async_tx_test_ack(&desc
->async_tx
))
495 fsl_dma_free_descriptor(chan
, desc
);
499 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
500 * @chan: Freescale DMA channel
501 * @desc: descriptor to cleanup and free
502 * @cookie: Freescale DMA transaction identifier
504 * This function is used on a descriptor which has been executed by the DMA
505 * controller. It will run any callbacks, submit any dependencies.
507 static dma_cookie_t
fsldma_run_tx_complete_actions(struct fsldma_chan
*chan
,
508 struct fsl_desc_sw
*desc
, dma_cookie_t cookie
)
510 struct dma_async_tx_descriptor
*txd
= &desc
->async_tx
;
511 dma_cookie_t ret
= cookie
;
513 BUG_ON(txd
->cookie
< 0);
515 if (txd
->cookie
> 0) {
518 dma_descriptor_unmap(txd
);
519 /* Run the link descriptor callback function */
520 dmaengine_desc_get_callback_invoke(txd
, NULL
);
523 /* Run any dependencies */
524 dma_run_dependencies(txd
);
530 * fsldma_clean_running_descriptor - move the completed descriptor from
531 * ld_running to ld_completed
532 * @chan: Freescale DMA channel
533 * @desc: the descriptor which is completed
535 * Free the descriptor directly if acked by async_tx api, or move it to
536 * queue ld_completed.
538 static void fsldma_clean_running_descriptor(struct fsldma_chan
*chan
,
539 struct fsl_desc_sw
*desc
)
541 /* Remove from the list of transactions */
542 list_del(&desc
->node
);
545 * the client is allowed to attach dependent operations
548 if (!async_tx_test_ack(&desc
->async_tx
)) {
550 * Move this descriptor to the list of descriptors which is
551 * completed, but still awaiting the 'ack' bit to be set.
553 list_add_tail(&desc
->node
, &chan
->ld_completed
);
557 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
561 * fsl_chan_xfer_ld_queue - transfer any pending transactions
562 * @chan : Freescale DMA channel
564 * HARDWARE STATE: idle
565 * LOCKING: must hold chan->desc_lock
567 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
569 struct fsl_desc_sw
*desc
;
572 * If the list of pending descriptors is empty, then we
573 * don't need to do any work at all
575 if (list_empty(&chan
->ld_pending
)) {
576 chan_dbg(chan
, "no pending LDs\n");
581 * The DMA controller is not idle, which means that the interrupt
582 * handler will start any queued transactions when it runs after
583 * this transaction finishes
586 chan_dbg(chan
, "DMA controller still busy\n");
591 * If there are some link descriptors which have not been
592 * transferred, we need to start the controller
596 * Move all elements from the queue of pending transactions
597 * onto the list of running transactions
599 chan_dbg(chan
, "idle, starting controller\n");
600 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
601 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
604 * The 85xx DMA controller doesn't clear the channel start bit
605 * automatically at the end of a transfer. Therefore we must clear
606 * it in software before starting the transfer.
608 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
612 mode
&= ~FSL_DMA_MR_CS
;
617 * Program the descriptor's address into the DMA controller,
618 * then start the DMA transaction
620 set_cdar(chan
, desc
->async_tx
.phys
);
628 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
629 * and move them to ld_completed to free until flag 'ack' is set
630 * @chan: Freescale DMA channel
632 * This function is used on descriptors which have been executed by the DMA
633 * controller. It will run any callbacks, submit any dependencies, then
634 * free these descriptors if flag 'ack' is set.
636 static void fsldma_cleanup_descriptors(struct fsldma_chan
*chan
)
638 struct fsl_desc_sw
*desc
, *_desc
;
639 dma_cookie_t cookie
= 0;
640 dma_addr_t curr_phys
= get_cdar(chan
);
641 int seen_current
= 0;
643 fsldma_clean_completed_descriptor(chan
);
645 /* Run the callback for each descriptor, in order */
646 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_running
, node
) {
648 * do not advance past the current descriptor loaded into the
649 * hardware channel, subsequent descriptors are either in
650 * process or have not been submitted
656 * stop the search if we reach the current descriptor and the
659 if (desc
->async_tx
.phys
== curr_phys
) {
661 if (!dma_is_idle(chan
))
665 cookie
= fsldma_run_tx_complete_actions(chan
, desc
, cookie
);
667 fsldma_clean_running_descriptor(chan
, desc
);
671 * Start any pending transactions automatically
673 * In the ideal case, we keep the DMA controller busy while we go
674 * ahead and free the descriptors below.
676 fsl_chan_xfer_ld_queue(chan
);
679 chan
->common
.completed_cookie
= cookie
;
683 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
684 * @chan : Freescale DMA channel
686 * This function will create a dma pool for descriptor allocation.
688 * Return - The number of descriptors allocated.
690 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
692 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
694 /* Has this channel already been allocated? */
699 * We need the descriptor to be aligned to 32bytes
700 * for meeting FSL DMA specification requirement.
702 chan
->desc_pool
= dma_pool_create(chan
->name
, chan
->dev
,
703 sizeof(struct fsl_desc_sw
),
704 __alignof__(struct fsl_desc_sw
), 0);
705 if (!chan
->desc_pool
) {
706 chan_err(chan
, "unable to allocate descriptor pool\n");
710 /* there is at least one descriptor free to be allocated */
715 * fsldma_free_desc_list - Free all descriptors in a queue
716 * @chan: Freescae DMA channel
717 * @list: the list to free
719 * LOCKING: must hold chan->desc_lock
721 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
722 struct list_head
*list
)
724 struct fsl_desc_sw
*desc
, *_desc
;
726 list_for_each_entry_safe(desc
, _desc
, list
, node
)
727 fsl_dma_free_descriptor(chan
, desc
);
730 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
731 struct list_head
*list
)
733 struct fsl_desc_sw
*desc
, *_desc
;
735 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
)
736 fsl_dma_free_descriptor(chan
, desc
);
740 * fsl_dma_free_chan_resources - Free all resources of the channel.
741 * @chan : Freescale DMA channel
743 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
745 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
747 chan_dbg(chan
, "free all channel resources\n");
748 spin_lock_bh(&chan
->desc_lock
);
749 fsldma_cleanup_descriptors(chan
);
750 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
751 fsldma_free_desc_list(chan
, &chan
->ld_running
);
752 fsldma_free_desc_list(chan
, &chan
->ld_completed
);
753 spin_unlock_bh(&chan
->desc_lock
);
755 dma_pool_destroy(chan
->desc_pool
);
756 chan
->desc_pool
= NULL
;
759 static struct dma_async_tx_descriptor
*
760 fsl_dma_prep_memcpy(struct dma_chan
*dchan
,
761 dma_addr_t dma_dst
, dma_addr_t dma_src
,
762 size_t len
, unsigned long flags
)
764 struct fsldma_chan
*chan
;
765 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
774 chan
= to_fsl_chan(dchan
);
778 /* Allocate the link descriptor from DMA pool */
779 new = fsl_dma_alloc_descriptor(chan
);
781 chan_err(chan
, "%s\n", msg_ld_oom
);
785 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
787 set_desc_cnt(chan
, &new->hw
, copy
);
788 set_desc_src(chan
, &new->hw
, dma_src
);
789 set_desc_dst(chan
, &new->hw
, dma_dst
);
794 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
796 new->async_tx
.cookie
= 0;
797 async_tx_ack(&new->async_tx
);
804 /* Insert the link descriptor to the LD ring */
805 list_add_tail(&new->node
, &first
->tx_list
);
808 new->async_tx
.flags
= flags
; /* client is in control of this ack */
809 new->async_tx
.cookie
= -EBUSY
;
811 /* Set End-of-link to the last link descriptor of new list */
812 set_ld_eol(chan
, new);
814 return &first
->async_tx
;
820 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
824 static int fsl_dma_device_terminate_all(struct dma_chan
*dchan
)
826 struct fsldma_chan
*chan
;
831 chan
= to_fsl_chan(dchan
);
833 spin_lock_bh(&chan
->desc_lock
);
835 /* Halt the DMA engine */
838 /* Remove and free all of the descriptors in the LD queue */
839 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
840 fsldma_free_desc_list(chan
, &chan
->ld_running
);
841 fsldma_free_desc_list(chan
, &chan
->ld_completed
);
844 spin_unlock_bh(&chan
->desc_lock
);
848 static int fsl_dma_device_config(struct dma_chan
*dchan
,
849 struct dma_slave_config
*config
)
851 struct fsldma_chan
*chan
;
857 chan
= to_fsl_chan(dchan
);
859 /* make sure the channel supports setting burst size */
860 if (!chan
->set_request_count
)
863 /* we set the controller burst size depending on direction */
864 if (config
->direction
== DMA_MEM_TO_DEV
)
865 size
= config
->dst_addr_width
* config
->dst_maxburst
;
867 size
= config
->src_addr_width
* config
->src_maxburst
;
869 chan
->set_request_count(chan
, size
);
875 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
876 * @chan : Freescale DMA channel
878 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
880 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
882 spin_lock_bh(&chan
->desc_lock
);
883 fsl_chan_xfer_ld_queue(chan
);
884 spin_unlock_bh(&chan
->desc_lock
);
888 * fsl_tx_status - Determine the DMA status
889 * @chan : Freescale DMA channel
891 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
893 struct dma_tx_state
*txstate
)
895 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
898 ret
= dma_cookie_status(dchan
, cookie
, txstate
);
899 if (ret
== DMA_COMPLETE
)
902 spin_lock_bh(&chan
->desc_lock
);
903 fsldma_cleanup_descriptors(chan
);
904 spin_unlock_bh(&chan
->desc_lock
);
906 return dma_cookie_status(dchan
, cookie
, txstate
);
909 /*----------------------------------------------------------------------------*/
910 /* Interrupt Handling */
911 /*----------------------------------------------------------------------------*/
913 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
915 struct fsldma_chan
*chan
= data
;
918 /* save and clear the status register */
921 chan_dbg(chan
, "irq: stat = 0x%x\n", stat
);
923 /* check that this was really our device */
924 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
928 if (stat
& FSL_DMA_SR_TE
)
929 chan_err(chan
, "Transfer Error!\n");
933 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
934 * trigger a PE interrupt.
936 if (stat
& FSL_DMA_SR_PE
) {
937 chan_dbg(chan
, "irq: Programming Error INT\n");
938 stat
&= ~FSL_DMA_SR_PE
;
939 if (get_bcr(chan
) != 0)
940 chan_err(chan
, "Programming Error!\n");
944 * For MPC8349, EOCDI event need to update cookie
945 * and start the next transfer if it exist.
947 if (stat
& FSL_DMA_SR_EOCDI
) {
948 chan_dbg(chan
, "irq: End-of-Chain link INT\n");
949 stat
&= ~FSL_DMA_SR_EOCDI
;
953 * If it current transfer is the end-of-transfer,
954 * we should clear the Channel Start bit for
955 * prepare next transfer.
957 if (stat
& FSL_DMA_SR_EOLNI
) {
958 chan_dbg(chan
, "irq: End-of-link INT\n");
959 stat
&= ~FSL_DMA_SR_EOLNI
;
962 /* check that the DMA controller is really idle */
963 if (!dma_is_idle(chan
))
964 chan_err(chan
, "irq: controller not idle!\n");
966 /* check that we handled all of the bits */
968 chan_err(chan
, "irq: unhandled sr 0x%08x\n", stat
);
971 * Schedule the tasklet to handle all cleanup of the current
972 * transaction. It will start a new transaction if there is
975 tasklet_schedule(&chan
->tasklet
);
976 chan_dbg(chan
, "irq: Exit\n");
980 static void dma_do_tasklet(struct tasklet_struct
*t
)
982 struct fsldma_chan
*chan
= from_tasklet(chan
, t
, tasklet
);
984 chan_dbg(chan
, "tasklet entry\n");
986 spin_lock(&chan
->desc_lock
);
988 /* the hardware is now idle and ready for more */
991 /* Run all cleanup for descriptors which have been completed */
992 fsldma_cleanup_descriptors(chan
);
994 spin_unlock(&chan
->desc_lock
);
996 chan_dbg(chan
, "tasklet exit\n");
999 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1001 struct fsldma_device
*fdev
= data
;
1002 struct fsldma_chan
*chan
;
1003 unsigned int handled
= 0;
1007 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1008 : in_le32(fdev
->regs
);
1010 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1012 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1013 chan
= fdev
->chan
[i
];
1018 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1019 fsldma_chan_irq(irq
, chan
);
1027 return IRQ_RETVAL(handled
);
1030 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1032 struct fsldma_chan
*chan
;
1036 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1037 free_irq(fdev
->irq
, fdev
);
1041 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1042 chan
= fdev
->chan
[i
];
1043 if (chan
&& chan
->irq
) {
1044 chan_dbg(chan
, "free per-channel IRQ\n");
1045 free_irq(chan
->irq
, chan
);
1050 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1052 struct fsldma_chan
*chan
;
1056 /* if we have a per-controller IRQ, use that */
1058 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1059 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1060 "fsldma-controller", fdev
);
1064 /* no per-controller IRQ, use the per-channel IRQs */
1065 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1066 chan
= fdev
->chan
[i
];
1071 chan_err(chan
, "interrupts property missing in device tree\n");
1076 chan_dbg(chan
, "request per-channel IRQ\n");
1077 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1078 "fsldma-chan", chan
);
1080 chan_err(chan
, "unable to request per-channel IRQ\n");
1088 for (/* none */; i
>= 0; i
--) {
1089 chan
= fdev
->chan
[i
];
1096 free_irq(chan
->irq
, chan
);
1102 /*----------------------------------------------------------------------------*/
1103 /* OpenFirmware Subsystem */
1104 /*----------------------------------------------------------------------------*/
1106 static int fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1107 struct device_node
*node
, u32 feature
, const char *compatible
)
1109 struct fsldma_chan
*chan
;
1110 struct resource res
;
1114 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1120 /* ioremap registers for use */
1121 chan
->regs
= of_iomap(node
, 0);
1123 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1128 err
= of_address_to_resource(node
, 0, &res
);
1130 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1131 goto out_iounmap_regs
;
1134 chan
->feature
= feature
;
1136 fdev
->feature
= chan
->feature
;
1139 * If the DMA device's feature is different than the feature
1140 * of its channels, report the bug
1142 WARN_ON(fdev
->feature
!= chan
->feature
);
1144 chan
->dev
= fdev
->dev
;
1145 chan
->id
= (res
.start
& 0xfff) < 0x300 ?
1146 ((res
.start
- 0x100) & 0xfff) >> 7 :
1147 ((res
.start
- 0x200) & 0xfff) >> 7;
1148 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1149 dev_err(fdev
->dev
, "too many channels for device\n");
1151 goto out_iounmap_regs
;
1154 fdev
->chan
[chan
->id
] = chan
;
1155 tasklet_setup(&chan
->tasklet
, dma_do_tasklet
);
1156 snprintf(chan
->name
, sizeof(chan
->name
), "chan%d", chan
->id
);
1158 /* Initialize the channel */
1161 /* Clear cdar registers */
1164 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1165 case FSL_DMA_IP_85XX
:
1166 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1168 case FSL_DMA_IP_83XX
:
1169 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1170 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1171 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1172 chan
->set_request_count
= fsl_chan_set_request_count
;
1175 spin_lock_init(&chan
->desc_lock
);
1176 INIT_LIST_HEAD(&chan
->ld_pending
);
1177 INIT_LIST_HEAD(&chan
->ld_running
);
1178 INIT_LIST_HEAD(&chan
->ld_completed
);
1181 chan
->pm_state
= RUNNING
;
1184 chan
->common
.device
= &fdev
->common
;
1185 dma_cookie_init(&chan
->common
);
1187 /* find the IRQ line, if it exists in the device tree */
1188 chan
->irq
= irq_of_parse_and_map(node
, 0);
1190 /* Add the channel to DMA device channel list */
1191 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1193 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1194 chan
->irq
? chan
->irq
: fdev
->irq
);
1199 iounmap(chan
->regs
);
1206 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1208 irq_dispose_mapping(chan
->irq
);
1209 list_del(&chan
->common
.device_node
);
1210 iounmap(chan
->regs
);
1214 static int fsldma_of_probe(struct platform_device
*op
)
1216 struct fsldma_device
*fdev
;
1217 struct device_node
*child
;
1221 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1227 fdev
->dev
= &op
->dev
;
1228 INIT_LIST_HEAD(&fdev
->common
.channels
);
1230 /* ioremap the registers for use */
1231 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1233 dev_err(&op
->dev
, "unable to ioremap registers\n");
1238 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1239 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1241 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1242 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1243 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1244 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1245 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1246 fdev
->common
.device_tx_status
= fsl_tx_status
;
1247 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1248 fdev
->common
.device_config
= fsl_dma_device_config
;
1249 fdev
->common
.device_terminate_all
= fsl_dma_device_terminate_all
;
1250 fdev
->common
.dev
= &op
->dev
;
1252 fdev
->common
.src_addr_widths
= FSL_DMA_BUSWIDTHS
;
1253 fdev
->common
.dst_addr_widths
= FSL_DMA_BUSWIDTHS
;
1254 fdev
->common
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1255 fdev
->common
.residue_granularity
= DMA_RESIDUE_GRANULARITY_DESCRIPTOR
;
1257 dma_set_mask(&(op
->dev
), DMA_BIT_MASK(36));
1259 platform_set_drvdata(op
, fdev
);
1262 * We cannot use of_platform_bus_probe() because there is no
1263 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1266 for_each_child_of_node(op
->dev
.of_node
, child
) {
1267 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1268 fsl_dma_chan_probe(fdev
, child
,
1269 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1270 "fsl,eloplus-dma-channel");
1273 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1274 fsl_dma_chan_probe(fdev
, child
,
1275 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1276 "fsl,elo-dma-channel");
1281 * Hookup the IRQ handler(s)
1283 * If we have a per-controller interrupt, we prefer that to the
1284 * per-channel interrupts to reduce the number of shared interrupt
1285 * handlers on the same IRQ line
1287 err
= fsldma_request_irqs(fdev
);
1289 dev_err(fdev
->dev
, "unable to request IRQs\n");
1293 dma_async_device_register(&fdev
->common
);
1297 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1299 fsl_dma_chan_remove(fdev
->chan
[i
]);
1301 irq_dispose_mapping(fdev
->irq
);
1302 iounmap(fdev
->regs
);
1309 static void fsldma_of_remove(struct platform_device
*op
)
1311 struct fsldma_device
*fdev
;
1314 fdev
= platform_get_drvdata(op
);
1315 dma_async_device_unregister(&fdev
->common
);
1317 fsldma_free_irqs(fdev
);
1319 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1321 fsl_dma_chan_remove(fdev
->chan
[i
]);
1323 irq_dispose_mapping(fdev
->irq
);
1325 iounmap(fdev
->regs
);
1330 static int fsldma_suspend_late(struct device
*dev
)
1332 struct fsldma_device
*fdev
= dev_get_drvdata(dev
);
1333 struct fsldma_chan
*chan
;
1336 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1337 chan
= fdev
->chan
[i
];
1341 spin_lock_bh(&chan
->desc_lock
);
1342 if (unlikely(!chan
->idle
))
1344 chan
->regs_save
.mr
= get_mr(chan
);
1345 chan
->pm_state
= SUSPENDED
;
1346 spin_unlock_bh(&chan
->desc_lock
);
1351 for (; i
>= 0; i
--) {
1352 chan
= fdev
->chan
[i
];
1355 chan
->pm_state
= RUNNING
;
1356 spin_unlock_bh(&chan
->desc_lock
);
1361 static int fsldma_resume_early(struct device
*dev
)
1363 struct fsldma_device
*fdev
= dev_get_drvdata(dev
);
1364 struct fsldma_chan
*chan
;
1368 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1369 chan
= fdev
->chan
[i
];
1373 spin_lock_bh(&chan
->desc_lock
);
1374 mode
= chan
->regs_save
.mr
1375 & ~FSL_DMA_MR_CS
& ~FSL_DMA_MR_CC
& ~FSL_DMA_MR_CA
;
1377 chan
->pm_state
= RUNNING
;
1378 spin_unlock_bh(&chan
->desc_lock
);
1384 static const struct dev_pm_ops fsldma_pm_ops
= {
1385 .suspend_late
= fsldma_suspend_late
,
1386 .resume_early
= fsldma_resume_early
,
1390 static const struct of_device_id fsldma_of_ids
[] = {
1391 { .compatible
= "fsl,elo3-dma", },
1392 { .compatible
= "fsl,eloplus-dma", },
1393 { .compatible
= "fsl,elo-dma", },
1396 MODULE_DEVICE_TABLE(of
, fsldma_of_ids
);
1398 static struct platform_driver fsldma_of_driver
= {
1400 .name
= "fsl-elo-dma",
1401 .of_match_table
= fsldma_of_ids
,
1403 .pm
= &fsldma_pm_ops
,
1406 .probe
= fsldma_of_probe
,
1407 .remove
= fsldma_of_remove
,
1410 /*----------------------------------------------------------------------------*/
1411 /* Module Init / Exit */
1412 /*----------------------------------------------------------------------------*/
1414 static __init
int fsldma_init(void)
1416 pr_info("Freescale Elo series DMA driver\n");
1417 return platform_driver_register(&fsldma_of_driver
);
1420 static void __exit
fsldma_exit(void)
1422 platform_driver_unregister(&fsldma_of_driver
);
1425 subsys_initcall(fsldma_init
);
1426 module_exit(fsldma_exit
);
1428 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1429 MODULE_LICENSE("GPL");